1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 static void pci_dev_d3_sleep(struct pci_dev *dev) 68 { 69 unsigned int delay = dev->d3hot_delay; 70 71 if (delay < pci_pm_d3hot_delay) 72 delay = pci_pm_d3hot_delay; 73 74 if (delay) 75 msleep(delay); 76 } 77 78 bool pci_reset_supported(struct pci_dev *dev) 79 { 80 return dev->reset_methods[0] != 0; 81 } 82 83 #ifdef CONFIG_PCI_DOMAINS 84 int pci_domains_supported = 1; 85 #endif 86 87 #define DEFAULT_CARDBUS_IO_SIZE (256) 88 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 89 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 90 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 91 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 92 93 #define DEFAULT_HOTPLUG_IO_SIZE (256) 94 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 95 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 96 /* hpiosize=nn can override this */ 97 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 98 /* 99 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 100 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 101 * pci=hpmemsize=nnM overrides both 102 */ 103 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 104 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 105 106 #define DEFAULT_HOTPLUG_BUS_SIZE 1 107 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 108 109 110 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 111 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 112 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 113 #elif defined CONFIG_PCIE_BUS_SAFE 114 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 115 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 116 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 117 #elif defined CONFIG_PCIE_BUS_PEER2PEER 118 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 119 #else 120 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 121 #endif 122 123 /* 124 * The default CLS is used if arch didn't set CLS explicitly and not 125 * all pci devices agree on the same value. Arch can override either 126 * the dfl or actual value as it sees fit. Don't forget this is 127 * measured in 32-bit words, not bytes. 128 */ 129 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 130 u8 pci_cache_line_size; 131 132 /* 133 * If we set up a device for bus mastering, we need to check the latency 134 * timer as certain BIOSes forget to set it properly. 135 */ 136 unsigned int pcibios_max_latency = 255; 137 138 /* If set, the PCIe ARI capability will not be used. */ 139 static bool pcie_ari_disabled; 140 141 /* If set, the PCIe ATS capability will not be used. */ 142 static bool pcie_ats_disabled; 143 144 /* If set, the PCI config space of each device is printed during boot. */ 145 bool pci_early_dump; 146 147 bool pci_ats_disabled(void) 148 { 149 return pcie_ats_disabled; 150 } 151 EXPORT_SYMBOL_GPL(pci_ats_disabled); 152 153 /* Disable bridge_d3 for all PCIe ports */ 154 static bool pci_bridge_d3_disable; 155 /* Force bridge_d3 for all PCIe ports */ 156 static bool pci_bridge_d3_force; 157 158 static int __init pcie_port_pm_setup(char *str) 159 { 160 if (!strcmp(str, "off")) 161 pci_bridge_d3_disable = true; 162 else if (!strcmp(str, "force")) 163 pci_bridge_d3_force = true; 164 return 1; 165 } 166 __setup("pcie_port_pm=", pcie_port_pm_setup); 167 168 /* Time to wait after a reset for device to become responsive */ 169 #define PCIE_RESET_READY_POLL_MS 60000 170 171 /** 172 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 173 * @bus: pointer to PCI bus structure to search 174 * 175 * Given a PCI bus, returns the highest PCI bus number present in the set 176 * including the given PCI bus and its list of child PCI buses. 177 */ 178 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 179 { 180 struct pci_bus *tmp; 181 unsigned char max, n; 182 183 max = bus->busn_res.end; 184 list_for_each_entry(tmp, &bus->children, node) { 185 n = pci_bus_max_busnr(tmp); 186 if (n > max) 187 max = n; 188 } 189 return max; 190 } 191 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 192 193 /** 194 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 195 * @pdev: the PCI device 196 * 197 * Returns error bits set in PCI_STATUS and clears them. 198 */ 199 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 200 { 201 u16 status; 202 int ret; 203 204 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 205 if (ret != PCIBIOS_SUCCESSFUL) 206 return -EIO; 207 208 status &= PCI_STATUS_ERROR_BITS; 209 if (status) 210 pci_write_config_word(pdev, PCI_STATUS, status); 211 212 return status; 213 } 214 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 215 216 #ifdef CONFIG_HAS_IOMEM 217 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 218 bool write_combine) 219 { 220 struct resource *res = &pdev->resource[bar]; 221 resource_size_t start = res->start; 222 resource_size_t size = resource_size(res); 223 224 /* 225 * Make sure the BAR is actually a memory resource, not an IO resource 226 */ 227 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 228 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 229 return NULL; 230 } 231 232 if (write_combine) 233 return ioremap_wc(start, size); 234 235 return ioremap(start, size); 236 } 237 238 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 239 { 240 return __pci_ioremap_resource(pdev, bar, false); 241 } 242 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 243 244 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 245 { 246 return __pci_ioremap_resource(pdev, bar, true); 247 } 248 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 249 #endif 250 251 /** 252 * pci_dev_str_match_path - test if a path string matches a device 253 * @dev: the PCI device to test 254 * @path: string to match the device against 255 * @endptr: pointer to the string after the match 256 * 257 * Test if a string (typically from a kernel parameter) formatted as a 258 * path of device/function addresses matches a PCI device. The string must 259 * be of the form: 260 * 261 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 262 * 263 * A path for a device can be obtained using 'lspci -t'. Using a path 264 * is more robust against bus renumbering than using only a single bus, 265 * device and function address. 266 * 267 * Returns 1 if the string matches the device, 0 if it does not and 268 * a negative error code if it fails to parse the string. 269 */ 270 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 271 const char **endptr) 272 { 273 int ret; 274 unsigned int seg, bus, slot, func; 275 char *wpath, *p; 276 char end; 277 278 *endptr = strchrnul(path, ';'); 279 280 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 281 if (!wpath) 282 return -ENOMEM; 283 284 while (1) { 285 p = strrchr(wpath, '/'); 286 if (!p) 287 break; 288 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 289 if (ret != 2) { 290 ret = -EINVAL; 291 goto free_and_exit; 292 } 293 294 if (dev->devfn != PCI_DEVFN(slot, func)) { 295 ret = 0; 296 goto free_and_exit; 297 } 298 299 /* 300 * Note: we don't need to get a reference to the upstream 301 * bridge because we hold a reference to the top level 302 * device which should hold a reference to the bridge, 303 * and so on. 304 */ 305 dev = pci_upstream_bridge(dev); 306 if (!dev) { 307 ret = 0; 308 goto free_and_exit; 309 } 310 311 *p = 0; 312 } 313 314 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 315 &func, &end); 316 if (ret != 4) { 317 seg = 0; 318 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 319 if (ret != 3) { 320 ret = -EINVAL; 321 goto free_and_exit; 322 } 323 } 324 325 ret = (seg == pci_domain_nr(dev->bus) && 326 bus == dev->bus->number && 327 dev->devfn == PCI_DEVFN(slot, func)); 328 329 free_and_exit: 330 kfree(wpath); 331 return ret; 332 } 333 334 /** 335 * pci_dev_str_match - test if a string matches a device 336 * @dev: the PCI device to test 337 * @p: string to match the device against 338 * @endptr: pointer to the string after the match 339 * 340 * Test if a string (typically from a kernel parameter) matches a specified 341 * PCI device. The string may be of one of the following formats: 342 * 343 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 344 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 345 * 346 * The first format specifies a PCI bus/device/function address which 347 * may change if new hardware is inserted, if motherboard firmware changes, 348 * or due to changes caused in kernel parameters. If the domain is 349 * left unspecified, it is taken to be 0. In order to be robust against 350 * bus renumbering issues, a path of PCI device/function numbers may be used 351 * to address the specific device. The path for a device can be determined 352 * through the use of 'lspci -t'. 353 * 354 * The second format matches devices using IDs in the configuration 355 * space which may match multiple devices in the system. A value of 0 356 * for any field will match all devices. (Note: this differs from 357 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 358 * legacy reasons and convenience so users don't have to specify 359 * FFFFFFFFs on the command line.) 360 * 361 * Returns 1 if the string matches the device, 0 if it does not and 362 * a negative error code if the string cannot be parsed. 363 */ 364 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 365 const char **endptr) 366 { 367 int ret; 368 int count; 369 unsigned short vendor, device, subsystem_vendor, subsystem_device; 370 371 if (strncmp(p, "pci:", 4) == 0) { 372 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 373 p += 4; 374 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 375 &subsystem_vendor, &subsystem_device, &count); 376 if (ret != 4) { 377 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 378 if (ret != 2) 379 return -EINVAL; 380 381 subsystem_vendor = 0; 382 subsystem_device = 0; 383 } 384 385 p += count; 386 387 if ((!vendor || vendor == dev->vendor) && 388 (!device || device == dev->device) && 389 (!subsystem_vendor || 390 subsystem_vendor == dev->subsystem_vendor) && 391 (!subsystem_device || 392 subsystem_device == dev->subsystem_device)) 393 goto found; 394 } else { 395 /* 396 * PCI Bus, Device, Function IDs are specified 397 * (optionally, may include a path of devfns following it) 398 */ 399 ret = pci_dev_str_match_path(dev, p, &p); 400 if (ret < 0) 401 return ret; 402 else if (ret) 403 goto found; 404 } 405 406 *endptr = p; 407 return 0; 408 409 found: 410 *endptr = p; 411 return 1; 412 } 413 414 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 415 u8 pos, int cap, int *ttl) 416 { 417 u8 id; 418 u16 ent; 419 420 pci_bus_read_config_byte(bus, devfn, pos, &pos); 421 422 while ((*ttl)--) { 423 if (pos < 0x40) 424 break; 425 pos &= ~3; 426 pci_bus_read_config_word(bus, devfn, pos, &ent); 427 428 id = ent & 0xff; 429 if (id == 0xff) 430 break; 431 if (id == cap) 432 return pos; 433 pos = (ent >> 8); 434 } 435 return 0; 436 } 437 438 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 439 u8 pos, int cap) 440 { 441 int ttl = PCI_FIND_CAP_TTL; 442 443 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 444 } 445 446 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 447 { 448 return __pci_find_next_cap(dev->bus, dev->devfn, 449 pos + PCI_CAP_LIST_NEXT, cap); 450 } 451 EXPORT_SYMBOL_GPL(pci_find_next_capability); 452 453 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 454 unsigned int devfn, u8 hdr_type) 455 { 456 u16 status; 457 458 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 459 if (!(status & PCI_STATUS_CAP_LIST)) 460 return 0; 461 462 switch (hdr_type) { 463 case PCI_HEADER_TYPE_NORMAL: 464 case PCI_HEADER_TYPE_BRIDGE: 465 return PCI_CAPABILITY_LIST; 466 case PCI_HEADER_TYPE_CARDBUS: 467 return PCI_CB_CAPABILITY_LIST; 468 } 469 470 return 0; 471 } 472 473 /** 474 * pci_find_capability - query for devices' capabilities 475 * @dev: PCI device to query 476 * @cap: capability code 477 * 478 * Tell if a device supports a given PCI capability. 479 * Returns the address of the requested capability structure within the 480 * device's PCI configuration space or 0 in case the device does not 481 * support it. Possible values for @cap include: 482 * 483 * %PCI_CAP_ID_PM Power Management 484 * %PCI_CAP_ID_AGP Accelerated Graphics Port 485 * %PCI_CAP_ID_VPD Vital Product Data 486 * %PCI_CAP_ID_SLOTID Slot Identification 487 * %PCI_CAP_ID_MSI Message Signalled Interrupts 488 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 489 * %PCI_CAP_ID_PCIX PCI-X 490 * %PCI_CAP_ID_EXP PCI Express 491 */ 492 u8 pci_find_capability(struct pci_dev *dev, int cap) 493 { 494 u8 pos; 495 496 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 497 if (pos) 498 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 499 500 return pos; 501 } 502 EXPORT_SYMBOL(pci_find_capability); 503 504 /** 505 * pci_bus_find_capability - query for devices' capabilities 506 * @bus: the PCI bus to query 507 * @devfn: PCI device to query 508 * @cap: capability code 509 * 510 * Like pci_find_capability() but works for PCI devices that do not have a 511 * pci_dev structure set up yet. 512 * 513 * Returns the address of the requested capability structure within the 514 * device's PCI configuration space or 0 in case the device does not 515 * support it. 516 */ 517 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 518 { 519 u8 hdr_type, pos; 520 521 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 522 523 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 524 if (pos) 525 pos = __pci_find_next_cap(bus, devfn, pos, cap); 526 527 return pos; 528 } 529 EXPORT_SYMBOL(pci_bus_find_capability); 530 531 /** 532 * pci_find_next_ext_capability - Find an extended capability 533 * @dev: PCI device to query 534 * @start: address at which to start looking (0 to start at beginning of list) 535 * @cap: capability code 536 * 537 * Returns the address of the next matching extended capability structure 538 * within the device's PCI configuration space or 0 if the device does 539 * not support it. Some capabilities can occur several times, e.g., the 540 * vendor-specific capability, and this provides a way to find them all. 541 */ 542 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 543 { 544 u32 header; 545 int ttl; 546 u16 pos = PCI_CFG_SPACE_SIZE; 547 548 /* minimum 8 bytes per capability */ 549 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 550 551 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 552 return 0; 553 554 if (start) 555 pos = start; 556 557 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 558 return 0; 559 560 /* 561 * If we have no capabilities, this is indicated by cap ID, 562 * cap version and next pointer all being 0. 563 */ 564 if (header == 0) 565 return 0; 566 567 while (ttl-- > 0) { 568 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 569 return pos; 570 571 pos = PCI_EXT_CAP_NEXT(header); 572 if (pos < PCI_CFG_SPACE_SIZE) 573 break; 574 575 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 576 break; 577 } 578 579 return 0; 580 } 581 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 582 583 /** 584 * pci_find_ext_capability - Find an extended capability 585 * @dev: PCI device to query 586 * @cap: capability code 587 * 588 * Returns the address of the requested extended capability structure 589 * within the device's PCI configuration space or 0 if the device does 590 * not support it. Possible values for @cap include: 591 * 592 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 593 * %PCI_EXT_CAP_ID_VC Virtual Channel 594 * %PCI_EXT_CAP_ID_DSN Device Serial Number 595 * %PCI_EXT_CAP_ID_PWR Power Budgeting 596 */ 597 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 598 { 599 return pci_find_next_ext_capability(dev, 0, cap); 600 } 601 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 602 603 /** 604 * pci_get_dsn - Read and return the 8-byte Device Serial Number 605 * @dev: PCI device to query 606 * 607 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 608 * Number. 609 * 610 * Returns the DSN, or zero if the capability does not exist. 611 */ 612 u64 pci_get_dsn(struct pci_dev *dev) 613 { 614 u32 dword; 615 u64 dsn; 616 int pos; 617 618 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 619 if (!pos) 620 return 0; 621 622 /* 623 * The Device Serial Number is two dwords offset 4 bytes from the 624 * capability position. The specification says that the first dword is 625 * the lower half, and the second dword is the upper half. 626 */ 627 pos += 4; 628 pci_read_config_dword(dev, pos, &dword); 629 dsn = (u64)dword; 630 pci_read_config_dword(dev, pos + 4, &dword); 631 dsn |= ((u64)dword) << 32; 632 633 return dsn; 634 } 635 EXPORT_SYMBOL_GPL(pci_get_dsn); 636 637 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 638 { 639 int rc, ttl = PCI_FIND_CAP_TTL; 640 u8 cap, mask; 641 642 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 643 mask = HT_3BIT_CAP_MASK; 644 else 645 mask = HT_5BIT_CAP_MASK; 646 647 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 648 PCI_CAP_ID_HT, &ttl); 649 while (pos) { 650 rc = pci_read_config_byte(dev, pos + 3, &cap); 651 if (rc != PCIBIOS_SUCCESSFUL) 652 return 0; 653 654 if ((cap & mask) == ht_cap) 655 return pos; 656 657 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 658 pos + PCI_CAP_LIST_NEXT, 659 PCI_CAP_ID_HT, &ttl); 660 } 661 662 return 0; 663 } 664 665 /** 666 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 667 * @dev: PCI device to query 668 * @pos: Position from which to continue searching 669 * @ht_cap: HyperTransport capability code 670 * 671 * To be used in conjunction with pci_find_ht_capability() to search for 672 * all capabilities matching @ht_cap. @pos should always be a value returned 673 * from pci_find_ht_capability(). 674 * 675 * NB. To be 100% safe against broken PCI devices, the caller should take 676 * steps to avoid an infinite loop. 677 */ 678 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 679 { 680 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 681 } 682 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 683 684 /** 685 * pci_find_ht_capability - query a device's HyperTransport capabilities 686 * @dev: PCI device to query 687 * @ht_cap: HyperTransport capability code 688 * 689 * Tell if a device supports a given HyperTransport capability. 690 * Returns an address within the device's PCI configuration space 691 * or 0 in case the device does not support the request capability. 692 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 693 * which has a HyperTransport capability matching @ht_cap. 694 */ 695 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 696 { 697 u8 pos; 698 699 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 700 if (pos) 701 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 702 703 return pos; 704 } 705 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 706 707 /** 708 * pci_find_vsec_capability - Find a vendor-specific extended capability 709 * @dev: PCI device to query 710 * @vendor: Vendor ID for which capability is defined 711 * @cap: Vendor-specific capability ID 712 * 713 * If @dev has Vendor ID @vendor, search for a VSEC capability with 714 * VSEC ID @cap. If found, return the capability offset in 715 * config space; otherwise return 0. 716 */ 717 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 718 { 719 u16 vsec = 0; 720 u32 header; 721 722 if (vendor != dev->vendor) 723 return 0; 724 725 while ((vsec = pci_find_next_ext_capability(dev, vsec, 726 PCI_EXT_CAP_ID_VNDR))) { 727 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 728 &header) == PCIBIOS_SUCCESSFUL && 729 PCI_VNDR_HEADER_ID(header) == cap) 730 return vsec; 731 } 732 733 return 0; 734 } 735 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 736 737 /** 738 * pci_find_dvsec_capability - Find DVSEC for vendor 739 * @dev: PCI device to query 740 * @vendor: Vendor ID to match for the DVSEC 741 * @dvsec: Designated Vendor-specific capability ID 742 * 743 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 744 * offset in config space; otherwise return 0. 745 */ 746 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 747 { 748 int pos; 749 750 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 751 if (!pos) 752 return 0; 753 754 while (pos) { 755 u16 v, id; 756 757 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 758 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 759 if (vendor == v && dvsec == id) 760 return pos; 761 762 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 763 } 764 765 return 0; 766 } 767 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 768 769 /** 770 * pci_find_parent_resource - return resource region of parent bus of given 771 * region 772 * @dev: PCI device structure contains resources to be searched 773 * @res: child resource record for which parent is sought 774 * 775 * For given resource region of given device, return the resource region of 776 * parent bus the given region is contained in. 777 */ 778 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 779 struct resource *res) 780 { 781 const struct pci_bus *bus = dev->bus; 782 struct resource *r; 783 int i; 784 785 pci_bus_for_each_resource(bus, r, i) { 786 if (!r) 787 continue; 788 if (resource_contains(r, res)) { 789 790 /* 791 * If the window is prefetchable but the BAR is 792 * not, the allocator made a mistake. 793 */ 794 if (r->flags & IORESOURCE_PREFETCH && 795 !(res->flags & IORESOURCE_PREFETCH)) 796 return NULL; 797 798 /* 799 * If we're below a transparent bridge, there may 800 * be both a positively-decoded aperture and a 801 * subtractively-decoded region that contain the BAR. 802 * We want the positively-decoded one, so this depends 803 * on pci_bus_for_each_resource() giving us those 804 * first. 805 */ 806 return r; 807 } 808 } 809 return NULL; 810 } 811 EXPORT_SYMBOL(pci_find_parent_resource); 812 813 /** 814 * pci_find_resource - Return matching PCI device resource 815 * @dev: PCI device to query 816 * @res: Resource to look for 817 * 818 * Goes over standard PCI resources (BARs) and checks if the given resource 819 * is partially or fully contained in any of them. In that case the 820 * matching resource is returned, %NULL otherwise. 821 */ 822 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 823 { 824 int i; 825 826 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 827 struct resource *r = &dev->resource[i]; 828 829 if (r->start && resource_contains(r, res)) 830 return r; 831 } 832 833 return NULL; 834 } 835 EXPORT_SYMBOL(pci_find_resource); 836 837 /** 838 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 839 * @dev: the PCI device to operate on 840 * @pos: config space offset of status word 841 * @mask: mask of bit(s) to care about in status word 842 * 843 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 844 */ 845 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 846 { 847 int i; 848 849 /* Wait for Transaction Pending bit clean */ 850 for (i = 0; i < 4; i++) { 851 u16 status; 852 if (i) 853 msleep((1 << (i - 1)) * 100); 854 855 pci_read_config_word(dev, pos, &status); 856 if (!(status & mask)) 857 return 1; 858 } 859 860 return 0; 861 } 862 863 static int pci_acs_enable; 864 865 /** 866 * pci_request_acs - ask for ACS to be enabled if supported 867 */ 868 void pci_request_acs(void) 869 { 870 pci_acs_enable = 1; 871 } 872 873 static const char *disable_acs_redir_param; 874 875 /** 876 * pci_disable_acs_redir - disable ACS redirect capabilities 877 * @dev: the PCI device 878 * 879 * For only devices specified in the disable_acs_redir parameter. 880 */ 881 static void pci_disable_acs_redir(struct pci_dev *dev) 882 { 883 int ret = 0; 884 const char *p; 885 int pos; 886 u16 ctrl; 887 888 if (!disable_acs_redir_param) 889 return; 890 891 p = disable_acs_redir_param; 892 while (*p) { 893 ret = pci_dev_str_match(dev, p, &p); 894 if (ret < 0) { 895 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 896 disable_acs_redir_param); 897 898 break; 899 } else if (ret == 1) { 900 /* Found a match */ 901 break; 902 } 903 904 if (*p != ';' && *p != ',') { 905 /* End of param or invalid format */ 906 break; 907 } 908 p++; 909 } 910 911 if (ret != 1) 912 return; 913 914 if (!pci_dev_specific_disable_acs_redir(dev)) 915 return; 916 917 pos = dev->acs_cap; 918 if (!pos) { 919 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 920 return; 921 } 922 923 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 924 925 /* P2P Request & Completion Redirect */ 926 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 927 928 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 929 930 pci_info(dev, "disabled ACS redirect\n"); 931 } 932 933 /** 934 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 935 * @dev: the PCI device 936 */ 937 static void pci_std_enable_acs(struct pci_dev *dev) 938 { 939 int pos; 940 u16 cap; 941 u16 ctrl; 942 943 pos = dev->acs_cap; 944 if (!pos) 945 return; 946 947 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 948 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 949 950 /* Source Validation */ 951 ctrl |= (cap & PCI_ACS_SV); 952 953 /* P2P Request Redirect */ 954 ctrl |= (cap & PCI_ACS_RR); 955 956 /* P2P Completion Redirect */ 957 ctrl |= (cap & PCI_ACS_CR); 958 959 /* Upstream Forwarding */ 960 ctrl |= (cap & PCI_ACS_UF); 961 962 /* Enable Translation Blocking for external devices and noats */ 963 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 964 ctrl |= (cap & PCI_ACS_TB); 965 966 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 967 } 968 969 /** 970 * pci_enable_acs - enable ACS if hardware support it 971 * @dev: the PCI device 972 */ 973 static void pci_enable_acs(struct pci_dev *dev) 974 { 975 if (!pci_acs_enable) 976 goto disable_acs_redir; 977 978 if (!pci_dev_specific_enable_acs(dev)) 979 goto disable_acs_redir; 980 981 pci_std_enable_acs(dev); 982 983 disable_acs_redir: 984 /* 985 * Note: pci_disable_acs_redir() must be called even if ACS was not 986 * enabled by the kernel because it may have been enabled by 987 * platform firmware. So if we are told to disable it, we should 988 * always disable it after setting the kernel's default 989 * preferences. 990 */ 991 pci_disable_acs_redir(dev); 992 } 993 994 /** 995 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 996 * @dev: PCI device to have its BARs restored 997 * 998 * Restore the BAR values for a given device, so as to make it 999 * accessible by its driver. 1000 */ 1001 static void pci_restore_bars(struct pci_dev *dev) 1002 { 1003 int i; 1004 1005 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1006 pci_update_resource(dev, i); 1007 } 1008 1009 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1010 { 1011 if (pci_use_mid_pm()) 1012 return true; 1013 1014 return acpi_pci_power_manageable(dev); 1015 } 1016 1017 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1018 pci_power_t t) 1019 { 1020 if (pci_use_mid_pm()) 1021 return mid_pci_set_power_state(dev, t); 1022 1023 return acpi_pci_set_power_state(dev, t); 1024 } 1025 1026 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1027 { 1028 if (pci_use_mid_pm()) 1029 return mid_pci_get_power_state(dev); 1030 1031 return acpi_pci_get_power_state(dev); 1032 } 1033 1034 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1035 { 1036 if (!pci_use_mid_pm()) 1037 acpi_pci_refresh_power_state(dev); 1038 } 1039 1040 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1041 { 1042 if (pci_use_mid_pm()) 1043 return PCI_POWER_ERROR; 1044 1045 return acpi_pci_choose_state(dev); 1046 } 1047 1048 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1049 { 1050 if (pci_use_mid_pm()) 1051 return PCI_POWER_ERROR; 1052 1053 return acpi_pci_wakeup(dev, enable); 1054 } 1055 1056 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1057 { 1058 if (pci_use_mid_pm()) 1059 return false; 1060 1061 return acpi_pci_need_resume(dev); 1062 } 1063 1064 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1065 { 1066 if (pci_use_mid_pm()) 1067 return false; 1068 1069 return acpi_pci_bridge_d3(dev); 1070 } 1071 1072 /** 1073 * pci_update_current_state - Read power state of given device and cache it 1074 * @dev: PCI device to handle. 1075 * @state: State to cache in case the device doesn't have the PM capability 1076 * 1077 * The power state is read from the PMCSR register, which however is 1078 * inaccessible in D3cold. The platform firmware is therefore queried first 1079 * to detect accessibility of the register. In case the platform firmware 1080 * reports an incorrect state or the device isn't power manageable by the 1081 * platform at all, we try to detect D3cold by testing accessibility of the 1082 * vendor ID in config space. 1083 */ 1084 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1085 { 1086 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1087 dev->current_state = PCI_D3cold; 1088 } else if (dev->pm_cap) { 1089 u16 pmcsr; 1090 1091 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1092 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1093 dev->current_state = PCI_D3cold; 1094 return; 1095 } 1096 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1097 } else { 1098 dev->current_state = state; 1099 } 1100 } 1101 1102 /** 1103 * pci_refresh_power_state - Refresh the given device's power state data 1104 * @dev: Target PCI device. 1105 * 1106 * Ask the platform to refresh the devices power state information and invoke 1107 * pci_update_current_state() to update its current PCI power state. 1108 */ 1109 void pci_refresh_power_state(struct pci_dev *dev) 1110 { 1111 platform_pci_refresh_power_state(dev); 1112 pci_update_current_state(dev, dev->current_state); 1113 } 1114 1115 /** 1116 * pci_platform_power_transition - Use platform to change device power state 1117 * @dev: PCI device to handle. 1118 * @state: State to put the device into. 1119 */ 1120 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1121 { 1122 int error; 1123 1124 error = platform_pci_set_power_state(dev, state); 1125 if (!error) 1126 pci_update_current_state(dev, state); 1127 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1128 dev->current_state = PCI_D0; 1129 1130 return error; 1131 } 1132 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1133 1134 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1135 { 1136 pm_request_resume(&pci_dev->dev); 1137 return 0; 1138 } 1139 1140 /** 1141 * pci_resume_bus - Walk given bus and runtime resume devices on it 1142 * @bus: Top bus of the subtree to walk. 1143 */ 1144 void pci_resume_bus(struct pci_bus *bus) 1145 { 1146 if (bus) 1147 pci_walk_bus(bus, pci_resume_one, NULL); 1148 } 1149 1150 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1151 { 1152 int delay = 1; 1153 u32 id; 1154 1155 /* 1156 * After reset, the device should not silently discard config 1157 * requests, but it may still indicate that it needs more time by 1158 * responding to them with CRS completions. The Root Port will 1159 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1160 * the read (except when CRS SV is enabled and the read was for the 1161 * Vendor ID; in that case it synthesizes 0x0001 data). 1162 * 1163 * Wait for the device to return a non-CRS completion. Read the 1164 * Command register instead of Vendor ID so we don't have to 1165 * contend with the CRS SV value. 1166 */ 1167 pci_read_config_dword(dev, PCI_COMMAND, &id); 1168 while (PCI_POSSIBLE_ERROR(id)) { 1169 if (delay > timeout) { 1170 pci_warn(dev, "not ready %dms after %s; giving up\n", 1171 delay - 1, reset_type); 1172 return -ENOTTY; 1173 } 1174 1175 if (delay > 1000) 1176 pci_info(dev, "not ready %dms after %s; waiting\n", 1177 delay - 1, reset_type); 1178 1179 msleep(delay); 1180 delay *= 2; 1181 pci_read_config_dword(dev, PCI_COMMAND, &id); 1182 } 1183 1184 if (delay > 1000) 1185 pci_info(dev, "ready %dms after %s\n", delay - 1, 1186 reset_type); 1187 1188 return 0; 1189 } 1190 1191 /** 1192 * pci_power_up - Put the given device into D0 1193 * @dev: PCI device to power up 1194 * 1195 * On success, return 0 or 1, depending on whether or not it is necessary to 1196 * restore the device's BARs subsequently (1 is returned in that case). 1197 */ 1198 int pci_power_up(struct pci_dev *dev) 1199 { 1200 bool need_restore; 1201 pci_power_t state; 1202 u16 pmcsr; 1203 1204 platform_pci_set_power_state(dev, PCI_D0); 1205 1206 if (!dev->pm_cap) { 1207 state = platform_pci_get_power_state(dev); 1208 if (state == PCI_UNKNOWN) 1209 dev->current_state = PCI_D0; 1210 else 1211 dev->current_state = state; 1212 1213 if (state == PCI_D0) 1214 return 0; 1215 1216 return -EIO; 1217 } 1218 1219 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1220 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1221 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1222 pci_power_name(dev->current_state)); 1223 dev->current_state = PCI_D3cold; 1224 return -EIO; 1225 } 1226 1227 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1228 1229 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1230 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1231 1232 if (state == PCI_D0) 1233 goto end; 1234 1235 /* 1236 * Force the entire word to 0. This doesn't affect PME_Status, disables 1237 * PME_En, and sets PowerState to 0. 1238 */ 1239 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1240 1241 /* Mandatory transition delays; see PCI PM 1.2. */ 1242 if (state == PCI_D3hot) 1243 pci_dev_d3_sleep(dev); 1244 else if (state == PCI_D2) 1245 udelay(PCI_PM_D2_DELAY); 1246 1247 end: 1248 dev->current_state = PCI_D0; 1249 if (need_restore) 1250 return 1; 1251 1252 return 0; 1253 } 1254 1255 /** 1256 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1257 * @dev: PCI device to power up 1258 * 1259 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1260 * to confirm the state change, restore its BARs if they might be lost and 1261 * reconfigure ASPM in acordance with the new power state. 1262 * 1263 * If pci_restore_state() is going to be called right after a power state change 1264 * to D0, it is more efficient to use pci_power_up() directly instead of this 1265 * function. 1266 */ 1267 static int pci_set_full_power_state(struct pci_dev *dev) 1268 { 1269 u16 pmcsr; 1270 int ret; 1271 1272 ret = pci_power_up(dev); 1273 if (ret < 0) 1274 return ret; 1275 1276 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1277 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1278 if (dev->current_state != PCI_D0) { 1279 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1280 pci_power_name(dev->current_state)); 1281 } else if (ret > 0) { 1282 /* 1283 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1284 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1285 * from D3hot to D0 _may_ perform an internal reset, thereby 1286 * going to "D0 Uninitialized" rather than "D0 Initialized". 1287 * For example, at least some versions of the 3c905B and the 1288 * 3c556B exhibit this behaviour. 1289 * 1290 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1291 * devices in a D3hot state at boot. Consequently, we need to 1292 * restore at least the BARs so that the device will be 1293 * accessible to its driver. 1294 */ 1295 pci_restore_bars(dev); 1296 } 1297 1298 return 0; 1299 } 1300 1301 /** 1302 * __pci_dev_set_current_state - Set current state of a PCI device 1303 * @dev: Device to handle 1304 * @data: pointer to state to be set 1305 */ 1306 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1307 { 1308 pci_power_t state = *(pci_power_t *)data; 1309 1310 dev->current_state = state; 1311 return 0; 1312 } 1313 1314 /** 1315 * pci_bus_set_current_state - Walk given bus and set current state of devices 1316 * @bus: Top bus of the subtree to walk. 1317 * @state: state to be set 1318 */ 1319 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1320 { 1321 if (bus) 1322 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1323 } 1324 1325 /** 1326 * pci_set_low_power_state - Put a PCI device into a low-power state. 1327 * @dev: PCI device to handle. 1328 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1329 * 1330 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1331 * 1332 * RETURN VALUE: 1333 * -EINVAL if the requested state is invalid. 1334 * -EIO if device does not support PCI PM or its PM capabilities register has a 1335 * wrong version, or device doesn't support the requested state. 1336 * 0 if device already is in the requested state. 1337 * 0 if device's power state has been successfully changed. 1338 */ 1339 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1340 { 1341 u16 pmcsr; 1342 1343 if (!dev->pm_cap) 1344 return -EIO; 1345 1346 /* 1347 * Validate transition: We can enter D0 from any state, but if 1348 * we're already in a low-power state, we can only go deeper. E.g., 1349 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1350 * we'd have to go from D3 to D0, then to D1. 1351 */ 1352 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1353 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1354 pci_power_name(dev->current_state), 1355 pci_power_name(state)); 1356 return -EINVAL; 1357 } 1358 1359 /* Check if this device supports the desired state */ 1360 if ((state == PCI_D1 && !dev->d1_support) 1361 || (state == PCI_D2 && !dev->d2_support)) 1362 return -EIO; 1363 1364 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1365 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1366 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1367 pci_power_name(dev->current_state), 1368 pci_power_name(state)); 1369 dev->current_state = PCI_D3cold; 1370 return -EIO; 1371 } 1372 1373 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1374 pmcsr |= state; 1375 1376 /* Enter specified state */ 1377 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1378 1379 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1380 if (state == PCI_D3hot) 1381 pci_dev_d3_sleep(dev); 1382 else if (state == PCI_D2) 1383 udelay(PCI_PM_D2_DELAY); 1384 1385 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1386 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1387 if (dev->current_state != state) 1388 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1389 pci_power_name(dev->current_state), 1390 pci_power_name(state)); 1391 1392 return 0; 1393 } 1394 1395 /** 1396 * pci_set_power_state - Set the power state of a PCI device 1397 * @dev: PCI device to handle. 1398 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1399 * 1400 * Transition a device to a new power state, using the platform firmware and/or 1401 * the device's PCI PM registers. 1402 * 1403 * RETURN VALUE: 1404 * -EINVAL if the requested state is invalid. 1405 * -EIO if device does not support PCI PM or its PM capabilities register has a 1406 * wrong version, or device doesn't support the requested state. 1407 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1408 * 0 if device already is in the requested state. 1409 * 0 if the transition is to D3 but D3 is not supported. 1410 * 0 if device's power state has been successfully changed. 1411 */ 1412 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1413 { 1414 int error; 1415 1416 /* Bound the state we're entering */ 1417 if (state > PCI_D3cold) 1418 state = PCI_D3cold; 1419 else if (state < PCI_D0) 1420 state = PCI_D0; 1421 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1422 1423 /* 1424 * If the device or the parent bridge do not support PCI 1425 * PM, ignore the request if we're doing anything other 1426 * than putting it into D0 (which would only happen on 1427 * boot). 1428 */ 1429 return 0; 1430 1431 /* Check if we're already there */ 1432 if (dev->current_state == state) 1433 return 0; 1434 1435 if (state == PCI_D0) 1436 return pci_set_full_power_state(dev); 1437 1438 /* 1439 * This device is quirked not to be put into D3, so don't put it in 1440 * D3 1441 */ 1442 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1443 return 0; 1444 1445 if (state == PCI_D3cold) { 1446 /* 1447 * To put the device in D3cold, put it into D3hot in the native 1448 * way, then put it into D3cold using platform ops. 1449 */ 1450 error = pci_set_low_power_state(dev, PCI_D3hot); 1451 1452 if (pci_platform_power_transition(dev, PCI_D3cold)) 1453 return error; 1454 1455 /* Powering off a bridge may power off the whole hierarchy */ 1456 if (dev->current_state == PCI_D3cold) 1457 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1458 } else { 1459 error = pci_set_low_power_state(dev, state); 1460 1461 if (pci_platform_power_transition(dev, state)) 1462 return error; 1463 } 1464 1465 return 0; 1466 } 1467 EXPORT_SYMBOL(pci_set_power_state); 1468 1469 #define PCI_EXP_SAVE_REGS 7 1470 1471 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1472 u16 cap, bool extended) 1473 { 1474 struct pci_cap_saved_state *tmp; 1475 1476 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1477 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1478 return tmp; 1479 } 1480 return NULL; 1481 } 1482 1483 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1484 { 1485 return _pci_find_saved_cap(dev, cap, false); 1486 } 1487 1488 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1489 { 1490 return _pci_find_saved_cap(dev, cap, true); 1491 } 1492 1493 static int pci_save_pcie_state(struct pci_dev *dev) 1494 { 1495 int i = 0; 1496 struct pci_cap_saved_state *save_state; 1497 u16 *cap; 1498 1499 if (!pci_is_pcie(dev)) 1500 return 0; 1501 1502 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1503 if (!save_state) { 1504 pci_err(dev, "buffer not found in %s\n", __func__); 1505 return -ENOMEM; 1506 } 1507 1508 cap = (u16 *)&save_state->cap.data[0]; 1509 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1510 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1511 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1512 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1513 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1514 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1515 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1516 1517 return 0; 1518 } 1519 1520 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1521 { 1522 #ifdef CONFIG_PCIEASPM 1523 struct pci_dev *bridge; 1524 u32 ctl; 1525 1526 bridge = pci_upstream_bridge(dev); 1527 if (bridge && bridge->ltr_path) { 1528 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1529 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1530 pci_dbg(bridge, "re-enabling LTR\n"); 1531 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1532 PCI_EXP_DEVCTL2_LTR_EN); 1533 } 1534 } 1535 #endif 1536 } 1537 1538 static void pci_restore_pcie_state(struct pci_dev *dev) 1539 { 1540 int i = 0; 1541 struct pci_cap_saved_state *save_state; 1542 u16 *cap; 1543 1544 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1545 if (!save_state) 1546 return; 1547 1548 /* 1549 * Downstream ports reset the LTR enable bit when link goes down. 1550 * Check and re-configure the bit here before restoring device. 1551 * PCIe r5.0, sec 7.5.3.16. 1552 */ 1553 pci_bridge_reconfigure_ltr(dev); 1554 1555 cap = (u16 *)&save_state->cap.data[0]; 1556 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1557 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1558 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1559 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1560 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1561 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1562 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1563 } 1564 1565 static int pci_save_pcix_state(struct pci_dev *dev) 1566 { 1567 int pos; 1568 struct pci_cap_saved_state *save_state; 1569 1570 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1571 if (!pos) 1572 return 0; 1573 1574 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1575 if (!save_state) { 1576 pci_err(dev, "buffer not found in %s\n", __func__); 1577 return -ENOMEM; 1578 } 1579 1580 pci_read_config_word(dev, pos + PCI_X_CMD, 1581 (u16 *)save_state->cap.data); 1582 1583 return 0; 1584 } 1585 1586 static void pci_restore_pcix_state(struct pci_dev *dev) 1587 { 1588 int i = 0, pos; 1589 struct pci_cap_saved_state *save_state; 1590 u16 *cap; 1591 1592 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1593 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1594 if (!save_state || !pos) 1595 return; 1596 cap = (u16 *)&save_state->cap.data[0]; 1597 1598 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1599 } 1600 1601 static void pci_save_ltr_state(struct pci_dev *dev) 1602 { 1603 int ltr; 1604 struct pci_cap_saved_state *save_state; 1605 u32 *cap; 1606 1607 if (!pci_is_pcie(dev)) 1608 return; 1609 1610 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1611 if (!ltr) 1612 return; 1613 1614 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1615 if (!save_state) { 1616 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1617 return; 1618 } 1619 1620 /* Some broken devices only support dword access to LTR */ 1621 cap = &save_state->cap.data[0]; 1622 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1623 } 1624 1625 static void pci_restore_ltr_state(struct pci_dev *dev) 1626 { 1627 struct pci_cap_saved_state *save_state; 1628 int ltr; 1629 u32 *cap; 1630 1631 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1632 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1633 if (!save_state || !ltr) 1634 return; 1635 1636 /* Some broken devices only support dword access to LTR */ 1637 cap = &save_state->cap.data[0]; 1638 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1639 } 1640 1641 /** 1642 * pci_save_state - save the PCI configuration space of a device before 1643 * suspending 1644 * @dev: PCI device that we're dealing with 1645 */ 1646 int pci_save_state(struct pci_dev *dev) 1647 { 1648 int i; 1649 /* XXX: 100% dword access ok here? */ 1650 for (i = 0; i < 16; i++) { 1651 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1652 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1653 i * 4, dev->saved_config_space[i]); 1654 } 1655 dev->state_saved = true; 1656 1657 i = pci_save_pcie_state(dev); 1658 if (i != 0) 1659 return i; 1660 1661 i = pci_save_pcix_state(dev); 1662 if (i != 0) 1663 return i; 1664 1665 pci_save_ltr_state(dev); 1666 pci_save_dpc_state(dev); 1667 pci_save_aer_state(dev); 1668 pci_save_ptm_state(dev); 1669 return pci_save_vc_state(dev); 1670 } 1671 EXPORT_SYMBOL(pci_save_state); 1672 1673 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1674 u32 saved_val, int retry, bool force) 1675 { 1676 u32 val; 1677 1678 pci_read_config_dword(pdev, offset, &val); 1679 if (!force && val == saved_val) 1680 return; 1681 1682 for (;;) { 1683 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1684 offset, val, saved_val); 1685 pci_write_config_dword(pdev, offset, saved_val); 1686 if (retry-- <= 0) 1687 return; 1688 1689 pci_read_config_dword(pdev, offset, &val); 1690 if (val == saved_val) 1691 return; 1692 1693 mdelay(1); 1694 } 1695 } 1696 1697 static void pci_restore_config_space_range(struct pci_dev *pdev, 1698 int start, int end, int retry, 1699 bool force) 1700 { 1701 int index; 1702 1703 for (index = end; index >= start; index--) 1704 pci_restore_config_dword(pdev, 4 * index, 1705 pdev->saved_config_space[index], 1706 retry, force); 1707 } 1708 1709 static void pci_restore_config_space(struct pci_dev *pdev) 1710 { 1711 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1712 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1713 /* Restore BARs before the command register. */ 1714 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1715 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1716 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1717 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1718 1719 /* 1720 * Force rewriting of prefetch registers to avoid S3 resume 1721 * issues on Intel PCI bridges that occur when these 1722 * registers are not explicitly written. 1723 */ 1724 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1725 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1726 } else { 1727 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1728 } 1729 } 1730 1731 static void pci_restore_rebar_state(struct pci_dev *pdev) 1732 { 1733 unsigned int pos, nbars, i; 1734 u32 ctrl; 1735 1736 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1737 if (!pos) 1738 return; 1739 1740 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1741 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1742 PCI_REBAR_CTRL_NBAR_SHIFT; 1743 1744 for (i = 0; i < nbars; i++, pos += 8) { 1745 struct resource *res; 1746 int bar_idx, size; 1747 1748 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1749 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1750 res = pdev->resource + bar_idx; 1751 size = pci_rebar_bytes_to_size(resource_size(res)); 1752 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1753 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1754 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1755 } 1756 } 1757 1758 /** 1759 * pci_restore_state - Restore the saved state of a PCI device 1760 * @dev: PCI device that we're dealing with 1761 */ 1762 void pci_restore_state(struct pci_dev *dev) 1763 { 1764 if (!dev->state_saved) 1765 return; 1766 1767 /* 1768 * Restore max latencies (in the LTR capability) before enabling 1769 * LTR itself (in the PCIe capability). 1770 */ 1771 pci_restore_ltr_state(dev); 1772 1773 pci_restore_pcie_state(dev); 1774 pci_restore_pasid_state(dev); 1775 pci_restore_pri_state(dev); 1776 pci_restore_ats_state(dev); 1777 pci_restore_vc_state(dev); 1778 pci_restore_rebar_state(dev); 1779 pci_restore_dpc_state(dev); 1780 pci_restore_ptm_state(dev); 1781 1782 pci_aer_clear_status(dev); 1783 pci_restore_aer_state(dev); 1784 1785 pci_restore_config_space(dev); 1786 1787 pci_restore_pcix_state(dev); 1788 pci_restore_msi_state(dev); 1789 1790 /* Restore ACS and IOV configuration state */ 1791 pci_enable_acs(dev); 1792 pci_restore_iov_state(dev); 1793 1794 dev->state_saved = false; 1795 } 1796 EXPORT_SYMBOL(pci_restore_state); 1797 1798 struct pci_saved_state { 1799 u32 config_space[16]; 1800 struct pci_cap_saved_data cap[]; 1801 }; 1802 1803 /** 1804 * pci_store_saved_state - Allocate and return an opaque struct containing 1805 * the device saved state. 1806 * @dev: PCI device that we're dealing with 1807 * 1808 * Return NULL if no state or error. 1809 */ 1810 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1811 { 1812 struct pci_saved_state *state; 1813 struct pci_cap_saved_state *tmp; 1814 struct pci_cap_saved_data *cap; 1815 size_t size; 1816 1817 if (!dev->state_saved) 1818 return NULL; 1819 1820 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1821 1822 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1823 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1824 1825 state = kzalloc(size, GFP_KERNEL); 1826 if (!state) 1827 return NULL; 1828 1829 memcpy(state->config_space, dev->saved_config_space, 1830 sizeof(state->config_space)); 1831 1832 cap = state->cap; 1833 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1834 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1835 memcpy(cap, &tmp->cap, len); 1836 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1837 } 1838 /* Empty cap_save terminates list */ 1839 1840 return state; 1841 } 1842 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1843 1844 /** 1845 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1846 * @dev: PCI device that we're dealing with 1847 * @state: Saved state returned from pci_store_saved_state() 1848 */ 1849 int pci_load_saved_state(struct pci_dev *dev, 1850 struct pci_saved_state *state) 1851 { 1852 struct pci_cap_saved_data *cap; 1853 1854 dev->state_saved = false; 1855 1856 if (!state) 1857 return 0; 1858 1859 memcpy(dev->saved_config_space, state->config_space, 1860 sizeof(state->config_space)); 1861 1862 cap = state->cap; 1863 while (cap->size) { 1864 struct pci_cap_saved_state *tmp; 1865 1866 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1867 if (!tmp || tmp->cap.size != cap->size) 1868 return -EINVAL; 1869 1870 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1871 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1872 sizeof(struct pci_cap_saved_data) + cap->size); 1873 } 1874 1875 dev->state_saved = true; 1876 return 0; 1877 } 1878 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1879 1880 /** 1881 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1882 * and free the memory allocated for it. 1883 * @dev: PCI device that we're dealing with 1884 * @state: Pointer to saved state returned from pci_store_saved_state() 1885 */ 1886 int pci_load_and_free_saved_state(struct pci_dev *dev, 1887 struct pci_saved_state **state) 1888 { 1889 int ret = pci_load_saved_state(dev, *state); 1890 kfree(*state); 1891 *state = NULL; 1892 return ret; 1893 } 1894 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1895 1896 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1897 { 1898 return pci_enable_resources(dev, bars); 1899 } 1900 1901 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1902 { 1903 int err; 1904 struct pci_dev *bridge; 1905 u16 cmd; 1906 u8 pin; 1907 1908 err = pci_set_power_state(dev, PCI_D0); 1909 if (err < 0 && err != -EIO) 1910 return err; 1911 1912 bridge = pci_upstream_bridge(dev); 1913 if (bridge) 1914 pcie_aspm_powersave_config_link(bridge); 1915 1916 err = pcibios_enable_device(dev, bars); 1917 if (err < 0) 1918 return err; 1919 pci_fixup_device(pci_fixup_enable, dev); 1920 1921 if (dev->msi_enabled || dev->msix_enabled) 1922 return 0; 1923 1924 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1925 if (pin) { 1926 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1927 if (cmd & PCI_COMMAND_INTX_DISABLE) 1928 pci_write_config_word(dev, PCI_COMMAND, 1929 cmd & ~PCI_COMMAND_INTX_DISABLE); 1930 } 1931 1932 return 0; 1933 } 1934 1935 /** 1936 * pci_reenable_device - Resume abandoned device 1937 * @dev: PCI device to be resumed 1938 * 1939 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1940 * to be called by normal code, write proper resume handler and use it instead. 1941 */ 1942 int pci_reenable_device(struct pci_dev *dev) 1943 { 1944 if (pci_is_enabled(dev)) 1945 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1946 return 0; 1947 } 1948 EXPORT_SYMBOL(pci_reenable_device); 1949 1950 static void pci_enable_bridge(struct pci_dev *dev) 1951 { 1952 struct pci_dev *bridge; 1953 int retval; 1954 1955 bridge = pci_upstream_bridge(dev); 1956 if (bridge) 1957 pci_enable_bridge(bridge); 1958 1959 if (pci_is_enabled(dev)) { 1960 if (!dev->is_busmaster) 1961 pci_set_master(dev); 1962 return; 1963 } 1964 1965 retval = pci_enable_device(dev); 1966 if (retval) 1967 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1968 retval); 1969 pci_set_master(dev); 1970 } 1971 1972 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1973 { 1974 struct pci_dev *bridge; 1975 int err; 1976 int i, bars = 0; 1977 1978 /* 1979 * Power state could be unknown at this point, either due to a fresh 1980 * boot or a device removal call. So get the current power state 1981 * so that things like MSI message writing will behave as expected 1982 * (e.g. if the device really is in D0 at enable time). 1983 */ 1984 pci_update_current_state(dev, dev->current_state); 1985 1986 if (atomic_inc_return(&dev->enable_cnt) > 1) 1987 return 0; /* already enabled */ 1988 1989 bridge = pci_upstream_bridge(dev); 1990 if (bridge) 1991 pci_enable_bridge(bridge); 1992 1993 /* only skip sriov related */ 1994 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1995 if (dev->resource[i].flags & flags) 1996 bars |= (1 << i); 1997 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1998 if (dev->resource[i].flags & flags) 1999 bars |= (1 << i); 2000 2001 err = do_pci_enable_device(dev, bars); 2002 if (err < 0) 2003 atomic_dec(&dev->enable_cnt); 2004 return err; 2005 } 2006 2007 /** 2008 * pci_enable_device_io - Initialize a device for use with IO space 2009 * @dev: PCI device to be initialized 2010 * 2011 * Initialize device before it's used by a driver. Ask low-level code 2012 * to enable I/O resources. Wake up the device if it was suspended. 2013 * Beware, this function can fail. 2014 */ 2015 int pci_enable_device_io(struct pci_dev *dev) 2016 { 2017 return pci_enable_device_flags(dev, IORESOURCE_IO); 2018 } 2019 EXPORT_SYMBOL(pci_enable_device_io); 2020 2021 /** 2022 * pci_enable_device_mem - Initialize a device for use with Memory space 2023 * @dev: PCI device to be initialized 2024 * 2025 * Initialize device before it's used by a driver. Ask low-level code 2026 * to enable Memory resources. Wake up the device if it was suspended. 2027 * Beware, this function can fail. 2028 */ 2029 int pci_enable_device_mem(struct pci_dev *dev) 2030 { 2031 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2032 } 2033 EXPORT_SYMBOL(pci_enable_device_mem); 2034 2035 /** 2036 * pci_enable_device - Initialize device before it's used by a driver. 2037 * @dev: PCI device to be initialized 2038 * 2039 * Initialize device before it's used by a driver. Ask low-level code 2040 * to enable I/O and memory. Wake up the device if it was suspended. 2041 * Beware, this function can fail. 2042 * 2043 * Note we don't actually enable the device many times if we call 2044 * this function repeatedly (we just increment the count). 2045 */ 2046 int pci_enable_device(struct pci_dev *dev) 2047 { 2048 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2049 } 2050 EXPORT_SYMBOL(pci_enable_device); 2051 2052 /* 2053 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2054 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2055 * there's no need to track it separately. pci_devres is initialized 2056 * when a device is enabled using managed PCI device enable interface. 2057 */ 2058 struct pci_devres { 2059 unsigned int enabled:1; 2060 unsigned int pinned:1; 2061 unsigned int orig_intx:1; 2062 unsigned int restore_intx:1; 2063 unsigned int mwi:1; 2064 u32 region_mask; 2065 }; 2066 2067 static void pcim_release(struct device *gendev, void *res) 2068 { 2069 struct pci_dev *dev = to_pci_dev(gendev); 2070 struct pci_devres *this = res; 2071 int i; 2072 2073 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2074 if (this->region_mask & (1 << i)) 2075 pci_release_region(dev, i); 2076 2077 if (this->mwi) 2078 pci_clear_mwi(dev); 2079 2080 if (this->restore_intx) 2081 pci_intx(dev, this->orig_intx); 2082 2083 if (this->enabled && !this->pinned) 2084 pci_disable_device(dev); 2085 } 2086 2087 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2088 { 2089 struct pci_devres *dr, *new_dr; 2090 2091 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2092 if (dr) 2093 return dr; 2094 2095 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2096 if (!new_dr) 2097 return NULL; 2098 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2099 } 2100 2101 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2102 { 2103 if (pci_is_managed(pdev)) 2104 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2105 return NULL; 2106 } 2107 2108 /** 2109 * pcim_enable_device - Managed pci_enable_device() 2110 * @pdev: PCI device to be initialized 2111 * 2112 * Managed pci_enable_device(). 2113 */ 2114 int pcim_enable_device(struct pci_dev *pdev) 2115 { 2116 struct pci_devres *dr; 2117 int rc; 2118 2119 dr = get_pci_dr(pdev); 2120 if (unlikely(!dr)) 2121 return -ENOMEM; 2122 if (dr->enabled) 2123 return 0; 2124 2125 rc = pci_enable_device(pdev); 2126 if (!rc) { 2127 pdev->is_managed = 1; 2128 dr->enabled = 1; 2129 } 2130 return rc; 2131 } 2132 EXPORT_SYMBOL(pcim_enable_device); 2133 2134 /** 2135 * pcim_pin_device - Pin managed PCI device 2136 * @pdev: PCI device to pin 2137 * 2138 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2139 * driver detach. @pdev must have been enabled with 2140 * pcim_enable_device(). 2141 */ 2142 void pcim_pin_device(struct pci_dev *pdev) 2143 { 2144 struct pci_devres *dr; 2145 2146 dr = find_pci_dr(pdev); 2147 WARN_ON(!dr || !dr->enabled); 2148 if (dr) 2149 dr->pinned = 1; 2150 } 2151 EXPORT_SYMBOL(pcim_pin_device); 2152 2153 /* 2154 * pcibios_device_add - provide arch specific hooks when adding device dev 2155 * @dev: the PCI device being added 2156 * 2157 * Permits the platform to provide architecture specific functionality when 2158 * devices are added. This is the default implementation. Architecture 2159 * implementations can override this. 2160 */ 2161 int __weak pcibios_device_add(struct pci_dev *dev) 2162 { 2163 return 0; 2164 } 2165 2166 /** 2167 * pcibios_release_device - provide arch specific hooks when releasing 2168 * device dev 2169 * @dev: the PCI device being released 2170 * 2171 * Permits the platform to provide architecture specific functionality when 2172 * devices are released. This is the default implementation. Architecture 2173 * implementations can override this. 2174 */ 2175 void __weak pcibios_release_device(struct pci_dev *dev) {} 2176 2177 /** 2178 * pcibios_disable_device - disable arch specific PCI resources for device dev 2179 * @dev: the PCI device to disable 2180 * 2181 * Disables architecture specific PCI resources for the device. This 2182 * is the default implementation. Architecture implementations can 2183 * override this. 2184 */ 2185 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2186 2187 /** 2188 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2189 * @irq: ISA IRQ to penalize 2190 * @active: IRQ active or not 2191 * 2192 * Permits the platform to provide architecture-specific functionality when 2193 * penalizing ISA IRQs. This is the default implementation. Architecture 2194 * implementations can override this. 2195 */ 2196 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2197 2198 static void do_pci_disable_device(struct pci_dev *dev) 2199 { 2200 u16 pci_command; 2201 2202 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2203 if (pci_command & PCI_COMMAND_MASTER) { 2204 pci_command &= ~PCI_COMMAND_MASTER; 2205 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2206 } 2207 2208 pcibios_disable_device(dev); 2209 } 2210 2211 /** 2212 * pci_disable_enabled_device - Disable device without updating enable_cnt 2213 * @dev: PCI device to disable 2214 * 2215 * NOTE: This function is a backend of PCI power management routines and is 2216 * not supposed to be called drivers. 2217 */ 2218 void pci_disable_enabled_device(struct pci_dev *dev) 2219 { 2220 if (pci_is_enabled(dev)) 2221 do_pci_disable_device(dev); 2222 } 2223 2224 /** 2225 * pci_disable_device - Disable PCI device after use 2226 * @dev: PCI device to be disabled 2227 * 2228 * Signal to the system that the PCI device is not in use by the system 2229 * anymore. This only involves disabling PCI bus-mastering, if active. 2230 * 2231 * Note we don't actually disable the device until all callers of 2232 * pci_enable_device() have called pci_disable_device(). 2233 */ 2234 void pci_disable_device(struct pci_dev *dev) 2235 { 2236 struct pci_devres *dr; 2237 2238 dr = find_pci_dr(dev); 2239 if (dr) 2240 dr->enabled = 0; 2241 2242 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2243 "disabling already-disabled device"); 2244 2245 if (atomic_dec_return(&dev->enable_cnt) != 0) 2246 return; 2247 2248 do_pci_disable_device(dev); 2249 2250 dev->is_busmaster = 0; 2251 } 2252 EXPORT_SYMBOL(pci_disable_device); 2253 2254 /** 2255 * pcibios_set_pcie_reset_state - set reset state for device dev 2256 * @dev: the PCIe device reset 2257 * @state: Reset state to enter into 2258 * 2259 * Set the PCIe reset state for the device. This is the default 2260 * implementation. Architecture implementations can override this. 2261 */ 2262 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2263 enum pcie_reset_state state) 2264 { 2265 return -EINVAL; 2266 } 2267 2268 /** 2269 * pci_set_pcie_reset_state - set reset state for device dev 2270 * @dev: the PCIe device reset 2271 * @state: Reset state to enter into 2272 * 2273 * Sets the PCI reset state for the device. 2274 */ 2275 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2276 { 2277 return pcibios_set_pcie_reset_state(dev, state); 2278 } 2279 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2280 2281 #ifdef CONFIG_PCIEAER 2282 void pcie_clear_device_status(struct pci_dev *dev) 2283 { 2284 u16 sta; 2285 2286 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2287 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2288 } 2289 #endif 2290 2291 /** 2292 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2293 * @dev: PCIe root port or event collector. 2294 */ 2295 void pcie_clear_root_pme_status(struct pci_dev *dev) 2296 { 2297 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2298 } 2299 2300 /** 2301 * pci_check_pme_status - Check if given device has generated PME. 2302 * @dev: Device to check. 2303 * 2304 * Check the PME status of the device and if set, clear it and clear PME enable 2305 * (if set). Return 'true' if PME status and PME enable were both set or 2306 * 'false' otherwise. 2307 */ 2308 bool pci_check_pme_status(struct pci_dev *dev) 2309 { 2310 int pmcsr_pos; 2311 u16 pmcsr; 2312 bool ret = false; 2313 2314 if (!dev->pm_cap) 2315 return false; 2316 2317 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2318 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2319 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2320 return false; 2321 2322 /* Clear PME status. */ 2323 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2324 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2325 /* Disable PME to avoid interrupt flood. */ 2326 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2327 ret = true; 2328 } 2329 2330 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2331 2332 return ret; 2333 } 2334 2335 /** 2336 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2337 * @dev: Device to handle. 2338 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2339 * 2340 * Check if @dev has generated PME and queue a resume request for it in that 2341 * case. 2342 */ 2343 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2344 { 2345 if (pme_poll_reset && dev->pme_poll) 2346 dev->pme_poll = false; 2347 2348 if (pci_check_pme_status(dev)) { 2349 pci_wakeup_event(dev); 2350 pm_request_resume(&dev->dev); 2351 } 2352 return 0; 2353 } 2354 2355 /** 2356 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2357 * @bus: Top bus of the subtree to walk. 2358 */ 2359 void pci_pme_wakeup_bus(struct pci_bus *bus) 2360 { 2361 if (bus) 2362 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2363 } 2364 2365 2366 /** 2367 * pci_pme_capable - check the capability of PCI device to generate PME# 2368 * @dev: PCI device to handle. 2369 * @state: PCI state from which device will issue PME#. 2370 */ 2371 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2372 { 2373 if (!dev->pm_cap) 2374 return false; 2375 2376 return !!(dev->pme_support & (1 << state)); 2377 } 2378 EXPORT_SYMBOL(pci_pme_capable); 2379 2380 static void pci_pme_list_scan(struct work_struct *work) 2381 { 2382 struct pci_pme_device *pme_dev, *n; 2383 2384 mutex_lock(&pci_pme_list_mutex); 2385 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2386 if (pme_dev->dev->pme_poll) { 2387 struct pci_dev *bridge; 2388 2389 bridge = pme_dev->dev->bus->self; 2390 /* 2391 * If bridge is in low power state, the 2392 * configuration space of subordinate devices 2393 * may be not accessible 2394 */ 2395 if (bridge && bridge->current_state != PCI_D0) 2396 continue; 2397 /* 2398 * If the device is in D3cold it should not be 2399 * polled either. 2400 */ 2401 if (pme_dev->dev->current_state == PCI_D3cold) 2402 continue; 2403 2404 pci_pme_wakeup(pme_dev->dev, NULL); 2405 } else { 2406 list_del(&pme_dev->list); 2407 kfree(pme_dev); 2408 } 2409 } 2410 if (!list_empty(&pci_pme_list)) 2411 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2412 msecs_to_jiffies(PME_TIMEOUT)); 2413 mutex_unlock(&pci_pme_list_mutex); 2414 } 2415 2416 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2417 { 2418 u16 pmcsr; 2419 2420 if (!dev->pme_support) 2421 return; 2422 2423 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2424 /* Clear PME_Status by writing 1 to it and enable PME# */ 2425 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2426 if (!enable) 2427 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2428 2429 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2430 } 2431 2432 /** 2433 * pci_pme_restore - Restore PME configuration after config space restore. 2434 * @dev: PCI device to update. 2435 */ 2436 void pci_pme_restore(struct pci_dev *dev) 2437 { 2438 u16 pmcsr; 2439 2440 if (!dev->pme_support) 2441 return; 2442 2443 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2444 if (dev->wakeup_prepared) { 2445 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2446 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2447 } else { 2448 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2449 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2450 } 2451 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2452 } 2453 2454 /** 2455 * pci_pme_active - enable or disable PCI device's PME# function 2456 * @dev: PCI device to handle. 2457 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2458 * 2459 * The caller must verify that the device is capable of generating PME# before 2460 * calling this function with @enable equal to 'true'. 2461 */ 2462 void pci_pme_active(struct pci_dev *dev, bool enable) 2463 { 2464 __pci_pme_active(dev, enable); 2465 2466 /* 2467 * PCI (as opposed to PCIe) PME requires that the device have 2468 * its PME# line hooked up correctly. Not all hardware vendors 2469 * do this, so the PME never gets delivered and the device 2470 * remains asleep. The easiest way around this is to 2471 * periodically walk the list of suspended devices and check 2472 * whether any have their PME flag set. The assumption is that 2473 * we'll wake up often enough anyway that this won't be a huge 2474 * hit, and the power savings from the devices will still be a 2475 * win. 2476 * 2477 * Although PCIe uses in-band PME message instead of PME# line 2478 * to report PME, PME does not work for some PCIe devices in 2479 * reality. For example, there are devices that set their PME 2480 * status bits, but don't really bother to send a PME message; 2481 * there are PCI Express Root Ports that don't bother to 2482 * trigger interrupts when they receive PME messages from the 2483 * devices below. So PME poll is used for PCIe devices too. 2484 */ 2485 2486 if (dev->pme_poll) { 2487 struct pci_pme_device *pme_dev; 2488 if (enable) { 2489 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2490 GFP_KERNEL); 2491 if (!pme_dev) { 2492 pci_warn(dev, "can't enable PME#\n"); 2493 return; 2494 } 2495 pme_dev->dev = dev; 2496 mutex_lock(&pci_pme_list_mutex); 2497 list_add(&pme_dev->list, &pci_pme_list); 2498 if (list_is_singular(&pci_pme_list)) 2499 queue_delayed_work(system_freezable_wq, 2500 &pci_pme_work, 2501 msecs_to_jiffies(PME_TIMEOUT)); 2502 mutex_unlock(&pci_pme_list_mutex); 2503 } else { 2504 mutex_lock(&pci_pme_list_mutex); 2505 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2506 if (pme_dev->dev == dev) { 2507 list_del(&pme_dev->list); 2508 kfree(pme_dev); 2509 break; 2510 } 2511 } 2512 mutex_unlock(&pci_pme_list_mutex); 2513 } 2514 } 2515 2516 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2517 } 2518 EXPORT_SYMBOL(pci_pme_active); 2519 2520 /** 2521 * __pci_enable_wake - enable PCI device as wakeup event source 2522 * @dev: PCI device affected 2523 * @state: PCI state from which device will issue wakeup events 2524 * @enable: True to enable event generation; false to disable 2525 * 2526 * This enables the device as a wakeup event source, or disables it. 2527 * When such events involves platform-specific hooks, those hooks are 2528 * called automatically by this routine. 2529 * 2530 * Devices with legacy power management (no standard PCI PM capabilities) 2531 * always require such platform hooks. 2532 * 2533 * RETURN VALUE: 2534 * 0 is returned on success 2535 * -EINVAL is returned if device is not supposed to wake up the system 2536 * Error code depending on the platform is returned if both the platform and 2537 * the native mechanism fail to enable the generation of wake-up events 2538 */ 2539 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2540 { 2541 int ret = 0; 2542 2543 /* 2544 * Bridges that are not power-manageable directly only signal 2545 * wakeup on behalf of subordinate devices which is set up 2546 * elsewhere, so skip them. However, bridges that are 2547 * power-manageable may signal wakeup for themselves (for example, 2548 * on a hotplug event) and they need to be covered here. 2549 */ 2550 if (!pci_power_manageable(dev)) 2551 return 0; 2552 2553 /* Don't do the same thing twice in a row for one device. */ 2554 if (!!enable == !!dev->wakeup_prepared) 2555 return 0; 2556 2557 /* 2558 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2559 * Anderson we should be doing PME# wake enable followed by ACPI wake 2560 * enable. To disable wake-up we call the platform first, for symmetry. 2561 */ 2562 2563 if (enable) { 2564 int error; 2565 2566 /* 2567 * Enable PME signaling if the device can signal PME from 2568 * D3cold regardless of whether or not it can signal PME from 2569 * the current target state, because that will allow it to 2570 * signal PME when the hierarchy above it goes into D3cold and 2571 * the device itself ends up in D3cold as a result of that. 2572 */ 2573 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2574 pci_pme_active(dev, true); 2575 else 2576 ret = 1; 2577 error = platform_pci_set_wakeup(dev, true); 2578 if (ret) 2579 ret = error; 2580 if (!ret) 2581 dev->wakeup_prepared = true; 2582 } else { 2583 platform_pci_set_wakeup(dev, false); 2584 pci_pme_active(dev, false); 2585 dev->wakeup_prepared = false; 2586 } 2587 2588 return ret; 2589 } 2590 2591 /** 2592 * pci_enable_wake - change wakeup settings for a PCI device 2593 * @pci_dev: Target device 2594 * @state: PCI state from which device will issue wakeup events 2595 * @enable: Whether or not to enable event generation 2596 * 2597 * If @enable is set, check device_may_wakeup() for the device before calling 2598 * __pci_enable_wake() for it. 2599 */ 2600 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2601 { 2602 if (enable && !device_may_wakeup(&pci_dev->dev)) 2603 return -EINVAL; 2604 2605 return __pci_enable_wake(pci_dev, state, enable); 2606 } 2607 EXPORT_SYMBOL(pci_enable_wake); 2608 2609 /** 2610 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2611 * @dev: PCI device to prepare 2612 * @enable: True to enable wake-up event generation; false to disable 2613 * 2614 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2615 * and this function allows them to set that up cleanly - pci_enable_wake() 2616 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2617 * ordering constraints. 2618 * 2619 * This function only returns error code if the device is not allowed to wake 2620 * up the system from sleep or it is not capable of generating PME# from both 2621 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2622 */ 2623 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2624 { 2625 return pci_pme_capable(dev, PCI_D3cold) ? 2626 pci_enable_wake(dev, PCI_D3cold, enable) : 2627 pci_enable_wake(dev, PCI_D3hot, enable); 2628 } 2629 EXPORT_SYMBOL(pci_wake_from_d3); 2630 2631 /** 2632 * pci_target_state - find an appropriate low power state for a given PCI dev 2633 * @dev: PCI device 2634 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2635 * 2636 * Use underlying platform code to find a supported low power state for @dev. 2637 * If the platform can't manage @dev, return the deepest state from which it 2638 * can generate wake events, based on any available PME info. 2639 */ 2640 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2641 { 2642 if (platform_pci_power_manageable(dev)) { 2643 /* 2644 * Call the platform to find the target state for the device. 2645 */ 2646 pci_power_t state = platform_pci_choose_state(dev); 2647 2648 switch (state) { 2649 case PCI_POWER_ERROR: 2650 case PCI_UNKNOWN: 2651 return PCI_D3hot; 2652 2653 case PCI_D1: 2654 case PCI_D2: 2655 if (pci_no_d1d2(dev)) 2656 return PCI_D3hot; 2657 } 2658 2659 return state; 2660 } 2661 2662 /* 2663 * If the device is in D3cold even though it's not power-manageable by 2664 * the platform, it may have been powered down by non-standard means. 2665 * Best to let it slumber. 2666 */ 2667 if (dev->current_state == PCI_D3cold) 2668 return PCI_D3cold; 2669 else if (!dev->pm_cap) 2670 return PCI_D0; 2671 2672 if (wakeup && dev->pme_support) { 2673 pci_power_t state = PCI_D3hot; 2674 2675 /* 2676 * Find the deepest state from which the device can generate 2677 * PME#. 2678 */ 2679 while (state && !(dev->pme_support & (1 << state))) 2680 state--; 2681 2682 if (state) 2683 return state; 2684 else if (dev->pme_support & 1) 2685 return PCI_D0; 2686 } 2687 2688 return PCI_D3hot; 2689 } 2690 2691 /** 2692 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2693 * into a sleep state 2694 * @dev: Device to handle. 2695 * 2696 * Choose the power state appropriate for the device depending on whether 2697 * it can wake up the system and/or is power manageable by the platform 2698 * (PCI_D3hot is the default) and put the device into that state. 2699 */ 2700 int pci_prepare_to_sleep(struct pci_dev *dev) 2701 { 2702 bool wakeup = device_may_wakeup(&dev->dev); 2703 pci_power_t target_state = pci_target_state(dev, wakeup); 2704 int error; 2705 2706 if (target_state == PCI_POWER_ERROR) 2707 return -EIO; 2708 2709 /* 2710 * There are systems (for example, Intel mobile chips since Coffee 2711 * Lake) where the power drawn while suspended can be significantly 2712 * reduced by disabling PTM on PCIe root ports as this allows the 2713 * port to enter a lower-power PM state and the SoC to reach a 2714 * lower-power idle state as a whole. 2715 */ 2716 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2717 pci_disable_ptm(dev); 2718 2719 pci_enable_wake(dev, target_state, wakeup); 2720 2721 error = pci_set_power_state(dev, target_state); 2722 2723 if (error) { 2724 pci_enable_wake(dev, target_state, false); 2725 pci_restore_ptm_state(dev); 2726 } 2727 2728 return error; 2729 } 2730 EXPORT_SYMBOL(pci_prepare_to_sleep); 2731 2732 /** 2733 * pci_back_from_sleep - turn PCI device on during system-wide transition 2734 * into working state 2735 * @dev: Device to handle. 2736 * 2737 * Disable device's system wake-up capability and put it into D0. 2738 */ 2739 int pci_back_from_sleep(struct pci_dev *dev) 2740 { 2741 int ret = pci_set_power_state(dev, PCI_D0); 2742 2743 if (ret) 2744 return ret; 2745 2746 pci_enable_wake(dev, PCI_D0, false); 2747 return 0; 2748 } 2749 EXPORT_SYMBOL(pci_back_from_sleep); 2750 2751 /** 2752 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2753 * @dev: PCI device being suspended. 2754 * 2755 * Prepare @dev to generate wake-up events at run time and put it into a low 2756 * power state. 2757 */ 2758 int pci_finish_runtime_suspend(struct pci_dev *dev) 2759 { 2760 pci_power_t target_state; 2761 int error; 2762 2763 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2764 if (target_state == PCI_POWER_ERROR) 2765 return -EIO; 2766 2767 /* 2768 * There are systems (for example, Intel mobile chips since Coffee 2769 * Lake) where the power drawn while suspended can be significantly 2770 * reduced by disabling PTM on PCIe root ports as this allows the 2771 * port to enter a lower-power PM state and the SoC to reach a 2772 * lower-power idle state as a whole. 2773 */ 2774 if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT) 2775 pci_disable_ptm(dev); 2776 2777 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2778 2779 error = pci_set_power_state(dev, target_state); 2780 2781 if (error) { 2782 pci_enable_wake(dev, target_state, false); 2783 pci_restore_ptm_state(dev); 2784 } 2785 2786 return error; 2787 } 2788 2789 /** 2790 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2791 * @dev: Device to check. 2792 * 2793 * Return true if the device itself is capable of generating wake-up events 2794 * (through the platform or using the native PCIe PME) or if the device supports 2795 * PME and one of its upstream bridges can generate wake-up events. 2796 */ 2797 bool pci_dev_run_wake(struct pci_dev *dev) 2798 { 2799 struct pci_bus *bus = dev->bus; 2800 2801 if (!dev->pme_support) 2802 return false; 2803 2804 /* PME-capable in principle, but not from the target power state */ 2805 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2806 return false; 2807 2808 if (device_can_wakeup(&dev->dev)) 2809 return true; 2810 2811 while (bus->parent) { 2812 struct pci_dev *bridge = bus->self; 2813 2814 if (device_can_wakeup(&bridge->dev)) 2815 return true; 2816 2817 bus = bus->parent; 2818 } 2819 2820 /* We have reached the root bus. */ 2821 if (bus->bridge) 2822 return device_can_wakeup(bus->bridge); 2823 2824 return false; 2825 } 2826 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2827 2828 /** 2829 * pci_dev_need_resume - Check if it is necessary to resume the device. 2830 * @pci_dev: Device to check. 2831 * 2832 * Return 'true' if the device is not runtime-suspended or it has to be 2833 * reconfigured due to wakeup settings difference between system and runtime 2834 * suspend, or the current power state of it is not suitable for the upcoming 2835 * (system-wide) transition. 2836 */ 2837 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2838 { 2839 struct device *dev = &pci_dev->dev; 2840 pci_power_t target_state; 2841 2842 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2843 return true; 2844 2845 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2846 2847 /* 2848 * If the earlier platform check has not triggered, D3cold is just power 2849 * removal on top of D3hot, so no need to resume the device in that 2850 * case. 2851 */ 2852 return target_state != pci_dev->current_state && 2853 target_state != PCI_D3cold && 2854 pci_dev->current_state != PCI_D3hot; 2855 } 2856 2857 /** 2858 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2859 * @pci_dev: Device to check. 2860 * 2861 * If the device is suspended and it is not configured for system wakeup, 2862 * disable PME for it to prevent it from waking up the system unnecessarily. 2863 * 2864 * Note that if the device's power state is D3cold and the platform check in 2865 * pci_dev_need_resume() has not triggered, the device's configuration need not 2866 * be changed. 2867 */ 2868 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2869 { 2870 struct device *dev = &pci_dev->dev; 2871 2872 spin_lock_irq(&dev->power.lock); 2873 2874 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2875 pci_dev->current_state < PCI_D3cold) 2876 __pci_pme_active(pci_dev, false); 2877 2878 spin_unlock_irq(&dev->power.lock); 2879 } 2880 2881 /** 2882 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2883 * @pci_dev: Device to handle. 2884 * 2885 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2886 * it might have been disabled during the prepare phase of system suspend if 2887 * the device was not configured for system wakeup. 2888 */ 2889 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2890 { 2891 struct device *dev = &pci_dev->dev; 2892 2893 if (!pci_dev_run_wake(pci_dev)) 2894 return; 2895 2896 spin_lock_irq(&dev->power.lock); 2897 2898 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2899 __pci_pme_active(pci_dev, true); 2900 2901 spin_unlock_irq(&dev->power.lock); 2902 } 2903 2904 /** 2905 * pci_choose_state - Choose the power state of a PCI device. 2906 * @dev: Target PCI device. 2907 * @state: Target state for the whole system. 2908 * 2909 * Returns PCI power state suitable for @dev and @state. 2910 */ 2911 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2912 { 2913 if (state.event == PM_EVENT_ON) 2914 return PCI_D0; 2915 2916 return pci_target_state(dev, false); 2917 } 2918 EXPORT_SYMBOL(pci_choose_state); 2919 2920 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2921 { 2922 struct device *dev = &pdev->dev; 2923 struct device *parent = dev->parent; 2924 2925 if (parent) 2926 pm_runtime_get_sync(parent); 2927 pm_runtime_get_noresume(dev); 2928 /* 2929 * pdev->current_state is set to PCI_D3cold during suspending, 2930 * so wait until suspending completes 2931 */ 2932 pm_runtime_barrier(dev); 2933 /* 2934 * Only need to resume devices in D3cold, because config 2935 * registers are still accessible for devices suspended but 2936 * not in D3cold. 2937 */ 2938 if (pdev->current_state == PCI_D3cold) 2939 pm_runtime_resume(dev); 2940 } 2941 2942 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2943 { 2944 struct device *dev = &pdev->dev; 2945 struct device *parent = dev->parent; 2946 2947 pm_runtime_put(dev); 2948 if (parent) 2949 pm_runtime_put_sync(parent); 2950 } 2951 2952 static const struct dmi_system_id bridge_d3_blacklist[] = { 2953 #ifdef CONFIG_X86 2954 { 2955 /* 2956 * Gigabyte X299 root port is not marked as hotplug capable 2957 * which allows Linux to power manage it. However, this 2958 * confuses the BIOS SMI handler so don't power manage root 2959 * ports on that system. 2960 */ 2961 .ident = "X299 DESIGNARE EX-CF", 2962 .matches = { 2963 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2964 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2965 }, 2966 }, 2967 { 2968 /* 2969 * Downstream device is not accessible after putting a root port 2970 * into D3cold and back into D0 on Elo i2. 2971 */ 2972 .ident = "Elo i2", 2973 .matches = { 2974 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"), 2975 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"), 2976 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"), 2977 }, 2978 }, 2979 #endif 2980 { } 2981 }; 2982 2983 /** 2984 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2985 * @bridge: Bridge to check 2986 * 2987 * This function checks if it is possible to move the bridge to D3. 2988 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2989 */ 2990 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2991 { 2992 if (!pci_is_pcie(bridge)) 2993 return false; 2994 2995 switch (pci_pcie_type(bridge)) { 2996 case PCI_EXP_TYPE_ROOT_PORT: 2997 case PCI_EXP_TYPE_UPSTREAM: 2998 case PCI_EXP_TYPE_DOWNSTREAM: 2999 if (pci_bridge_d3_disable) 3000 return false; 3001 3002 /* 3003 * Hotplug ports handled by firmware in System Management Mode 3004 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 3005 */ 3006 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 3007 return false; 3008 3009 if (pci_bridge_d3_force) 3010 return true; 3011 3012 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 3013 if (bridge->is_thunderbolt) 3014 return true; 3015 3016 /* Platform might know better if the bridge supports D3 */ 3017 if (platform_pci_bridge_d3(bridge)) 3018 return true; 3019 3020 /* 3021 * Hotplug ports handled natively by the OS were not validated 3022 * by vendors for runtime D3 at least until 2018 because there 3023 * was no OS support. 3024 */ 3025 if (bridge->is_hotplug_bridge) 3026 return false; 3027 3028 if (dmi_check_system(bridge_d3_blacklist)) 3029 return false; 3030 3031 /* 3032 * It should be safe to put PCIe ports from 2015 or newer 3033 * to D3. 3034 */ 3035 if (dmi_get_bios_year() >= 2015) 3036 return true; 3037 break; 3038 } 3039 3040 return false; 3041 } 3042 3043 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3044 { 3045 bool *d3cold_ok = data; 3046 3047 if (/* The device needs to be allowed to go D3cold ... */ 3048 dev->no_d3cold || !dev->d3cold_allowed || 3049 3050 /* ... and if it is wakeup capable to do so from D3cold. */ 3051 (device_may_wakeup(&dev->dev) && 3052 !pci_pme_capable(dev, PCI_D3cold)) || 3053 3054 /* If it is a bridge it must be allowed to go to D3. */ 3055 !pci_power_manageable(dev)) 3056 3057 *d3cold_ok = false; 3058 3059 return !*d3cold_ok; 3060 } 3061 3062 /* 3063 * pci_bridge_d3_update - Update bridge D3 capabilities 3064 * @dev: PCI device which is changed 3065 * 3066 * Update upstream bridge PM capabilities accordingly depending on if the 3067 * device PM configuration was changed or the device is being removed. The 3068 * change is also propagated upstream. 3069 */ 3070 void pci_bridge_d3_update(struct pci_dev *dev) 3071 { 3072 bool remove = !device_is_registered(&dev->dev); 3073 struct pci_dev *bridge; 3074 bool d3cold_ok = true; 3075 3076 bridge = pci_upstream_bridge(dev); 3077 if (!bridge || !pci_bridge_d3_possible(bridge)) 3078 return; 3079 3080 /* 3081 * If D3 is currently allowed for the bridge, removing one of its 3082 * children won't change that. 3083 */ 3084 if (remove && bridge->bridge_d3) 3085 return; 3086 3087 /* 3088 * If D3 is currently allowed for the bridge and a child is added or 3089 * changed, disallowance of D3 can only be caused by that child, so 3090 * we only need to check that single device, not any of its siblings. 3091 * 3092 * If D3 is currently not allowed for the bridge, checking the device 3093 * first may allow us to skip checking its siblings. 3094 */ 3095 if (!remove) 3096 pci_dev_check_d3cold(dev, &d3cold_ok); 3097 3098 /* 3099 * If D3 is currently not allowed for the bridge, this may be caused 3100 * either by the device being changed/removed or any of its siblings, 3101 * so we need to go through all children to find out if one of them 3102 * continues to block D3. 3103 */ 3104 if (d3cold_ok && !bridge->bridge_d3) 3105 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3106 &d3cold_ok); 3107 3108 if (bridge->bridge_d3 != d3cold_ok) { 3109 bridge->bridge_d3 = d3cold_ok; 3110 /* Propagate change to upstream bridges */ 3111 pci_bridge_d3_update(bridge); 3112 } 3113 } 3114 3115 /** 3116 * pci_d3cold_enable - Enable D3cold for device 3117 * @dev: PCI device to handle 3118 * 3119 * This function can be used in drivers to enable D3cold from the device 3120 * they handle. It also updates upstream PCI bridge PM capabilities 3121 * accordingly. 3122 */ 3123 void pci_d3cold_enable(struct pci_dev *dev) 3124 { 3125 if (dev->no_d3cold) { 3126 dev->no_d3cold = false; 3127 pci_bridge_d3_update(dev); 3128 } 3129 } 3130 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3131 3132 /** 3133 * pci_d3cold_disable - Disable D3cold for device 3134 * @dev: PCI device to handle 3135 * 3136 * This function can be used in drivers to disable D3cold from the device 3137 * they handle. It also updates upstream PCI bridge PM capabilities 3138 * accordingly. 3139 */ 3140 void pci_d3cold_disable(struct pci_dev *dev) 3141 { 3142 if (!dev->no_d3cold) { 3143 dev->no_d3cold = true; 3144 pci_bridge_d3_update(dev); 3145 } 3146 } 3147 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3148 3149 /** 3150 * pci_pm_init - Initialize PM functions of given PCI device 3151 * @dev: PCI device to handle. 3152 */ 3153 void pci_pm_init(struct pci_dev *dev) 3154 { 3155 int pm; 3156 u16 status; 3157 u16 pmc; 3158 3159 pm_runtime_forbid(&dev->dev); 3160 pm_runtime_set_active(&dev->dev); 3161 pm_runtime_enable(&dev->dev); 3162 device_enable_async_suspend(&dev->dev); 3163 dev->wakeup_prepared = false; 3164 3165 dev->pm_cap = 0; 3166 dev->pme_support = 0; 3167 3168 /* find PCI PM capability in list */ 3169 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3170 if (!pm) 3171 return; 3172 /* Check device's ability to generate PME# */ 3173 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3174 3175 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3176 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3177 pmc & PCI_PM_CAP_VER_MASK); 3178 return; 3179 } 3180 3181 dev->pm_cap = pm; 3182 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3183 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3184 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3185 dev->d3cold_allowed = true; 3186 3187 dev->d1_support = false; 3188 dev->d2_support = false; 3189 if (!pci_no_d1d2(dev)) { 3190 if (pmc & PCI_PM_CAP_D1) 3191 dev->d1_support = true; 3192 if (pmc & PCI_PM_CAP_D2) 3193 dev->d2_support = true; 3194 3195 if (dev->d1_support || dev->d2_support) 3196 pci_info(dev, "supports%s%s\n", 3197 dev->d1_support ? " D1" : "", 3198 dev->d2_support ? " D2" : ""); 3199 } 3200 3201 pmc &= PCI_PM_CAP_PME_MASK; 3202 if (pmc) { 3203 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3204 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3205 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3206 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3207 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3208 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3209 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3210 dev->pme_poll = true; 3211 /* 3212 * Make device's PM flags reflect the wake-up capability, but 3213 * let the user space enable it to wake up the system as needed. 3214 */ 3215 device_set_wakeup_capable(&dev->dev, true); 3216 /* Disable the PME# generation functionality */ 3217 pci_pme_active(dev, false); 3218 } 3219 3220 pci_read_config_word(dev, PCI_STATUS, &status); 3221 if (status & PCI_STATUS_IMM_READY) 3222 dev->imm_ready = 1; 3223 } 3224 3225 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3226 { 3227 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3228 3229 switch (prop) { 3230 case PCI_EA_P_MEM: 3231 case PCI_EA_P_VF_MEM: 3232 flags |= IORESOURCE_MEM; 3233 break; 3234 case PCI_EA_P_MEM_PREFETCH: 3235 case PCI_EA_P_VF_MEM_PREFETCH: 3236 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3237 break; 3238 case PCI_EA_P_IO: 3239 flags |= IORESOURCE_IO; 3240 break; 3241 default: 3242 return 0; 3243 } 3244 3245 return flags; 3246 } 3247 3248 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3249 u8 prop) 3250 { 3251 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3252 return &dev->resource[bei]; 3253 #ifdef CONFIG_PCI_IOV 3254 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3255 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3256 return &dev->resource[PCI_IOV_RESOURCES + 3257 bei - PCI_EA_BEI_VF_BAR0]; 3258 #endif 3259 else if (bei == PCI_EA_BEI_ROM) 3260 return &dev->resource[PCI_ROM_RESOURCE]; 3261 else 3262 return NULL; 3263 } 3264 3265 /* Read an Enhanced Allocation (EA) entry */ 3266 static int pci_ea_read(struct pci_dev *dev, int offset) 3267 { 3268 struct resource *res; 3269 int ent_size, ent_offset = offset; 3270 resource_size_t start, end; 3271 unsigned long flags; 3272 u32 dw0, bei, base, max_offset; 3273 u8 prop; 3274 bool support_64 = (sizeof(resource_size_t) >= 8); 3275 3276 pci_read_config_dword(dev, ent_offset, &dw0); 3277 ent_offset += 4; 3278 3279 /* Entry size field indicates DWORDs after 1st */ 3280 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3281 3282 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3283 goto out; 3284 3285 bei = (dw0 & PCI_EA_BEI) >> 4; 3286 prop = (dw0 & PCI_EA_PP) >> 8; 3287 3288 /* 3289 * If the Property is in the reserved range, try the Secondary 3290 * Property instead. 3291 */ 3292 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3293 prop = (dw0 & PCI_EA_SP) >> 16; 3294 if (prop > PCI_EA_P_BRIDGE_IO) 3295 goto out; 3296 3297 res = pci_ea_get_resource(dev, bei, prop); 3298 if (!res) { 3299 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3300 goto out; 3301 } 3302 3303 flags = pci_ea_flags(dev, prop); 3304 if (!flags) { 3305 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3306 goto out; 3307 } 3308 3309 /* Read Base */ 3310 pci_read_config_dword(dev, ent_offset, &base); 3311 start = (base & PCI_EA_FIELD_MASK); 3312 ent_offset += 4; 3313 3314 /* Read MaxOffset */ 3315 pci_read_config_dword(dev, ent_offset, &max_offset); 3316 ent_offset += 4; 3317 3318 /* Read Base MSBs (if 64-bit entry) */ 3319 if (base & PCI_EA_IS_64) { 3320 u32 base_upper; 3321 3322 pci_read_config_dword(dev, ent_offset, &base_upper); 3323 ent_offset += 4; 3324 3325 flags |= IORESOURCE_MEM_64; 3326 3327 /* entry starts above 32-bit boundary, can't use */ 3328 if (!support_64 && base_upper) 3329 goto out; 3330 3331 if (support_64) 3332 start |= ((u64)base_upper << 32); 3333 } 3334 3335 end = start + (max_offset | 0x03); 3336 3337 /* Read MaxOffset MSBs (if 64-bit entry) */ 3338 if (max_offset & PCI_EA_IS_64) { 3339 u32 max_offset_upper; 3340 3341 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3342 ent_offset += 4; 3343 3344 flags |= IORESOURCE_MEM_64; 3345 3346 /* entry too big, can't use */ 3347 if (!support_64 && max_offset_upper) 3348 goto out; 3349 3350 if (support_64) 3351 end += ((u64)max_offset_upper << 32); 3352 } 3353 3354 if (end < start) { 3355 pci_err(dev, "EA Entry crosses address boundary\n"); 3356 goto out; 3357 } 3358 3359 if (ent_size != ent_offset - offset) { 3360 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3361 ent_size, ent_offset - offset); 3362 goto out; 3363 } 3364 3365 res->name = pci_name(dev); 3366 res->start = start; 3367 res->end = end; 3368 res->flags = flags; 3369 3370 if (bei <= PCI_EA_BEI_BAR5) 3371 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3372 bei, res, prop); 3373 else if (bei == PCI_EA_BEI_ROM) 3374 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3375 res, prop); 3376 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3377 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3378 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3379 else 3380 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3381 bei, res, prop); 3382 3383 out: 3384 return offset + ent_size; 3385 } 3386 3387 /* Enhanced Allocation Initialization */ 3388 void pci_ea_init(struct pci_dev *dev) 3389 { 3390 int ea; 3391 u8 num_ent; 3392 int offset; 3393 int i; 3394 3395 /* find PCI EA capability in list */ 3396 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3397 if (!ea) 3398 return; 3399 3400 /* determine the number of entries */ 3401 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3402 &num_ent); 3403 num_ent &= PCI_EA_NUM_ENT_MASK; 3404 3405 offset = ea + PCI_EA_FIRST_ENT; 3406 3407 /* Skip DWORD 2 for type 1 functions */ 3408 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3409 offset += 4; 3410 3411 /* parse each EA entry */ 3412 for (i = 0; i < num_ent; ++i) 3413 offset = pci_ea_read(dev, offset); 3414 } 3415 3416 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3417 struct pci_cap_saved_state *new_cap) 3418 { 3419 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3420 } 3421 3422 /** 3423 * _pci_add_cap_save_buffer - allocate buffer for saving given 3424 * capability registers 3425 * @dev: the PCI device 3426 * @cap: the capability to allocate the buffer for 3427 * @extended: Standard or Extended capability ID 3428 * @size: requested size of the buffer 3429 */ 3430 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3431 bool extended, unsigned int size) 3432 { 3433 int pos; 3434 struct pci_cap_saved_state *save_state; 3435 3436 if (extended) 3437 pos = pci_find_ext_capability(dev, cap); 3438 else 3439 pos = pci_find_capability(dev, cap); 3440 3441 if (!pos) 3442 return 0; 3443 3444 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3445 if (!save_state) 3446 return -ENOMEM; 3447 3448 save_state->cap.cap_nr = cap; 3449 save_state->cap.cap_extended = extended; 3450 save_state->cap.size = size; 3451 pci_add_saved_cap(dev, save_state); 3452 3453 return 0; 3454 } 3455 3456 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3457 { 3458 return _pci_add_cap_save_buffer(dev, cap, false, size); 3459 } 3460 3461 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3462 { 3463 return _pci_add_cap_save_buffer(dev, cap, true, size); 3464 } 3465 3466 /** 3467 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3468 * @dev: the PCI device 3469 */ 3470 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3471 { 3472 int error; 3473 3474 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3475 PCI_EXP_SAVE_REGS * sizeof(u16)); 3476 if (error) 3477 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3478 3479 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3480 if (error) 3481 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3482 3483 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3484 2 * sizeof(u16)); 3485 if (error) 3486 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3487 3488 pci_allocate_vc_save_buffers(dev); 3489 } 3490 3491 void pci_free_cap_save_buffers(struct pci_dev *dev) 3492 { 3493 struct pci_cap_saved_state *tmp; 3494 struct hlist_node *n; 3495 3496 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3497 kfree(tmp); 3498 } 3499 3500 /** 3501 * pci_configure_ari - enable or disable ARI forwarding 3502 * @dev: the PCI device 3503 * 3504 * If @dev and its upstream bridge both support ARI, enable ARI in the 3505 * bridge. Otherwise, disable ARI in the bridge. 3506 */ 3507 void pci_configure_ari(struct pci_dev *dev) 3508 { 3509 u32 cap; 3510 struct pci_dev *bridge; 3511 3512 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3513 return; 3514 3515 bridge = dev->bus->self; 3516 if (!bridge) 3517 return; 3518 3519 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3520 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3521 return; 3522 3523 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3524 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3525 PCI_EXP_DEVCTL2_ARI); 3526 bridge->ari_enabled = 1; 3527 } else { 3528 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3529 PCI_EXP_DEVCTL2_ARI); 3530 bridge->ari_enabled = 0; 3531 } 3532 } 3533 3534 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3535 { 3536 int pos; 3537 u16 cap, ctrl; 3538 3539 pos = pdev->acs_cap; 3540 if (!pos) 3541 return false; 3542 3543 /* 3544 * Except for egress control, capabilities are either required 3545 * or only required if controllable. Features missing from the 3546 * capability field can therefore be assumed as hard-wired enabled. 3547 */ 3548 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3549 acs_flags &= (cap | PCI_ACS_EC); 3550 3551 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3552 return (ctrl & acs_flags) == acs_flags; 3553 } 3554 3555 /** 3556 * pci_acs_enabled - test ACS against required flags for a given device 3557 * @pdev: device to test 3558 * @acs_flags: required PCI ACS flags 3559 * 3560 * Return true if the device supports the provided flags. Automatically 3561 * filters out flags that are not implemented on multifunction devices. 3562 * 3563 * Note that this interface checks the effective ACS capabilities of the 3564 * device rather than the actual capabilities. For instance, most single 3565 * function endpoints are not required to support ACS because they have no 3566 * opportunity for peer-to-peer access. We therefore return 'true' 3567 * regardless of whether the device exposes an ACS capability. This makes 3568 * it much easier for callers of this function to ignore the actual type 3569 * or topology of the device when testing ACS support. 3570 */ 3571 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3572 { 3573 int ret; 3574 3575 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3576 if (ret >= 0) 3577 return ret > 0; 3578 3579 /* 3580 * Conventional PCI and PCI-X devices never support ACS, either 3581 * effectively or actually. The shared bus topology implies that 3582 * any device on the bus can receive or snoop DMA. 3583 */ 3584 if (!pci_is_pcie(pdev)) 3585 return false; 3586 3587 switch (pci_pcie_type(pdev)) { 3588 /* 3589 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3590 * but since their primary interface is PCI/X, we conservatively 3591 * handle them as we would a non-PCIe device. 3592 */ 3593 case PCI_EXP_TYPE_PCIE_BRIDGE: 3594 /* 3595 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3596 * applicable... must never implement an ACS Extended Capability...". 3597 * This seems arbitrary, but we take a conservative interpretation 3598 * of this statement. 3599 */ 3600 case PCI_EXP_TYPE_PCI_BRIDGE: 3601 case PCI_EXP_TYPE_RC_EC: 3602 return false; 3603 /* 3604 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3605 * implement ACS in order to indicate their peer-to-peer capabilities, 3606 * regardless of whether they are single- or multi-function devices. 3607 */ 3608 case PCI_EXP_TYPE_DOWNSTREAM: 3609 case PCI_EXP_TYPE_ROOT_PORT: 3610 return pci_acs_flags_enabled(pdev, acs_flags); 3611 /* 3612 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3613 * implemented by the remaining PCIe types to indicate peer-to-peer 3614 * capabilities, but only when they are part of a multifunction 3615 * device. The footnote for section 6.12 indicates the specific 3616 * PCIe types included here. 3617 */ 3618 case PCI_EXP_TYPE_ENDPOINT: 3619 case PCI_EXP_TYPE_UPSTREAM: 3620 case PCI_EXP_TYPE_LEG_END: 3621 case PCI_EXP_TYPE_RC_END: 3622 if (!pdev->multifunction) 3623 break; 3624 3625 return pci_acs_flags_enabled(pdev, acs_flags); 3626 } 3627 3628 /* 3629 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3630 * to single function devices with the exception of downstream ports. 3631 */ 3632 return true; 3633 } 3634 3635 /** 3636 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3637 * @start: starting downstream device 3638 * @end: ending upstream device or NULL to search to the root bus 3639 * @acs_flags: required flags 3640 * 3641 * Walk up a device tree from start to end testing PCI ACS support. If 3642 * any step along the way does not support the required flags, return false. 3643 */ 3644 bool pci_acs_path_enabled(struct pci_dev *start, 3645 struct pci_dev *end, u16 acs_flags) 3646 { 3647 struct pci_dev *pdev, *parent = start; 3648 3649 do { 3650 pdev = parent; 3651 3652 if (!pci_acs_enabled(pdev, acs_flags)) 3653 return false; 3654 3655 if (pci_is_root_bus(pdev->bus)) 3656 return (end == NULL); 3657 3658 parent = pdev->bus->self; 3659 } while (pdev != end); 3660 3661 return true; 3662 } 3663 3664 /** 3665 * pci_acs_init - Initialize ACS if hardware supports it 3666 * @dev: the PCI device 3667 */ 3668 void pci_acs_init(struct pci_dev *dev) 3669 { 3670 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3671 3672 /* 3673 * Attempt to enable ACS regardless of capability because some Root 3674 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3675 * the standard ACS capability but still support ACS via those 3676 * quirks. 3677 */ 3678 pci_enable_acs(dev); 3679 } 3680 3681 /** 3682 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3683 * @pdev: PCI device 3684 * @bar: BAR to find 3685 * 3686 * Helper to find the position of the ctrl register for a BAR. 3687 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3688 * Returns -ENOENT if no ctrl register for the BAR could be found. 3689 */ 3690 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3691 { 3692 unsigned int pos, nbars, i; 3693 u32 ctrl; 3694 3695 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3696 if (!pos) 3697 return -ENOTSUPP; 3698 3699 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3700 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3701 PCI_REBAR_CTRL_NBAR_SHIFT; 3702 3703 for (i = 0; i < nbars; i++, pos += 8) { 3704 int bar_idx; 3705 3706 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3707 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3708 if (bar_idx == bar) 3709 return pos; 3710 } 3711 3712 return -ENOENT; 3713 } 3714 3715 /** 3716 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3717 * @pdev: PCI device 3718 * @bar: BAR to query 3719 * 3720 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3721 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3722 */ 3723 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3724 { 3725 int pos; 3726 u32 cap; 3727 3728 pos = pci_rebar_find_pos(pdev, bar); 3729 if (pos < 0) 3730 return 0; 3731 3732 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3733 cap &= PCI_REBAR_CAP_SIZES; 3734 3735 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3736 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3737 bar == 0 && cap == 0x7000) 3738 cap = 0x3f000; 3739 3740 return cap >> 4; 3741 } 3742 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3743 3744 /** 3745 * pci_rebar_get_current_size - get the current size of a BAR 3746 * @pdev: PCI device 3747 * @bar: BAR to set size to 3748 * 3749 * Read the size of a BAR from the resizable BAR config. 3750 * Returns size if found or negative error code. 3751 */ 3752 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3753 { 3754 int pos; 3755 u32 ctrl; 3756 3757 pos = pci_rebar_find_pos(pdev, bar); 3758 if (pos < 0) 3759 return pos; 3760 3761 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3762 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3763 } 3764 3765 /** 3766 * pci_rebar_set_size - set a new size for a BAR 3767 * @pdev: PCI device 3768 * @bar: BAR to set size to 3769 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3770 * 3771 * Set the new size of a BAR as defined in the spec. 3772 * Returns zero if resizing was successful, error code otherwise. 3773 */ 3774 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3775 { 3776 int pos; 3777 u32 ctrl; 3778 3779 pos = pci_rebar_find_pos(pdev, bar); 3780 if (pos < 0) 3781 return pos; 3782 3783 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3784 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3785 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3786 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3787 return 0; 3788 } 3789 3790 /** 3791 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3792 * @dev: the PCI device 3793 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3794 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3795 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3796 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3797 * 3798 * Return 0 if all upstream bridges support AtomicOp routing, egress 3799 * blocking is disabled on all upstream ports, and the root port supports 3800 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3801 * AtomicOp completion), or negative otherwise. 3802 */ 3803 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3804 { 3805 struct pci_bus *bus = dev->bus; 3806 struct pci_dev *bridge; 3807 u32 cap, ctl2; 3808 3809 /* 3810 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3811 * in Device Control 2 is reserved in VFs and the PF value applies 3812 * to all associated VFs. 3813 */ 3814 if (dev->is_virtfn) 3815 return -EINVAL; 3816 3817 if (!pci_is_pcie(dev)) 3818 return -EINVAL; 3819 3820 /* 3821 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3822 * AtomicOp requesters. For now, we only support endpoints as 3823 * requesters and root ports as completers. No endpoints as 3824 * completers, and no peer-to-peer. 3825 */ 3826 3827 switch (pci_pcie_type(dev)) { 3828 case PCI_EXP_TYPE_ENDPOINT: 3829 case PCI_EXP_TYPE_LEG_END: 3830 case PCI_EXP_TYPE_RC_END: 3831 break; 3832 default: 3833 return -EINVAL; 3834 } 3835 3836 while (bus->parent) { 3837 bridge = bus->self; 3838 3839 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3840 3841 switch (pci_pcie_type(bridge)) { 3842 /* Ensure switch ports support AtomicOp routing */ 3843 case PCI_EXP_TYPE_UPSTREAM: 3844 case PCI_EXP_TYPE_DOWNSTREAM: 3845 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3846 return -EINVAL; 3847 break; 3848 3849 /* Ensure root port supports all the sizes we care about */ 3850 case PCI_EXP_TYPE_ROOT_PORT: 3851 if ((cap & cap_mask) != cap_mask) 3852 return -EINVAL; 3853 break; 3854 } 3855 3856 /* Ensure upstream ports don't block AtomicOps on egress */ 3857 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3858 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3859 &ctl2); 3860 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3861 return -EINVAL; 3862 } 3863 3864 bus = bus->parent; 3865 } 3866 3867 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3868 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3869 return 0; 3870 } 3871 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3872 3873 /** 3874 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3875 * @dev: the PCI device 3876 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3877 * 3878 * Perform INTx swizzling for a device behind one level of bridge. This is 3879 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3880 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3881 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3882 * the PCI Express Base Specification, Revision 2.1) 3883 */ 3884 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3885 { 3886 int slot; 3887 3888 if (pci_ari_enabled(dev->bus)) 3889 slot = 0; 3890 else 3891 slot = PCI_SLOT(dev->devfn); 3892 3893 return (((pin - 1) + slot) % 4) + 1; 3894 } 3895 3896 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3897 { 3898 u8 pin; 3899 3900 pin = dev->pin; 3901 if (!pin) 3902 return -1; 3903 3904 while (!pci_is_root_bus(dev->bus)) { 3905 pin = pci_swizzle_interrupt_pin(dev, pin); 3906 dev = dev->bus->self; 3907 } 3908 *bridge = dev; 3909 return pin; 3910 } 3911 3912 /** 3913 * pci_common_swizzle - swizzle INTx all the way to root bridge 3914 * @dev: the PCI device 3915 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3916 * 3917 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3918 * bridges all the way up to a PCI root bus. 3919 */ 3920 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3921 { 3922 u8 pin = *pinp; 3923 3924 while (!pci_is_root_bus(dev->bus)) { 3925 pin = pci_swizzle_interrupt_pin(dev, pin); 3926 dev = dev->bus->self; 3927 } 3928 *pinp = pin; 3929 return PCI_SLOT(dev->devfn); 3930 } 3931 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3932 3933 /** 3934 * pci_release_region - Release a PCI bar 3935 * @pdev: PCI device whose resources were previously reserved by 3936 * pci_request_region() 3937 * @bar: BAR to release 3938 * 3939 * Releases the PCI I/O and memory resources previously reserved by a 3940 * successful call to pci_request_region(). Call this function only 3941 * after all use of the PCI regions has ceased. 3942 */ 3943 void pci_release_region(struct pci_dev *pdev, int bar) 3944 { 3945 struct pci_devres *dr; 3946 3947 if (pci_resource_len(pdev, bar) == 0) 3948 return; 3949 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3950 release_region(pci_resource_start(pdev, bar), 3951 pci_resource_len(pdev, bar)); 3952 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3953 release_mem_region(pci_resource_start(pdev, bar), 3954 pci_resource_len(pdev, bar)); 3955 3956 dr = find_pci_dr(pdev); 3957 if (dr) 3958 dr->region_mask &= ~(1 << bar); 3959 } 3960 EXPORT_SYMBOL(pci_release_region); 3961 3962 /** 3963 * __pci_request_region - Reserved PCI I/O and memory resource 3964 * @pdev: PCI device whose resources are to be reserved 3965 * @bar: BAR to be reserved 3966 * @res_name: Name to be associated with resource. 3967 * @exclusive: whether the region access is exclusive or not 3968 * 3969 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3970 * being reserved by owner @res_name. Do not access any 3971 * address inside the PCI regions unless this call returns 3972 * successfully. 3973 * 3974 * If @exclusive is set, then the region is marked so that userspace 3975 * is explicitly not allowed to map the resource via /dev/mem or 3976 * sysfs MMIO access. 3977 * 3978 * Returns 0 on success, or %EBUSY on error. A warning 3979 * message is also printed on failure. 3980 */ 3981 static int __pci_request_region(struct pci_dev *pdev, int bar, 3982 const char *res_name, int exclusive) 3983 { 3984 struct pci_devres *dr; 3985 3986 if (pci_resource_len(pdev, bar) == 0) 3987 return 0; 3988 3989 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3990 if (!request_region(pci_resource_start(pdev, bar), 3991 pci_resource_len(pdev, bar), res_name)) 3992 goto err_out; 3993 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3994 if (!__request_mem_region(pci_resource_start(pdev, bar), 3995 pci_resource_len(pdev, bar), res_name, 3996 exclusive)) 3997 goto err_out; 3998 } 3999 4000 dr = find_pci_dr(pdev); 4001 if (dr) 4002 dr->region_mask |= 1 << bar; 4003 4004 return 0; 4005 4006 err_out: 4007 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 4008 &pdev->resource[bar]); 4009 return -EBUSY; 4010 } 4011 4012 /** 4013 * pci_request_region - Reserve PCI I/O and memory resource 4014 * @pdev: PCI device whose resources are to be reserved 4015 * @bar: BAR to be reserved 4016 * @res_name: Name to be associated with resource 4017 * 4018 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4019 * being reserved by owner @res_name. Do not access any 4020 * address inside the PCI regions unless this call returns 4021 * successfully. 4022 * 4023 * Returns 0 on success, or %EBUSY on error. A warning 4024 * message is also printed on failure. 4025 */ 4026 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4027 { 4028 return __pci_request_region(pdev, bar, res_name, 0); 4029 } 4030 EXPORT_SYMBOL(pci_request_region); 4031 4032 /** 4033 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4034 * @pdev: PCI device whose resources were previously reserved 4035 * @bars: Bitmask of BARs to be released 4036 * 4037 * Release selected PCI I/O and memory resources previously reserved. 4038 * Call this function only after all use of the PCI regions has ceased. 4039 */ 4040 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4041 { 4042 int i; 4043 4044 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4045 if (bars & (1 << i)) 4046 pci_release_region(pdev, i); 4047 } 4048 EXPORT_SYMBOL(pci_release_selected_regions); 4049 4050 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4051 const char *res_name, int excl) 4052 { 4053 int i; 4054 4055 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4056 if (bars & (1 << i)) 4057 if (__pci_request_region(pdev, i, res_name, excl)) 4058 goto err_out; 4059 return 0; 4060 4061 err_out: 4062 while (--i >= 0) 4063 if (bars & (1 << i)) 4064 pci_release_region(pdev, i); 4065 4066 return -EBUSY; 4067 } 4068 4069 4070 /** 4071 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4072 * @pdev: PCI device whose resources are to be reserved 4073 * @bars: Bitmask of BARs to be requested 4074 * @res_name: Name to be associated with resource 4075 */ 4076 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4077 const char *res_name) 4078 { 4079 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4080 } 4081 EXPORT_SYMBOL(pci_request_selected_regions); 4082 4083 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4084 const char *res_name) 4085 { 4086 return __pci_request_selected_regions(pdev, bars, res_name, 4087 IORESOURCE_EXCLUSIVE); 4088 } 4089 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4090 4091 /** 4092 * pci_release_regions - Release reserved PCI I/O and memory resources 4093 * @pdev: PCI device whose resources were previously reserved by 4094 * pci_request_regions() 4095 * 4096 * Releases all PCI I/O and memory resources previously reserved by a 4097 * successful call to pci_request_regions(). Call this function only 4098 * after all use of the PCI regions has ceased. 4099 */ 4100 4101 void pci_release_regions(struct pci_dev *pdev) 4102 { 4103 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4104 } 4105 EXPORT_SYMBOL(pci_release_regions); 4106 4107 /** 4108 * pci_request_regions - Reserve PCI I/O and memory resources 4109 * @pdev: PCI device whose resources are to be reserved 4110 * @res_name: Name to be associated with resource. 4111 * 4112 * Mark all PCI regions associated with PCI device @pdev as 4113 * being reserved by owner @res_name. Do not access any 4114 * address inside the PCI regions unless this call returns 4115 * successfully. 4116 * 4117 * Returns 0 on success, or %EBUSY on error. A warning 4118 * message is also printed on failure. 4119 */ 4120 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4121 { 4122 return pci_request_selected_regions(pdev, 4123 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4124 } 4125 EXPORT_SYMBOL(pci_request_regions); 4126 4127 /** 4128 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4129 * @pdev: PCI device whose resources are to be reserved 4130 * @res_name: Name to be associated with resource. 4131 * 4132 * Mark all PCI regions associated with PCI device @pdev as being reserved 4133 * by owner @res_name. Do not access any address inside the PCI regions 4134 * unless this call returns successfully. 4135 * 4136 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4137 * and the sysfs MMIO access will not be allowed. 4138 * 4139 * Returns 0 on success, or %EBUSY on error. A warning message is also 4140 * printed on failure. 4141 */ 4142 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4143 { 4144 return pci_request_selected_regions_exclusive(pdev, 4145 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4146 } 4147 EXPORT_SYMBOL(pci_request_regions_exclusive); 4148 4149 /* 4150 * Record the PCI IO range (expressed as CPU physical address + size). 4151 * Return a negative value if an error has occurred, zero otherwise 4152 */ 4153 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4154 resource_size_t size) 4155 { 4156 int ret = 0; 4157 #ifdef PCI_IOBASE 4158 struct logic_pio_hwaddr *range; 4159 4160 if (!size || addr + size < addr) 4161 return -EINVAL; 4162 4163 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4164 if (!range) 4165 return -ENOMEM; 4166 4167 range->fwnode = fwnode; 4168 range->size = size; 4169 range->hw_start = addr; 4170 range->flags = LOGIC_PIO_CPU_MMIO; 4171 4172 ret = logic_pio_register_range(range); 4173 if (ret) 4174 kfree(range); 4175 4176 /* Ignore duplicates due to deferred probing */ 4177 if (ret == -EEXIST) 4178 ret = 0; 4179 #endif 4180 4181 return ret; 4182 } 4183 4184 phys_addr_t pci_pio_to_address(unsigned long pio) 4185 { 4186 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4187 4188 #ifdef PCI_IOBASE 4189 if (pio >= MMIO_UPPER_LIMIT) 4190 return address; 4191 4192 address = logic_pio_to_hwaddr(pio); 4193 #endif 4194 4195 return address; 4196 } 4197 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4198 4199 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4200 { 4201 #ifdef PCI_IOBASE 4202 return logic_pio_trans_cpuaddr(address); 4203 #else 4204 if (address > IO_SPACE_LIMIT) 4205 return (unsigned long)-1; 4206 4207 return (unsigned long) address; 4208 #endif 4209 } 4210 4211 /** 4212 * pci_remap_iospace - Remap the memory mapped I/O space 4213 * @res: Resource describing the I/O space 4214 * @phys_addr: physical address of range to be mapped 4215 * 4216 * Remap the memory mapped I/O space described by the @res and the CPU 4217 * physical address @phys_addr into virtual address space. Only 4218 * architectures that have memory mapped IO functions defined (and the 4219 * PCI_IOBASE value defined) should call this function. 4220 */ 4221 #ifndef pci_remap_iospace 4222 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4223 { 4224 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4225 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4226 4227 if (!(res->flags & IORESOURCE_IO)) 4228 return -EINVAL; 4229 4230 if (res->end > IO_SPACE_LIMIT) 4231 return -EINVAL; 4232 4233 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4234 pgprot_device(PAGE_KERNEL)); 4235 #else 4236 /* 4237 * This architecture does not have memory mapped I/O space, 4238 * so this function should never be called 4239 */ 4240 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4241 return -ENODEV; 4242 #endif 4243 } 4244 EXPORT_SYMBOL(pci_remap_iospace); 4245 #endif 4246 4247 /** 4248 * pci_unmap_iospace - Unmap the memory mapped I/O space 4249 * @res: resource to be unmapped 4250 * 4251 * Unmap the CPU virtual address @res from virtual address space. Only 4252 * architectures that have memory mapped IO functions defined (and the 4253 * PCI_IOBASE value defined) should call this function. 4254 */ 4255 void pci_unmap_iospace(struct resource *res) 4256 { 4257 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4258 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4259 4260 vunmap_range(vaddr, vaddr + resource_size(res)); 4261 #endif 4262 } 4263 EXPORT_SYMBOL(pci_unmap_iospace); 4264 4265 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4266 { 4267 struct resource **res = ptr; 4268 4269 pci_unmap_iospace(*res); 4270 } 4271 4272 /** 4273 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4274 * @dev: Generic device to remap IO address for 4275 * @res: Resource describing the I/O space 4276 * @phys_addr: physical address of range to be mapped 4277 * 4278 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4279 * detach. 4280 */ 4281 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4282 phys_addr_t phys_addr) 4283 { 4284 const struct resource **ptr; 4285 int error; 4286 4287 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4288 if (!ptr) 4289 return -ENOMEM; 4290 4291 error = pci_remap_iospace(res, phys_addr); 4292 if (error) { 4293 devres_free(ptr); 4294 } else { 4295 *ptr = res; 4296 devres_add(dev, ptr); 4297 } 4298 4299 return error; 4300 } 4301 EXPORT_SYMBOL(devm_pci_remap_iospace); 4302 4303 /** 4304 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4305 * @dev: Generic device to remap IO address for 4306 * @offset: Resource address to map 4307 * @size: Size of map 4308 * 4309 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4310 * detach. 4311 */ 4312 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4313 resource_size_t offset, 4314 resource_size_t size) 4315 { 4316 void __iomem **ptr, *addr; 4317 4318 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4319 if (!ptr) 4320 return NULL; 4321 4322 addr = pci_remap_cfgspace(offset, size); 4323 if (addr) { 4324 *ptr = addr; 4325 devres_add(dev, ptr); 4326 } else 4327 devres_free(ptr); 4328 4329 return addr; 4330 } 4331 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4332 4333 /** 4334 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4335 * @dev: generic device to handle the resource for 4336 * @res: configuration space resource to be handled 4337 * 4338 * Checks that a resource is a valid memory region, requests the memory 4339 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4340 * proper PCI configuration space memory attributes are guaranteed. 4341 * 4342 * All operations are managed and will be undone on driver detach. 4343 * 4344 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4345 * on failure. Usage example:: 4346 * 4347 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4348 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4349 * if (IS_ERR(base)) 4350 * return PTR_ERR(base); 4351 */ 4352 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4353 struct resource *res) 4354 { 4355 resource_size_t size; 4356 const char *name; 4357 void __iomem *dest_ptr; 4358 4359 BUG_ON(!dev); 4360 4361 if (!res || resource_type(res) != IORESOURCE_MEM) { 4362 dev_err(dev, "invalid resource\n"); 4363 return IOMEM_ERR_PTR(-EINVAL); 4364 } 4365 4366 size = resource_size(res); 4367 4368 if (res->name) 4369 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4370 res->name); 4371 else 4372 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4373 if (!name) 4374 return IOMEM_ERR_PTR(-ENOMEM); 4375 4376 if (!devm_request_mem_region(dev, res->start, size, name)) { 4377 dev_err(dev, "can't request region for resource %pR\n", res); 4378 return IOMEM_ERR_PTR(-EBUSY); 4379 } 4380 4381 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4382 if (!dest_ptr) { 4383 dev_err(dev, "ioremap failed for resource %pR\n", res); 4384 devm_release_mem_region(dev, res->start, size); 4385 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4386 } 4387 4388 return dest_ptr; 4389 } 4390 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4391 4392 static void __pci_set_master(struct pci_dev *dev, bool enable) 4393 { 4394 u16 old_cmd, cmd; 4395 4396 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4397 if (enable) 4398 cmd = old_cmd | PCI_COMMAND_MASTER; 4399 else 4400 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4401 if (cmd != old_cmd) { 4402 pci_dbg(dev, "%s bus mastering\n", 4403 enable ? "enabling" : "disabling"); 4404 pci_write_config_word(dev, PCI_COMMAND, cmd); 4405 } 4406 dev->is_busmaster = enable; 4407 } 4408 4409 /** 4410 * pcibios_setup - process "pci=" kernel boot arguments 4411 * @str: string used to pass in "pci=" kernel boot arguments 4412 * 4413 * Process kernel boot arguments. This is the default implementation. 4414 * Architecture specific implementations can override this as necessary. 4415 */ 4416 char * __weak __init pcibios_setup(char *str) 4417 { 4418 return str; 4419 } 4420 4421 /** 4422 * pcibios_set_master - enable PCI bus-mastering for device dev 4423 * @dev: the PCI device to enable 4424 * 4425 * Enables PCI bus-mastering for the device. This is the default 4426 * implementation. Architecture specific implementations can override 4427 * this if necessary. 4428 */ 4429 void __weak pcibios_set_master(struct pci_dev *dev) 4430 { 4431 u8 lat; 4432 4433 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4434 if (pci_is_pcie(dev)) 4435 return; 4436 4437 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4438 if (lat < 16) 4439 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4440 else if (lat > pcibios_max_latency) 4441 lat = pcibios_max_latency; 4442 else 4443 return; 4444 4445 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4446 } 4447 4448 /** 4449 * pci_set_master - enables bus-mastering for device dev 4450 * @dev: the PCI device to enable 4451 * 4452 * Enables bus-mastering on the device and calls pcibios_set_master() 4453 * to do the needed arch specific settings. 4454 */ 4455 void pci_set_master(struct pci_dev *dev) 4456 { 4457 __pci_set_master(dev, true); 4458 pcibios_set_master(dev); 4459 } 4460 EXPORT_SYMBOL(pci_set_master); 4461 4462 /** 4463 * pci_clear_master - disables bus-mastering for device dev 4464 * @dev: the PCI device to disable 4465 */ 4466 void pci_clear_master(struct pci_dev *dev) 4467 { 4468 __pci_set_master(dev, false); 4469 } 4470 EXPORT_SYMBOL(pci_clear_master); 4471 4472 /** 4473 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4474 * @dev: the PCI device for which MWI is to be enabled 4475 * 4476 * Helper function for pci_set_mwi. 4477 * Originally copied from drivers/net/acenic.c. 4478 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4479 * 4480 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4481 */ 4482 int pci_set_cacheline_size(struct pci_dev *dev) 4483 { 4484 u8 cacheline_size; 4485 4486 if (!pci_cache_line_size) 4487 return -EINVAL; 4488 4489 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4490 equal to or multiple of the right value. */ 4491 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4492 if (cacheline_size >= pci_cache_line_size && 4493 (cacheline_size % pci_cache_line_size) == 0) 4494 return 0; 4495 4496 /* Write the correct value. */ 4497 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4498 /* Read it back. */ 4499 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4500 if (cacheline_size == pci_cache_line_size) 4501 return 0; 4502 4503 pci_dbg(dev, "cache line size of %d is not supported\n", 4504 pci_cache_line_size << 2); 4505 4506 return -EINVAL; 4507 } 4508 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4509 4510 /** 4511 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4512 * @dev: the PCI device for which MWI is enabled 4513 * 4514 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4515 * 4516 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4517 */ 4518 int pci_set_mwi(struct pci_dev *dev) 4519 { 4520 #ifdef PCI_DISABLE_MWI 4521 return 0; 4522 #else 4523 int rc; 4524 u16 cmd; 4525 4526 rc = pci_set_cacheline_size(dev); 4527 if (rc) 4528 return rc; 4529 4530 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4531 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4532 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4533 cmd |= PCI_COMMAND_INVALIDATE; 4534 pci_write_config_word(dev, PCI_COMMAND, cmd); 4535 } 4536 return 0; 4537 #endif 4538 } 4539 EXPORT_SYMBOL(pci_set_mwi); 4540 4541 /** 4542 * pcim_set_mwi - a device-managed pci_set_mwi() 4543 * @dev: the PCI device for which MWI is enabled 4544 * 4545 * Managed pci_set_mwi(). 4546 * 4547 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4548 */ 4549 int pcim_set_mwi(struct pci_dev *dev) 4550 { 4551 struct pci_devres *dr; 4552 4553 dr = find_pci_dr(dev); 4554 if (!dr) 4555 return -ENOMEM; 4556 4557 dr->mwi = 1; 4558 return pci_set_mwi(dev); 4559 } 4560 EXPORT_SYMBOL(pcim_set_mwi); 4561 4562 /** 4563 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4564 * @dev: the PCI device for which MWI is enabled 4565 * 4566 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4567 * Callers are not required to check the return value. 4568 * 4569 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4570 */ 4571 int pci_try_set_mwi(struct pci_dev *dev) 4572 { 4573 #ifdef PCI_DISABLE_MWI 4574 return 0; 4575 #else 4576 return pci_set_mwi(dev); 4577 #endif 4578 } 4579 EXPORT_SYMBOL(pci_try_set_mwi); 4580 4581 /** 4582 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4583 * @dev: the PCI device to disable 4584 * 4585 * Disables PCI Memory-Write-Invalidate transaction on the device 4586 */ 4587 void pci_clear_mwi(struct pci_dev *dev) 4588 { 4589 #ifndef PCI_DISABLE_MWI 4590 u16 cmd; 4591 4592 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4593 if (cmd & PCI_COMMAND_INVALIDATE) { 4594 cmd &= ~PCI_COMMAND_INVALIDATE; 4595 pci_write_config_word(dev, PCI_COMMAND, cmd); 4596 } 4597 #endif 4598 } 4599 EXPORT_SYMBOL(pci_clear_mwi); 4600 4601 /** 4602 * pci_disable_parity - disable parity checking for device 4603 * @dev: the PCI device to operate on 4604 * 4605 * Disable parity checking for device @dev 4606 */ 4607 void pci_disable_parity(struct pci_dev *dev) 4608 { 4609 u16 cmd; 4610 4611 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4612 if (cmd & PCI_COMMAND_PARITY) { 4613 cmd &= ~PCI_COMMAND_PARITY; 4614 pci_write_config_word(dev, PCI_COMMAND, cmd); 4615 } 4616 } 4617 4618 /** 4619 * pci_intx - enables/disables PCI INTx for device dev 4620 * @pdev: the PCI device to operate on 4621 * @enable: boolean: whether to enable or disable PCI INTx 4622 * 4623 * Enables/disables PCI INTx for device @pdev 4624 */ 4625 void pci_intx(struct pci_dev *pdev, int enable) 4626 { 4627 u16 pci_command, new; 4628 4629 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4630 4631 if (enable) 4632 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4633 else 4634 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4635 4636 if (new != pci_command) { 4637 struct pci_devres *dr; 4638 4639 pci_write_config_word(pdev, PCI_COMMAND, new); 4640 4641 dr = find_pci_dr(pdev); 4642 if (dr && !dr->restore_intx) { 4643 dr->restore_intx = 1; 4644 dr->orig_intx = !enable; 4645 } 4646 } 4647 } 4648 EXPORT_SYMBOL_GPL(pci_intx); 4649 4650 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4651 { 4652 struct pci_bus *bus = dev->bus; 4653 bool mask_updated = true; 4654 u32 cmd_status_dword; 4655 u16 origcmd, newcmd; 4656 unsigned long flags; 4657 bool irq_pending; 4658 4659 /* 4660 * We do a single dword read to retrieve both command and status. 4661 * Document assumptions that make this possible. 4662 */ 4663 BUILD_BUG_ON(PCI_COMMAND % 4); 4664 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4665 4666 raw_spin_lock_irqsave(&pci_lock, flags); 4667 4668 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4669 4670 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4671 4672 /* 4673 * Check interrupt status register to see whether our device 4674 * triggered the interrupt (when masking) or the next IRQ is 4675 * already pending (when unmasking). 4676 */ 4677 if (mask != irq_pending) { 4678 mask_updated = false; 4679 goto done; 4680 } 4681 4682 origcmd = cmd_status_dword; 4683 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4684 if (mask) 4685 newcmd |= PCI_COMMAND_INTX_DISABLE; 4686 if (newcmd != origcmd) 4687 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4688 4689 done: 4690 raw_spin_unlock_irqrestore(&pci_lock, flags); 4691 4692 return mask_updated; 4693 } 4694 4695 /** 4696 * pci_check_and_mask_intx - mask INTx on pending interrupt 4697 * @dev: the PCI device to operate on 4698 * 4699 * Check if the device dev has its INTx line asserted, mask it and return 4700 * true in that case. False is returned if no interrupt was pending. 4701 */ 4702 bool pci_check_and_mask_intx(struct pci_dev *dev) 4703 { 4704 return pci_check_and_set_intx_mask(dev, true); 4705 } 4706 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4707 4708 /** 4709 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4710 * @dev: the PCI device to operate on 4711 * 4712 * Check if the device dev has its INTx line asserted, unmask it if not and 4713 * return true. False is returned and the mask remains active if there was 4714 * still an interrupt pending. 4715 */ 4716 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4717 { 4718 return pci_check_and_set_intx_mask(dev, false); 4719 } 4720 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4721 4722 /** 4723 * pci_wait_for_pending_transaction - wait for pending transaction 4724 * @dev: the PCI device to operate on 4725 * 4726 * Return 0 if transaction is pending 1 otherwise. 4727 */ 4728 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4729 { 4730 if (!pci_is_pcie(dev)) 4731 return 1; 4732 4733 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4734 PCI_EXP_DEVSTA_TRPND); 4735 } 4736 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4737 4738 /** 4739 * pcie_flr - initiate a PCIe function level reset 4740 * @dev: device to reset 4741 * 4742 * Initiate a function level reset unconditionally on @dev without 4743 * checking any flags and DEVCAP 4744 */ 4745 int pcie_flr(struct pci_dev *dev) 4746 { 4747 if (!pci_wait_for_pending_transaction(dev)) 4748 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4749 4750 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4751 4752 if (dev->imm_ready) 4753 return 0; 4754 4755 /* 4756 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4757 * 100ms, but may silently discard requests while the FLR is in 4758 * progress. Wait 100ms before trying to access the device. 4759 */ 4760 msleep(100); 4761 4762 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4763 } 4764 EXPORT_SYMBOL_GPL(pcie_flr); 4765 4766 /** 4767 * pcie_reset_flr - initiate a PCIe function level reset 4768 * @dev: device to reset 4769 * @probe: if true, return 0 if device can be reset this way 4770 * 4771 * Initiate a function level reset on @dev. 4772 */ 4773 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4774 { 4775 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4776 return -ENOTTY; 4777 4778 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4779 return -ENOTTY; 4780 4781 if (probe) 4782 return 0; 4783 4784 return pcie_flr(dev); 4785 } 4786 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4787 4788 static int pci_af_flr(struct pci_dev *dev, bool probe) 4789 { 4790 int pos; 4791 u8 cap; 4792 4793 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4794 if (!pos) 4795 return -ENOTTY; 4796 4797 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4798 return -ENOTTY; 4799 4800 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4801 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4802 return -ENOTTY; 4803 4804 if (probe) 4805 return 0; 4806 4807 /* 4808 * Wait for Transaction Pending bit to clear. A word-aligned test 4809 * is used, so we use the control offset rather than status and shift 4810 * the test bit to match. 4811 */ 4812 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4813 PCI_AF_STATUS_TP << 8)) 4814 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4815 4816 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4817 4818 if (dev->imm_ready) 4819 return 0; 4820 4821 /* 4822 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4823 * updated 27 July 2006; a device must complete an FLR within 4824 * 100ms, but may silently discard requests while the FLR is in 4825 * progress. Wait 100ms before trying to access the device. 4826 */ 4827 msleep(100); 4828 4829 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4830 } 4831 4832 /** 4833 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4834 * @dev: Device to reset. 4835 * @probe: if true, return 0 if the device can be reset this way. 4836 * 4837 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4838 * unset, it will be reinitialized internally when going from PCI_D3hot to 4839 * PCI_D0. If that's the case and the device is not in a low-power state 4840 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4841 * 4842 * NOTE: This causes the caller to sleep for twice the device power transition 4843 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4844 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4845 * Moreover, only devices in D0 can be reset by this function. 4846 */ 4847 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4848 { 4849 u16 csr; 4850 4851 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4852 return -ENOTTY; 4853 4854 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4855 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4856 return -ENOTTY; 4857 4858 if (probe) 4859 return 0; 4860 4861 if (dev->current_state != PCI_D0) 4862 return -EINVAL; 4863 4864 csr &= ~PCI_PM_CTRL_STATE_MASK; 4865 csr |= PCI_D3hot; 4866 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4867 pci_dev_d3_sleep(dev); 4868 4869 csr &= ~PCI_PM_CTRL_STATE_MASK; 4870 csr |= PCI_D0; 4871 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4872 pci_dev_d3_sleep(dev); 4873 4874 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4875 } 4876 4877 /** 4878 * pcie_wait_for_link_delay - Wait until link is active or inactive 4879 * @pdev: Bridge device 4880 * @active: waiting for active or inactive? 4881 * @delay: Delay to wait after link has become active (in ms) 4882 * 4883 * Use this to wait till link becomes active or inactive. 4884 */ 4885 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4886 int delay) 4887 { 4888 int timeout = 1000; 4889 bool ret; 4890 u16 lnk_status; 4891 4892 /* 4893 * Some controllers might not implement link active reporting. In this 4894 * case, we wait for 1000 ms + any delay requested by the caller. 4895 */ 4896 if (!pdev->link_active_reporting) { 4897 msleep(timeout + delay); 4898 return true; 4899 } 4900 4901 /* 4902 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4903 * after which we should expect an link active if the reset was 4904 * successful. If so, software must wait a minimum 100ms before sending 4905 * configuration requests to devices downstream this port. 4906 * 4907 * If the link fails to activate, either the device was physically 4908 * removed or the link is permanently failed. 4909 */ 4910 if (active) 4911 msleep(20); 4912 for (;;) { 4913 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4914 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4915 if (ret == active) 4916 break; 4917 if (timeout <= 0) 4918 break; 4919 msleep(10); 4920 timeout -= 10; 4921 } 4922 if (active && ret) 4923 msleep(delay); 4924 4925 return ret == active; 4926 } 4927 4928 /** 4929 * pcie_wait_for_link - Wait until link is active or inactive 4930 * @pdev: Bridge device 4931 * @active: waiting for active or inactive? 4932 * 4933 * Use this to wait till link becomes active or inactive. 4934 */ 4935 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4936 { 4937 return pcie_wait_for_link_delay(pdev, active, 100); 4938 } 4939 4940 /* 4941 * Find maximum D3cold delay required by all the devices on the bus. The 4942 * spec says 100 ms, but firmware can lower it and we allow drivers to 4943 * increase it as well. 4944 * 4945 * Called with @pci_bus_sem locked for reading. 4946 */ 4947 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4948 { 4949 const struct pci_dev *pdev; 4950 int min_delay = 100; 4951 int max_delay = 0; 4952 4953 list_for_each_entry(pdev, &bus->devices, bus_list) { 4954 if (pdev->d3cold_delay < min_delay) 4955 min_delay = pdev->d3cold_delay; 4956 if (pdev->d3cold_delay > max_delay) 4957 max_delay = pdev->d3cold_delay; 4958 } 4959 4960 return max(min_delay, max_delay); 4961 } 4962 4963 /** 4964 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4965 * @dev: PCI bridge 4966 * 4967 * Handle necessary delays before access to the devices on the secondary 4968 * side of the bridge are permitted after D3cold to D0 transition. 4969 * 4970 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4971 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4972 * 4.3.2. 4973 */ 4974 void pci_bridge_wait_for_secondary_bus(struct pci_dev *dev) 4975 { 4976 struct pci_dev *child; 4977 int delay; 4978 4979 if (pci_dev_is_disconnected(dev)) 4980 return; 4981 4982 if (!pci_is_bridge(dev) || !dev->bridge_d3) 4983 return; 4984 4985 down_read(&pci_bus_sem); 4986 4987 /* 4988 * We only deal with devices that are present currently on the bus. 4989 * For any hot-added devices the access delay is handled in pciehp 4990 * board_added(). In case of ACPI hotplug the firmware is expected 4991 * to configure the devices before OS is notified. 4992 */ 4993 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4994 up_read(&pci_bus_sem); 4995 return; 4996 } 4997 4998 /* Take d3cold_delay requirements into account */ 4999 delay = pci_bus_max_d3cold_delay(dev->subordinate); 5000 if (!delay) { 5001 up_read(&pci_bus_sem); 5002 return; 5003 } 5004 5005 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 5006 bus_list); 5007 up_read(&pci_bus_sem); 5008 5009 /* 5010 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 5011 * accessing the device after reset (that is 1000 ms + 100 ms). In 5012 * practice this should not be needed because we don't do power 5013 * management for them (see pci_bridge_d3_possible()). 5014 */ 5015 if (!pci_is_pcie(dev)) { 5016 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5017 msleep(1000 + delay); 5018 return; 5019 } 5020 5021 /* 5022 * For PCIe downstream and root ports that do not support speeds 5023 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5024 * speeds (gen3) we need to wait first for the data link layer to 5025 * become active. 5026 * 5027 * However, 100 ms is the minimum and the PCIe spec says the 5028 * software must allow at least 1s before it can determine that the 5029 * device that did not respond is a broken device. There is 5030 * evidence that 100 ms is not always enough, for example certain 5031 * Titan Ridge xHCI controller does not always respond to 5032 * configuration requests if we only wait for 100 ms (see 5033 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 5034 * 5035 * Therefore we wait for 100 ms and check for the device presence. 5036 * If it is still not present give it an additional 100 ms. 5037 */ 5038 if (!pcie_downstream_port(dev)) 5039 return; 5040 5041 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5042 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5043 msleep(delay); 5044 } else { 5045 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5046 delay); 5047 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5048 /* Did not train, no need to wait any further */ 5049 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5050 return; 5051 } 5052 } 5053 5054 if (!pci_device_is_present(child)) { 5055 pci_dbg(child, "waiting additional %d ms to become accessible\n", delay); 5056 msleep(delay); 5057 } 5058 } 5059 5060 void pci_reset_secondary_bus(struct pci_dev *dev) 5061 { 5062 u16 ctrl; 5063 5064 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5065 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5066 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5067 5068 /* 5069 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5070 * this to 2ms to ensure that we meet the minimum requirement. 5071 */ 5072 msleep(2); 5073 5074 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5075 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5076 5077 /* 5078 * Trhfa for conventional PCI is 2^25 clock cycles. 5079 * Assuming a minimum 33MHz clock this results in a 1s 5080 * delay before we can consider subordinate devices to 5081 * be re-initialized. PCIe has some ways to shorten this, 5082 * but we don't make use of them yet. 5083 */ 5084 ssleep(1); 5085 } 5086 5087 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5088 { 5089 pci_reset_secondary_bus(dev); 5090 } 5091 5092 /** 5093 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5094 * @dev: Bridge device 5095 * 5096 * Use the bridge control register to assert reset on the secondary bus. 5097 * Devices on the secondary bus are left in power-on state. 5098 */ 5099 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5100 { 5101 pcibios_reset_secondary_bus(dev); 5102 5103 return pci_dev_wait(dev, "bus reset", PCIE_RESET_READY_POLL_MS); 5104 } 5105 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5106 5107 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5108 { 5109 struct pci_dev *pdev; 5110 5111 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5112 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5113 return -ENOTTY; 5114 5115 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5116 if (pdev != dev) 5117 return -ENOTTY; 5118 5119 if (probe) 5120 return 0; 5121 5122 return pci_bridge_secondary_bus_reset(dev->bus->self); 5123 } 5124 5125 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5126 { 5127 int rc = -ENOTTY; 5128 5129 if (!hotplug || !try_module_get(hotplug->owner)) 5130 return rc; 5131 5132 if (hotplug->ops->reset_slot) 5133 rc = hotplug->ops->reset_slot(hotplug, probe); 5134 5135 module_put(hotplug->owner); 5136 5137 return rc; 5138 } 5139 5140 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5141 { 5142 if (dev->multifunction || dev->subordinate || !dev->slot || 5143 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5144 return -ENOTTY; 5145 5146 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5147 } 5148 5149 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5150 { 5151 int rc; 5152 5153 rc = pci_dev_reset_slot_function(dev, probe); 5154 if (rc != -ENOTTY) 5155 return rc; 5156 return pci_parent_bus_reset(dev, probe); 5157 } 5158 5159 void pci_dev_lock(struct pci_dev *dev) 5160 { 5161 /* block PM suspend, driver probe, etc. */ 5162 device_lock(&dev->dev); 5163 pci_cfg_access_lock(dev); 5164 } 5165 EXPORT_SYMBOL_GPL(pci_dev_lock); 5166 5167 /* Return 1 on successful lock, 0 on contention */ 5168 int pci_dev_trylock(struct pci_dev *dev) 5169 { 5170 if (device_trylock(&dev->dev)) { 5171 if (pci_cfg_access_trylock(dev)) 5172 return 1; 5173 device_unlock(&dev->dev); 5174 } 5175 5176 return 0; 5177 } 5178 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5179 5180 void pci_dev_unlock(struct pci_dev *dev) 5181 { 5182 pci_cfg_access_unlock(dev); 5183 device_unlock(&dev->dev); 5184 } 5185 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5186 5187 static void pci_dev_save_and_disable(struct pci_dev *dev) 5188 { 5189 const struct pci_error_handlers *err_handler = 5190 dev->driver ? dev->driver->err_handler : NULL; 5191 5192 /* 5193 * dev->driver->err_handler->reset_prepare() is protected against 5194 * races with ->remove() by the device lock, which must be held by 5195 * the caller. 5196 */ 5197 if (err_handler && err_handler->reset_prepare) 5198 err_handler->reset_prepare(dev); 5199 5200 /* 5201 * Wake-up device prior to save. PM registers default to D0 after 5202 * reset and a simple register restore doesn't reliably return 5203 * to a non-D0 state anyway. 5204 */ 5205 pci_set_power_state(dev, PCI_D0); 5206 5207 pci_save_state(dev); 5208 /* 5209 * Disable the device by clearing the Command register, except for 5210 * INTx-disable which is set. This not only disables MMIO and I/O port 5211 * BARs, but also prevents the device from being Bus Master, preventing 5212 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5213 * compliant devices, INTx-disable prevents legacy interrupts. 5214 */ 5215 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5216 } 5217 5218 static void pci_dev_restore(struct pci_dev *dev) 5219 { 5220 const struct pci_error_handlers *err_handler = 5221 dev->driver ? dev->driver->err_handler : NULL; 5222 5223 pci_restore_state(dev); 5224 5225 /* 5226 * dev->driver->err_handler->reset_done() is protected against 5227 * races with ->remove() by the device lock, which must be held by 5228 * the caller. 5229 */ 5230 if (err_handler && err_handler->reset_done) 5231 err_handler->reset_done(dev); 5232 } 5233 5234 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5235 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5236 { }, 5237 { pci_dev_specific_reset, .name = "device_specific" }, 5238 { pci_dev_acpi_reset, .name = "acpi" }, 5239 { pcie_reset_flr, .name = "flr" }, 5240 { pci_af_flr, .name = "af_flr" }, 5241 { pci_pm_reset, .name = "pm" }, 5242 { pci_reset_bus_function, .name = "bus" }, 5243 }; 5244 5245 static ssize_t reset_method_show(struct device *dev, 5246 struct device_attribute *attr, char *buf) 5247 { 5248 struct pci_dev *pdev = to_pci_dev(dev); 5249 ssize_t len = 0; 5250 int i, m; 5251 5252 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5253 m = pdev->reset_methods[i]; 5254 if (!m) 5255 break; 5256 5257 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5258 pci_reset_fn_methods[m].name); 5259 } 5260 5261 if (len) 5262 len += sysfs_emit_at(buf, len, "\n"); 5263 5264 return len; 5265 } 5266 5267 static int reset_method_lookup(const char *name) 5268 { 5269 int m; 5270 5271 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5272 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5273 return m; 5274 } 5275 5276 return 0; /* not found */ 5277 } 5278 5279 static ssize_t reset_method_store(struct device *dev, 5280 struct device_attribute *attr, 5281 const char *buf, size_t count) 5282 { 5283 struct pci_dev *pdev = to_pci_dev(dev); 5284 char *options, *name; 5285 int m, n; 5286 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5287 5288 if (sysfs_streq(buf, "")) { 5289 pdev->reset_methods[0] = 0; 5290 pci_warn(pdev, "All device reset methods disabled by user"); 5291 return count; 5292 } 5293 5294 if (sysfs_streq(buf, "default")) { 5295 pci_init_reset_methods(pdev); 5296 return count; 5297 } 5298 5299 options = kstrndup(buf, count, GFP_KERNEL); 5300 if (!options) 5301 return -ENOMEM; 5302 5303 n = 0; 5304 while ((name = strsep(&options, " ")) != NULL) { 5305 if (sysfs_streq(name, "")) 5306 continue; 5307 5308 name = strim(name); 5309 5310 m = reset_method_lookup(name); 5311 if (!m) { 5312 pci_err(pdev, "Invalid reset method '%s'", name); 5313 goto error; 5314 } 5315 5316 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5317 pci_err(pdev, "Unsupported reset method '%s'", name); 5318 goto error; 5319 } 5320 5321 if (n == PCI_NUM_RESET_METHODS - 1) { 5322 pci_err(pdev, "Too many reset methods\n"); 5323 goto error; 5324 } 5325 5326 reset_methods[n++] = m; 5327 } 5328 5329 reset_methods[n] = 0; 5330 5331 /* Warn if dev-specific supported but not highest priority */ 5332 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5333 reset_methods[0] != 1) 5334 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5335 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5336 kfree(options); 5337 return count; 5338 5339 error: 5340 /* Leave previous methods unchanged */ 5341 kfree(options); 5342 return -EINVAL; 5343 } 5344 static DEVICE_ATTR_RW(reset_method); 5345 5346 static struct attribute *pci_dev_reset_method_attrs[] = { 5347 &dev_attr_reset_method.attr, 5348 NULL, 5349 }; 5350 5351 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5352 struct attribute *a, int n) 5353 { 5354 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5355 5356 if (!pci_reset_supported(pdev)) 5357 return 0; 5358 5359 return a->mode; 5360 } 5361 5362 const struct attribute_group pci_dev_reset_method_attr_group = { 5363 .attrs = pci_dev_reset_method_attrs, 5364 .is_visible = pci_dev_reset_method_attr_is_visible, 5365 }; 5366 5367 /** 5368 * __pci_reset_function_locked - reset a PCI device function while holding 5369 * the @dev mutex lock. 5370 * @dev: PCI device to reset 5371 * 5372 * Some devices allow an individual function to be reset without affecting 5373 * other functions in the same device. The PCI device must be responsive 5374 * to PCI config space in order to use this function. 5375 * 5376 * The device function is presumed to be unused and the caller is holding 5377 * the device mutex lock when this function is called. 5378 * 5379 * Resetting the device will make the contents of PCI configuration space 5380 * random, so any caller of this must be prepared to reinitialise the 5381 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5382 * etc. 5383 * 5384 * Returns 0 if the device function was successfully reset or negative if the 5385 * device doesn't support resetting a single function. 5386 */ 5387 int __pci_reset_function_locked(struct pci_dev *dev) 5388 { 5389 int i, m, rc; 5390 5391 might_sleep(); 5392 5393 /* 5394 * A reset method returns -ENOTTY if it doesn't support this device and 5395 * we should try the next method. 5396 * 5397 * If it returns 0 (success), we're finished. If it returns any other 5398 * error, we're also finished: this indicates that further reset 5399 * mechanisms might be broken on the device. 5400 */ 5401 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5402 m = dev->reset_methods[i]; 5403 if (!m) 5404 return -ENOTTY; 5405 5406 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5407 if (!rc) 5408 return 0; 5409 if (rc != -ENOTTY) 5410 return rc; 5411 } 5412 5413 return -ENOTTY; 5414 } 5415 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5416 5417 /** 5418 * pci_init_reset_methods - check whether device can be safely reset 5419 * and store supported reset mechanisms. 5420 * @dev: PCI device to check for reset mechanisms 5421 * 5422 * Some devices allow an individual function to be reset without affecting 5423 * other functions in the same device. The PCI device must be in D0-D3hot 5424 * state. 5425 * 5426 * Stores reset mechanisms supported by device in reset_methods byte array 5427 * which is a member of struct pci_dev. 5428 */ 5429 void pci_init_reset_methods(struct pci_dev *dev) 5430 { 5431 int m, i, rc; 5432 5433 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5434 5435 might_sleep(); 5436 5437 i = 0; 5438 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5439 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5440 if (!rc) 5441 dev->reset_methods[i++] = m; 5442 else if (rc != -ENOTTY) 5443 break; 5444 } 5445 5446 dev->reset_methods[i] = 0; 5447 } 5448 5449 /** 5450 * pci_reset_function - quiesce and reset a PCI device function 5451 * @dev: PCI device to reset 5452 * 5453 * Some devices allow an individual function to be reset without affecting 5454 * other functions in the same device. The PCI device must be responsive 5455 * to PCI config space in order to use this function. 5456 * 5457 * This function does not just reset the PCI portion of a device, but 5458 * clears all the state associated with the device. This function differs 5459 * from __pci_reset_function_locked() in that it saves and restores device state 5460 * over the reset and takes the PCI device lock. 5461 * 5462 * Returns 0 if the device function was successfully reset or negative if the 5463 * device doesn't support resetting a single function. 5464 */ 5465 int pci_reset_function(struct pci_dev *dev) 5466 { 5467 int rc; 5468 5469 if (!pci_reset_supported(dev)) 5470 return -ENOTTY; 5471 5472 pci_dev_lock(dev); 5473 pci_dev_save_and_disable(dev); 5474 5475 rc = __pci_reset_function_locked(dev); 5476 5477 pci_dev_restore(dev); 5478 pci_dev_unlock(dev); 5479 5480 return rc; 5481 } 5482 EXPORT_SYMBOL_GPL(pci_reset_function); 5483 5484 /** 5485 * pci_reset_function_locked - quiesce and reset a PCI device function 5486 * @dev: PCI device to reset 5487 * 5488 * Some devices allow an individual function to be reset without affecting 5489 * other functions in the same device. The PCI device must be responsive 5490 * to PCI config space in order to use this function. 5491 * 5492 * This function does not just reset the PCI portion of a device, but 5493 * clears all the state associated with the device. This function differs 5494 * from __pci_reset_function_locked() in that it saves and restores device state 5495 * over the reset. It also differs from pci_reset_function() in that it 5496 * requires the PCI device lock to be held. 5497 * 5498 * Returns 0 if the device function was successfully reset or negative if the 5499 * device doesn't support resetting a single function. 5500 */ 5501 int pci_reset_function_locked(struct pci_dev *dev) 5502 { 5503 int rc; 5504 5505 if (!pci_reset_supported(dev)) 5506 return -ENOTTY; 5507 5508 pci_dev_save_and_disable(dev); 5509 5510 rc = __pci_reset_function_locked(dev); 5511 5512 pci_dev_restore(dev); 5513 5514 return rc; 5515 } 5516 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5517 5518 /** 5519 * pci_try_reset_function - quiesce and reset a PCI device function 5520 * @dev: PCI device to reset 5521 * 5522 * Same as above, except return -EAGAIN if unable to lock device. 5523 */ 5524 int pci_try_reset_function(struct pci_dev *dev) 5525 { 5526 int rc; 5527 5528 if (!pci_reset_supported(dev)) 5529 return -ENOTTY; 5530 5531 if (!pci_dev_trylock(dev)) 5532 return -EAGAIN; 5533 5534 pci_dev_save_and_disable(dev); 5535 rc = __pci_reset_function_locked(dev); 5536 pci_dev_restore(dev); 5537 pci_dev_unlock(dev); 5538 5539 return rc; 5540 } 5541 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5542 5543 /* Do any devices on or below this bus prevent a bus reset? */ 5544 static bool pci_bus_resetable(struct pci_bus *bus) 5545 { 5546 struct pci_dev *dev; 5547 5548 5549 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5550 return false; 5551 5552 list_for_each_entry(dev, &bus->devices, bus_list) { 5553 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5554 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5555 return false; 5556 } 5557 5558 return true; 5559 } 5560 5561 /* Lock devices from the top of the tree down */ 5562 static void pci_bus_lock(struct pci_bus *bus) 5563 { 5564 struct pci_dev *dev; 5565 5566 list_for_each_entry(dev, &bus->devices, bus_list) { 5567 pci_dev_lock(dev); 5568 if (dev->subordinate) 5569 pci_bus_lock(dev->subordinate); 5570 } 5571 } 5572 5573 /* Unlock devices from the bottom of the tree up */ 5574 static void pci_bus_unlock(struct pci_bus *bus) 5575 { 5576 struct pci_dev *dev; 5577 5578 list_for_each_entry(dev, &bus->devices, bus_list) { 5579 if (dev->subordinate) 5580 pci_bus_unlock(dev->subordinate); 5581 pci_dev_unlock(dev); 5582 } 5583 } 5584 5585 /* Return 1 on successful lock, 0 on contention */ 5586 static int pci_bus_trylock(struct pci_bus *bus) 5587 { 5588 struct pci_dev *dev; 5589 5590 list_for_each_entry(dev, &bus->devices, bus_list) { 5591 if (!pci_dev_trylock(dev)) 5592 goto unlock; 5593 if (dev->subordinate) { 5594 if (!pci_bus_trylock(dev->subordinate)) { 5595 pci_dev_unlock(dev); 5596 goto unlock; 5597 } 5598 } 5599 } 5600 return 1; 5601 5602 unlock: 5603 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5604 if (dev->subordinate) 5605 pci_bus_unlock(dev->subordinate); 5606 pci_dev_unlock(dev); 5607 } 5608 return 0; 5609 } 5610 5611 /* Do any devices on or below this slot prevent a bus reset? */ 5612 static bool pci_slot_resetable(struct pci_slot *slot) 5613 { 5614 struct pci_dev *dev; 5615 5616 if (slot->bus->self && 5617 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5618 return false; 5619 5620 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5621 if (!dev->slot || dev->slot != slot) 5622 continue; 5623 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5624 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5625 return false; 5626 } 5627 5628 return true; 5629 } 5630 5631 /* Lock devices from the top of the tree down */ 5632 static void pci_slot_lock(struct pci_slot *slot) 5633 { 5634 struct pci_dev *dev; 5635 5636 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5637 if (!dev->slot || dev->slot != slot) 5638 continue; 5639 pci_dev_lock(dev); 5640 if (dev->subordinate) 5641 pci_bus_lock(dev->subordinate); 5642 } 5643 } 5644 5645 /* Unlock devices from the bottom of the tree up */ 5646 static void pci_slot_unlock(struct pci_slot *slot) 5647 { 5648 struct pci_dev *dev; 5649 5650 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5651 if (!dev->slot || dev->slot != slot) 5652 continue; 5653 if (dev->subordinate) 5654 pci_bus_unlock(dev->subordinate); 5655 pci_dev_unlock(dev); 5656 } 5657 } 5658 5659 /* Return 1 on successful lock, 0 on contention */ 5660 static int pci_slot_trylock(struct pci_slot *slot) 5661 { 5662 struct pci_dev *dev; 5663 5664 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5665 if (!dev->slot || dev->slot != slot) 5666 continue; 5667 if (!pci_dev_trylock(dev)) 5668 goto unlock; 5669 if (dev->subordinate) { 5670 if (!pci_bus_trylock(dev->subordinate)) { 5671 pci_dev_unlock(dev); 5672 goto unlock; 5673 } 5674 } 5675 } 5676 return 1; 5677 5678 unlock: 5679 list_for_each_entry_continue_reverse(dev, 5680 &slot->bus->devices, bus_list) { 5681 if (!dev->slot || dev->slot != slot) 5682 continue; 5683 if (dev->subordinate) 5684 pci_bus_unlock(dev->subordinate); 5685 pci_dev_unlock(dev); 5686 } 5687 return 0; 5688 } 5689 5690 /* 5691 * Save and disable devices from the top of the tree down while holding 5692 * the @dev mutex lock for the entire tree. 5693 */ 5694 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5695 { 5696 struct pci_dev *dev; 5697 5698 list_for_each_entry(dev, &bus->devices, bus_list) { 5699 pci_dev_save_and_disable(dev); 5700 if (dev->subordinate) 5701 pci_bus_save_and_disable_locked(dev->subordinate); 5702 } 5703 } 5704 5705 /* 5706 * Restore devices from top of the tree down while holding @dev mutex lock 5707 * for the entire tree. Parent bridges need to be restored before we can 5708 * get to subordinate devices. 5709 */ 5710 static void pci_bus_restore_locked(struct pci_bus *bus) 5711 { 5712 struct pci_dev *dev; 5713 5714 list_for_each_entry(dev, &bus->devices, bus_list) { 5715 pci_dev_restore(dev); 5716 if (dev->subordinate) 5717 pci_bus_restore_locked(dev->subordinate); 5718 } 5719 } 5720 5721 /* 5722 * Save and disable devices from the top of the tree down while holding 5723 * the @dev mutex lock for the entire tree. 5724 */ 5725 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5726 { 5727 struct pci_dev *dev; 5728 5729 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5730 if (!dev->slot || dev->slot != slot) 5731 continue; 5732 pci_dev_save_and_disable(dev); 5733 if (dev->subordinate) 5734 pci_bus_save_and_disable_locked(dev->subordinate); 5735 } 5736 } 5737 5738 /* 5739 * Restore devices from top of the tree down while holding @dev mutex lock 5740 * for the entire tree. Parent bridges need to be restored before we can 5741 * get to subordinate devices. 5742 */ 5743 static void pci_slot_restore_locked(struct pci_slot *slot) 5744 { 5745 struct pci_dev *dev; 5746 5747 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5748 if (!dev->slot || dev->slot != slot) 5749 continue; 5750 pci_dev_restore(dev); 5751 if (dev->subordinate) 5752 pci_bus_restore_locked(dev->subordinate); 5753 } 5754 } 5755 5756 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5757 { 5758 int rc; 5759 5760 if (!slot || !pci_slot_resetable(slot)) 5761 return -ENOTTY; 5762 5763 if (!probe) 5764 pci_slot_lock(slot); 5765 5766 might_sleep(); 5767 5768 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5769 5770 if (!probe) 5771 pci_slot_unlock(slot); 5772 5773 return rc; 5774 } 5775 5776 /** 5777 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5778 * @slot: PCI slot to probe 5779 * 5780 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5781 */ 5782 int pci_probe_reset_slot(struct pci_slot *slot) 5783 { 5784 return pci_slot_reset(slot, PCI_RESET_PROBE); 5785 } 5786 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5787 5788 /** 5789 * __pci_reset_slot - Try to reset a PCI slot 5790 * @slot: PCI slot to reset 5791 * 5792 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5793 * independent of other slots. For instance, some slots may support slot power 5794 * control. In the case of a 1:1 bus to slot architecture, this function may 5795 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5796 * Generally a slot reset should be attempted before a bus reset. All of the 5797 * function of the slot and any subordinate buses behind the slot are reset 5798 * through this function. PCI config space of all devices in the slot and 5799 * behind the slot is saved before and restored after reset. 5800 * 5801 * Same as above except return -EAGAIN if the slot cannot be locked 5802 */ 5803 static int __pci_reset_slot(struct pci_slot *slot) 5804 { 5805 int rc; 5806 5807 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5808 if (rc) 5809 return rc; 5810 5811 if (pci_slot_trylock(slot)) { 5812 pci_slot_save_and_disable_locked(slot); 5813 might_sleep(); 5814 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5815 pci_slot_restore_locked(slot); 5816 pci_slot_unlock(slot); 5817 } else 5818 rc = -EAGAIN; 5819 5820 return rc; 5821 } 5822 5823 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5824 { 5825 int ret; 5826 5827 if (!bus->self || !pci_bus_resetable(bus)) 5828 return -ENOTTY; 5829 5830 if (probe) 5831 return 0; 5832 5833 pci_bus_lock(bus); 5834 5835 might_sleep(); 5836 5837 ret = pci_bridge_secondary_bus_reset(bus->self); 5838 5839 pci_bus_unlock(bus); 5840 5841 return ret; 5842 } 5843 5844 /** 5845 * pci_bus_error_reset - reset the bridge's subordinate bus 5846 * @bridge: The parent device that connects to the bus to reset 5847 * 5848 * This function will first try to reset the slots on this bus if the method is 5849 * available. If slot reset fails or is not available, this will fall back to a 5850 * secondary bus reset. 5851 */ 5852 int pci_bus_error_reset(struct pci_dev *bridge) 5853 { 5854 struct pci_bus *bus = bridge->subordinate; 5855 struct pci_slot *slot; 5856 5857 if (!bus) 5858 return -ENOTTY; 5859 5860 mutex_lock(&pci_slot_mutex); 5861 if (list_empty(&bus->slots)) 5862 goto bus_reset; 5863 5864 list_for_each_entry(slot, &bus->slots, list) 5865 if (pci_probe_reset_slot(slot)) 5866 goto bus_reset; 5867 5868 list_for_each_entry(slot, &bus->slots, list) 5869 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5870 goto bus_reset; 5871 5872 mutex_unlock(&pci_slot_mutex); 5873 return 0; 5874 bus_reset: 5875 mutex_unlock(&pci_slot_mutex); 5876 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5877 } 5878 5879 /** 5880 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5881 * @bus: PCI bus to probe 5882 * 5883 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5884 */ 5885 int pci_probe_reset_bus(struct pci_bus *bus) 5886 { 5887 return pci_bus_reset(bus, PCI_RESET_PROBE); 5888 } 5889 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5890 5891 /** 5892 * __pci_reset_bus - Try to reset a PCI bus 5893 * @bus: top level PCI bus to reset 5894 * 5895 * Same as above except return -EAGAIN if the bus cannot be locked 5896 */ 5897 static int __pci_reset_bus(struct pci_bus *bus) 5898 { 5899 int rc; 5900 5901 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5902 if (rc) 5903 return rc; 5904 5905 if (pci_bus_trylock(bus)) { 5906 pci_bus_save_and_disable_locked(bus); 5907 might_sleep(); 5908 rc = pci_bridge_secondary_bus_reset(bus->self); 5909 pci_bus_restore_locked(bus); 5910 pci_bus_unlock(bus); 5911 } else 5912 rc = -EAGAIN; 5913 5914 return rc; 5915 } 5916 5917 /** 5918 * pci_reset_bus - Try to reset a PCI bus 5919 * @pdev: top level PCI device to reset via slot/bus 5920 * 5921 * Same as above except return -EAGAIN if the bus cannot be locked 5922 */ 5923 int pci_reset_bus(struct pci_dev *pdev) 5924 { 5925 return (!pci_probe_reset_slot(pdev->slot)) ? 5926 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5927 } 5928 EXPORT_SYMBOL_GPL(pci_reset_bus); 5929 5930 /** 5931 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5932 * @dev: PCI device to query 5933 * 5934 * Returns mmrbc: maximum designed memory read count in bytes or 5935 * appropriate error value. 5936 */ 5937 int pcix_get_max_mmrbc(struct pci_dev *dev) 5938 { 5939 int cap; 5940 u32 stat; 5941 5942 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5943 if (!cap) 5944 return -EINVAL; 5945 5946 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5947 return -EINVAL; 5948 5949 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5950 } 5951 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5952 5953 /** 5954 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5955 * @dev: PCI device to query 5956 * 5957 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5958 * value. 5959 */ 5960 int pcix_get_mmrbc(struct pci_dev *dev) 5961 { 5962 int cap; 5963 u16 cmd; 5964 5965 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5966 if (!cap) 5967 return -EINVAL; 5968 5969 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5970 return -EINVAL; 5971 5972 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5973 } 5974 EXPORT_SYMBOL(pcix_get_mmrbc); 5975 5976 /** 5977 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5978 * @dev: PCI device to query 5979 * @mmrbc: maximum memory read count in bytes 5980 * valid values are 512, 1024, 2048, 4096 5981 * 5982 * If possible sets maximum memory read byte count, some bridges have errata 5983 * that prevent this. 5984 */ 5985 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5986 { 5987 int cap; 5988 u32 stat, v, o; 5989 u16 cmd; 5990 5991 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5992 return -EINVAL; 5993 5994 v = ffs(mmrbc) - 10; 5995 5996 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5997 if (!cap) 5998 return -EINVAL; 5999 6000 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 6001 return -EINVAL; 6002 6003 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 6004 return -E2BIG; 6005 6006 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 6007 return -EINVAL; 6008 6009 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 6010 if (o != v) { 6011 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 6012 return -EIO; 6013 6014 cmd &= ~PCI_X_CMD_MAX_READ; 6015 cmd |= v << 2; 6016 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 6017 return -EIO; 6018 } 6019 return 0; 6020 } 6021 EXPORT_SYMBOL(pcix_set_mmrbc); 6022 6023 /** 6024 * pcie_get_readrq - get PCI Express read request size 6025 * @dev: PCI device to query 6026 * 6027 * Returns maximum memory read request in bytes or appropriate error value. 6028 */ 6029 int pcie_get_readrq(struct pci_dev *dev) 6030 { 6031 u16 ctl; 6032 6033 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6034 6035 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6036 } 6037 EXPORT_SYMBOL(pcie_get_readrq); 6038 6039 /** 6040 * pcie_set_readrq - set PCI Express maximum memory read request 6041 * @dev: PCI device to query 6042 * @rq: maximum memory read count in bytes 6043 * valid values are 128, 256, 512, 1024, 2048, 4096 6044 * 6045 * If possible sets maximum memory read request in bytes 6046 */ 6047 int pcie_set_readrq(struct pci_dev *dev, int rq) 6048 { 6049 u16 v; 6050 int ret; 6051 6052 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6053 return -EINVAL; 6054 6055 /* 6056 * If using the "performance" PCIe config, we clamp the read rq 6057 * size to the max packet size to keep the host bridge from 6058 * generating requests larger than we can cope with. 6059 */ 6060 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6061 int mps = pcie_get_mps(dev); 6062 6063 if (mps < rq) 6064 rq = mps; 6065 } 6066 6067 v = (ffs(rq) - 8) << 12; 6068 6069 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6070 PCI_EXP_DEVCTL_READRQ, v); 6071 6072 return pcibios_err_to_errno(ret); 6073 } 6074 EXPORT_SYMBOL(pcie_set_readrq); 6075 6076 /** 6077 * pcie_get_mps - get PCI Express maximum payload size 6078 * @dev: PCI device to query 6079 * 6080 * Returns maximum payload size in bytes 6081 */ 6082 int pcie_get_mps(struct pci_dev *dev) 6083 { 6084 u16 ctl; 6085 6086 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6087 6088 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6089 } 6090 EXPORT_SYMBOL(pcie_get_mps); 6091 6092 /** 6093 * pcie_set_mps - set PCI Express maximum payload size 6094 * @dev: PCI device to query 6095 * @mps: maximum payload size in bytes 6096 * valid values are 128, 256, 512, 1024, 2048, 4096 6097 * 6098 * If possible sets maximum payload size 6099 */ 6100 int pcie_set_mps(struct pci_dev *dev, int mps) 6101 { 6102 u16 v; 6103 int ret; 6104 6105 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6106 return -EINVAL; 6107 6108 v = ffs(mps) - 8; 6109 if (v > dev->pcie_mpss) 6110 return -EINVAL; 6111 v <<= 5; 6112 6113 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6114 PCI_EXP_DEVCTL_PAYLOAD, v); 6115 6116 return pcibios_err_to_errno(ret); 6117 } 6118 EXPORT_SYMBOL(pcie_set_mps); 6119 6120 /** 6121 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6122 * device and its bandwidth limitation 6123 * @dev: PCI device to query 6124 * @limiting_dev: storage for device causing the bandwidth limitation 6125 * @speed: storage for speed of limiting device 6126 * @width: storage for width of limiting device 6127 * 6128 * Walk up the PCI device chain and find the point where the minimum 6129 * bandwidth is available. Return the bandwidth available there and (if 6130 * limiting_dev, speed, and width pointers are supplied) information about 6131 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6132 * raw bandwidth. 6133 */ 6134 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6135 enum pci_bus_speed *speed, 6136 enum pcie_link_width *width) 6137 { 6138 u16 lnksta; 6139 enum pci_bus_speed next_speed; 6140 enum pcie_link_width next_width; 6141 u32 bw, next_bw; 6142 6143 if (speed) 6144 *speed = PCI_SPEED_UNKNOWN; 6145 if (width) 6146 *width = PCIE_LNK_WIDTH_UNKNOWN; 6147 6148 bw = 0; 6149 6150 while (dev) { 6151 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6152 6153 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6154 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6155 PCI_EXP_LNKSTA_NLW_SHIFT; 6156 6157 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6158 6159 /* Check if current device limits the total bandwidth */ 6160 if (!bw || next_bw <= bw) { 6161 bw = next_bw; 6162 6163 if (limiting_dev) 6164 *limiting_dev = dev; 6165 if (speed) 6166 *speed = next_speed; 6167 if (width) 6168 *width = next_width; 6169 } 6170 6171 dev = pci_upstream_bridge(dev); 6172 } 6173 6174 return bw; 6175 } 6176 EXPORT_SYMBOL(pcie_bandwidth_available); 6177 6178 /** 6179 * pcie_get_speed_cap - query for the PCI device's link speed capability 6180 * @dev: PCI device to query 6181 * 6182 * Query the PCI device speed capability. Return the maximum link speed 6183 * supported by the device. 6184 */ 6185 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6186 { 6187 u32 lnkcap2, lnkcap; 6188 6189 /* 6190 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6191 * implementation note there recommends using the Supported Link 6192 * Speeds Vector in Link Capabilities 2 when supported. 6193 * 6194 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6195 * should use the Supported Link Speeds field in Link Capabilities, 6196 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6197 */ 6198 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6199 6200 /* PCIe r3.0-compliant */ 6201 if (lnkcap2) 6202 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6203 6204 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6205 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6206 return PCIE_SPEED_5_0GT; 6207 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6208 return PCIE_SPEED_2_5GT; 6209 6210 return PCI_SPEED_UNKNOWN; 6211 } 6212 EXPORT_SYMBOL(pcie_get_speed_cap); 6213 6214 /** 6215 * pcie_get_width_cap - query for the PCI device's link width capability 6216 * @dev: PCI device to query 6217 * 6218 * Query the PCI device width capability. Return the maximum link width 6219 * supported by the device. 6220 */ 6221 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6222 { 6223 u32 lnkcap; 6224 6225 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6226 if (lnkcap) 6227 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6228 6229 return PCIE_LNK_WIDTH_UNKNOWN; 6230 } 6231 EXPORT_SYMBOL(pcie_get_width_cap); 6232 6233 /** 6234 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6235 * @dev: PCI device 6236 * @speed: storage for link speed 6237 * @width: storage for link width 6238 * 6239 * Calculate a PCI device's link bandwidth by querying for its link speed 6240 * and width, multiplying them, and applying encoding overhead. The result 6241 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6242 */ 6243 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6244 enum pcie_link_width *width) 6245 { 6246 *speed = pcie_get_speed_cap(dev); 6247 *width = pcie_get_width_cap(dev); 6248 6249 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6250 return 0; 6251 6252 return *width * PCIE_SPEED2MBS_ENC(*speed); 6253 } 6254 6255 /** 6256 * __pcie_print_link_status - Report the PCI device's link speed and width 6257 * @dev: PCI device to query 6258 * @verbose: Print info even when enough bandwidth is available 6259 * 6260 * If the available bandwidth at the device is less than the device is 6261 * capable of, report the device's maximum possible bandwidth and the 6262 * upstream link that limits its performance. If @verbose, always print 6263 * the available bandwidth, even if the device isn't constrained. 6264 */ 6265 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6266 { 6267 enum pcie_link_width width, width_cap; 6268 enum pci_bus_speed speed, speed_cap; 6269 struct pci_dev *limiting_dev = NULL; 6270 u32 bw_avail, bw_cap; 6271 6272 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6273 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6274 6275 if (bw_avail >= bw_cap && verbose) 6276 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6277 bw_cap / 1000, bw_cap % 1000, 6278 pci_speed_string(speed_cap), width_cap); 6279 else if (bw_avail < bw_cap) 6280 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6281 bw_avail / 1000, bw_avail % 1000, 6282 pci_speed_string(speed), width, 6283 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6284 bw_cap / 1000, bw_cap % 1000, 6285 pci_speed_string(speed_cap), width_cap); 6286 } 6287 6288 /** 6289 * pcie_print_link_status - Report the PCI device's link speed and width 6290 * @dev: PCI device to query 6291 * 6292 * Report the available bandwidth at the device. 6293 */ 6294 void pcie_print_link_status(struct pci_dev *dev) 6295 { 6296 __pcie_print_link_status(dev, true); 6297 } 6298 EXPORT_SYMBOL(pcie_print_link_status); 6299 6300 /** 6301 * pci_select_bars - Make BAR mask from the type of resource 6302 * @dev: the PCI device for which BAR mask is made 6303 * @flags: resource type mask to be selected 6304 * 6305 * This helper routine makes bar mask from the type of resource. 6306 */ 6307 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6308 { 6309 int i, bars = 0; 6310 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6311 if (pci_resource_flags(dev, i) & flags) 6312 bars |= (1 << i); 6313 return bars; 6314 } 6315 EXPORT_SYMBOL(pci_select_bars); 6316 6317 /* Some architectures require additional programming to enable VGA */ 6318 static arch_set_vga_state_t arch_set_vga_state; 6319 6320 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6321 { 6322 arch_set_vga_state = func; /* NULL disables */ 6323 } 6324 6325 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6326 unsigned int command_bits, u32 flags) 6327 { 6328 if (arch_set_vga_state) 6329 return arch_set_vga_state(dev, decode, command_bits, 6330 flags); 6331 return 0; 6332 } 6333 6334 /** 6335 * pci_set_vga_state - set VGA decode state on device and parents if requested 6336 * @dev: the PCI device 6337 * @decode: true = enable decoding, false = disable decoding 6338 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6339 * @flags: traverse ancestors and change bridges 6340 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6341 */ 6342 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6343 unsigned int command_bits, u32 flags) 6344 { 6345 struct pci_bus *bus; 6346 struct pci_dev *bridge; 6347 u16 cmd; 6348 int rc; 6349 6350 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6351 6352 /* ARCH specific VGA enables */ 6353 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6354 if (rc) 6355 return rc; 6356 6357 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6358 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6359 if (decode) 6360 cmd |= command_bits; 6361 else 6362 cmd &= ~command_bits; 6363 pci_write_config_word(dev, PCI_COMMAND, cmd); 6364 } 6365 6366 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6367 return 0; 6368 6369 bus = dev->bus; 6370 while (bus) { 6371 bridge = bus->self; 6372 if (bridge) { 6373 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6374 &cmd); 6375 if (decode) 6376 cmd |= PCI_BRIDGE_CTL_VGA; 6377 else 6378 cmd &= ~PCI_BRIDGE_CTL_VGA; 6379 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6380 cmd); 6381 } 6382 bus = bus->parent; 6383 } 6384 return 0; 6385 } 6386 6387 #ifdef CONFIG_ACPI 6388 bool pci_pr3_present(struct pci_dev *pdev) 6389 { 6390 struct acpi_device *adev; 6391 6392 if (acpi_disabled) 6393 return false; 6394 6395 adev = ACPI_COMPANION(&pdev->dev); 6396 if (!adev) 6397 return false; 6398 6399 return adev->power.flags.power_resources && 6400 acpi_has_method(adev->handle, "_PR3"); 6401 } 6402 EXPORT_SYMBOL_GPL(pci_pr3_present); 6403 #endif 6404 6405 /** 6406 * pci_add_dma_alias - Add a DMA devfn alias for a device 6407 * @dev: the PCI device for which alias is added 6408 * @devfn_from: alias slot and function 6409 * @nr_devfns: number of subsequent devfns to alias 6410 * 6411 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6412 * which is used to program permissible bus-devfn source addresses for DMA 6413 * requests in an IOMMU. These aliases factor into IOMMU group creation 6414 * and are useful for devices generating DMA requests beyond or different 6415 * from their logical bus-devfn. Examples include device quirks where the 6416 * device simply uses the wrong devfn, as well as non-transparent bridges 6417 * where the alias may be a proxy for devices in another domain. 6418 * 6419 * IOMMU group creation is performed during device discovery or addition, 6420 * prior to any potential DMA mapping and therefore prior to driver probing 6421 * (especially for userspace assigned devices where IOMMU group definition 6422 * cannot be left as a userspace activity). DMA aliases should therefore 6423 * be configured via quirks, such as the PCI fixup header quirk. 6424 */ 6425 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6426 unsigned int nr_devfns) 6427 { 6428 int devfn_to; 6429 6430 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6431 devfn_to = devfn_from + nr_devfns - 1; 6432 6433 if (!dev->dma_alias_mask) 6434 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6435 if (!dev->dma_alias_mask) { 6436 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6437 return; 6438 } 6439 6440 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6441 6442 if (nr_devfns == 1) 6443 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6444 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6445 else if (nr_devfns > 1) 6446 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6447 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6448 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6449 } 6450 6451 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6452 { 6453 return (dev1->dma_alias_mask && 6454 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6455 (dev2->dma_alias_mask && 6456 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6457 pci_real_dma_dev(dev1) == dev2 || 6458 pci_real_dma_dev(dev2) == dev1; 6459 } 6460 6461 bool pci_device_is_present(struct pci_dev *pdev) 6462 { 6463 u32 v; 6464 6465 if (pci_dev_is_disconnected(pdev)) 6466 return false; 6467 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6468 } 6469 EXPORT_SYMBOL_GPL(pci_device_is_present); 6470 6471 void pci_ignore_hotplug(struct pci_dev *dev) 6472 { 6473 struct pci_dev *bridge = dev->bus->self; 6474 6475 dev->ignore_hotplug = 1; 6476 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6477 if (bridge) 6478 bridge->ignore_hotplug = 1; 6479 } 6480 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6481 6482 /** 6483 * pci_real_dma_dev - Get PCI DMA device for PCI device 6484 * @dev: the PCI device that may have a PCI DMA alias 6485 * 6486 * Permits the platform to provide architecture-specific functionality to 6487 * devices needing to alias DMA to another PCI device on another PCI bus. If 6488 * the PCI device is on the same bus, it is recommended to use 6489 * pci_add_dma_alias(). This is the default implementation. Architecture 6490 * implementations can override this. 6491 */ 6492 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6493 { 6494 return dev; 6495 } 6496 6497 resource_size_t __weak pcibios_default_alignment(void) 6498 { 6499 return 0; 6500 } 6501 6502 /* 6503 * Arches that don't want to expose struct resource to userland as-is in 6504 * sysfs and /proc can implement their own pci_resource_to_user(). 6505 */ 6506 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6507 const struct resource *rsrc, 6508 resource_size_t *start, resource_size_t *end) 6509 { 6510 *start = rsrc->start; 6511 *end = rsrc->end; 6512 } 6513 6514 static char *resource_alignment_param; 6515 static DEFINE_SPINLOCK(resource_alignment_lock); 6516 6517 /** 6518 * pci_specified_resource_alignment - get resource alignment specified by user. 6519 * @dev: the PCI device to get 6520 * @resize: whether or not to change resources' size when reassigning alignment 6521 * 6522 * RETURNS: Resource alignment if it is specified. 6523 * Zero if it is not specified. 6524 */ 6525 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6526 bool *resize) 6527 { 6528 int align_order, count; 6529 resource_size_t align = pcibios_default_alignment(); 6530 const char *p; 6531 int ret; 6532 6533 spin_lock(&resource_alignment_lock); 6534 p = resource_alignment_param; 6535 if (!p || !*p) 6536 goto out; 6537 if (pci_has_flag(PCI_PROBE_ONLY)) { 6538 align = 0; 6539 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6540 goto out; 6541 } 6542 6543 while (*p) { 6544 count = 0; 6545 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6546 p[count] == '@') { 6547 p += count + 1; 6548 if (align_order > 63) { 6549 pr_err("PCI: Invalid requested alignment (order %d)\n", 6550 align_order); 6551 align_order = PAGE_SHIFT; 6552 } 6553 } else { 6554 align_order = PAGE_SHIFT; 6555 } 6556 6557 ret = pci_dev_str_match(dev, p, &p); 6558 if (ret == 1) { 6559 *resize = true; 6560 align = 1ULL << align_order; 6561 break; 6562 } else if (ret < 0) { 6563 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6564 p); 6565 break; 6566 } 6567 6568 if (*p != ';' && *p != ',') { 6569 /* End of param or invalid format */ 6570 break; 6571 } 6572 p++; 6573 } 6574 out: 6575 spin_unlock(&resource_alignment_lock); 6576 return align; 6577 } 6578 6579 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6580 resource_size_t align, bool resize) 6581 { 6582 struct resource *r = &dev->resource[bar]; 6583 resource_size_t size; 6584 6585 if (!(r->flags & IORESOURCE_MEM)) 6586 return; 6587 6588 if (r->flags & IORESOURCE_PCI_FIXED) { 6589 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6590 bar, r, (unsigned long long)align); 6591 return; 6592 } 6593 6594 size = resource_size(r); 6595 if (size >= align) 6596 return; 6597 6598 /* 6599 * Increase the alignment of the resource. There are two ways we 6600 * can do this: 6601 * 6602 * 1) Increase the size of the resource. BARs are aligned on their 6603 * size, so when we reallocate space for this resource, we'll 6604 * allocate it with the larger alignment. This also prevents 6605 * assignment of any other BARs inside the alignment region, so 6606 * if we're requesting page alignment, this means no other BARs 6607 * will share the page. 6608 * 6609 * The disadvantage is that this makes the resource larger than 6610 * the hardware BAR, which may break drivers that compute things 6611 * based on the resource size, e.g., to find registers at a 6612 * fixed offset before the end of the BAR. 6613 * 6614 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6615 * set r->start to the desired alignment. By itself this 6616 * doesn't prevent other BARs being put inside the alignment 6617 * region, but if we realign *every* resource of every device in 6618 * the system, none of them will share an alignment region. 6619 * 6620 * When the user has requested alignment for only some devices via 6621 * the "pci=resource_alignment" argument, "resize" is true and we 6622 * use the first method. Otherwise we assume we're aligning all 6623 * devices and we use the second. 6624 */ 6625 6626 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6627 bar, r, (unsigned long long)align); 6628 6629 if (resize) { 6630 r->start = 0; 6631 r->end = align - 1; 6632 } else { 6633 r->flags &= ~IORESOURCE_SIZEALIGN; 6634 r->flags |= IORESOURCE_STARTALIGN; 6635 r->start = align; 6636 r->end = r->start + size - 1; 6637 } 6638 r->flags |= IORESOURCE_UNSET; 6639 } 6640 6641 /* 6642 * This function disables memory decoding and releases memory resources 6643 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6644 * It also rounds up size to specified alignment. 6645 * Later on, the kernel will assign page-aligned memory resource back 6646 * to the device. 6647 */ 6648 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6649 { 6650 int i; 6651 struct resource *r; 6652 resource_size_t align; 6653 u16 command; 6654 bool resize = false; 6655 6656 /* 6657 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6658 * 3.4.1.11. Their resources are allocated from the space 6659 * described by the VF BARx register in the PF's SR-IOV capability. 6660 * We can't influence their alignment here. 6661 */ 6662 if (dev->is_virtfn) 6663 return; 6664 6665 /* check if specified PCI is target device to reassign */ 6666 align = pci_specified_resource_alignment(dev, &resize); 6667 if (!align) 6668 return; 6669 6670 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6671 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6672 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6673 return; 6674 } 6675 6676 pci_read_config_word(dev, PCI_COMMAND, &command); 6677 command &= ~PCI_COMMAND_MEMORY; 6678 pci_write_config_word(dev, PCI_COMMAND, command); 6679 6680 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6681 pci_request_resource_alignment(dev, i, align, resize); 6682 6683 /* 6684 * Need to disable bridge's resource window, 6685 * to enable the kernel to reassign new resource 6686 * window later on. 6687 */ 6688 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6689 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6690 r = &dev->resource[i]; 6691 if (!(r->flags & IORESOURCE_MEM)) 6692 continue; 6693 r->flags |= IORESOURCE_UNSET; 6694 r->end = resource_size(r) - 1; 6695 r->start = 0; 6696 } 6697 pci_disable_bridge_window(dev); 6698 } 6699 } 6700 6701 static ssize_t resource_alignment_show(struct bus_type *bus, char *buf) 6702 { 6703 size_t count = 0; 6704 6705 spin_lock(&resource_alignment_lock); 6706 if (resource_alignment_param) 6707 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6708 spin_unlock(&resource_alignment_lock); 6709 6710 return count; 6711 } 6712 6713 static ssize_t resource_alignment_store(struct bus_type *bus, 6714 const char *buf, size_t count) 6715 { 6716 char *param, *old, *end; 6717 6718 if (count >= (PAGE_SIZE - 1)) 6719 return -EINVAL; 6720 6721 param = kstrndup(buf, count, GFP_KERNEL); 6722 if (!param) 6723 return -ENOMEM; 6724 6725 end = strchr(param, '\n'); 6726 if (end) 6727 *end = '\0'; 6728 6729 spin_lock(&resource_alignment_lock); 6730 old = resource_alignment_param; 6731 if (strlen(param)) { 6732 resource_alignment_param = param; 6733 } else { 6734 kfree(param); 6735 resource_alignment_param = NULL; 6736 } 6737 spin_unlock(&resource_alignment_lock); 6738 6739 kfree(old); 6740 6741 return count; 6742 } 6743 6744 static BUS_ATTR_RW(resource_alignment); 6745 6746 static int __init pci_resource_alignment_sysfs_init(void) 6747 { 6748 return bus_create_file(&pci_bus_type, 6749 &bus_attr_resource_alignment); 6750 } 6751 late_initcall(pci_resource_alignment_sysfs_init); 6752 6753 static void pci_no_domains(void) 6754 { 6755 #ifdef CONFIG_PCI_DOMAINS 6756 pci_domains_supported = 0; 6757 #endif 6758 } 6759 6760 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6761 static atomic_t __domain_nr = ATOMIC_INIT(-1); 6762 6763 static int pci_get_new_domain_nr(void) 6764 { 6765 return atomic_inc_return(&__domain_nr); 6766 } 6767 6768 static int of_pci_bus_find_domain_nr(struct device *parent) 6769 { 6770 static int use_dt_domains = -1; 6771 int domain = -1; 6772 6773 if (parent) 6774 domain = of_get_pci_domain_nr(parent->of_node); 6775 6776 /* 6777 * Check DT domain and use_dt_domains values. 6778 * 6779 * If DT domain property is valid (domain >= 0) and 6780 * use_dt_domains != 0, the DT assignment is valid since this means 6781 * we have not previously allocated a domain number by using 6782 * pci_get_new_domain_nr(); we should also update use_dt_domains to 6783 * 1, to indicate that we have just assigned a domain number from 6784 * DT. 6785 * 6786 * If DT domain property value is not valid (ie domain < 0), and we 6787 * have not previously assigned a domain number from DT 6788 * (use_dt_domains != 1) we should assign a domain number by 6789 * using the: 6790 * 6791 * pci_get_new_domain_nr() 6792 * 6793 * API and update the use_dt_domains value to keep track of method we 6794 * are using to assign domain numbers (use_dt_domains = 0). 6795 * 6796 * All other combinations imply we have a platform that is trying 6797 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 6798 * which is a recipe for domain mishandling and it is prevented by 6799 * invalidating the domain value (domain = -1) and printing a 6800 * corresponding error. 6801 */ 6802 if (domain >= 0 && use_dt_domains) { 6803 use_dt_domains = 1; 6804 } else if (domain < 0 && use_dt_domains != 1) { 6805 use_dt_domains = 0; 6806 domain = pci_get_new_domain_nr(); 6807 } else { 6808 if (parent) 6809 pr_err("Node %pOF has ", parent->of_node); 6810 pr_err("Inconsistent \"linux,pci-domain\" property in DT\n"); 6811 domain = -1; 6812 } 6813 6814 return domain; 6815 } 6816 6817 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6818 { 6819 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6820 acpi_pci_bus_find_domain_nr(bus); 6821 } 6822 #endif 6823 6824 /** 6825 * pci_ext_cfg_avail - can we access extended PCI config space? 6826 * 6827 * Returns 1 if we can access PCI extended config space (offsets 6828 * greater than 0xff). This is the default implementation. Architecture 6829 * implementations can override this. 6830 */ 6831 int __weak pci_ext_cfg_avail(void) 6832 { 6833 return 1; 6834 } 6835 6836 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6837 { 6838 } 6839 EXPORT_SYMBOL(pci_fixup_cardbus); 6840 6841 static int __init pci_setup(char *str) 6842 { 6843 while (str) { 6844 char *k = strchr(str, ','); 6845 if (k) 6846 *k++ = 0; 6847 if (*str && (str = pcibios_setup(str)) && *str) { 6848 if (!strcmp(str, "nomsi")) { 6849 pci_no_msi(); 6850 } else if (!strncmp(str, "noats", 5)) { 6851 pr_info("PCIe: ATS is disabled\n"); 6852 pcie_ats_disabled = true; 6853 } else if (!strcmp(str, "noaer")) { 6854 pci_no_aer(); 6855 } else if (!strcmp(str, "earlydump")) { 6856 pci_early_dump = true; 6857 } else if (!strncmp(str, "realloc=", 8)) { 6858 pci_realloc_get_opt(str + 8); 6859 } else if (!strncmp(str, "realloc", 7)) { 6860 pci_realloc_get_opt("on"); 6861 } else if (!strcmp(str, "nodomains")) { 6862 pci_no_domains(); 6863 } else if (!strncmp(str, "noari", 5)) { 6864 pcie_ari_disabled = true; 6865 } else if (!strncmp(str, "cbiosize=", 9)) { 6866 pci_cardbus_io_size = memparse(str + 9, &str); 6867 } else if (!strncmp(str, "cbmemsize=", 10)) { 6868 pci_cardbus_mem_size = memparse(str + 10, &str); 6869 } else if (!strncmp(str, "resource_alignment=", 19)) { 6870 resource_alignment_param = str + 19; 6871 } else if (!strncmp(str, "ecrc=", 5)) { 6872 pcie_ecrc_get_policy(str + 5); 6873 } else if (!strncmp(str, "hpiosize=", 9)) { 6874 pci_hotplug_io_size = memparse(str + 9, &str); 6875 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6876 pci_hotplug_mmio_size = memparse(str + 11, &str); 6877 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6878 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6879 } else if (!strncmp(str, "hpmemsize=", 10)) { 6880 pci_hotplug_mmio_size = memparse(str + 10, &str); 6881 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6882 } else if (!strncmp(str, "hpbussize=", 10)) { 6883 pci_hotplug_bus_size = 6884 simple_strtoul(str + 10, &str, 0); 6885 if (pci_hotplug_bus_size > 0xff) 6886 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6887 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6888 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6889 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6890 pcie_bus_config = PCIE_BUS_SAFE; 6891 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6892 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6893 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6894 pcie_bus_config = PCIE_BUS_PEER2PEER; 6895 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6896 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6897 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6898 disable_acs_redir_param = str + 18; 6899 } else { 6900 pr_err("PCI: Unknown option `%s'\n", str); 6901 } 6902 } 6903 str = k; 6904 } 6905 return 0; 6906 } 6907 early_param("pci", pci_setup); 6908 6909 /* 6910 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6911 * in pci_setup(), above, to point to data in the __initdata section which 6912 * will be freed after the init sequence is complete. We can't allocate memory 6913 * in pci_setup() because some architectures do not have any memory allocation 6914 * service available during an early_param() call. So we allocate memory and 6915 * copy the variable here before the init section is freed. 6916 * 6917 */ 6918 static int __init pci_realloc_setup_params(void) 6919 { 6920 resource_alignment_param = kstrdup(resource_alignment_param, 6921 GFP_KERNEL); 6922 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6923 6924 return 0; 6925 } 6926 pure_initcall(pci_realloc_setup_params); 6927