1 /* 2 * PCI Bus Services, see include/linux/pci.h for further explanation. 3 * 4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 5 * David Mosberger-Tang 6 * 7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/delay.h> 12 #include <linux/init.h> 13 #include <linux/of.h> 14 #include <linux/of_pci.h> 15 #include <linux/pci.h> 16 #include <linux/pm.h> 17 #include <linux/slab.h> 18 #include <linux/module.h> 19 #include <linux/spinlock.h> 20 #include <linux/string.h> 21 #include <linux/log2.h> 22 #include <linux/pci-aspm.h> 23 #include <linux/pm_wakeup.h> 24 #include <linux/interrupt.h> 25 #include <linux/device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/pci_hotplug.h> 28 #include <asm-generic/pci-bridge.h> 29 #include <asm/setup.h> 30 #include "pci.h" 31 32 const char *pci_power_names[] = { 33 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 34 }; 35 EXPORT_SYMBOL_GPL(pci_power_names); 36 37 int isa_dma_bridge_buggy; 38 EXPORT_SYMBOL(isa_dma_bridge_buggy); 39 40 int pci_pci_problems; 41 EXPORT_SYMBOL(pci_pci_problems); 42 43 unsigned int pci_pm_d3_delay; 44 45 static void pci_pme_list_scan(struct work_struct *work); 46 47 static LIST_HEAD(pci_pme_list); 48 static DEFINE_MUTEX(pci_pme_list_mutex); 49 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 50 51 struct pci_pme_device { 52 struct list_head list; 53 struct pci_dev *dev; 54 }; 55 56 #define PME_TIMEOUT 1000 /* How long between PME checks */ 57 58 static void pci_dev_d3_sleep(struct pci_dev *dev) 59 { 60 unsigned int delay = dev->d3_delay; 61 62 if (delay < pci_pm_d3_delay) 63 delay = pci_pm_d3_delay; 64 65 msleep(delay); 66 } 67 68 #ifdef CONFIG_PCI_DOMAINS 69 int pci_domains_supported = 1; 70 #endif 71 72 #define DEFAULT_CARDBUS_IO_SIZE (256) 73 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 74 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 75 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 76 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 77 78 #define DEFAULT_HOTPLUG_IO_SIZE (256) 79 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024) 80 /* pci=hpmemsize=nnM,hpiosize=nn can override this */ 81 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 82 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE; 83 84 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 85 86 /* 87 * The default CLS is used if arch didn't set CLS explicitly and not 88 * all pci devices agree on the same value. Arch can override either 89 * the dfl or actual value as it sees fit. Don't forget this is 90 * measured in 32-bit words, not bytes. 91 */ 92 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 93 u8 pci_cache_line_size; 94 95 /* 96 * If we set up a device for bus mastering, we need to check the latency 97 * timer as certain BIOSes forget to set it properly. 98 */ 99 unsigned int pcibios_max_latency = 255; 100 101 /* If set, the PCIe ARI capability will not be used. */ 102 static bool pcie_ari_disabled; 103 104 /** 105 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 106 * @bus: pointer to PCI bus structure to search 107 * 108 * Given a PCI bus, returns the highest PCI bus number present in the set 109 * including the given PCI bus and its list of child PCI buses. 110 */ 111 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 112 { 113 struct pci_bus *tmp; 114 unsigned char max, n; 115 116 max = bus->busn_res.end; 117 list_for_each_entry(tmp, &bus->children, node) { 118 n = pci_bus_max_busnr(tmp); 119 if (n > max) 120 max = n; 121 } 122 return max; 123 } 124 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 125 126 #ifdef CONFIG_HAS_IOMEM 127 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 128 { 129 struct resource *res = &pdev->resource[bar]; 130 131 /* 132 * Make sure the BAR is actually a memory resource, not an IO resource 133 */ 134 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 135 dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res); 136 return NULL; 137 } 138 return ioremap_nocache(res->start, resource_size(res)); 139 } 140 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 141 #endif 142 143 #define PCI_FIND_CAP_TTL 48 144 145 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 146 u8 pos, int cap, int *ttl) 147 { 148 u8 id; 149 u16 ent; 150 151 pci_bus_read_config_byte(bus, devfn, pos, &pos); 152 153 while ((*ttl)--) { 154 if (pos < 0x40) 155 break; 156 pos &= ~3; 157 pci_bus_read_config_word(bus, devfn, pos, &ent); 158 159 id = ent & 0xff; 160 if (id == 0xff) 161 break; 162 if (id == cap) 163 return pos; 164 pos = (ent >> 8); 165 } 166 return 0; 167 } 168 169 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 170 u8 pos, int cap) 171 { 172 int ttl = PCI_FIND_CAP_TTL; 173 174 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 175 } 176 177 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 178 { 179 return __pci_find_next_cap(dev->bus, dev->devfn, 180 pos + PCI_CAP_LIST_NEXT, cap); 181 } 182 EXPORT_SYMBOL_GPL(pci_find_next_capability); 183 184 static int __pci_bus_find_cap_start(struct pci_bus *bus, 185 unsigned int devfn, u8 hdr_type) 186 { 187 u16 status; 188 189 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 190 if (!(status & PCI_STATUS_CAP_LIST)) 191 return 0; 192 193 switch (hdr_type) { 194 case PCI_HEADER_TYPE_NORMAL: 195 case PCI_HEADER_TYPE_BRIDGE: 196 return PCI_CAPABILITY_LIST; 197 case PCI_HEADER_TYPE_CARDBUS: 198 return PCI_CB_CAPABILITY_LIST; 199 default: 200 return 0; 201 } 202 203 return 0; 204 } 205 206 /** 207 * pci_find_capability - query for devices' capabilities 208 * @dev: PCI device to query 209 * @cap: capability code 210 * 211 * Tell if a device supports a given PCI capability. 212 * Returns the address of the requested capability structure within the 213 * device's PCI configuration space or 0 in case the device does not 214 * support it. Possible values for @cap: 215 * 216 * %PCI_CAP_ID_PM Power Management 217 * %PCI_CAP_ID_AGP Accelerated Graphics Port 218 * %PCI_CAP_ID_VPD Vital Product Data 219 * %PCI_CAP_ID_SLOTID Slot Identification 220 * %PCI_CAP_ID_MSI Message Signalled Interrupts 221 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 222 * %PCI_CAP_ID_PCIX PCI-X 223 * %PCI_CAP_ID_EXP PCI Express 224 */ 225 int pci_find_capability(struct pci_dev *dev, int cap) 226 { 227 int pos; 228 229 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 230 if (pos) 231 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 232 233 return pos; 234 } 235 EXPORT_SYMBOL(pci_find_capability); 236 237 /** 238 * pci_bus_find_capability - query for devices' capabilities 239 * @bus: the PCI bus to query 240 * @devfn: PCI device to query 241 * @cap: capability code 242 * 243 * Like pci_find_capability() but works for pci devices that do not have a 244 * pci_dev structure set up yet. 245 * 246 * Returns the address of the requested capability structure within the 247 * device's PCI configuration space or 0 in case the device does not 248 * support it. 249 */ 250 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 251 { 252 int pos; 253 u8 hdr_type; 254 255 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 256 257 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 258 if (pos) 259 pos = __pci_find_next_cap(bus, devfn, pos, cap); 260 261 return pos; 262 } 263 EXPORT_SYMBOL(pci_bus_find_capability); 264 265 /** 266 * pci_find_next_ext_capability - Find an extended capability 267 * @dev: PCI device to query 268 * @start: address at which to start looking (0 to start at beginning of list) 269 * @cap: capability code 270 * 271 * Returns the address of the next matching extended capability structure 272 * within the device's PCI configuration space or 0 if the device does 273 * not support it. Some capabilities can occur several times, e.g., the 274 * vendor-specific capability, and this provides a way to find them all. 275 */ 276 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap) 277 { 278 u32 header; 279 int ttl; 280 int pos = PCI_CFG_SPACE_SIZE; 281 282 /* minimum 8 bytes per capability */ 283 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 284 285 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 286 return 0; 287 288 if (start) 289 pos = start; 290 291 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 292 return 0; 293 294 /* 295 * If we have no capabilities, this is indicated by cap ID, 296 * cap version and next pointer all being 0. 297 */ 298 if (header == 0) 299 return 0; 300 301 while (ttl-- > 0) { 302 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 303 return pos; 304 305 pos = PCI_EXT_CAP_NEXT(header); 306 if (pos < PCI_CFG_SPACE_SIZE) 307 break; 308 309 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 310 break; 311 } 312 313 return 0; 314 } 315 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 316 317 /** 318 * pci_find_ext_capability - Find an extended capability 319 * @dev: PCI device to query 320 * @cap: capability code 321 * 322 * Returns the address of the requested extended capability structure 323 * within the device's PCI configuration space or 0 if the device does 324 * not support it. Possible values for @cap: 325 * 326 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 327 * %PCI_EXT_CAP_ID_VC Virtual Channel 328 * %PCI_EXT_CAP_ID_DSN Device Serial Number 329 * %PCI_EXT_CAP_ID_PWR Power Budgeting 330 */ 331 int pci_find_ext_capability(struct pci_dev *dev, int cap) 332 { 333 return pci_find_next_ext_capability(dev, 0, cap); 334 } 335 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 336 337 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap) 338 { 339 int rc, ttl = PCI_FIND_CAP_TTL; 340 u8 cap, mask; 341 342 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 343 mask = HT_3BIT_CAP_MASK; 344 else 345 mask = HT_5BIT_CAP_MASK; 346 347 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 348 PCI_CAP_ID_HT, &ttl); 349 while (pos) { 350 rc = pci_read_config_byte(dev, pos + 3, &cap); 351 if (rc != PCIBIOS_SUCCESSFUL) 352 return 0; 353 354 if ((cap & mask) == ht_cap) 355 return pos; 356 357 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 358 pos + PCI_CAP_LIST_NEXT, 359 PCI_CAP_ID_HT, &ttl); 360 } 361 362 return 0; 363 } 364 /** 365 * pci_find_next_ht_capability - query a device's Hypertransport capabilities 366 * @dev: PCI device to query 367 * @pos: Position from which to continue searching 368 * @ht_cap: Hypertransport capability code 369 * 370 * To be used in conjunction with pci_find_ht_capability() to search for 371 * all capabilities matching @ht_cap. @pos should always be a value returned 372 * from pci_find_ht_capability(). 373 * 374 * NB. To be 100% safe against broken PCI devices, the caller should take 375 * steps to avoid an infinite loop. 376 */ 377 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap) 378 { 379 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 380 } 381 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 382 383 /** 384 * pci_find_ht_capability - query a device's Hypertransport capabilities 385 * @dev: PCI device to query 386 * @ht_cap: Hypertransport capability code 387 * 388 * Tell if a device supports a given Hypertransport capability. 389 * Returns an address within the device's PCI configuration space 390 * or 0 in case the device does not support the request capability. 391 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 392 * which has a Hypertransport capability matching @ht_cap. 393 */ 394 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 395 { 396 int pos; 397 398 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 399 if (pos) 400 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 401 402 return pos; 403 } 404 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 405 406 /** 407 * pci_find_parent_resource - return resource region of parent bus of given region 408 * @dev: PCI device structure contains resources to be searched 409 * @res: child resource record for which parent is sought 410 * 411 * For given resource region of given device, return the resource 412 * region of parent bus the given region is contained in. 413 */ 414 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 415 struct resource *res) 416 { 417 const struct pci_bus *bus = dev->bus; 418 struct resource *r; 419 int i; 420 421 pci_bus_for_each_resource(bus, r, i) { 422 if (!r) 423 continue; 424 if (res->start && resource_contains(r, res)) { 425 426 /* 427 * If the window is prefetchable but the BAR is 428 * not, the allocator made a mistake. 429 */ 430 if (r->flags & IORESOURCE_PREFETCH && 431 !(res->flags & IORESOURCE_PREFETCH)) 432 return NULL; 433 434 /* 435 * If we're below a transparent bridge, there may 436 * be both a positively-decoded aperture and a 437 * subtractively-decoded region that contain the BAR. 438 * We want the positively-decoded one, so this depends 439 * on pci_bus_for_each_resource() giving us those 440 * first. 441 */ 442 return r; 443 } 444 } 445 return NULL; 446 } 447 EXPORT_SYMBOL(pci_find_parent_resource); 448 449 /** 450 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 451 * @dev: the PCI device to operate on 452 * @pos: config space offset of status word 453 * @mask: mask of bit(s) to care about in status word 454 * 455 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 456 */ 457 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 458 { 459 int i; 460 461 /* Wait for Transaction Pending bit clean */ 462 for (i = 0; i < 4; i++) { 463 u16 status; 464 if (i) 465 msleep((1 << (i - 1)) * 100); 466 467 pci_read_config_word(dev, pos, &status); 468 if (!(status & mask)) 469 return 1; 470 } 471 472 return 0; 473 } 474 475 /** 476 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up) 477 * @dev: PCI device to have its BARs restored 478 * 479 * Restore the BAR values for a given device, so as to make it 480 * accessible by its driver. 481 */ 482 static void pci_restore_bars(struct pci_dev *dev) 483 { 484 int i; 485 486 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 487 pci_update_resource(dev, i); 488 } 489 490 static struct pci_platform_pm_ops *pci_platform_pm; 491 492 int pci_set_platform_pm(struct pci_platform_pm_ops *ops) 493 { 494 if (!ops->is_manageable || !ops->set_state || !ops->choose_state 495 || !ops->sleep_wake) 496 return -EINVAL; 497 pci_platform_pm = ops; 498 return 0; 499 } 500 501 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 502 { 503 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false; 504 } 505 506 static inline int platform_pci_set_power_state(struct pci_dev *dev, 507 pci_power_t t) 508 { 509 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS; 510 } 511 512 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 513 { 514 return pci_platform_pm ? 515 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR; 516 } 517 518 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable) 519 { 520 return pci_platform_pm ? 521 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV; 522 } 523 524 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable) 525 { 526 return pci_platform_pm ? 527 pci_platform_pm->run_wake(dev, enable) : -ENODEV; 528 } 529 530 static inline bool platform_pci_need_resume(struct pci_dev *dev) 531 { 532 return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false; 533 } 534 535 /** 536 * pci_raw_set_power_state - Use PCI PM registers to set the power state of 537 * given PCI device 538 * @dev: PCI device to handle. 539 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 540 * 541 * RETURN VALUE: 542 * -EINVAL if the requested state is invalid. 543 * -EIO if device does not support PCI PM or its PM capabilities register has a 544 * wrong version, or device doesn't support the requested state. 545 * 0 if device already is in the requested state. 546 * 0 if device's power state has been successfully changed. 547 */ 548 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state) 549 { 550 u16 pmcsr; 551 bool need_restore = false; 552 553 /* Check if we're already there */ 554 if (dev->current_state == state) 555 return 0; 556 557 if (!dev->pm_cap) 558 return -EIO; 559 560 if (state < PCI_D0 || state > PCI_D3hot) 561 return -EINVAL; 562 563 /* Validate current state: 564 * Can enter D0 from any state, but if we can only go deeper 565 * to sleep if we're already in a low power state 566 */ 567 if (state != PCI_D0 && dev->current_state <= PCI_D3cold 568 && dev->current_state > state) { 569 dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n", 570 dev->current_state, state); 571 return -EINVAL; 572 } 573 574 /* check if this device supports the desired state */ 575 if ((state == PCI_D1 && !dev->d1_support) 576 || (state == PCI_D2 && !dev->d2_support)) 577 return -EIO; 578 579 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 580 581 /* If we're (effectively) in D3, force entire word to 0. 582 * This doesn't affect PME_Status, disables PME_En, and 583 * sets PowerState to 0. 584 */ 585 switch (dev->current_state) { 586 case PCI_D0: 587 case PCI_D1: 588 case PCI_D2: 589 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 590 pmcsr |= state; 591 break; 592 case PCI_D3hot: 593 case PCI_D3cold: 594 case PCI_UNKNOWN: /* Boot-up */ 595 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot 596 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET)) 597 need_restore = true; 598 /* Fall-through: force to D0 */ 599 default: 600 pmcsr = 0; 601 break; 602 } 603 604 /* enter specified state */ 605 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 606 607 /* Mandatory power management transition delays */ 608 /* see PCI PM 1.1 5.6.1 table 18 */ 609 if (state == PCI_D3hot || dev->current_state == PCI_D3hot) 610 pci_dev_d3_sleep(dev); 611 else if (state == PCI_D2 || dev->current_state == PCI_D2) 612 udelay(PCI_PM_D2_DELAY); 613 614 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 615 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 616 if (dev->current_state != state && printk_ratelimit()) 617 dev_info(&dev->dev, "Refused to change power state, currently in D%d\n", 618 dev->current_state); 619 620 /* 621 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 622 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 623 * from D3hot to D0 _may_ perform an internal reset, thereby 624 * going to "D0 Uninitialized" rather than "D0 Initialized". 625 * For example, at least some versions of the 3c905B and the 626 * 3c556B exhibit this behaviour. 627 * 628 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 629 * devices in a D3hot state at boot. Consequently, we need to 630 * restore at least the BARs so that the device will be 631 * accessible to its driver. 632 */ 633 if (need_restore) 634 pci_restore_bars(dev); 635 636 if (dev->bus->self) 637 pcie_aspm_pm_state_change(dev->bus->self); 638 639 return 0; 640 } 641 642 /** 643 * pci_update_current_state - Read PCI power state of given device from its 644 * PCI PM registers and cache it 645 * @dev: PCI device to handle. 646 * @state: State to cache in case the device doesn't have the PM capability 647 */ 648 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 649 { 650 if (dev->pm_cap) { 651 u16 pmcsr; 652 653 /* 654 * Configuration space is not accessible for device in 655 * D3cold, so just keep or set D3cold for safety 656 */ 657 if (dev->current_state == PCI_D3cold) 658 return; 659 if (state == PCI_D3cold) { 660 dev->current_state = PCI_D3cold; 661 return; 662 } 663 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 664 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 665 } else { 666 dev->current_state = state; 667 } 668 } 669 670 /** 671 * pci_power_up - Put the given device into D0 forcibly 672 * @dev: PCI device to power up 673 */ 674 void pci_power_up(struct pci_dev *dev) 675 { 676 if (platform_pci_power_manageable(dev)) 677 platform_pci_set_power_state(dev, PCI_D0); 678 679 pci_raw_set_power_state(dev, PCI_D0); 680 pci_update_current_state(dev, PCI_D0); 681 } 682 683 /** 684 * pci_platform_power_transition - Use platform to change device power state 685 * @dev: PCI device to handle. 686 * @state: State to put the device into. 687 */ 688 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 689 { 690 int error; 691 692 if (platform_pci_power_manageable(dev)) { 693 error = platform_pci_set_power_state(dev, state); 694 if (!error) 695 pci_update_current_state(dev, state); 696 } else 697 error = -ENODEV; 698 699 if (error && !dev->pm_cap) /* Fall back to PCI_D0 */ 700 dev->current_state = PCI_D0; 701 702 return error; 703 } 704 705 /** 706 * pci_wakeup - Wake up a PCI device 707 * @pci_dev: Device to handle. 708 * @ign: ignored parameter 709 */ 710 static int pci_wakeup(struct pci_dev *pci_dev, void *ign) 711 { 712 pci_wakeup_event(pci_dev); 713 pm_request_resume(&pci_dev->dev); 714 return 0; 715 } 716 717 /** 718 * pci_wakeup_bus - Walk given bus and wake up devices on it 719 * @bus: Top bus of the subtree to walk. 720 */ 721 static void pci_wakeup_bus(struct pci_bus *bus) 722 { 723 if (bus) 724 pci_walk_bus(bus, pci_wakeup, NULL); 725 } 726 727 /** 728 * __pci_start_power_transition - Start power transition of a PCI device 729 * @dev: PCI device to handle. 730 * @state: State to put the device into. 731 */ 732 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state) 733 { 734 if (state == PCI_D0) { 735 pci_platform_power_transition(dev, PCI_D0); 736 /* 737 * Mandatory power management transition delays, see 738 * PCI Express Base Specification Revision 2.0 Section 739 * 6.6.1: Conventional Reset. Do not delay for 740 * devices powered on/off by corresponding bridge, 741 * because have already delayed for the bridge. 742 */ 743 if (dev->runtime_d3cold) { 744 msleep(dev->d3cold_delay); 745 /* 746 * When powering on a bridge from D3cold, the 747 * whole hierarchy may be powered on into 748 * D0uninitialized state, resume them to give 749 * them a chance to suspend again 750 */ 751 pci_wakeup_bus(dev->subordinate); 752 } 753 } 754 } 755 756 /** 757 * __pci_dev_set_current_state - Set current state of a PCI device 758 * @dev: Device to handle 759 * @data: pointer to state to be set 760 */ 761 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 762 { 763 pci_power_t state = *(pci_power_t *)data; 764 765 dev->current_state = state; 766 return 0; 767 } 768 769 /** 770 * __pci_bus_set_current_state - Walk given bus and set current state of devices 771 * @bus: Top bus of the subtree to walk. 772 * @state: state to be set 773 */ 774 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 775 { 776 if (bus) 777 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 778 } 779 780 /** 781 * __pci_complete_power_transition - Complete power transition of a PCI device 782 * @dev: PCI device to handle. 783 * @state: State to put the device into. 784 * 785 * This function should not be called directly by device drivers. 786 */ 787 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state) 788 { 789 int ret; 790 791 if (state <= PCI_D0) 792 return -EINVAL; 793 ret = pci_platform_power_transition(dev, state); 794 /* Power off the bridge may power off the whole hierarchy */ 795 if (!ret && state == PCI_D3cold) 796 __pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 797 return ret; 798 } 799 EXPORT_SYMBOL_GPL(__pci_complete_power_transition); 800 801 /** 802 * pci_set_power_state - Set the power state of a PCI device 803 * @dev: PCI device to handle. 804 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 805 * 806 * Transition a device to a new power state, using the platform firmware and/or 807 * the device's PCI PM registers. 808 * 809 * RETURN VALUE: 810 * -EINVAL if the requested state is invalid. 811 * -EIO if device does not support PCI PM or its PM capabilities register has a 812 * wrong version, or device doesn't support the requested state. 813 * 0 if device already is in the requested state. 814 * 0 if device's power state has been successfully changed. 815 */ 816 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 817 { 818 int error; 819 820 /* bound the state we're entering */ 821 if (state > PCI_D3cold) 822 state = PCI_D3cold; 823 else if (state < PCI_D0) 824 state = PCI_D0; 825 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 826 /* 827 * If the device or the parent bridge do not support PCI PM, 828 * ignore the request if we're doing anything other than putting 829 * it into D0 (which would only happen on boot). 830 */ 831 return 0; 832 833 /* Check if we're already there */ 834 if (dev->current_state == state) 835 return 0; 836 837 __pci_start_power_transition(dev, state); 838 839 /* This device is quirked not to be put into D3, so 840 don't put it in D3 */ 841 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 842 return 0; 843 844 /* 845 * To put device in D3cold, we put device into D3hot in native 846 * way, then put device into D3cold with platform ops 847 */ 848 error = pci_raw_set_power_state(dev, state > PCI_D3hot ? 849 PCI_D3hot : state); 850 851 if (!__pci_complete_power_transition(dev, state)) 852 error = 0; 853 854 return error; 855 } 856 EXPORT_SYMBOL(pci_set_power_state); 857 858 /** 859 * pci_choose_state - Choose the power state of a PCI device 860 * @dev: PCI device to be suspended 861 * @state: target sleep state for the whole system. This is the value 862 * that is passed to suspend() function. 863 * 864 * Returns PCI power state suitable for given device and given system 865 * message. 866 */ 867 868 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 869 { 870 pci_power_t ret; 871 872 if (!dev->pm_cap) 873 return PCI_D0; 874 875 ret = platform_pci_choose_state(dev); 876 if (ret != PCI_POWER_ERROR) 877 return ret; 878 879 switch (state.event) { 880 case PM_EVENT_ON: 881 return PCI_D0; 882 case PM_EVENT_FREEZE: 883 case PM_EVENT_PRETHAW: 884 /* REVISIT both freeze and pre-thaw "should" use D0 */ 885 case PM_EVENT_SUSPEND: 886 case PM_EVENT_HIBERNATE: 887 return PCI_D3hot; 888 default: 889 dev_info(&dev->dev, "unrecognized suspend event %d\n", 890 state.event); 891 BUG(); 892 } 893 return PCI_D0; 894 } 895 EXPORT_SYMBOL(pci_choose_state); 896 897 #define PCI_EXP_SAVE_REGS 7 898 899 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 900 u16 cap, bool extended) 901 { 902 struct pci_cap_saved_state *tmp; 903 904 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 905 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 906 return tmp; 907 } 908 return NULL; 909 } 910 911 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 912 { 913 return _pci_find_saved_cap(dev, cap, false); 914 } 915 916 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 917 { 918 return _pci_find_saved_cap(dev, cap, true); 919 } 920 921 static int pci_save_pcie_state(struct pci_dev *dev) 922 { 923 int i = 0; 924 struct pci_cap_saved_state *save_state; 925 u16 *cap; 926 927 if (!pci_is_pcie(dev)) 928 return 0; 929 930 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 931 if (!save_state) { 932 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 933 return -ENOMEM; 934 } 935 936 cap = (u16 *)&save_state->cap.data[0]; 937 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 938 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 939 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 940 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 941 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 942 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 943 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 944 945 return 0; 946 } 947 948 static void pci_restore_pcie_state(struct pci_dev *dev) 949 { 950 int i = 0; 951 struct pci_cap_saved_state *save_state; 952 u16 *cap; 953 954 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 955 if (!save_state) 956 return; 957 958 cap = (u16 *)&save_state->cap.data[0]; 959 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 960 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 961 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 962 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 963 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 964 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 965 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 966 } 967 968 969 static int pci_save_pcix_state(struct pci_dev *dev) 970 { 971 int pos; 972 struct pci_cap_saved_state *save_state; 973 974 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 975 if (pos <= 0) 976 return 0; 977 978 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 979 if (!save_state) { 980 dev_err(&dev->dev, "buffer not found in %s\n", __func__); 981 return -ENOMEM; 982 } 983 984 pci_read_config_word(dev, pos + PCI_X_CMD, 985 (u16 *)save_state->cap.data); 986 987 return 0; 988 } 989 990 static void pci_restore_pcix_state(struct pci_dev *dev) 991 { 992 int i = 0, pos; 993 struct pci_cap_saved_state *save_state; 994 u16 *cap; 995 996 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 997 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 998 if (!save_state || pos <= 0) 999 return; 1000 cap = (u16 *)&save_state->cap.data[0]; 1001 1002 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1003 } 1004 1005 1006 /** 1007 * pci_save_state - save the PCI configuration space of a device before suspending 1008 * @dev: - PCI device that we're dealing with 1009 */ 1010 int pci_save_state(struct pci_dev *dev) 1011 { 1012 int i; 1013 /* XXX: 100% dword access ok here? */ 1014 for (i = 0; i < 16; i++) 1015 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1016 dev->state_saved = true; 1017 1018 i = pci_save_pcie_state(dev); 1019 if (i != 0) 1020 return i; 1021 1022 i = pci_save_pcix_state(dev); 1023 if (i != 0) 1024 return i; 1025 1026 return pci_save_vc_state(dev); 1027 } 1028 EXPORT_SYMBOL(pci_save_state); 1029 1030 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1031 u32 saved_val, int retry) 1032 { 1033 u32 val; 1034 1035 pci_read_config_dword(pdev, offset, &val); 1036 if (val == saved_val) 1037 return; 1038 1039 for (;;) { 1040 dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1041 offset, val, saved_val); 1042 pci_write_config_dword(pdev, offset, saved_val); 1043 if (retry-- <= 0) 1044 return; 1045 1046 pci_read_config_dword(pdev, offset, &val); 1047 if (val == saved_val) 1048 return; 1049 1050 mdelay(1); 1051 } 1052 } 1053 1054 static void pci_restore_config_space_range(struct pci_dev *pdev, 1055 int start, int end, int retry) 1056 { 1057 int index; 1058 1059 for (index = end; index >= start; index--) 1060 pci_restore_config_dword(pdev, 4 * index, 1061 pdev->saved_config_space[index], 1062 retry); 1063 } 1064 1065 static void pci_restore_config_space(struct pci_dev *pdev) 1066 { 1067 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1068 pci_restore_config_space_range(pdev, 10, 15, 0); 1069 /* Restore BARs before the command register. */ 1070 pci_restore_config_space_range(pdev, 4, 9, 10); 1071 pci_restore_config_space_range(pdev, 0, 3, 0); 1072 } else { 1073 pci_restore_config_space_range(pdev, 0, 15, 0); 1074 } 1075 } 1076 1077 /** 1078 * pci_restore_state - Restore the saved state of a PCI device 1079 * @dev: - PCI device that we're dealing with 1080 */ 1081 void pci_restore_state(struct pci_dev *dev) 1082 { 1083 if (!dev->state_saved) 1084 return; 1085 1086 /* PCI Express register must be restored first */ 1087 pci_restore_pcie_state(dev); 1088 pci_restore_ats_state(dev); 1089 pci_restore_vc_state(dev); 1090 1091 pci_restore_config_space(dev); 1092 1093 pci_restore_pcix_state(dev); 1094 pci_restore_msi_state(dev); 1095 pci_restore_iov_state(dev); 1096 1097 dev->state_saved = false; 1098 } 1099 EXPORT_SYMBOL(pci_restore_state); 1100 1101 struct pci_saved_state { 1102 u32 config_space[16]; 1103 struct pci_cap_saved_data cap[0]; 1104 }; 1105 1106 /** 1107 * pci_store_saved_state - Allocate and return an opaque struct containing 1108 * the device saved state. 1109 * @dev: PCI device that we're dealing with 1110 * 1111 * Return NULL if no state or error. 1112 */ 1113 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1114 { 1115 struct pci_saved_state *state; 1116 struct pci_cap_saved_state *tmp; 1117 struct pci_cap_saved_data *cap; 1118 size_t size; 1119 1120 if (!dev->state_saved) 1121 return NULL; 1122 1123 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1124 1125 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1126 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1127 1128 state = kzalloc(size, GFP_KERNEL); 1129 if (!state) 1130 return NULL; 1131 1132 memcpy(state->config_space, dev->saved_config_space, 1133 sizeof(state->config_space)); 1134 1135 cap = state->cap; 1136 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1137 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1138 memcpy(cap, &tmp->cap, len); 1139 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1140 } 1141 /* Empty cap_save terminates list */ 1142 1143 return state; 1144 } 1145 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1146 1147 /** 1148 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1149 * @dev: PCI device that we're dealing with 1150 * @state: Saved state returned from pci_store_saved_state() 1151 */ 1152 int pci_load_saved_state(struct pci_dev *dev, 1153 struct pci_saved_state *state) 1154 { 1155 struct pci_cap_saved_data *cap; 1156 1157 dev->state_saved = false; 1158 1159 if (!state) 1160 return 0; 1161 1162 memcpy(dev->saved_config_space, state->config_space, 1163 sizeof(state->config_space)); 1164 1165 cap = state->cap; 1166 while (cap->size) { 1167 struct pci_cap_saved_state *tmp; 1168 1169 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1170 if (!tmp || tmp->cap.size != cap->size) 1171 return -EINVAL; 1172 1173 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1174 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1175 sizeof(struct pci_cap_saved_data) + cap->size); 1176 } 1177 1178 dev->state_saved = true; 1179 return 0; 1180 } 1181 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1182 1183 /** 1184 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1185 * and free the memory allocated for it. 1186 * @dev: PCI device that we're dealing with 1187 * @state: Pointer to saved state returned from pci_store_saved_state() 1188 */ 1189 int pci_load_and_free_saved_state(struct pci_dev *dev, 1190 struct pci_saved_state **state) 1191 { 1192 int ret = pci_load_saved_state(dev, *state); 1193 kfree(*state); 1194 *state = NULL; 1195 return ret; 1196 } 1197 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1198 1199 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1200 { 1201 return pci_enable_resources(dev, bars); 1202 } 1203 1204 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1205 { 1206 int err; 1207 struct pci_dev *bridge; 1208 u16 cmd; 1209 u8 pin; 1210 1211 err = pci_set_power_state(dev, PCI_D0); 1212 if (err < 0 && err != -EIO) 1213 return err; 1214 1215 bridge = pci_upstream_bridge(dev); 1216 if (bridge) 1217 pcie_aspm_powersave_config_link(bridge); 1218 1219 err = pcibios_enable_device(dev, bars); 1220 if (err < 0) 1221 return err; 1222 pci_fixup_device(pci_fixup_enable, dev); 1223 1224 if (dev->msi_enabled || dev->msix_enabled) 1225 return 0; 1226 1227 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1228 if (pin) { 1229 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1230 if (cmd & PCI_COMMAND_INTX_DISABLE) 1231 pci_write_config_word(dev, PCI_COMMAND, 1232 cmd & ~PCI_COMMAND_INTX_DISABLE); 1233 } 1234 1235 return 0; 1236 } 1237 1238 /** 1239 * pci_reenable_device - Resume abandoned device 1240 * @dev: PCI device to be resumed 1241 * 1242 * Note this function is a backend of pci_default_resume and is not supposed 1243 * to be called by normal code, write proper resume handler and use it instead. 1244 */ 1245 int pci_reenable_device(struct pci_dev *dev) 1246 { 1247 if (pci_is_enabled(dev)) 1248 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1249 return 0; 1250 } 1251 EXPORT_SYMBOL(pci_reenable_device); 1252 1253 static void pci_enable_bridge(struct pci_dev *dev) 1254 { 1255 struct pci_dev *bridge; 1256 int retval; 1257 1258 bridge = pci_upstream_bridge(dev); 1259 if (bridge) 1260 pci_enable_bridge(bridge); 1261 1262 if (pci_is_enabled(dev)) { 1263 if (!dev->is_busmaster) 1264 pci_set_master(dev); 1265 return; 1266 } 1267 1268 retval = pci_enable_device(dev); 1269 if (retval) 1270 dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n", 1271 retval); 1272 pci_set_master(dev); 1273 } 1274 1275 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1276 { 1277 struct pci_dev *bridge; 1278 int err; 1279 int i, bars = 0; 1280 1281 /* 1282 * Power state could be unknown at this point, either due to a fresh 1283 * boot or a device removal call. So get the current power state 1284 * so that things like MSI message writing will behave as expected 1285 * (e.g. if the device really is in D0 at enable time). 1286 */ 1287 if (dev->pm_cap) { 1288 u16 pmcsr; 1289 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1290 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK); 1291 } 1292 1293 if (atomic_inc_return(&dev->enable_cnt) > 1) 1294 return 0; /* already enabled */ 1295 1296 bridge = pci_upstream_bridge(dev); 1297 if (bridge) 1298 pci_enable_bridge(bridge); 1299 1300 /* only skip sriov related */ 1301 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1302 if (dev->resource[i].flags & flags) 1303 bars |= (1 << i); 1304 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 1305 if (dev->resource[i].flags & flags) 1306 bars |= (1 << i); 1307 1308 err = do_pci_enable_device(dev, bars); 1309 if (err < 0) 1310 atomic_dec(&dev->enable_cnt); 1311 return err; 1312 } 1313 1314 /** 1315 * pci_enable_device_io - Initialize a device for use with IO space 1316 * @dev: PCI device to be initialized 1317 * 1318 * Initialize device before it's used by a driver. Ask low-level code 1319 * to enable I/O resources. Wake up the device if it was suspended. 1320 * Beware, this function can fail. 1321 */ 1322 int pci_enable_device_io(struct pci_dev *dev) 1323 { 1324 return pci_enable_device_flags(dev, IORESOURCE_IO); 1325 } 1326 EXPORT_SYMBOL(pci_enable_device_io); 1327 1328 /** 1329 * pci_enable_device_mem - Initialize a device for use with Memory space 1330 * @dev: PCI device to be initialized 1331 * 1332 * Initialize device before it's used by a driver. Ask low-level code 1333 * to enable Memory resources. Wake up the device if it was suspended. 1334 * Beware, this function can fail. 1335 */ 1336 int pci_enable_device_mem(struct pci_dev *dev) 1337 { 1338 return pci_enable_device_flags(dev, IORESOURCE_MEM); 1339 } 1340 EXPORT_SYMBOL(pci_enable_device_mem); 1341 1342 /** 1343 * pci_enable_device - Initialize device before it's used by a driver. 1344 * @dev: PCI device to be initialized 1345 * 1346 * Initialize device before it's used by a driver. Ask low-level code 1347 * to enable I/O and memory. Wake up the device if it was suspended. 1348 * Beware, this function can fail. 1349 * 1350 * Note we don't actually enable the device many times if we call 1351 * this function repeatedly (we just increment the count). 1352 */ 1353 int pci_enable_device(struct pci_dev *dev) 1354 { 1355 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 1356 } 1357 EXPORT_SYMBOL(pci_enable_device); 1358 1359 /* 1360 * Managed PCI resources. This manages device on/off, intx/msi/msix 1361 * on/off and BAR regions. pci_dev itself records msi/msix status, so 1362 * there's no need to track it separately. pci_devres is initialized 1363 * when a device is enabled using managed PCI device enable interface. 1364 */ 1365 struct pci_devres { 1366 unsigned int enabled:1; 1367 unsigned int pinned:1; 1368 unsigned int orig_intx:1; 1369 unsigned int restore_intx:1; 1370 u32 region_mask; 1371 }; 1372 1373 static void pcim_release(struct device *gendev, void *res) 1374 { 1375 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev); 1376 struct pci_devres *this = res; 1377 int i; 1378 1379 if (dev->msi_enabled) 1380 pci_disable_msi(dev); 1381 if (dev->msix_enabled) 1382 pci_disable_msix(dev); 1383 1384 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 1385 if (this->region_mask & (1 << i)) 1386 pci_release_region(dev, i); 1387 1388 if (this->restore_intx) 1389 pci_intx(dev, this->orig_intx); 1390 1391 if (this->enabled && !this->pinned) 1392 pci_disable_device(dev); 1393 } 1394 1395 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 1396 { 1397 struct pci_devres *dr, *new_dr; 1398 1399 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 1400 if (dr) 1401 return dr; 1402 1403 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 1404 if (!new_dr) 1405 return NULL; 1406 return devres_get(&pdev->dev, new_dr, NULL, NULL); 1407 } 1408 1409 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 1410 { 1411 if (pci_is_managed(pdev)) 1412 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 1413 return NULL; 1414 } 1415 1416 /** 1417 * pcim_enable_device - Managed pci_enable_device() 1418 * @pdev: PCI device to be initialized 1419 * 1420 * Managed pci_enable_device(). 1421 */ 1422 int pcim_enable_device(struct pci_dev *pdev) 1423 { 1424 struct pci_devres *dr; 1425 int rc; 1426 1427 dr = get_pci_dr(pdev); 1428 if (unlikely(!dr)) 1429 return -ENOMEM; 1430 if (dr->enabled) 1431 return 0; 1432 1433 rc = pci_enable_device(pdev); 1434 if (!rc) { 1435 pdev->is_managed = 1; 1436 dr->enabled = 1; 1437 } 1438 return rc; 1439 } 1440 EXPORT_SYMBOL(pcim_enable_device); 1441 1442 /** 1443 * pcim_pin_device - Pin managed PCI device 1444 * @pdev: PCI device to pin 1445 * 1446 * Pin managed PCI device @pdev. Pinned device won't be disabled on 1447 * driver detach. @pdev must have been enabled with 1448 * pcim_enable_device(). 1449 */ 1450 void pcim_pin_device(struct pci_dev *pdev) 1451 { 1452 struct pci_devres *dr; 1453 1454 dr = find_pci_dr(pdev); 1455 WARN_ON(!dr || !dr->enabled); 1456 if (dr) 1457 dr->pinned = 1; 1458 } 1459 EXPORT_SYMBOL(pcim_pin_device); 1460 1461 /* 1462 * pcibios_add_device - provide arch specific hooks when adding device dev 1463 * @dev: the PCI device being added 1464 * 1465 * Permits the platform to provide architecture specific functionality when 1466 * devices are added. This is the default implementation. Architecture 1467 * implementations can override this. 1468 */ 1469 int __weak pcibios_add_device(struct pci_dev *dev) 1470 { 1471 return 0; 1472 } 1473 1474 /** 1475 * pcibios_release_device - provide arch specific hooks when releasing device dev 1476 * @dev: the PCI device being released 1477 * 1478 * Permits the platform to provide architecture specific functionality when 1479 * devices are released. This is the default implementation. Architecture 1480 * implementations can override this. 1481 */ 1482 void __weak pcibios_release_device(struct pci_dev *dev) {} 1483 1484 /** 1485 * pcibios_disable_device - disable arch specific PCI resources for device dev 1486 * @dev: the PCI device to disable 1487 * 1488 * Disables architecture specific PCI resources for the device. This 1489 * is the default implementation. Architecture implementations can 1490 * override this. 1491 */ 1492 void __weak pcibios_disable_device (struct pci_dev *dev) {} 1493 1494 /** 1495 * pcibios_penalize_isa_irq - penalize an ISA IRQ 1496 * @irq: ISA IRQ to penalize 1497 * @active: IRQ active or not 1498 * 1499 * Permits the platform to provide architecture-specific functionality when 1500 * penalizing ISA IRQs. This is the default implementation. Architecture 1501 * implementations can override this. 1502 */ 1503 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 1504 1505 static void do_pci_disable_device(struct pci_dev *dev) 1506 { 1507 u16 pci_command; 1508 1509 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 1510 if (pci_command & PCI_COMMAND_MASTER) { 1511 pci_command &= ~PCI_COMMAND_MASTER; 1512 pci_write_config_word(dev, PCI_COMMAND, pci_command); 1513 } 1514 1515 pcibios_disable_device(dev); 1516 } 1517 1518 /** 1519 * pci_disable_enabled_device - Disable device without updating enable_cnt 1520 * @dev: PCI device to disable 1521 * 1522 * NOTE: This function is a backend of PCI power management routines and is 1523 * not supposed to be called drivers. 1524 */ 1525 void pci_disable_enabled_device(struct pci_dev *dev) 1526 { 1527 if (pci_is_enabled(dev)) 1528 do_pci_disable_device(dev); 1529 } 1530 1531 /** 1532 * pci_disable_device - Disable PCI device after use 1533 * @dev: PCI device to be disabled 1534 * 1535 * Signal to the system that the PCI device is not in use by the system 1536 * anymore. This only involves disabling PCI bus-mastering, if active. 1537 * 1538 * Note we don't actually disable the device until all callers of 1539 * pci_enable_device() have called pci_disable_device(). 1540 */ 1541 void pci_disable_device(struct pci_dev *dev) 1542 { 1543 struct pci_devres *dr; 1544 1545 dr = find_pci_dr(dev); 1546 if (dr) 1547 dr->enabled = 0; 1548 1549 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 1550 "disabling already-disabled device"); 1551 1552 if (atomic_dec_return(&dev->enable_cnt) != 0) 1553 return; 1554 1555 do_pci_disable_device(dev); 1556 1557 dev->is_busmaster = 0; 1558 } 1559 EXPORT_SYMBOL(pci_disable_device); 1560 1561 /** 1562 * pcibios_set_pcie_reset_state - set reset state for device dev 1563 * @dev: the PCIe device reset 1564 * @state: Reset state to enter into 1565 * 1566 * 1567 * Sets the PCIe reset state for the device. This is the default 1568 * implementation. Architecture implementations can override this. 1569 */ 1570 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 1571 enum pcie_reset_state state) 1572 { 1573 return -EINVAL; 1574 } 1575 1576 /** 1577 * pci_set_pcie_reset_state - set reset state for device dev 1578 * @dev: the PCIe device reset 1579 * @state: Reset state to enter into 1580 * 1581 * 1582 * Sets the PCI reset state for the device. 1583 */ 1584 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 1585 { 1586 return pcibios_set_pcie_reset_state(dev, state); 1587 } 1588 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 1589 1590 /** 1591 * pci_check_pme_status - Check if given device has generated PME. 1592 * @dev: Device to check. 1593 * 1594 * Check the PME status of the device and if set, clear it and clear PME enable 1595 * (if set). Return 'true' if PME status and PME enable were both set or 1596 * 'false' otherwise. 1597 */ 1598 bool pci_check_pme_status(struct pci_dev *dev) 1599 { 1600 int pmcsr_pos; 1601 u16 pmcsr; 1602 bool ret = false; 1603 1604 if (!dev->pm_cap) 1605 return false; 1606 1607 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 1608 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 1609 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 1610 return false; 1611 1612 /* Clear PME status. */ 1613 pmcsr |= PCI_PM_CTRL_PME_STATUS; 1614 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 1615 /* Disable PME to avoid interrupt flood. */ 1616 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1617 ret = true; 1618 } 1619 1620 pci_write_config_word(dev, pmcsr_pos, pmcsr); 1621 1622 return ret; 1623 } 1624 1625 /** 1626 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 1627 * @dev: Device to handle. 1628 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 1629 * 1630 * Check if @dev has generated PME and queue a resume request for it in that 1631 * case. 1632 */ 1633 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 1634 { 1635 if (pme_poll_reset && dev->pme_poll) 1636 dev->pme_poll = false; 1637 1638 if (pci_check_pme_status(dev)) { 1639 pci_wakeup_event(dev); 1640 pm_request_resume(&dev->dev); 1641 } 1642 return 0; 1643 } 1644 1645 /** 1646 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 1647 * @bus: Top bus of the subtree to walk. 1648 */ 1649 void pci_pme_wakeup_bus(struct pci_bus *bus) 1650 { 1651 if (bus) 1652 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 1653 } 1654 1655 1656 /** 1657 * pci_pme_capable - check the capability of PCI device to generate PME# 1658 * @dev: PCI device to handle. 1659 * @state: PCI state from which device will issue PME#. 1660 */ 1661 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 1662 { 1663 if (!dev->pm_cap) 1664 return false; 1665 1666 return !!(dev->pme_support & (1 << state)); 1667 } 1668 EXPORT_SYMBOL(pci_pme_capable); 1669 1670 static void pci_pme_list_scan(struct work_struct *work) 1671 { 1672 struct pci_pme_device *pme_dev, *n; 1673 1674 mutex_lock(&pci_pme_list_mutex); 1675 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 1676 if (pme_dev->dev->pme_poll) { 1677 struct pci_dev *bridge; 1678 1679 bridge = pme_dev->dev->bus->self; 1680 /* 1681 * If bridge is in low power state, the 1682 * configuration space of subordinate devices 1683 * may be not accessible 1684 */ 1685 if (bridge && bridge->current_state != PCI_D0) 1686 continue; 1687 pci_pme_wakeup(pme_dev->dev, NULL); 1688 } else { 1689 list_del(&pme_dev->list); 1690 kfree(pme_dev); 1691 } 1692 } 1693 if (!list_empty(&pci_pme_list)) 1694 schedule_delayed_work(&pci_pme_work, 1695 msecs_to_jiffies(PME_TIMEOUT)); 1696 mutex_unlock(&pci_pme_list_mutex); 1697 } 1698 1699 /** 1700 * pci_pme_active - enable or disable PCI device's PME# function 1701 * @dev: PCI device to handle. 1702 * @enable: 'true' to enable PME# generation; 'false' to disable it. 1703 * 1704 * The caller must verify that the device is capable of generating PME# before 1705 * calling this function with @enable equal to 'true'. 1706 */ 1707 void pci_pme_active(struct pci_dev *dev, bool enable) 1708 { 1709 u16 pmcsr; 1710 1711 if (!dev->pme_support) 1712 return; 1713 1714 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1715 /* Clear PME_Status by writing 1 to it and enable PME# */ 1716 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 1717 if (!enable) 1718 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 1719 1720 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1721 1722 /* 1723 * PCI (as opposed to PCIe) PME requires that the device have 1724 * its PME# line hooked up correctly. Not all hardware vendors 1725 * do this, so the PME never gets delivered and the device 1726 * remains asleep. The easiest way around this is to 1727 * periodically walk the list of suspended devices and check 1728 * whether any have their PME flag set. The assumption is that 1729 * we'll wake up often enough anyway that this won't be a huge 1730 * hit, and the power savings from the devices will still be a 1731 * win. 1732 * 1733 * Although PCIe uses in-band PME message instead of PME# line 1734 * to report PME, PME does not work for some PCIe devices in 1735 * reality. For example, there are devices that set their PME 1736 * status bits, but don't really bother to send a PME message; 1737 * there are PCI Express Root Ports that don't bother to 1738 * trigger interrupts when they receive PME messages from the 1739 * devices below. So PME poll is used for PCIe devices too. 1740 */ 1741 1742 if (dev->pme_poll) { 1743 struct pci_pme_device *pme_dev; 1744 if (enable) { 1745 pme_dev = kmalloc(sizeof(struct pci_pme_device), 1746 GFP_KERNEL); 1747 if (!pme_dev) { 1748 dev_warn(&dev->dev, "can't enable PME#\n"); 1749 return; 1750 } 1751 pme_dev->dev = dev; 1752 mutex_lock(&pci_pme_list_mutex); 1753 list_add(&pme_dev->list, &pci_pme_list); 1754 if (list_is_singular(&pci_pme_list)) 1755 schedule_delayed_work(&pci_pme_work, 1756 msecs_to_jiffies(PME_TIMEOUT)); 1757 mutex_unlock(&pci_pme_list_mutex); 1758 } else { 1759 mutex_lock(&pci_pme_list_mutex); 1760 list_for_each_entry(pme_dev, &pci_pme_list, list) { 1761 if (pme_dev->dev == dev) { 1762 list_del(&pme_dev->list); 1763 kfree(pme_dev); 1764 break; 1765 } 1766 } 1767 mutex_unlock(&pci_pme_list_mutex); 1768 } 1769 } 1770 1771 dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled"); 1772 } 1773 EXPORT_SYMBOL(pci_pme_active); 1774 1775 /** 1776 * __pci_enable_wake - enable PCI device as wakeup event source 1777 * @dev: PCI device affected 1778 * @state: PCI state from which device will issue wakeup events 1779 * @runtime: True if the events are to be generated at run time 1780 * @enable: True to enable event generation; false to disable 1781 * 1782 * This enables the device as a wakeup event source, or disables it. 1783 * When such events involves platform-specific hooks, those hooks are 1784 * called automatically by this routine. 1785 * 1786 * Devices with legacy power management (no standard PCI PM capabilities) 1787 * always require such platform hooks. 1788 * 1789 * RETURN VALUE: 1790 * 0 is returned on success 1791 * -EINVAL is returned if device is not supposed to wake up the system 1792 * Error code depending on the platform is returned if both the platform and 1793 * the native mechanism fail to enable the generation of wake-up events 1794 */ 1795 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, 1796 bool runtime, bool enable) 1797 { 1798 int ret = 0; 1799 1800 if (enable && !runtime && !device_may_wakeup(&dev->dev)) 1801 return -EINVAL; 1802 1803 /* Don't do the same thing twice in a row for one device. */ 1804 if (!!enable == !!dev->wakeup_prepared) 1805 return 0; 1806 1807 /* 1808 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 1809 * Anderson we should be doing PME# wake enable followed by ACPI wake 1810 * enable. To disable wake-up we call the platform first, for symmetry. 1811 */ 1812 1813 if (enable) { 1814 int error; 1815 1816 if (pci_pme_capable(dev, state)) 1817 pci_pme_active(dev, true); 1818 else 1819 ret = 1; 1820 error = runtime ? platform_pci_run_wake(dev, true) : 1821 platform_pci_sleep_wake(dev, true); 1822 if (ret) 1823 ret = error; 1824 if (!ret) 1825 dev->wakeup_prepared = true; 1826 } else { 1827 if (runtime) 1828 platform_pci_run_wake(dev, false); 1829 else 1830 platform_pci_sleep_wake(dev, false); 1831 pci_pme_active(dev, false); 1832 dev->wakeup_prepared = false; 1833 } 1834 1835 return ret; 1836 } 1837 EXPORT_SYMBOL(__pci_enable_wake); 1838 1839 /** 1840 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 1841 * @dev: PCI device to prepare 1842 * @enable: True to enable wake-up event generation; false to disable 1843 * 1844 * Many drivers want the device to wake up the system from D3_hot or D3_cold 1845 * and this function allows them to set that up cleanly - pci_enable_wake() 1846 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 1847 * ordering constraints. 1848 * 1849 * This function only returns error code if the device is not capable of 1850 * generating PME# from both D3_hot and D3_cold, and the platform is unable to 1851 * enable wake-up power for it. 1852 */ 1853 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 1854 { 1855 return pci_pme_capable(dev, PCI_D3cold) ? 1856 pci_enable_wake(dev, PCI_D3cold, enable) : 1857 pci_enable_wake(dev, PCI_D3hot, enable); 1858 } 1859 EXPORT_SYMBOL(pci_wake_from_d3); 1860 1861 /** 1862 * pci_target_state - find an appropriate low power state for a given PCI dev 1863 * @dev: PCI device 1864 * 1865 * Use underlying platform code to find a supported low power state for @dev. 1866 * If the platform can't manage @dev, return the deepest state from which it 1867 * can generate wake events, based on any available PME info. 1868 */ 1869 static pci_power_t pci_target_state(struct pci_dev *dev) 1870 { 1871 pci_power_t target_state = PCI_D3hot; 1872 1873 if (platform_pci_power_manageable(dev)) { 1874 /* 1875 * Call the platform to choose the target state of the device 1876 * and enable wake-up from this state if supported. 1877 */ 1878 pci_power_t state = platform_pci_choose_state(dev); 1879 1880 switch (state) { 1881 case PCI_POWER_ERROR: 1882 case PCI_UNKNOWN: 1883 break; 1884 case PCI_D1: 1885 case PCI_D2: 1886 if (pci_no_d1d2(dev)) 1887 break; 1888 default: 1889 target_state = state; 1890 } 1891 } else if (!dev->pm_cap) { 1892 target_state = PCI_D0; 1893 } else if (device_may_wakeup(&dev->dev)) { 1894 /* 1895 * Find the deepest state from which the device can generate 1896 * wake-up events, make it the target state and enable device 1897 * to generate PME#. 1898 */ 1899 if (dev->pme_support) { 1900 while (target_state 1901 && !(dev->pme_support & (1 << target_state))) 1902 target_state--; 1903 } 1904 } 1905 1906 return target_state; 1907 } 1908 1909 /** 1910 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state 1911 * @dev: Device to handle. 1912 * 1913 * Choose the power state appropriate for the device depending on whether 1914 * it can wake up the system and/or is power manageable by the platform 1915 * (PCI_D3hot is the default) and put the device into that state. 1916 */ 1917 int pci_prepare_to_sleep(struct pci_dev *dev) 1918 { 1919 pci_power_t target_state = pci_target_state(dev); 1920 int error; 1921 1922 if (target_state == PCI_POWER_ERROR) 1923 return -EIO; 1924 1925 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev)); 1926 1927 error = pci_set_power_state(dev, target_state); 1928 1929 if (error) 1930 pci_enable_wake(dev, target_state, false); 1931 1932 return error; 1933 } 1934 EXPORT_SYMBOL(pci_prepare_to_sleep); 1935 1936 /** 1937 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state 1938 * @dev: Device to handle. 1939 * 1940 * Disable device's system wake-up capability and put it into D0. 1941 */ 1942 int pci_back_from_sleep(struct pci_dev *dev) 1943 { 1944 pci_enable_wake(dev, PCI_D0, false); 1945 return pci_set_power_state(dev, PCI_D0); 1946 } 1947 EXPORT_SYMBOL(pci_back_from_sleep); 1948 1949 /** 1950 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 1951 * @dev: PCI device being suspended. 1952 * 1953 * Prepare @dev to generate wake-up events at run time and put it into a low 1954 * power state. 1955 */ 1956 int pci_finish_runtime_suspend(struct pci_dev *dev) 1957 { 1958 pci_power_t target_state = pci_target_state(dev); 1959 int error; 1960 1961 if (target_state == PCI_POWER_ERROR) 1962 return -EIO; 1963 1964 dev->runtime_d3cold = target_state == PCI_D3cold; 1965 1966 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev)); 1967 1968 error = pci_set_power_state(dev, target_state); 1969 1970 if (error) { 1971 __pci_enable_wake(dev, target_state, true, false); 1972 dev->runtime_d3cold = false; 1973 } 1974 1975 return error; 1976 } 1977 1978 /** 1979 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 1980 * @dev: Device to check. 1981 * 1982 * Return true if the device itself is capable of generating wake-up events 1983 * (through the platform or using the native PCIe PME) or if the device supports 1984 * PME and one of its upstream bridges can generate wake-up events. 1985 */ 1986 bool pci_dev_run_wake(struct pci_dev *dev) 1987 { 1988 struct pci_bus *bus = dev->bus; 1989 1990 if (device_run_wake(&dev->dev)) 1991 return true; 1992 1993 if (!dev->pme_support) 1994 return false; 1995 1996 while (bus->parent) { 1997 struct pci_dev *bridge = bus->self; 1998 1999 if (device_run_wake(&bridge->dev)) 2000 return true; 2001 2002 bus = bus->parent; 2003 } 2004 2005 /* We have reached the root bus. */ 2006 if (bus->bridge) 2007 return device_run_wake(bus->bridge); 2008 2009 return false; 2010 } 2011 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2012 2013 /** 2014 * pci_dev_keep_suspended - Check if the device can stay in the suspended state. 2015 * @pci_dev: Device to check. 2016 * 2017 * Return 'true' if the device is runtime-suspended, it doesn't have to be 2018 * reconfigured due to wakeup settings difference between system and runtime 2019 * suspend and the current power state of it is suitable for the upcoming 2020 * (system) transition. 2021 */ 2022 bool pci_dev_keep_suspended(struct pci_dev *pci_dev) 2023 { 2024 struct device *dev = &pci_dev->dev; 2025 2026 if (!pm_runtime_suspended(dev) 2027 || (device_can_wakeup(dev) && !device_may_wakeup(dev)) 2028 || platform_pci_need_resume(pci_dev)) 2029 return false; 2030 2031 return pci_target_state(pci_dev) == pci_dev->current_state; 2032 } 2033 2034 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2035 { 2036 struct device *dev = &pdev->dev; 2037 struct device *parent = dev->parent; 2038 2039 if (parent) 2040 pm_runtime_get_sync(parent); 2041 pm_runtime_get_noresume(dev); 2042 /* 2043 * pdev->current_state is set to PCI_D3cold during suspending, 2044 * so wait until suspending completes 2045 */ 2046 pm_runtime_barrier(dev); 2047 /* 2048 * Only need to resume devices in D3cold, because config 2049 * registers are still accessible for devices suspended but 2050 * not in D3cold. 2051 */ 2052 if (pdev->current_state == PCI_D3cold) 2053 pm_runtime_resume(dev); 2054 } 2055 2056 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2057 { 2058 struct device *dev = &pdev->dev; 2059 struct device *parent = dev->parent; 2060 2061 pm_runtime_put(dev); 2062 if (parent) 2063 pm_runtime_put_sync(parent); 2064 } 2065 2066 /** 2067 * pci_pm_init - Initialize PM functions of given PCI device 2068 * @dev: PCI device to handle. 2069 */ 2070 void pci_pm_init(struct pci_dev *dev) 2071 { 2072 int pm; 2073 u16 pmc; 2074 2075 pm_runtime_forbid(&dev->dev); 2076 pm_runtime_set_active(&dev->dev); 2077 pm_runtime_enable(&dev->dev); 2078 device_enable_async_suspend(&dev->dev); 2079 dev->wakeup_prepared = false; 2080 2081 dev->pm_cap = 0; 2082 dev->pme_support = 0; 2083 2084 /* find PCI PM capability in list */ 2085 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 2086 if (!pm) 2087 return; 2088 /* Check device's ability to generate PME# */ 2089 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 2090 2091 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 2092 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n", 2093 pmc & PCI_PM_CAP_VER_MASK); 2094 return; 2095 } 2096 2097 dev->pm_cap = pm; 2098 dev->d3_delay = PCI_PM_D3_WAIT; 2099 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 2100 dev->d3cold_allowed = true; 2101 2102 dev->d1_support = false; 2103 dev->d2_support = false; 2104 if (!pci_no_d1d2(dev)) { 2105 if (pmc & PCI_PM_CAP_D1) 2106 dev->d1_support = true; 2107 if (pmc & PCI_PM_CAP_D2) 2108 dev->d2_support = true; 2109 2110 if (dev->d1_support || dev->d2_support) 2111 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n", 2112 dev->d1_support ? " D1" : "", 2113 dev->d2_support ? " D2" : ""); 2114 } 2115 2116 pmc &= PCI_PM_CAP_PME_MASK; 2117 if (pmc) { 2118 dev_printk(KERN_DEBUG, &dev->dev, 2119 "PME# supported from%s%s%s%s%s\n", 2120 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 2121 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 2122 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 2123 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "", 2124 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 2125 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 2126 dev->pme_poll = true; 2127 /* 2128 * Make device's PM flags reflect the wake-up capability, but 2129 * let the user space enable it to wake up the system as needed. 2130 */ 2131 device_set_wakeup_capable(&dev->dev, true); 2132 /* Disable the PME# generation functionality */ 2133 pci_pme_active(dev, false); 2134 } 2135 } 2136 2137 static void pci_add_saved_cap(struct pci_dev *pci_dev, 2138 struct pci_cap_saved_state *new_cap) 2139 { 2140 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 2141 } 2142 2143 /** 2144 * _pci_add_cap_save_buffer - allocate buffer for saving given 2145 * capability registers 2146 * @dev: the PCI device 2147 * @cap: the capability to allocate the buffer for 2148 * @extended: Standard or Extended capability ID 2149 * @size: requested size of the buffer 2150 */ 2151 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 2152 bool extended, unsigned int size) 2153 { 2154 int pos; 2155 struct pci_cap_saved_state *save_state; 2156 2157 if (extended) 2158 pos = pci_find_ext_capability(dev, cap); 2159 else 2160 pos = pci_find_capability(dev, cap); 2161 2162 if (pos <= 0) 2163 return 0; 2164 2165 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 2166 if (!save_state) 2167 return -ENOMEM; 2168 2169 save_state->cap.cap_nr = cap; 2170 save_state->cap.cap_extended = extended; 2171 save_state->cap.size = size; 2172 pci_add_saved_cap(dev, save_state); 2173 2174 return 0; 2175 } 2176 2177 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 2178 { 2179 return _pci_add_cap_save_buffer(dev, cap, false, size); 2180 } 2181 2182 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 2183 { 2184 return _pci_add_cap_save_buffer(dev, cap, true, size); 2185 } 2186 2187 /** 2188 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 2189 * @dev: the PCI device 2190 */ 2191 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 2192 { 2193 int error; 2194 2195 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 2196 PCI_EXP_SAVE_REGS * sizeof(u16)); 2197 if (error) 2198 dev_err(&dev->dev, 2199 "unable to preallocate PCI Express save buffer\n"); 2200 2201 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 2202 if (error) 2203 dev_err(&dev->dev, 2204 "unable to preallocate PCI-X save buffer\n"); 2205 2206 pci_allocate_vc_save_buffers(dev); 2207 } 2208 2209 void pci_free_cap_save_buffers(struct pci_dev *dev) 2210 { 2211 struct pci_cap_saved_state *tmp; 2212 struct hlist_node *n; 2213 2214 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 2215 kfree(tmp); 2216 } 2217 2218 /** 2219 * pci_configure_ari - enable or disable ARI forwarding 2220 * @dev: the PCI device 2221 * 2222 * If @dev and its upstream bridge both support ARI, enable ARI in the 2223 * bridge. Otherwise, disable ARI in the bridge. 2224 */ 2225 void pci_configure_ari(struct pci_dev *dev) 2226 { 2227 u32 cap; 2228 struct pci_dev *bridge; 2229 2230 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 2231 return; 2232 2233 bridge = dev->bus->self; 2234 if (!bridge) 2235 return; 2236 2237 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 2238 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 2239 return; 2240 2241 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 2242 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 2243 PCI_EXP_DEVCTL2_ARI); 2244 bridge->ari_enabled = 1; 2245 } else { 2246 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 2247 PCI_EXP_DEVCTL2_ARI); 2248 bridge->ari_enabled = 0; 2249 } 2250 } 2251 2252 static int pci_acs_enable; 2253 2254 /** 2255 * pci_request_acs - ask for ACS to be enabled if supported 2256 */ 2257 void pci_request_acs(void) 2258 { 2259 pci_acs_enable = 1; 2260 } 2261 2262 /** 2263 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites 2264 * @dev: the PCI device 2265 */ 2266 static int pci_std_enable_acs(struct pci_dev *dev) 2267 { 2268 int pos; 2269 u16 cap; 2270 u16 ctrl; 2271 2272 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 2273 if (!pos) 2274 return -ENODEV; 2275 2276 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 2277 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 2278 2279 /* Source Validation */ 2280 ctrl |= (cap & PCI_ACS_SV); 2281 2282 /* P2P Request Redirect */ 2283 ctrl |= (cap & PCI_ACS_RR); 2284 2285 /* P2P Completion Redirect */ 2286 ctrl |= (cap & PCI_ACS_CR); 2287 2288 /* Upstream Forwarding */ 2289 ctrl |= (cap & PCI_ACS_UF); 2290 2291 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 2292 2293 return 0; 2294 } 2295 2296 /** 2297 * pci_enable_acs - enable ACS if hardware support it 2298 * @dev: the PCI device 2299 */ 2300 void pci_enable_acs(struct pci_dev *dev) 2301 { 2302 if (!pci_acs_enable) 2303 return; 2304 2305 if (!pci_std_enable_acs(dev)) 2306 return; 2307 2308 pci_dev_specific_enable_acs(dev); 2309 } 2310 2311 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 2312 { 2313 int pos; 2314 u16 cap, ctrl; 2315 2316 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 2317 if (!pos) 2318 return false; 2319 2320 /* 2321 * Except for egress control, capabilities are either required 2322 * or only required if controllable. Features missing from the 2323 * capability field can therefore be assumed as hard-wired enabled. 2324 */ 2325 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 2326 acs_flags &= (cap | PCI_ACS_EC); 2327 2328 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 2329 return (ctrl & acs_flags) == acs_flags; 2330 } 2331 2332 /** 2333 * pci_acs_enabled - test ACS against required flags for a given device 2334 * @pdev: device to test 2335 * @acs_flags: required PCI ACS flags 2336 * 2337 * Return true if the device supports the provided flags. Automatically 2338 * filters out flags that are not implemented on multifunction devices. 2339 * 2340 * Note that this interface checks the effective ACS capabilities of the 2341 * device rather than the actual capabilities. For instance, most single 2342 * function endpoints are not required to support ACS because they have no 2343 * opportunity for peer-to-peer access. We therefore return 'true' 2344 * regardless of whether the device exposes an ACS capability. This makes 2345 * it much easier for callers of this function to ignore the actual type 2346 * or topology of the device when testing ACS support. 2347 */ 2348 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 2349 { 2350 int ret; 2351 2352 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 2353 if (ret >= 0) 2354 return ret > 0; 2355 2356 /* 2357 * Conventional PCI and PCI-X devices never support ACS, either 2358 * effectively or actually. The shared bus topology implies that 2359 * any device on the bus can receive or snoop DMA. 2360 */ 2361 if (!pci_is_pcie(pdev)) 2362 return false; 2363 2364 switch (pci_pcie_type(pdev)) { 2365 /* 2366 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 2367 * but since their primary interface is PCI/X, we conservatively 2368 * handle them as we would a non-PCIe device. 2369 */ 2370 case PCI_EXP_TYPE_PCIE_BRIDGE: 2371 /* 2372 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 2373 * applicable... must never implement an ACS Extended Capability...". 2374 * This seems arbitrary, but we take a conservative interpretation 2375 * of this statement. 2376 */ 2377 case PCI_EXP_TYPE_PCI_BRIDGE: 2378 case PCI_EXP_TYPE_RC_EC: 2379 return false; 2380 /* 2381 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 2382 * implement ACS in order to indicate their peer-to-peer capabilities, 2383 * regardless of whether they are single- or multi-function devices. 2384 */ 2385 case PCI_EXP_TYPE_DOWNSTREAM: 2386 case PCI_EXP_TYPE_ROOT_PORT: 2387 return pci_acs_flags_enabled(pdev, acs_flags); 2388 /* 2389 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 2390 * implemented by the remaining PCIe types to indicate peer-to-peer 2391 * capabilities, but only when they are part of a multifunction 2392 * device. The footnote for section 6.12 indicates the specific 2393 * PCIe types included here. 2394 */ 2395 case PCI_EXP_TYPE_ENDPOINT: 2396 case PCI_EXP_TYPE_UPSTREAM: 2397 case PCI_EXP_TYPE_LEG_END: 2398 case PCI_EXP_TYPE_RC_END: 2399 if (!pdev->multifunction) 2400 break; 2401 2402 return pci_acs_flags_enabled(pdev, acs_flags); 2403 } 2404 2405 /* 2406 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 2407 * to single function devices with the exception of downstream ports. 2408 */ 2409 return true; 2410 } 2411 2412 /** 2413 * pci_acs_path_enable - test ACS flags from start to end in a hierarchy 2414 * @start: starting downstream device 2415 * @end: ending upstream device or NULL to search to the root bus 2416 * @acs_flags: required flags 2417 * 2418 * Walk up a device tree from start to end testing PCI ACS support. If 2419 * any step along the way does not support the required flags, return false. 2420 */ 2421 bool pci_acs_path_enabled(struct pci_dev *start, 2422 struct pci_dev *end, u16 acs_flags) 2423 { 2424 struct pci_dev *pdev, *parent = start; 2425 2426 do { 2427 pdev = parent; 2428 2429 if (!pci_acs_enabled(pdev, acs_flags)) 2430 return false; 2431 2432 if (pci_is_root_bus(pdev->bus)) 2433 return (end == NULL); 2434 2435 parent = pdev->bus->self; 2436 } while (pdev != end); 2437 2438 return true; 2439 } 2440 2441 /** 2442 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 2443 * @dev: the PCI device 2444 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 2445 * 2446 * Perform INTx swizzling for a device behind one level of bridge. This is 2447 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 2448 * behind bridges on add-in cards. For devices with ARI enabled, the slot 2449 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 2450 * the PCI Express Base Specification, Revision 2.1) 2451 */ 2452 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 2453 { 2454 int slot; 2455 2456 if (pci_ari_enabled(dev->bus)) 2457 slot = 0; 2458 else 2459 slot = PCI_SLOT(dev->devfn); 2460 2461 return (((pin - 1) + slot) % 4) + 1; 2462 } 2463 2464 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 2465 { 2466 u8 pin; 2467 2468 pin = dev->pin; 2469 if (!pin) 2470 return -1; 2471 2472 while (!pci_is_root_bus(dev->bus)) { 2473 pin = pci_swizzle_interrupt_pin(dev, pin); 2474 dev = dev->bus->self; 2475 } 2476 *bridge = dev; 2477 return pin; 2478 } 2479 2480 /** 2481 * pci_common_swizzle - swizzle INTx all the way to root bridge 2482 * @dev: the PCI device 2483 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 2484 * 2485 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 2486 * bridges all the way up to a PCI root bus. 2487 */ 2488 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 2489 { 2490 u8 pin = *pinp; 2491 2492 while (!pci_is_root_bus(dev->bus)) { 2493 pin = pci_swizzle_interrupt_pin(dev, pin); 2494 dev = dev->bus->self; 2495 } 2496 *pinp = pin; 2497 return PCI_SLOT(dev->devfn); 2498 } 2499 EXPORT_SYMBOL_GPL(pci_common_swizzle); 2500 2501 /** 2502 * pci_release_region - Release a PCI bar 2503 * @pdev: PCI device whose resources were previously reserved by pci_request_region 2504 * @bar: BAR to release 2505 * 2506 * Releases the PCI I/O and memory resources previously reserved by a 2507 * successful call to pci_request_region. Call this function only 2508 * after all use of the PCI regions has ceased. 2509 */ 2510 void pci_release_region(struct pci_dev *pdev, int bar) 2511 { 2512 struct pci_devres *dr; 2513 2514 if (pci_resource_len(pdev, bar) == 0) 2515 return; 2516 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 2517 release_region(pci_resource_start(pdev, bar), 2518 pci_resource_len(pdev, bar)); 2519 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 2520 release_mem_region(pci_resource_start(pdev, bar), 2521 pci_resource_len(pdev, bar)); 2522 2523 dr = find_pci_dr(pdev); 2524 if (dr) 2525 dr->region_mask &= ~(1 << bar); 2526 } 2527 EXPORT_SYMBOL(pci_release_region); 2528 2529 /** 2530 * __pci_request_region - Reserved PCI I/O and memory resource 2531 * @pdev: PCI device whose resources are to be reserved 2532 * @bar: BAR to be reserved 2533 * @res_name: Name to be associated with resource. 2534 * @exclusive: whether the region access is exclusive or not 2535 * 2536 * Mark the PCI region associated with PCI device @pdev BR @bar as 2537 * being reserved by owner @res_name. Do not access any 2538 * address inside the PCI regions unless this call returns 2539 * successfully. 2540 * 2541 * If @exclusive is set, then the region is marked so that userspace 2542 * is explicitly not allowed to map the resource via /dev/mem or 2543 * sysfs MMIO access. 2544 * 2545 * Returns 0 on success, or %EBUSY on error. A warning 2546 * message is also printed on failure. 2547 */ 2548 static int __pci_request_region(struct pci_dev *pdev, int bar, 2549 const char *res_name, int exclusive) 2550 { 2551 struct pci_devres *dr; 2552 2553 if (pci_resource_len(pdev, bar) == 0) 2554 return 0; 2555 2556 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 2557 if (!request_region(pci_resource_start(pdev, bar), 2558 pci_resource_len(pdev, bar), res_name)) 2559 goto err_out; 2560 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 2561 if (!__request_mem_region(pci_resource_start(pdev, bar), 2562 pci_resource_len(pdev, bar), res_name, 2563 exclusive)) 2564 goto err_out; 2565 } 2566 2567 dr = find_pci_dr(pdev); 2568 if (dr) 2569 dr->region_mask |= 1 << bar; 2570 2571 return 0; 2572 2573 err_out: 2574 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar, 2575 &pdev->resource[bar]); 2576 return -EBUSY; 2577 } 2578 2579 /** 2580 * pci_request_region - Reserve PCI I/O and memory resource 2581 * @pdev: PCI device whose resources are to be reserved 2582 * @bar: BAR to be reserved 2583 * @res_name: Name to be associated with resource 2584 * 2585 * Mark the PCI region associated with PCI device @pdev BAR @bar as 2586 * being reserved by owner @res_name. Do not access any 2587 * address inside the PCI regions unless this call returns 2588 * successfully. 2589 * 2590 * Returns 0 on success, or %EBUSY on error. A warning 2591 * message is also printed on failure. 2592 */ 2593 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 2594 { 2595 return __pci_request_region(pdev, bar, res_name, 0); 2596 } 2597 EXPORT_SYMBOL(pci_request_region); 2598 2599 /** 2600 * pci_request_region_exclusive - Reserved PCI I/O and memory resource 2601 * @pdev: PCI device whose resources are to be reserved 2602 * @bar: BAR to be reserved 2603 * @res_name: Name to be associated with resource. 2604 * 2605 * Mark the PCI region associated with PCI device @pdev BR @bar as 2606 * being reserved by owner @res_name. Do not access any 2607 * address inside the PCI regions unless this call returns 2608 * successfully. 2609 * 2610 * Returns 0 on success, or %EBUSY on error. A warning 2611 * message is also printed on failure. 2612 * 2613 * The key difference that _exclusive makes it that userspace is 2614 * explicitly not allowed to map the resource via /dev/mem or 2615 * sysfs. 2616 */ 2617 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, 2618 const char *res_name) 2619 { 2620 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE); 2621 } 2622 EXPORT_SYMBOL(pci_request_region_exclusive); 2623 2624 /** 2625 * pci_release_selected_regions - Release selected PCI I/O and memory resources 2626 * @pdev: PCI device whose resources were previously reserved 2627 * @bars: Bitmask of BARs to be released 2628 * 2629 * Release selected PCI I/O and memory resources previously reserved. 2630 * Call this function only after all use of the PCI regions has ceased. 2631 */ 2632 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 2633 { 2634 int i; 2635 2636 for (i = 0; i < 6; i++) 2637 if (bars & (1 << i)) 2638 pci_release_region(pdev, i); 2639 } 2640 EXPORT_SYMBOL(pci_release_selected_regions); 2641 2642 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 2643 const char *res_name, int excl) 2644 { 2645 int i; 2646 2647 for (i = 0; i < 6; i++) 2648 if (bars & (1 << i)) 2649 if (__pci_request_region(pdev, i, res_name, excl)) 2650 goto err_out; 2651 return 0; 2652 2653 err_out: 2654 while (--i >= 0) 2655 if (bars & (1 << i)) 2656 pci_release_region(pdev, i); 2657 2658 return -EBUSY; 2659 } 2660 2661 2662 /** 2663 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 2664 * @pdev: PCI device whose resources are to be reserved 2665 * @bars: Bitmask of BARs to be requested 2666 * @res_name: Name to be associated with resource 2667 */ 2668 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 2669 const char *res_name) 2670 { 2671 return __pci_request_selected_regions(pdev, bars, res_name, 0); 2672 } 2673 EXPORT_SYMBOL(pci_request_selected_regions); 2674 2675 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 2676 const char *res_name) 2677 { 2678 return __pci_request_selected_regions(pdev, bars, res_name, 2679 IORESOURCE_EXCLUSIVE); 2680 } 2681 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 2682 2683 /** 2684 * pci_release_regions - Release reserved PCI I/O and memory resources 2685 * @pdev: PCI device whose resources were previously reserved by pci_request_regions 2686 * 2687 * Releases all PCI I/O and memory resources previously reserved by a 2688 * successful call to pci_request_regions. Call this function only 2689 * after all use of the PCI regions has ceased. 2690 */ 2691 2692 void pci_release_regions(struct pci_dev *pdev) 2693 { 2694 pci_release_selected_regions(pdev, (1 << 6) - 1); 2695 } 2696 EXPORT_SYMBOL(pci_release_regions); 2697 2698 /** 2699 * pci_request_regions - Reserved PCI I/O and memory resources 2700 * @pdev: PCI device whose resources are to be reserved 2701 * @res_name: Name to be associated with resource. 2702 * 2703 * Mark all PCI regions associated with PCI device @pdev as 2704 * being reserved by owner @res_name. Do not access any 2705 * address inside the PCI regions unless this call returns 2706 * successfully. 2707 * 2708 * Returns 0 on success, or %EBUSY on error. A warning 2709 * message is also printed on failure. 2710 */ 2711 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 2712 { 2713 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name); 2714 } 2715 EXPORT_SYMBOL(pci_request_regions); 2716 2717 /** 2718 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources 2719 * @pdev: PCI device whose resources are to be reserved 2720 * @res_name: Name to be associated with resource. 2721 * 2722 * Mark all PCI regions associated with PCI device @pdev as 2723 * being reserved by owner @res_name. Do not access any 2724 * address inside the PCI regions unless this call returns 2725 * successfully. 2726 * 2727 * pci_request_regions_exclusive() will mark the region so that 2728 * /dev/mem and the sysfs MMIO access will not be allowed. 2729 * 2730 * Returns 0 on success, or %EBUSY on error. A warning 2731 * message is also printed on failure. 2732 */ 2733 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 2734 { 2735 return pci_request_selected_regions_exclusive(pdev, 2736 ((1 << 6) - 1), res_name); 2737 } 2738 EXPORT_SYMBOL(pci_request_regions_exclusive); 2739 2740 /** 2741 * pci_remap_iospace - Remap the memory mapped I/O space 2742 * @res: Resource describing the I/O space 2743 * @phys_addr: physical address of range to be mapped 2744 * 2745 * Remap the memory mapped I/O space described by the @res 2746 * and the CPU physical address @phys_addr into virtual address space. 2747 * Only architectures that have memory mapped IO functions defined 2748 * (and the PCI_IOBASE value defined) should call this function. 2749 */ 2750 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 2751 { 2752 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 2753 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 2754 2755 if (!(res->flags & IORESOURCE_IO)) 2756 return -EINVAL; 2757 2758 if (res->end > IO_SPACE_LIMIT) 2759 return -EINVAL; 2760 2761 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 2762 pgprot_device(PAGE_KERNEL)); 2763 #else 2764 /* this architecture does not have memory mapped I/O space, 2765 so this function should never be called */ 2766 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 2767 return -ENODEV; 2768 #endif 2769 } 2770 2771 static void __pci_set_master(struct pci_dev *dev, bool enable) 2772 { 2773 u16 old_cmd, cmd; 2774 2775 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 2776 if (enable) 2777 cmd = old_cmd | PCI_COMMAND_MASTER; 2778 else 2779 cmd = old_cmd & ~PCI_COMMAND_MASTER; 2780 if (cmd != old_cmd) { 2781 dev_dbg(&dev->dev, "%s bus mastering\n", 2782 enable ? "enabling" : "disabling"); 2783 pci_write_config_word(dev, PCI_COMMAND, cmd); 2784 } 2785 dev->is_busmaster = enable; 2786 } 2787 2788 /** 2789 * pcibios_setup - process "pci=" kernel boot arguments 2790 * @str: string used to pass in "pci=" kernel boot arguments 2791 * 2792 * Process kernel boot arguments. This is the default implementation. 2793 * Architecture specific implementations can override this as necessary. 2794 */ 2795 char * __weak __init pcibios_setup(char *str) 2796 { 2797 return str; 2798 } 2799 2800 /** 2801 * pcibios_set_master - enable PCI bus-mastering for device dev 2802 * @dev: the PCI device to enable 2803 * 2804 * Enables PCI bus-mastering for the device. This is the default 2805 * implementation. Architecture specific implementations can override 2806 * this if necessary. 2807 */ 2808 void __weak pcibios_set_master(struct pci_dev *dev) 2809 { 2810 u8 lat; 2811 2812 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 2813 if (pci_is_pcie(dev)) 2814 return; 2815 2816 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 2817 if (lat < 16) 2818 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 2819 else if (lat > pcibios_max_latency) 2820 lat = pcibios_max_latency; 2821 else 2822 return; 2823 2824 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 2825 } 2826 2827 /** 2828 * pci_set_master - enables bus-mastering for device dev 2829 * @dev: the PCI device to enable 2830 * 2831 * Enables bus-mastering on the device and calls pcibios_set_master() 2832 * to do the needed arch specific settings. 2833 */ 2834 void pci_set_master(struct pci_dev *dev) 2835 { 2836 __pci_set_master(dev, true); 2837 pcibios_set_master(dev); 2838 } 2839 EXPORT_SYMBOL(pci_set_master); 2840 2841 /** 2842 * pci_clear_master - disables bus-mastering for device dev 2843 * @dev: the PCI device to disable 2844 */ 2845 void pci_clear_master(struct pci_dev *dev) 2846 { 2847 __pci_set_master(dev, false); 2848 } 2849 EXPORT_SYMBOL(pci_clear_master); 2850 2851 /** 2852 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 2853 * @dev: the PCI device for which MWI is to be enabled 2854 * 2855 * Helper function for pci_set_mwi. 2856 * Originally copied from drivers/net/acenic.c. 2857 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 2858 * 2859 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2860 */ 2861 int pci_set_cacheline_size(struct pci_dev *dev) 2862 { 2863 u8 cacheline_size; 2864 2865 if (!pci_cache_line_size) 2866 return -EINVAL; 2867 2868 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 2869 equal to or multiple of the right value. */ 2870 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2871 if (cacheline_size >= pci_cache_line_size && 2872 (cacheline_size % pci_cache_line_size) == 0) 2873 return 0; 2874 2875 /* Write the correct value. */ 2876 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 2877 /* Read it back. */ 2878 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 2879 if (cacheline_size == pci_cache_line_size) 2880 return 0; 2881 2882 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n", 2883 pci_cache_line_size << 2); 2884 2885 return -EINVAL; 2886 } 2887 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 2888 2889 /** 2890 * pci_set_mwi - enables memory-write-invalidate PCI transaction 2891 * @dev: the PCI device for which MWI is enabled 2892 * 2893 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2894 * 2895 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2896 */ 2897 int pci_set_mwi(struct pci_dev *dev) 2898 { 2899 #ifdef PCI_DISABLE_MWI 2900 return 0; 2901 #else 2902 int rc; 2903 u16 cmd; 2904 2905 rc = pci_set_cacheline_size(dev); 2906 if (rc) 2907 return rc; 2908 2909 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2910 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 2911 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n"); 2912 cmd |= PCI_COMMAND_INVALIDATE; 2913 pci_write_config_word(dev, PCI_COMMAND, cmd); 2914 } 2915 return 0; 2916 #endif 2917 } 2918 EXPORT_SYMBOL(pci_set_mwi); 2919 2920 /** 2921 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 2922 * @dev: the PCI device for which MWI is enabled 2923 * 2924 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 2925 * Callers are not required to check the return value. 2926 * 2927 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 2928 */ 2929 int pci_try_set_mwi(struct pci_dev *dev) 2930 { 2931 #ifdef PCI_DISABLE_MWI 2932 return 0; 2933 #else 2934 return pci_set_mwi(dev); 2935 #endif 2936 } 2937 EXPORT_SYMBOL(pci_try_set_mwi); 2938 2939 /** 2940 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 2941 * @dev: the PCI device to disable 2942 * 2943 * Disables PCI Memory-Write-Invalidate transaction on the device 2944 */ 2945 void pci_clear_mwi(struct pci_dev *dev) 2946 { 2947 #ifndef PCI_DISABLE_MWI 2948 u16 cmd; 2949 2950 pci_read_config_word(dev, PCI_COMMAND, &cmd); 2951 if (cmd & PCI_COMMAND_INVALIDATE) { 2952 cmd &= ~PCI_COMMAND_INVALIDATE; 2953 pci_write_config_word(dev, PCI_COMMAND, cmd); 2954 } 2955 #endif 2956 } 2957 EXPORT_SYMBOL(pci_clear_mwi); 2958 2959 /** 2960 * pci_intx - enables/disables PCI INTx for device dev 2961 * @pdev: the PCI device to operate on 2962 * @enable: boolean: whether to enable or disable PCI INTx 2963 * 2964 * Enables/disables PCI INTx for device dev 2965 */ 2966 void pci_intx(struct pci_dev *pdev, int enable) 2967 { 2968 u16 pci_command, new; 2969 2970 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 2971 2972 if (enable) 2973 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 2974 else 2975 new = pci_command | PCI_COMMAND_INTX_DISABLE; 2976 2977 if (new != pci_command) { 2978 struct pci_devres *dr; 2979 2980 pci_write_config_word(pdev, PCI_COMMAND, new); 2981 2982 dr = find_pci_dr(pdev); 2983 if (dr && !dr->restore_intx) { 2984 dr->restore_intx = 1; 2985 dr->orig_intx = !enable; 2986 } 2987 } 2988 } 2989 EXPORT_SYMBOL_GPL(pci_intx); 2990 2991 /** 2992 * pci_intx_mask_supported - probe for INTx masking support 2993 * @dev: the PCI device to operate on 2994 * 2995 * Check if the device dev support INTx masking via the config space 2996 * command word. 2997 */ 2998 bool pci_intx_mask_supported(struct pci_dev *dev) 2999 { 3000 bool mask_supported = false; 3001 u16 orig, new; 3002 3003 if (dev->broken_intx_masking) 3004 return false; 3005 3006 pci_cfg_access_lock(dev); 3007 3008 pci_read_config_word(dev, PCI_COMMAND, &orig); 3009 pci_write_config_word(dev, PCI_COMMAND, 3010 orig ^ PCI_COMMAND_INTX_DISABLE); 3011 pci_read_config_word(dev, PCI_COMMAND, &new); 3012 3013 /* 3014 * There's no way to protect against hardware bugs or detect them 3015 * reliably, but as long as we know what the value should be, let's 3016 * go ahead and check it. 3017 */ 3018 if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) { 3019 dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n", 3020 orig, new); 3021 } else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) { 3022 mask_supported = true; 3023 pci_write_config_word(dev, PCI_COMMAND, orig); 3024 } 3025 3026 pci_cfg_access_unlock(dev); 3027 return mask_supported; 3028 } 3029 EXPORT_SYMBOL_GPL(pci_intx_mask_supported); 3030 3031 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 3032 { 3033 struct pci_bus *bus = dev->bus; 3034 bool mask_updated = true; 3035 u32 cmd_status_dword; 3036 u16 origcmd, newcmd; 3037 unsigned long flags; 3038 bool irq_pending; 3039 3040 /* 3041 * We do a single dword read to retrieve both command and status. 3042 * Document assumptions that make this possible. 3043 */ 3044 BUILD_BUG_ON(PCI_COMMAND % 4); 3045 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 3046 3047 raw_spin_lock_irqsave(&pci_lock, flags); 3048 3049 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 3050 3051 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 3052 3053 /* 3054 * Check interrupt status register to see whether our device 3055 * triggered the interrupt (when masking) or the next IRQ is 3056 * already pending (when unmasking). 3057 */ 3058 if (mask != irq_pending) { 3059 mask_updated = false; 3060 goto done; 3061 } 3062 3063 origcmd = cmd_status_dword; 3064 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 3065 if (mask) 3066 newcmd |= PCI_COMMAND_INTX_DISABLE; 3067 if (newcmd != origcmd) 3068 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 3069 3070 done: 3071 raw_spin_unlock_irqrestore(&pci_lock, flags); 3072 3073 return mask_updated; 3074 } 3075 3076 /** 3077 * pci_check_and_mask_intx - mask INTx on pending interrupt 3078 * @dev: the PCI device to operate on 3079 * 3080 * Check if the device dev has its INTx line asserted, mask it and 3081 * return true in that case. False is returned if not interrupt was 3082 * pending. 3083 */ 3084 bool pci_check_and_mask_intx(struct pci_dev *dev) 3085 { 3086 return pci_check_and_set_intx_mask(dev, true); 3087 } 3088 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 3089 3090 /** 3091 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 3092 * @dev: the PCI device to operate on 3093 * 3094 * Check if the device dev has its INTx line asserted, unmask it if not 3095 * and return true. False is returned and the mask remains active if 3096 * there was still an interrupt pending. 3097 */ 3098 bool pci_check_and_unmask_intx(struct pci_dev *dev) 3099 { 3100 return pci_check_and_set_intx_mask(dev, false); 3101 } 3102 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 3103 3104 /** 3105 * pci_msi_off - disables any MSI or MSI-X capabilities 3106 * @dev: the PCI device to operate on 3107 * 3108 * If you want to use MSI, see pci_enable_msi() and friends. 3109 * This is a lower-level primitive that allows us to disable 3110 * MSI operation at the device level. 3111 */ 3112 void pci_msi_off(struct pci_dev *dev) 3113 { 3114 int pos; 3115 u16 control; 3116 3117 /* 3118 * This looks like it could go in msi.c, but we need it even when 3119 * CONFIG_PCI_MSI=n. For the same reason, we can't use 3120 * dev->msi_cap or dev->msix_cap here. 3121 */ 3122 pos = pci_find_capability(dev, PCI_CAP_ID_MSI); 3123 if (pos) { 3124 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control); 3125 control &= ~PCI_MSI_FLAGS_ENABLE; 3126 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control); 3127 } 3128 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX); 3129 if (pos) { 3130 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control); 3131 control &= ~PCI_MSIX_FLAGS_ENABLE; 3132 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control); 3133 } 3134 } 3135 EXPORT_SYMBOL_GPL(pci_msi_off); 3136 3137 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size) 3138 { 3139 return dma_set_max_seg_size(&dev->dev, size); 3140 } 3141 EXPORT_SYMBOL(pci_set_dma_max_seg_size); 3142 3143 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask) 3144 { 3145 return dma_set_seg_boundary(&dev->dev, mask); 3146 } 3147 EXPORT_SYMBOL(pci_set_dma_seg_boundary); 3148 3149 /** 3150 * pci_wait_for_pending_transaction - waits for pending transaction 3151 * @dev: the PCI device to operate on 3152 * 3153 * Return 0 if transaction is pending 1 otherwise. 3154 */ 3155 int pci_wait_for_pending_transaction(struct pci_dev *dev) 3156 { 3157 if (!pci_is_pcie(dev)) 3158 return 1; 3159 3160 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 3161 PCI_EXP_DEVSTA_TRPND); 3162 } 3163 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 3164 3165 static int pcie_flr(struct pci_dev *dev, int probe) 3166 { 3167 u32 cap; 3168 3169 pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap); 3170 if (!(cap & PCI_EXP_DEVCAP_FLR)) 3171 return -ENOTTY; 3172 3173 if (probe) 3174 return 0; 3175 3176 if (!pci_wait_for_pending_transaction(dev)) 3177 dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 3178 3179 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 3180 msleep(100); 3181 return 0; 3182 } 3183 3184 static int pci_af_flr(struct pci_dev *dev, int probe) 3185 { 3186 int pos; 3187 u8 cap; 3188 3189 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 3190 if (!pos) 3191 return -ENOTTY; 3192 3193 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 3194 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 3195 return -ENOTTY; 3196 3197 if (probe) 3198 return 0; 3199 3200 /* 3201 * Wait for Transaction Pending bit to clear. A word-aligned test 3202 * is used, so we use the conrol offset rather than status and shift 3203 * the test bit to match. 3204 */ 3205 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 3206 PCI_AF_STATUS_TP << 8)) 3207 dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 3208 3209 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 3210 msleep(100); 3211 return 0; 3212 } 3213 3214 /** 3215 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 3216 * @dev: Device to reset. 3217 * @probe: If set, only check if the device can be reset this way. 3218 * 3219 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 3220 * unset, it will be reinitialized internally when going from PCI_D3hot to 3221 * PCI_D0. If that's the case and the device is not in a low-power state 3222 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 3223 * 3224 * NOTE: This causes the caller to sleep for twice the device power transition 3225 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 3226 * by default (i.e. unless the @dev's d3_delay field has a different value). 3227 * Moreover, only devices in D0 can be reset by this function. 3228 */ 3229 static int pci_pm_reset(struct pci_dev *dev, int probe) 3230 { 3231 u16 csr; 3232 3233 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 3234 return -ENOTTY; 3235 3236 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 3237 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 3238 return -ENOTTY; 3239 3240 if (probe) 3241 return 0; 3242 3243 if (dev->current_state != PCI_D0) 3244 return -EINVAL; 3245 3246 csr &= ~PCI_PM_CTRL_STATE_MASK; 3247 csr |= PCI_D3hot; 3248 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3249 pci_dev_d3_sleep(dev); 3250 3251 csr &= ~PCI_PM_CTRL_STATE_MASK; 3252 csr |= PCI_D0; 3253 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 3254 pci_dev_d3_sleep(dev); 3255 3256 return 0; 3257 } 3258 3259 void pci_reset_secondary_bus(struct pci_dev *dev) 3260 { 3261 u16 ctrl; 3262 3263 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 3264 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 3265 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3266 /* 3267 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 3268 * this to 2ms to ensure that we meet the minimum requirement. 3269 */ 3270 msleep(2); 3271 3272 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 3273 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 3274 3275 /* 3276 * Trhfa for conventional PCI is 2^25 clock cycles. 3277 * Assuming a minimum 33MHz clock this results in a 1s 3278 * delay before we can consider subordinate devices to 3279 * be re-initialized. PCIe has some ways to shorten this, 3280 * but we don't make use of them yet. 3281 */ 3282 ssleep(1); 3283 } 3284 3285 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 3286 { 3287 pci_reset_secondary_bus(dev); 3288 } 3289 3290 /** 3291 * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge. 3292 * @dev: Bridge device 3293 * 3294 * Use the bridge control register to assert reset on the secondary bus. 3295 * Devices on the secondary bus are left in power-on state. 3296 */ 3297 void pci_reset_bridge_secondary_bus(struct pci_dev *dev) 3298 { 3299 pcibios_reset_secondary_bus(dev); 3300 } 3301 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus); 3302 3303 static int pci_parent_bus_reset(struct pci_dev *dev, int probe) 3304 { 3305 struct pci_dev *pdev; 3306 3307 if (pci_is_root_bus(dev->bus) || dev->subordinate || 3308 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3309 return -ENOTTY; 3310 3311 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3312 if (pdev != dev) 3313 return -ENOTTY; 3314 3315 if (probe) 3316 return 0; 3317 3318 pci_reset_bridge_secondary_bus(dev->bus->self); 3319 3320 return 0; 3321 } 3322 3323 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe) 3324 { 3325 int rc = -ENOTTY; 3326 3327 if (!hotplug || !try_module_get(hotplug->ops->owner)) 3328 return rc; 3329 3330 if (hotplug->ops->reset_slot) 3331 rc = hotplug->ops->reset_slot(hotplug, probe); 3332 3333 module_put(hotplug->ops->owner); 3334 3335 return rc; 3336 } 3337 3338 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe) 3339 { 3340 struct pci_dev *pdev; 3341 3342 if (dev->subordinate || !dev->slot || 3343 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 3344 return -ENOTTY; 3345 3346 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 3347 if (pdev != dev && pdev->slot == dev->slot) 3348 return -ENOTTY; 3349 3350 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 3351 } 3352 3353 static int __pci_dev_reset(struct pci_dev *dev, int probe) 3354 { 3355 int rc; 3356 3357 might_sleep(); 3358 3359 rc = pci_dev_specific_reset(dev, probe); 3360 if (rc != -ENOTTY) 3361 goto done; 3362 3363 rc = pcie_flr(dev, probe); 3364 if (rc != -ENOTTY) 3365 goto done; 3366 3367 rc = pci_af_flr(dev, probe); 3368 if (rc != -ENOTTY) 3369 goto done; 3370 3371 rc = pci_pm_reset(dev, probe); 3372 if (rc != -ENOTTY) 3373 goto done; 3374 3375 rc = pci_dev_reset_slot_function(dev, probe); 3376 if (rc != -ENOTTY) 3377 goto done; 3378 3379 rc = pci_parent_bus_reset(dev, probe); 3380 done: 3381 return rc; 3382 } 3383 3384 static void pci_dev_lock(struct pci_dev *dev) 3385 { 3386 pci_cfg_access_lock(dev); 3387 /* block PM suspend, driver probe, etc. */ 3388 device_lock(&dev->dev); 3389 } 3390 3391 /* Return 1 on successful lock, 0 on contention */ 3392 static int pci_dev_trylock(struct pci_dev *dev) 3393 { 3394 if (pci_cfg_access_trylock(dev)) { 3395 if (device_trylock(&dev->dev)) 3396 return 1; 3397 pci_cfg_access_unlock(dev); 3398 } 3399 3400 return 0; 3401 } 3402 3403 static void pci_dev_unlock(struct pci_dev *dev) 3404 { 3405 device_unlock(&dev->dev); 3406 pci_cfg_access_unlock(dev); 3407 } 3408 3409 /** 3410 * pci_reset_notify - notify device driver of reset 3411 * @dev: device to be notified of reset 3412 * @prepare: 'true' if device is about to be reset; 'false' if reset attempt 3413 * completed 3414 * 3415 * Must be called prior to device access being disabled and after device 3416 * access is restored. 3417 */ 3418 static void pci_reset_notify(struct pci_dev *dev, bool prepare) 3419 { 3420 const struct pci_error_handlers *err_handler = 3421 dev->driver ? dev->driver->err_handler : NULL; 3422 if (err_handler && err_handler->reset_notify) 3423 err_handler->reset_notify(dev, prepare); 3424 } 3425 3426 static void pci_dev_save_and_disable(struct pci_dev *dev) 3427 { 3428 pci_reset_notify(dev, true); 3429 3430 /* 3431 * Wake-up device prior to save. PM registers default to D0 after 3432 * reset and a simple register restore doesn't reliably return 3433 * to a non-D0 state anyway. 3434 */ 3435 pci_set_power_state(dev, PCI_D0); 3436 3437 pci_save_state(dev); 3438 /* 3439 * Disable the device by clearing the Command register, except for 3440 * INTx-disable which is set. This not only disables MMIO and I/O port 3441 * BARs, but also prevents the device from being Bus Master, preventing 3442 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 3443 * compliant devices, INTx-disable prevents legacy interrupts. 3444 */ 3445 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 3446 } 3447 3448 static void pci_dev_restore(struct pci_dev *dev) 3449 { 3450 pci_restore_state(dev); 3451 pci_reset_notify(dev, false); 3452 } 3453 3454 static int pci_dev_reset(struct pci_dev *dev, int probe) 3455 { 3456 int rc; 3457 3458 if (!probe) 3459 pci_dev_lock(dev); 3460 3461 rc = __pci_dev_reset(dev, probe); 3462 3463 if (!probe) 3464 pci_dev_unlock(dev); 3465 3466 return rc; 3467 } 3468 3469 /** 3470 * __pci_reset_function - reset a PCI device function 3471 * @dev: PCI device to reset 3472 * 3473 * Some devices allow an individual function to be reset without affecting 3474 * other functions in the same device. The PCI device must be responsive 3475 * to PCI config space in order to use this function. 3476 * 3477 * The device function is presumed to be unused when this function is called. 3478 * Resetting the device will make the contents of PCI configuration space 3479 * random, so any caller of this must be prepared to reinitialise the 3480 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3481 * etc. 3482 * 3483 * Returns 0 if the device function was successfully reset or negative if the 3484 * device doesn't support resetting a single function. 3485 */ 3486 int __pci_reset_function(struct pci_dev *dev) 3487 { 3488 return pci_dev_reset(dev, 0); 3489 } 3490 EXPORT_SYMBOL_GPL(__pci_reset_function); 3491 3492 /** 3493 * __pci_reset_function_locked - reset a PCI device function while holding 3494 * the @dev mutex lock. 3495 * @dev: PCI device to reset 3496 * 3497 * Some devices allow an individual function to be reset without affecting 3498 * other functions in the same device. The PCI device must be responsive 3499 * to PCI config space in order to use this function. 3500 * 3501 * The device function is presumed to be unused and the caller is holding 3502 * the device mutex lock when this function is called. 3503 * Resetting the device will make the contents of PCI configuration space 3504 * random, so any caller of this must be prepared to reinitialise the 3505 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 3506 * etc. 3507 * 3508 * Returns 0 if the device function was successfully reset or negative if the 3509 * device doesn't support resetting a single function. 3510 */ 3511 int __pci_reset_function_locked(struct pci_dev *dev) 3512 { 3513 return __pci_dev_reset(dev, 0); 3514 } 3515 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 3516 3517 /** 3518 * pci_probe_reset_function - check whether the device can be safely reset 3519 * @dev: PCI device to reset 3520 * 3521 * Some devices allow an individual function to be reset without affecting 3522 * other functions in the same device. The PCI device must be responsive 3523 * to PCI config space in order to use this function. 3524 * 3525 * Returns 0 if the device function can be reset or negative if the 3526 * device doesn't support resetting a single function. 3527 */ 3528 int pci_probe_reset_function(struct pci_dev *dev) 3529 { 3530 return pci_dev_reset(dev, 1); 3531 } 3532 3533 /** 3534 * pci_reset_function - quiesce and reset a PCI device function 3535 * @dev: PCI device to reset 3536 * 3537 * Some devices allow an individual function to be reset without affecting 3538 * other functions in the same device. The PCI device must be responsive 3539 * to PCI config space in order to use this function. 3540 * 3541 * This function does not just reset the PCI portion of a device, but 3542 * clears all the state associated with the device. This function differs 3543 * from __pci_reset_function in that it saves and restores device state 3544 * over the reset. 3545 * 3546 * Returns 0 if the device function was successfully reset or negative if the 3547 * device doesn't support resetting a single function. 3548 */ 3549 int pci_reset_function(struct pci_dev *dev) 3550 { 3551 int rc; 3552 3553 rc = pci_dev_reset(dev, 1); 3554 if (rc) 3555 return rc; 3556 3557 pci_dev_save_and_disable(dev); 3558 3559 rc = pci_dev_reset(dev, 0); 3560 3561 pci_dev_restore(dev); 3562 3563 return rc; 3564 } 3565 EXPORT_SYMBOL_GPL(pci_reset_function); 3566 3567 /** 3568 * pci_try_reset_function - quiesce and reset a PCI device function 3569 * @dev: PCI device to reset 3570 * 3571 * Same as above, except return -EAGAIN if unable to lock device. 3572 */ 3573 int pci_try_reset_function(struct pci_dev *dev) 3574 { 3575 int rc; 3576 3577 rc = pci_dev_reset(dev, 1); 3578 if (rc) 3579 return rc; 3580 3581 pci_dev_save_and_disable(dev); 3582 3583 if (pci_dev_trylock(dev)) { 3584 rc = __pci_dev_reset(dev, 0); 3585 pci_dev_unlock(dev); 3586 } else 3587 rc = -EAGAIN; 3588 3589 pci_dev_restore(dev); 3590 3591 return rc; 3592 } 3593 EXPORT_SYMBOL_GPL(pci_try_reset_function); 3594 3595 /* Do any devices on or below this bus prevent a bus reset? */ 3596 static bool pci_bus_resetable(struct pci_bus *bus) 3597 { 3598 struct pci_dev *dev; 3599 3600 list_for_each_entry(dev, &bus->devices, bus_list) { 3601 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 3602 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 3603 return false; 3604 } 3605 3606 return true; 3607 } 3608 3609 /* Lock devices from the top of the tree down */ 3610 static void pci_bus_lock(struct pci_bus *bus) 3611 { 3612 struct pci_dev *dev; 3613 3614 list_for_each_entry(dev, &bus->devices, bus_list) { 3615 pci_dev_lock(dev); 3616 if (dev->subordinate) 3617 pci_bus_lock(dev->subordinate); 3618 } 3619 } 3620 3621 /* Unlock devices from the bottom of the tree up */ 3622 static void pci_bus_unlock(struct pci_bus *bus) 3623 { 3624 struct pci_dev *dev; 3625 3626 list_for_each_entry(dev, &bus->devices, bus_list) { 3627 if (dev->subordinate) 3628 pci_bus_unlock(dev->subordinate); 3629 pci_dev_unlock(dev); 3630 } 3631 } 3632 3633 /* Return 1 on successful lock, 0 on contention */ 3634 static int pci_bus_trylock(struct pci_bus *bus) 3635 { 3636 struct pci_dev *dev; 3637 3638 list_for_each_entry(dev, &bus->devices, bus_list) { 3639 if (!pci_dev_trylock(dev)) 3640 goto unlock; 3641 if (dev->subordinate) { 3642 if (!pci_bus_trylock(dev->subordinate)) { 3643 pci_dev_unlock(dev); 3644 goto unlock; 3645 } 3646 } 3647 } 3648 return 1; 3649 3650 unlock: 3651 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 3652 if (dev->subordinate) 3653 pci_bus_unlock(dev->subordinate); 3654 pci_dev_unlock(dev); 3655 } 3656 return 0; 3657 } 3658 3659 /* Do any devices on or below this slot prevent a bus reset? */ 3660 static bool pci_slot_resetable(struct pci_slot *slot) 3661 { 3662 struct pci_dev *dev; 3663 3664 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3665 if (!dev->slot || dev->slot != slot) 3666 continue; 3667 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 3668 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 3669 return false; 3670 } 3671 3672 return true; 3673 } 3674 3675 /* Lock devices from the top of the tree down */ 3676 static void pci_slot_lock(struct pci_slot *slot) 3677 { 3678 struct pci_dev *dev; 3679 3680 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3681 if (!dev->slot || dev->slot != slot) 3682 continue; 3683 pci_dev_lock(dev); 3684 if (dev->subordinate) 3685 pci_bus_lock(dev->subordinate); 3686 } 3687 } 3688 3689 /* Unlock devices from the bottom of the tree up */ 3690 static void pci_slot_unlock(struct pci_slot *slot) 3691 { 3692 struct pci_dev *dev; 3693 3694 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3695 if (!dev->slot || dev->slot != slot) 3696 continue; 3697 if (dev->subordinate) 3698 pci_bus_unlock(dev->subordinate); 3699 pci_dev_unlock(dev); 3700 } 3701 } 3702 3703 /* Return 1 on successful lock, 0 on contention */ 3704 static int pci_slot_trylock(struct pci_slot *slot) 3705 { 3706 struct pci_dev *dev; 3707 3708 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3709 if (!dev->slot || dev->slot != slot) 3710 continue; 3711 if (!pci_dev_trylock(dev)) 3712 goto unlock; 3713 if (dev->subordinate) { 3714 if (!pci_bus_trylock(dev->subordinate)) { 3715 pci_dev_unlock(dev); 3716 goto unlock; 3717 } 3718 } 3719 } 3720 return 1; 3721 3722 unlock: 3723 list_for_each_entry_continue_reverse(dev, 3724 &slot->bus->devices, bus_list) { 3725 if (!dev->slot || dev->slot != slot) 3726 continue; 3727 if (dev->subordinate) 3728 pci_bus_unlock(dev->subordinate); 3729 pci_dev_unlock(dev); 3730 } 3731 return 0; 3732 } 3733 3734 /* Save and disable devices from the top of the tree down */ 3735 static void pci_bus_save_and_disable(struct pci_bus *bus) 3736 { 3737 struct pci_dev *dev; 3738 3739 list_for_each_entry(dev, &bus->devices, bus_list) { 3740 pci_dev_save_and_disable(dev); 3741 if (dev->subordinate) 3742 pci_bus_save_and_disable(dev->subordinate); 3743 } 3744 } 3745 3746 /* 3747 * Restore devices from top of the tree down - parent bridges need to be 3748 * restored before we can get to subordinate devices. 3749 */ 3750 static void pci_bus_restore(struct pci_bus *bus) 3751 { 3752 struct pci_dev *dev; 3753 3754 list_for_each_entry(dev, &bus->devices, bus_list) { 3755 pci_dev_restore(dev); 3756 if (dev->subordinate) 3757 pci_bus_restore(dev->subordinate); 3758 } 3759 } 3760 3761 /* Save and disable devices from the top of the tree down */ 3762 static void pci_slot_save_and_disable(struct pci_slot *slot) 3763 { 3764 struct pci_dev *dev; 3765 3766 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3767 if (!dev->slot || dev->slot != slot) 3768 continue; 3769 pci_dev_save_and_disable(dev); 3770 if (dev->subordinate) 3771 pci_bus_save_and_disable(dev->subordinate); 3772 } 3773 } 3774 3775 /* 3776 * Restore devices from top of the tree down - parent bridges need to be 3777 * restored before we can get to subordinate devices. 3778 */ 3779 static void pci_slot_restore(struct pci_slot *slot) 3780 { 3781 struct pci_dev *dev; 3782 3783 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 3784 if (!dev->slot || dev->slot != slot) 3785 continue; 3786 pci_dev_restore(dev); 3787 if (dev->subordinate) 3788 pci_bus_restore(dev->subordinate); 3789 } 3790 } 3791 3792 static int pci_slot_reset(struct pci_slot *slot, int probe) 3793 { 3794 int rc; 3795 3796 if (!slot || !pci_slot_resetable(slot)) 3797 return -ENOTTY; 3798 3799 if (!probe) 3800 pci_slot_lock(slot); 3801 3802 might_sleep(); 3803 3804 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 3805 3806 if (!probe) 3807 pci_slot_unlock(slot); 3808 3809 return rc; 3810 } 3811 3812 /** 3813 * pci_probe_reset_slot - probe whether a PCI slot can be reset 3814 * @slot: PCI slot to probe 3815 * 3816 * Return 0 if slot can be reset, negative if a slot reset is not supported. 3817 */ 3818 int pci_probe_reset_slot(struct pci_slot *slot) 3819 { 3820 return pci_slot_reset(slot, 1); 3821 } 3822 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 3823 3824 /** 3825 * pci_reset_slot - reset a PCI slot 3826 * @slot: PCI slot to reset 3827 * 3828 * A PCI bus may host multiple slots, each slot may support a reset mechanism 3829 * independent of other slots. For instance, some slots may support slot power 3830 * control. In the case of a 1:1 bus to slot architecture, this function may 3831 * wrap the bus reset to avoid spurious slot related events such as hotplug. 3832 * Generally a slot reset should be attempted before a bus reset. All of the 3833 * function of the slot and any subordinate buses behind the slot are reset 3834 * through this function. PCI config space of all devices in the slot and 3835 * behind the slot is saved before and restored after reset. 3836 * 3837 * Return 0 on success, non-zero on error. 3838 */ 3839 int pci_reset_slot(struct pci_slot *slot) 3840 { 3841 int rc; 3842 3843 rc = pci_slot_reset(slot, 1); 3844 if (rc) 3845 return rc; 3846 3847 pci_slot_save_and_disable(slot); 3848 3849 rc = pci_slot_reset(slot, 0); 3850 3851 pci_slot_restore(slot); 3852 3853 return rc; 3854 } 3855 EXPORT_SYMBOL_GPL(pci_reset_slot); 3856 3857 /** 3858 * pci_try_reset_slot - Try to reset a PCI slot 3859 * @slot: PCI slot to reset 3860 * 3861 * Same as above except return -EAGAIN if the slot cannot be locked 3862 */ 3863 int pci_try_reset_slot(struct pci_slot *slot) 3864 { 3865 int rc; 3866 3867 rc = pci_slot_reset(slot, 1); 3868 if (rc) 3869 return rc; 3870 3871 pci_slot_save_and_disable(slot); 3872 3873 if (pci_slot_trylock(slot)) { 3874 might_sleep(); 3875 rc = pci_reset_hotplug_slot(slot->hotplug, 0); 3876 pci_slot_unlock(slot); 3877 } else 3878 rc = -EAGAIN; 3879 3880 pci_slot_restore(slot); 3881 3882 return rc; 3883 } 3884 EXPORT_SYMBOL_GPL(pci_try_reset_slot); 3885 3886 static int pci_bus_reset(struct pci_bus *bus, int probe) 3887 { 3888 if (!bus->self || !pci_bus_resetable(bus)) 3889 return -ENOTTY; 3890 3891 if (probe) 3892 return 0; 3893 3894 pci_bus_lock(bus); 3895 3896 might_sleep(); 3897 3898 pci_reset_bridge_secondary_bus(bus->self); 3899 3900 pci_bus_unlock(bus); 3901 3902 return 0; 3903 } 3904 3905 /** 3906 * pci_probe_reset_bus - probe whether a PCI bus can be reset 3907 * @bus: PCI bus to probe 3908 * 3909 * Return 0 if bus can be reset, negative if a bus reset is not supported. 3910 */ 3911 int pci_probe_reset_bus(struct pci_bus *bus) 3912 { 3913 return pci_bus_reset(bus, 1); 3914 } 3915 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 3916 3917 /** 3918 * pci_reset_bus - reset a PCI bus 3919 * @bus: top level PCI bus to reset 3920 * 3921 * Do a bus reset on the given bus and any subordinate buses, saving 3922 * and restoring state of all devices. 3923 * 3924 * Return 0 on success, non-zero on error. 3925 */ 3926 int pci_reset_bus(struct pci_bus *bus) 3927 { 3928 int rc; 3929 3930 rc = pci_bus_reset(bus, 1); 3931 if (rc) 3932 return rc; 3933 3934 pci_bus_save_and_disable(bus); 3935 3936 rc = pci_bus_reset(bus, 0); 3937 3938 pci_bus_restore(bus); 3939 3940 return rc; 3941 } 3942 EXPORT_SYMBOL_GPL(pci_reset_bus); 3943 3944 /** 3945 * pci_try_reset_bus - Try to reset a PCI bus 3946 * @bus: top level PCI bus to reset 3947 * 3948 * Same as above except return -EAGAIN if the bus cannot be locked 3949 */ 3950 int pci_try_reset_bus(struct pci_bus *bus) 3951 { 3952 int rc; 3953 3954 rc = pci_bus_reset(bus, 1); 3955 if (rc) 3956 return rc; 3957 3958 pci_bus_save_and_disable(bus); 3959 3960 if (pci_bus_trylock(bus)) { 3961 might_sleep(); 3962 pci_reset_bridge_secondary_bus(bus->self); 3963 pci_bus_unlock(bus); 3964 } else 3965 rc = -EAGAIN; 3966 3967 pci_bus_restore(bus); 3968 3969 return rc; 3970 } 3971 EXPORT_SYMBOL_GPL(pci_try_reset_bus); 3972 3973 /** 3974 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 3975 * @dev: PCI device to query 3976 * 3977 * Returns mmrbc: maximum designed memory read count in bytes 3978 * or appropriate error value. 3979 */ 3980 int pcix_get_max_mmrbc(struct pci_dev *dev) 3981 { 3982 int cap; 3983 u32 stat; 3984 3985 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 3986 if (!cap) 3987 return -EINVAL; 3988 3989 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 3990 return -EINVAL; 3991 3992 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 3993 } 3994 EXPORT_SYMBOL(pcix_get_max_mmrbc); 3995 3996 /** 3997 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 3998 * @dev: PCI device to query 3999 * 4000 * Returns mmrbc: maximum memory read count in bytes 4001 * or appropriate error value. 4002 */ 4003 int pcix_get_mmrbc(struct pci_dev *dev) 4004 { 4005 int cap; 4006 u16 cmd; 4007 4008 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4009 if (!cap) 4010 return -EINVAL; 4011 4012 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4013 return -EINVAL; 4014 4015 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 4016 } 4017 EXPORT_SYMBOL(pcix_get_mmrbc); 4018 4019 /** 4020 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 4021 * @dev: PCI device to query 4022 * @mmrbc: maximum memory read count in bytes 4023 * valid values are 512, 1024, 2048, 4096 4024 * 4025 * If possible sets maximum memory read byte count, some bridges have erratas 4026 * that prevent this. 4027 */ 4028 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 4029 { 4030 int cap; 4031 u32 stat, v, o; 4032 u16 cmd; 4033 4034 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 4035 return -EINVAL; 4036 4037 v = ffs(mmrbc) - 10; 4038 4039 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 4040 if (!cap) 4041 return -EINVAL; 4042 4043 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 4044 return -EINVAL; 4045 4046 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 4047 return -E2BIG; 4048 4049 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 4050 return -EINVAL; 4051 4052 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 4053 if (o != v) { 4054 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 4055 return -EIO; 4056 4057 cmd &= ~PCI_X_CMD_MAX_READ; 4058 cmd |= v << 2; 4059 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 4060 return -EIO; 4061 } 4062 return 0; 4063 } 4064 EXPORT_SYMBOL(pcix_set_mmrbc); 4065 4066 /** 4067 * pcie_get_readrq - get PCI Express read request size 4068 * @dev: PCI device to query 4069 * 4070 * Returns maximum memory read request in bytes 4071 * or appropriate error value. 4072 */ 4073 int pcie_get_readrq(struct pci_dev *dev) 4074 { 4075 u16 ctl; 4076 4077 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4078 4079 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 4080 } 4081 EXPORT_SYMBOL(pcie_get_readrq); 4082 4083 /** 4084 * pcie_set_readrq - set PCI Express maximum memory read request 4085 * @dev: PCI device to query 4086 * @rq: maximum memory read count in bytes 4087 * valid values are 128, 256, 512, 1024, 2048, 4096 4088 * 4089 * If possible sets maximum memory read request in bytes 4090 */ 4091 int pcie_set_readrq(struct pci_dev *dev, int rq) 4092 { 4093 u16 v; 4094 4095 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 4096 return -EINVAL; 4097 4098 /* 4099 * If using the "performance" PCIe config, we clamp the 4100 * read rq size to the max packet size to prevent the 4101 * host bridge generating requests larger than we can 4102 * cope with 4103 */ 4104 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 4105 int mps = pcie_get_mps(dev); 4106 4107 if (mps < rq) 4108 rq = mps; 4109 } 4110 4111 v = (ffs(rq) - 8) << 12; 4112 4113 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4114 PCI_EXP_DEVCTL_READRQ, v); 4115 } 4116 EXPORT_SYMBOL(pcie_set_readrq); 4117 4118 /** 4119 * pcie_get_mps - get PCI Express maximum payload size 4120 * @dev: PCI device to query 4121 * 4122 * Returns maximum payload size in bytes 4123 */ 4124 int pcie_get_mps(struct pci_dev *dev) 4125 { 4126 u16 ctl; 4127 4128 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 4129 4130 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 4131 } 4132 EXPORT_SYMBOL(pcie_get_mps); 4133 4134 /** 4135 * pcie_set_mps - set PCI Express maximum payload size 4136 * @dev: PCI device to query 4137 * @mps: maximum payload size in bytes 4138 * valid values are 128, 256, 512, 1024, 2048, 4096 4139 * 4140 * If possible sets maximum payload size 4141 */ 4142 int pcie_set_mps(struct pci_dev *dev, int mps) 4143 { 4144 u16 v; 4145 4146 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 4147 return -EINVAL; 4148 4149 v = ffs(mps) - 8; 4150 if (v > dev->pcie_mpss) 4151 return -EINVAL; 4152 v <<= 5; 4153 4154 return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 4155 PCI_EXP_DEVCTL_PAYLOAD, v); 4156 } 4157 EXPORT_SYMBOL(pcie_set_mps); 4158 4159 /** 4160 * pcie_get_minimum_link - determine minimum link settings of a PCI device 4161 * @dev: PCI device to query 4162 * @speed: storage for minimum speed 4163 * @width: storage for minimum width 4164 * 4165 * This function will walk up the PCI device chain and determine the minimum 4166 * link width and speed of the device. 4167 */ 4168 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed, 4169 enum pcie_link_width *width) 4170 { 4171 int ret; 4172 4173 *speed = PCI_SPEED_UNKNOWN; 4174 *width = PCIE_LNK_WIDTH_UNKNOWN; 4175 4176 while (dev) { 4177 u16 lnksta; 4178 enum pci_bus_speed next_speed; 4179 enum pcie_link_width next_width; 4180 4181 ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 4182 if (ret) 4183 return ret; 4184 4185 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 4186 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 4187 PCI_EXP_LNKSTA_NLW_SHIFT; 4188 4189 if (next_speed < *speed) 4190 *speed = next_speed; 4191 4192 if (next_width < *width) 4193 *width = next_width; 4194 4195 dev = dev->bus->self; 4196 } 4197 4198 return 0; 4199 } 4200 EXPORT_SYMBOL(pcie_get_minimum_link); 4201 4202 /** 4203 * pci_select_bars - Make BAR mask from the type of resource 4204 * @dev: the PCI device for which BAR mask is made 4205 * @flags: resource type mask to be selected 4206 * 4207 * This helper routine makes bar mask from the type of resource. 4208 */ 4209 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 4210 { 4211 int i, bars = 0; 4212 for (i = 0; i < PCI_NUM_RESOURCES; i++) 4213 if (pci_resource_flags(dev, i) & flags) 4214 bars |= (1 << i); 4215 return bars; 4216 } 4217 EXPORT_SYMBOL(pci_select_bars); 4218 4219 /** 4220 * pci_resource_bar - get position of the BAR associated with a resource 4221 * @dev: the PCI device 4222 * @resno: the resource number 4223 * @type: the BAR type to be filled in 4224 * 4225 * Returns BAR position in config space, or 0 if the BAR is invalid. 4226 */ 4227 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type) 4228 { 4229 int reg; 4230 4231 if (resno < PCI_ROM_RESOURCE) { 4232 *type = pci_bar_unknown; 4233 return PCI_BASE_ADDRESS_0 + 4 * resno; 4234 } else if (resno == PCI_ROM_RESOURCE) { 4235 *type = pci_bar_mem32; 4236 return dev->rom_base_reg; 4237 } else if (resno < PCI_BRIDGE_RESOURCES) { 4238 /* device specific resource */ 4239 *type = pci_bar_unknown; 4240 reg = pci_iov_resource_bar(dev, resno); 4241 if (reg) 4242 return reg; 4243 } 4244 4245 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno); 4246 return 0; 4247 } 4248 4249 /* Some architectures require additional programming to enable VGA */ 4250 static arch_set_vga_state_t arch_set_vga_state; 4251 4252 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 4253 { 4254 arch_set_vga_state = func; /* NULL disables */ 4255 } 4256 4257 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 4258 unsigned int command_bits, u32 flags) 4259 { 4260 if (arch_set_vga_state) 4261 return arch_set_vga_state(dev, decode, command_bits, 4262 flags); 4263 return 0; 4264 } 4265 4266 /** 4267 * pci_set_vga_state - set VGA decode state on device and parents if requested 4268 * @dev: the PCI device 4269 * @decode: true = enable decoding, false = disable decoding 4270 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 4271 * @flags: traverse ancestors and change bridges 4272 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 4273 */ 4274 int pci_set_vga_state(struct pci_dev *dev, bool decode, 4275 unsigned int command_bits, u32 flags) 4276 { 4277 struct pci_bus *bus; 4278 struct pci_dev *bridge; 4279 u16 cmd; 4280 int rc; 4281 4282 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 4283 4284 /* ARCH specific VGA enables */ 4285 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 4286 if (rc) 4287 return rc; 4288 4289 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 4290 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4291 if (decode == true) 4292 cmd |= command_bits; 4293 else 4294 cmd &= ~command_bits; 4295 pci_write_config_word(dev, PCI_COMMAND, cmd); 4296 } 4297 4298 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 4299 return 0; 4300 4301 bus = dev->bus; 4302 while (bus) { 4303 bridge = bus->self; 4304 if (bridge) { 4305 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 4306 &cmd); 4307 if (decode == true) 4308 cmd |= PCI_BRIDGE_CTL_VGA; 4309 else 4310 cmd &= ~PCI_BRIDGE_CTL_VGA; 4311 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 4312 cmd); 4313 } 4314 bus = bus->parent; 4315 } 4316 return 0; 4317 } 4318 4319 bool pci_device_is_present(struct pci_dev *pdev) 4320 { 4321 u32 v; 4322 4323 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 4324 } 4325 EXPORT_SYMBOL_GPL(pci_device_is_present); 4326 4327 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE 4328 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0}; 4329 static DEFINE_SPINLOCK(resource_alignment_lock); 4330 4331 /** 4332 * pci_specified_resource_alignment - get resource alignment specified by user. 4333 * @dev: the PCI device to get 4334 * 4335 * RETURNS: Resource alignment if it is specified. 4336 * Zero if it is not specified. 4337 */ 4338 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev) 4339 { 4340 int seg, bus, slot, func, align_order, count; 4341 resource_size_t align = 0; 4342 char *p; 4343 4344 spin_lock(&resource_alignment_lock); 4345 p = resource_alignment_param; 4346 while (*p) { 4347 count = 0; 4348 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 4349 p[count] == '@') { 4350 p += count + 1; 4351 } else { 4352 align_order = -1; 4353 } 4354 if (sscanf(p, "%x:%x:%x.%x%n", 4355 &seg, &bus, &slot, &func, &count) != 4) { 4356 seg = 0; 4357 if (sscanf(p, "%x:%x.%x%n", 4358 &bus, &slot, &func, &count) != 3) { 4359 /* Invalid format */ 4360 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n", 4361 p); 4362 break; 4363 } 4364 } 4365 p += count; 4366 if (seg == pci_domain_nr(dev->bus) && 4367 bus == dev->bus->number && 4368 slot == PCI_SLOT(dev->devfn) && 4369 func == PCI_FUNC(dev->devfn)) { 4370 if (align_order == -1) 4371 align = PAGE_SIZE; 4372 else 4373 align = 1 << align_order; 4374 /* Found */ 4375 break; 4376 } 4377 if (*p != ';' && *p != ',') { 4378 /* End of param or invalid format */ 4379 break; 4380 } 4381 p++; 4382 } 4383 spin_unlock(&resource_alignment_lock); 4384 return align; 4385 } 4386 4387 /* 4388 * This function disables memory decoding and releases memory resources 4389 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 4390 * It also rounds up size to specified alignment. 4391 * Later on, the kernel will assign page-aligned memory resource back 4392 * to the device. 4393 */ 4394 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 4395 { 4396 int i; 4397 struct resource *r; 4398 resource_size_t align, size; 4399 u16 command; 4400 4401 /* check if specified PCI is target device to reassign */ 4402 align = pci_specified_resource_alignment(dev); 4403 if (!align) 4404 return; 4405 4406 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 4407 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 4408 dev_warn(&dev->dev, 4409 "Can't reassign resources to host bridge.\n"); 4410 return; 4411 } 4412 4413 dev_info(&dev->dev, 4414 "Disabling memory decoding and releasing memory resources.\n"); 4415 pci_read_config_word(dev, PCI_COMMAND, &command); 4416 command &= ~PCI_COMMAND_MEMORY; 4417 pci_write_config_word(dev, PCI_COMMAND, command); 4418 4419 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) { 4420 r = &dev->resource[i]; 4421 if (!(r->flags & IORESOURCE_MEM)) 4422 continue; 4423 size = resource_size(r); 4424 if (size < align) { 4425 size = align; 4426 dev_info(&dev->dev, 4427 "Rounding up size of resource #%d to %#llx.\n", 4428 i, (unsigned long long)size); 4429 } 4430 r->flags |= IORESOURCE_UNSET; 4431 r->end = size - 1; 4432 r->start = 0; 4433 } 4434 /* Need to disable bridge's resource window, 4435 * to enable the kernel to reassign new resource 4436 * window later on. 4437 */ 4438 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE && 4439 (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) { 4440 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 4441 r = &dev->resource[i]; 4442 if (!(r->flags & IORESOURCE_MEM)) 4443 continue; 4444 r->flags |= IORESOURCE_UNSET; 4445 r->end = resource_size(r) - 1; 4446 r->start = 0; 4447 } 4448 pci_disable_bridge_window(dev); 4449 } 4450 } 4451 4452 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count) 4453 { 4454 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1) 4455 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1; 4456 spin_lock(&resource_alignment_lock); 4457 strncpy(resource_alignment_param, buf, count); 4458 resource_alignment_param[count] = '\0'; 4459 spin_unlock(&resource_alignment_lock); 4460 return count; 4461 } 4462 4463 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size) 4464 { 4465 size_t count; 4466 spin_lock(&resource_alignment_lock); 4467 count = snprintf(buf, size, "%s", resource_alignment_param); 4468 spin_unlock(&resource_alignment_lock); 4469 return count; 4470 } 4471 4472 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf) 4473 { 4474 return pci_get_resource_alignment_param(buf, PAGE_SIZE); 4475 } 4476 4477 static ssize_t pci_resource_alignment_store(struct bus_type *bus, 4478 const char *buf, size_t count) 4479 { 4480 return pci_set_resource_alignment_param(buf, count); 4481 } 4482 4483 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show, 4484 pci_resource_alignment_store); 4485 4486 static int __init pci_resource_alignment_sysfs_init(void) 4487 { 4488 return bus_create_file(&pci_bus_type, 4489 &bus_attr_resource_alignment); 4490 } 4491 late_initcall(pci_resource_alignment_sysfs_init); 4492 4493 static void pci_no_domains(void) 4494 { 4495 #ifdef CONFIG_PCI_DOMAINS 4496 pci_domains_supported = 0; 4497 #endif 4498 } 4499 4500 #ifdef CONFIG_PCI_DOMAINS 4501 static atomic_t __domain_nr = ATOMIC_INIT(-1); 4502 4503 int pci_get_new_domain_nr(void) 4504 { 4505 return atomic_inc_return(&__domain_nr); 4506 } 4507 4508 #ifdef CONFIG_PCI_DOMAINS_GENERIC 4509 void pci_bus_assign_domain_nr(struct pci_bus *bus, struct device *parent) 4510 { 4511 static int use_dt_domains = -1; 4512 int domain = of_get_pci_domain_nr(parent->of_node); 4513 4514 /* 4515 * Check DT domain and use_dt_domains values. 4516 * 4517 * If DT domain property is valid (domain >= 0) and 4518 * use_dt_domains != 0, the DT assignment is valid since this means 4519 * we have not previously allocated a domain number by using 4520 * pci_get_new_domain_nr(); we should also update use_dt_domains to 4521 * 1, to indicate that we have just assigned a domain number from 4522 * DT. 4523 * 4524 * If DT domain property value is not valid (ie domain < 0), and we 4525 * have not previously assigned a domain number from DT 4526 * (use_dt_domains != 1) we should assign a domain number by 4527 * using the: 4528 * 4529 * pci_get_new_domain_nr() 4530 * 4531 * API and update the use_dt_domains value to keep track of method we 4532 * are using to assign domain numbers (use_dt_domains = 0). 4533 * 4534 * All other combinations imply we have a platform that is trying 4535 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(), 4536 * which is a recipe for domain mishandling and it is prevented by 4537 * invalidating the domain value (domain = -1) and printing a 4538 * corresponding error. 4539 */ 4540 if (domain >= 0 && use_dt_domains) { 4541 use_dt_domains = 1; 4542 } else if (domain < 0 && use_dt_domains != 1) { 4543 use_dt_domains = 0; 4544 domain = pci_get_new_domain_nr(); 4545 } else { 4546 dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n", 4547 parent->of_node->full_name); 4548 domain = -1; 4549 } 4550 4551 bus->domain_nr = domain; 4552 } 4553 #endif 4554 #endif 4555 4556 /** 4557 * pci_ext_cfg_avail - can we access extended PCI config space? 4558 * 4559 * Returns 1 if we can access PCI extended config space (offsets 4560 * greater than 0xff). This is the default implementation. Architecture 4561 * implementations can override this. 4562 */ 4563 int __weak pci_ext_cfg_avail(void) 4564 { 4565 return 1; 4566 } 4567 4568 void __weak pci_fixup_cardbus(struct pci_bus *bus) 4569 { 4570 } 4571 EXPORT_SYMBOL(pci_fixup_cardbus); 4572 4573 static int __init pci_setup(char *str) 4574 { 4575 while (str) { 4576 char *k = strchr(str, ','); 4577 if (k) 4578 *k++ = 0; 4579 if (*str && (str = pcibios_setup(str)) && *str) { 4580 if (!strcmp(str, "nomsi")) { 4581 pci_no_msi(); 4582 } else if (!strcmp(str, "noaer")) { 4583 pci_no_aer(); 4584 } else if (!strncmp(str, "realloc=", 8)) { 4585 pci_realloc_get_opt(str + 8); 4586 } else if (!strncmp(str, "realloc", 7)) { 4587 pci_realloc_get_opt("on"); 4588 } else if (!strcmp(str, "nodomains")) { 4589 pci_no_domains(); 4590 } else if (!strncmp(str, "noari", 5)) { 4591 pcie_ari_disabled = true; 4592 } else if (!strncmp(str, "cbiosize=", 9)) { 4593 pci_cardbus_io_size = memparse(str + 9, &str); 4594 } else if (!strncmp(str, "cbmemsize=", 10)) { 4595 pci_cardbus_mem_size = memparse(str + 10, &str); 4596 } else if (!strncmp(str, "resource_alignment=", 19)) { 4597 pci_set_resource_alignment_param(str + 19, 4598 strlen(str + 19)); 4599 } else if (!strncmp(str, "ecrc=", 5)) { 4600 pcie_ecrc_get_policy(str + 5); 4601 } else if (!strncmp(str, "hpiosize=", 9)) { 4602 pci_hotplug_io_size = memparse(str + 9, &str); 4603 } else if (!strncmp(str, "hpmemsize=", 10)) { 4604 pci_hotplug_mem_size = memparse(str + 10, &str); 4605 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 4606 pcie_bus_config = PCIE_BUS_TUNE_OFF; 4607 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 4608 pcie_bus_config = PCIE_BUS_SAFE; 4609 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 4610 pcie_bus_config = PCIE_BUS_PERFORMANCE; 4611 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 4612 pcie_bus_config = PCIE_BUS_PEER2PEER; 4613 } else if (!strncmp(str, "pcie_scan_all", 13)) { 4614 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 4615 } else { 4616 printk(KERN_ERR "PCI: Unknown option `%s'\n", 4617 str); 4618 } 4619 } 4620 str = k; 4621 } 4622 return 0; 4623 } 4624 early_param("pci", pci_setup); 4625