xref: /openbmc/linux/drivers/pci/pci.c (revision 05a57605)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Bus Services, see include/linux/pci.h for further explanation.
4  *
5  * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
6  * David Mosberger-Tang
7  *
8  * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/kernel.h>
13 #include <linux/delay.h>
14 #include <linux/dmi.h>
15 #include <linux/init.h>
16 #include <linux/msi.h>
17 #include <linux/of.h>
18 #include <linux/pci.h>
19 #include <linux/pm.h>
20 #include <linux/slab.h>
21 #include <linux/module.h>
22 #include <linux/spinlock.h>
23 #include <linux/string.h>
24 #include <linux/log2.h>
25 #include <linux/logic_pio.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/pci_hotplug.h>
31 #include <linux/vmalloc.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include <linux/bitfield.h>
35 #include "pci.h"
36 
37 DEFINE_MUTEX(pci_slot_mutex);
38 
39 const char *pci_power_names[] = {
40 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
41 };
42 EXPORT_SYMBOL_GPL(pci_power_names);
43 
44 #ifdef CONFIG_X86_32
45 int isa_dma_bridge_buggy;
46 EXPORT_SYMBOL(isa_dma_bridge_buggy);
47 #endif
48 
49 int pci_pci_problems;
50 EXPORT_SYMBOL(pci_pci_problems);
51 
52 unsigned int pci_pm_d3hot_delay;
53 
54 static void pci_pme_list_scan(struct work_struct *work);
55 
56 static LIST_HEAD(pci_pme_list);
57 static DEFINE_MUTEX(pci_pme_list_mutex);
58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
59 
60 struct pci_pme_device {
61 	struct list_head list;
62 	struct pci_dev *dev;
63 };
64 
65 #define PME_TIMEOUT 1000 /* How long between PME checks */
66 
67 /*
68  * Following exit from Conventional Reset, devices must be ready within 1 sec
69  * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
70  * Reset (PCIe r6.0 sec 5.8).
71  */
72 #define PCI_RESET_WAIT 1000 /* msec */
73 
74 /*
75  * Devices may extend the 1 sec period through Request Retry Status
76  * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
77  * limit, but 60 sec ought to be enough for any device to become
78  * responsive.
79  */
80 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */
81 
82 static void pci_dev_d3_sleep(struct pci_dev *dev)
83 {
84 	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
85 	unsigned int upper;
86 
87 	if (delay_ms) {
88 		/* Use a 20% upper bound, 1ms minimum */
89 		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
90 		usleep_range(delay_ms * USEC_PER_MSEC,
91 			     (delay_ms + upper) * USEC_PER_MSEC);
92 	}
93 }
94 
95 bool pci_reset_supported(struct pci_dev *dev)
96 {
97 	return dev->reset_methods[0] != 0;
98 }
99 
100 #ifdef CONFIG_PCI_DOMAINS
101 int pci_domains_supported = 1;
102 #endif
103 
104 #define DEFAULT_CARDBUS_IO_SIZE		(256)
105 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
106 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
107 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
108 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
109 
110 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 #define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
112 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
113 /* hpiosize=nn can override this */
114 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 /*
116  * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
117  * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
118  * pci=hpmemsize=nnM overrides both
119  */
120 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
121 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122 
123 #define DEFAULT_HOTPLUG_BUS_SIZE	1
124 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
125 
126 
127 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
128 #ifdef CONFIG_PCIE_BUS_TUNE_OFF
129 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
130 #elif defined CONFIG_PCIE_BUS_SAFE
131 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
132 #elif defined CONFIG_PCIE_BUS_PERFORMANCE
133 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
134 #elif defined CONFIG_PCIE_BUS_PEER2PEER
135 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
136 #else
137 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138 #endif
139 
140 /*
141  * The default CLS is used if arch didn't set CLS explicitly and not
142  * all pci devices agree on the same value.  Arch can override either
143  * the dfl or actual value as it sees fit.  Don't forget this is
144  * measured in 32-bit words, not bytes.
145  */
146 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 u8 pci_cache_line_size;
148 
149 /*
150  * If we set up a device for bus mastering, we need to check the latency
151  * timer as certain BIOSes forget to set it properly.
152  */
153 unsigned int pcibios_max_latency = 255;
154 
155 /* If set, the PCIe ARI capability will not be used. */
156 static bool pcie_ari_disabled;
157 
158 /* If set, the PCIe ATS capability will not be used. */
159 static bool pcie_ats_disabled;
160 
161 /* If set, the PCI config space of each device is printed during boot. */
162 bool pci_early_dump;
163 
164 bool pci_ats_disabled(void)
165 {
166 	return pcie_ats_disabled;
167 }
168 EXPORT_SYMBOL_GPL(pci_ats_disabled);
169 
170 /* Disable bridge_d3 for all PCIe ports */
171 static bool pci_bridge_d3_disable;
172 /* Force bridge_d3 for all PCIe ports */
173 static bool pci_bridge_d3_force;
174 
175 static int __init pcie_port_pm_setup(char *str)
176 {
177 	if (!strcmp(str, "off"))
178 		pci_bridge_d3_disable = true;
179 	else if (!strcmp(str, "force"))
180 		pci_bridge_d3_force = true;
181 	return 1;
182 }
183 __setup("pcie_port_pm=", pcie_port_pm_setup);
184 
185 /**
186  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
187  * @bus: pointer to PCI bus structure to search
188  *
189  * Given a PCI bus, returns the highest PCI bus number present in the set
190  * including the given PCI bus and its list of child PCI buses.
191  */
192 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
193 {
194 	struct pci_bus *tmp;
195 	unsigned char max, n;
196 
197 	max = bus->busn_res.end;
198 	list_for_each_entry(tmp, &bus->children, node) {
199 		n = pci_bus_max_busnr(tmp);
200 		if (n > max)
201 			max = n;
202 	}
203 	return max;
204 }
205 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
206 
207 /**
208  * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
209  * @pdev: the PCI device
210  *
211  * Returns error bits set in PCI_STATUS and clears them.
212  */
213 int pci_status_get_and_clear_errors(struct pci_dev *pdev)
214 {
215 	u16 status;
216 	int ret;
217 
218 	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
219 	if (ret != PCIBIOS_SUCCESSFUL)
220 		return -EIO;
221 
222 	status &= PCI_STATUS_ERROR_BITS;
223 	if (status)
224 		pci_write_config_word(pdev, PCI_STATUS, status);
225 
226 	return status;
227 }
228 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);
229 
230 #ifdef CONFIG_HAS_IOMEM
231 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
232 					    bool write_combine)
233 {
234 	struct resource *res = &pdev->resource[bar];
235 	resource_size_t start = res->start;
236 	resource_size_t size = resource_size(res);
237 
238 	/*
239 	 * Make sure the BAR is actually a memory resource, not an IO resource
240 	 */
241 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242 		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 		return NULL;
244 	}
245 
246 	if (write_combine)
247 		return ioremap_wc(start, size);
248 
249 	return ioremap(start, size);
250 }
251 
252 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
253 {
254 	return __pci_ioremap_resource(pdev, bar, false);
255 }
256 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 
258 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
259 {
260 	return __pci_ioremap_resource(pdev, bar, true);
261 }
262 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 #endif
264 
265 /**
266  * pci_dev_str_match_path - test if a path string matches a device
267  * @dev: the PCI device to test
268  * @path: string to match the device against
269  * @endptr: pointer to the string after the match
270  *
271  * Test if a string (typically from a kernel parameter) formatted as a
272  * path of device/function addresses matches a PCI device. The string must
273  * be of the form:
274  *
275  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
276  *
277  * A path for a device can be obtained using 'lspci -t'.  Using a path
278  * is more robust against bus renumbering than using only a single bus,
279  * device and function address.
280  *
281  * Returns 1 if the string matches the device, 0 if it does not and
282  * a negative error code if it fails to parse the string.
283  */
284 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
285 				  const char **endptr)
286 {
287 	int ret;
288 	unsigned int seg, bus, slot, func;
289 	char *wpath, *p;
290 	char end;
291 
292 	*endptr = strchrnul(path, ';');
293 
294 	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 	if (!wpath)
296 		return -ENOMEM;
297 
298 	while (1) {
299 		p = strrchr(wpath, '/');
300 		if (!p)
301 			break;
302 		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
303 		if (ret != 2) {
304 			ret = -EINVAL;
305 			goto free_and_exit;
306 		}
307 
308 		if (dev->devfn != PCI_DEVFN(slot, func)) {
309 			ret = 0;
310 			goto free_and_exit;
311 		}
312 
313 		/*
314 		 * Note: we don't need to get a reference to the upstream
315 		 * bridge because we hold a reference to the top level
316 		 * device which should hold a reference to the bridge,
317 		 * and so on.
318 		 */
319 		dev = pci_upstream_bridge(dev);
320 		if (!dev) {
321 			ret = 0;
322 			goto free_and_exit;
323 		}
324 
325 		*p = 0;
326 	}
327 
328 	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
329 		     &func, &end);
330 	if (ret != 4) {
331 		seg = 0;
332 		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
333 		if (ret != 3) {
334 			ret = -EINVAL;
335 			goto free_and_exit;
336 		}
337 	}
338 
339 	ret = (seg == pci_domain_nr(dev->bus) &&
340 	       bus == dev->bus->number &&
341 	       dev->devfn == PCI_DEVFN(slot, func));
342 
343 free_and_exit:
344 	kfree(wpath);
345 	return ret;
346 }
347 
348 /**
349  * pci_dev_str_match - test if a string matches a device
350  * @dev: the PCI device to test
351  * @p: string to match the device against
352  * @endptr: pointer to the string after the match
353  *
354  * Test if a string (typically from a kernel parameter) matches a specified
355  * PCI device. The string may be of one of the following formats:
356  *
357  *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358  *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
359  *
360  * The first format specifies a PCI bus/device/function address which
361  * may change if new hardware is inserted, if motherboard firmware changes,
362  * or due to changes caused in kernel parameters. If the domain is
363  * left unspecified, it is taken to be 0.  In order to be robust against
364  * bus renumbering issues, a path of PCI device/function numbers may be used
365  * to address the specific device.  The path for a device can be determined
366  * through the use of 'lspci -t'.
367  *
368  * The second format matches devices using IDs in the configuration
369  * space which may match multiple devices in the system. A value of 0
370  * for any field will match all devices. (Note: this differs from
371  * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
372  * legacy reasons and convenience so users don't have to specify
373  * FFFFFFFFs on the command line.)
374  *
375  * Returns 1 if the string matches the device, 0 if it does not and
376  * a negative error code if the string cannot be parsed.
377  */
378 static int pci_dev_str_match(struct pci_dev *dev, const char *p,
379 			     const char **endptr)
380 {
381 	int ret;
382 	int count;
383 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
384 
385 	if (strncmp(p, "pci:", 4) == 0) {
386 		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
387 		p += 4;
388 		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
389 			     &subsystem_vendor, &subsystem_device, &count);
390 		if (ret != 4) {
391 			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
392 			if (ret != 2)
393 				return -EINVAL;
394 
395 			subsystem_vendor = 0;
396 			subsystem_device = 0;
397 		}
398 
399 		p += count;
400 
401 		if ((!vendor || vendor == dev->vendor) &&
402 		    (!device || device == dev->device) &&
403 		    (!subsystem_vendor ||
404 			    subsystem_vendor == dev->subsystem_vendor) &&
405 		    (!subsystem_device ||
406 			    subsystem_device == dev->subsystem_device))
407 			goto found;
408 	} else {
409 		/*
410 		 * PCI Bus, Device, Function IDs are specified
411 		 * (optionally, may include a path of devfns following it)
412 		 */
413 		ret = pci_dev_str_match_path(dev, p, &p);
414 		if (ret < 0)
415 			return ret;
416 		else if (ret)
417 			goto found;
418 	}
419 
420 	*endptr = p;
421 	return 0;
422 
423 found:
424 	*endptr = p;
425 	return 1;
426 }
427 
428 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
429 				  u8 pos, int cap, int *ttl)
430 {
431 	u8 id;
432 	u16 ent;
433 
434 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435 
436 	while ((*ttl)--) {
437 		if (pos < 0x40)
438 			break;
439 		pos &= ~3;
440 		pci_bus_read_config_word(bus, devfn, pos, &ent);
441 
442 		id = ent & 0xff;
443 		if (id == 0xff)
444 			break;
445 		if (id == cap)
446 			return pos;
447 		pos = (ent >> 8);
448 	}
449 	return 0;
450 }
451 
452 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
453 			      u8 pos, int cap)
454 {
455 	int ttl = PCI_FIND_CAP_TTL;
456 
457 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
458 }
459 
460 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 {
462 	return __pci_find_next_cap(dev->bus, dev->devfn,
463 				   pos + PCI_CAP_LIST_NEXT, cap);
464 }
465 EXPORT_SYMBOL_GPL(pci_find_next_capability);
466 
467 static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468 				    unsigned int devfn, u8 hdr_type)
469 {
470 	u16 status;
471 
472 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
473 	if (!(status & PCI_STATUS_CAP_LIST))
474 		return 0;
475 
476 	switch (hdr_type) {
477 	case PCI_HEADER_TYPE_NORMAL:
478 	case PCI_HEADER_TYPE_BRIDGE:
479 		return PCI_CAPABILITY_LIST;
480 	case PCI_HEADER_TYPE_CARDBUS:
481 		return PCI_CB_CAPABILITY_LIST;
482 	}
483 
484 	return 0;
485 }
486 
487 /**
488  * pci_find_capability - query for devices' capabilities
489  * @dev: PCI device to query
490  * @cap: capability code
491  *
492  * Tell if a device supports a given PCI capability.
493  * Returns the address of the requested capability structure within the
494  * device's PCI configuration space or 0 in case the device does not
495  * support it.  Possible values for @cap include:
496  *
497  *  %PCI_CAP_ID_PM           Power Management
498  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
499  *  %PCI_CAP_ID_VPD          Vital Product Data
500  *  %PCI_CAP_ID_SLOTID       Slot Identification
501  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
503  *  %PCI_CAP_ID_PCIX         PCI-X
504  *  %PCI_CAP_ID_EXP          PCI Express
505  */
506 u8 pci_find_capability(struct pci_dev *dev, int cap)
507 {
508 	u8 pos;
509 
510 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
511 	if (pos)
512 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
513 
514 	return pos;
515 }
516 EXPORT_SYMBOL(pci_find_capability);
517 
518 /**
519  * pci_bus_find_capability - query for devices' capabilities
520  * @bus: the PCI bus to query
521  * @devfn: PCI device to query
522  * @cap: capability code
523  *
524  * Like pci_find_capability() but works for PCI devices that do not have a
525  * pci_dev structure set up yet.
526  *
527  * Returns the address of the requested capability structure within the
528  * device's PCI configuration space or 0 in case the device does not
529  * support it.
530  */
531 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
532 {
533 	u8 hdr_type, pos;
534 
535 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
536 
537 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
538 	if (pos)
539 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
540 
541 	return pos;
542 }
543 EXPORT_SYMBOL(pci_bus_find_capability);
544 
545 /**
546  * pci_find_next_ext_capability - Find an extended capability
547  * @dev: PCI device to query
548  * @start: address at which to start looking (0 to start at beginning of list)
549  * @cap: capability code
550  *
551  * Returns the address of the next matching extended capability structure
552  * within the device's PCI configuration space or 0 if the device does
553  * not support it.  Some capabilities can occur several times, e.g., the
554  * vendor-specific capability, and this provides a way to find them all.
555  */
556 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
557 {
558 	u32 header;
559 	int ttl;
560 	u16 pos = PCI_CFG_SPACE_SIZE;
561 
562 	/* minimum 8 bytes per capability */
563 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
564 
565 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
566 		return 0;
567 
568 	if (start)
569 		pos = start;
570 
571 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
572 		return 0;
573 
574 	/*
575 	 * If we have no capabilities, this is indicated by cap ID,
576 	 * cap version and next pointer all being 0.
577 	 */
578 	if (header == 0)
579 		return 0;
580 
581 	while (ttl-- > 0) {
582 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
583 			return pos;
584 
585 		pos = PCI_EXT_CAP_NEXT(header);
586 		if (pos < PCI_CFG_SPACE_SIZE)
587 			break;
588 
589 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
590 			break;
591 	}
592 
593 	return 0;
594 }
595 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
596 
597 /**
598  * pci_find_ext_capability - Find an extended capability
599  * @dev: PCI device to query
600  * @cap: capability code
601  *
602  * Returns the address of the requested extended capability structure
603  * within the device's PCI configuration space or 0 if the device does
604  * not support it.  Possible values for @cap include:
605  *
606  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
607  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
608  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
609  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
610  */
611 u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 {
613 	return pci_find_next_ext_capability(dev, 0, cap);
614 }
615 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
616 
617 /**
618  * pci_get_dsn - Read and return the 8-byte Device Serial Number
619  * @dev: PCI device to query
620  *
621  * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
622  * Number.
623  *
624  * Returns the DSN, or zero if the capability does not exist.
625  */
626 u64 pci_get_dsn(struct pci_dev *dev)
627 {
628 	u32 dword;
629 	u64 dsn;
630 	int pos;
631 
632 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
633 	if (!pos)
634 		return 0;
635 
636 	/*
637 	 * The Device Serial Number is two dwords offset 4 bytes from the
638 	 * capability position. The specification says that the first dword is
639 	 * the lower half, and the second dword is the upper half.
640 	 */
641 	pos += 4;
642 	pci_read_config_dword(dev, pos, &dword);
643 	dsn = (u64)dword;
644 	pci_read_config_dword(dev, pos + 4, &dword);
645 	dsn |= ((u64)dword) << 32;
646 
647 	return dsn;
648 }
649 EXPORT_SYMBOL_GPL(pci_get_dsn);
650 
651 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 {
653 	int rc, ttl = PCI_FIND_CAP_TTL;
654 	u8 cap, mask;
655 
656 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
657 		mask = HT_3BIT_CAP_MASK;
658 	else
659 		mask = HT_5BIT_CAP_MASK;
660 
661 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
662 				      PCI_CAP_ID_HT, &ttl);
663 	while (pos) {
664 		rc = pci_read_config_byte(dev, pos + 3, &cap);
665 		if (rc != PCIBIOS_SUCCESSFUL)
666 			return 0;
667 
668 		if ((cap & mask) == ht_cap)
669 			return pos;
670 
671 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
672 					      pos + PCI_CAP_LIST_NEXT,
673 					      PCI_CAP_ID_HT, &ttl);
674 	}
675 
676 	return 0;
677 }
678 
679 /**
680  * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681  * @dev: PCI device to query
682  * @pos: Position from which to continue searching
683  * @ht_cap: HyperTransport capability code
684  *
685  * To be used in conjunction with pci_find_ht_capability() to search for
686  * all capabilities matching @ht_cap. @pos should always be a value returned
687  * from pci_find_ht_capability().
688  *
689  * NB. To be 100% safe against broken PCI devices, the caller should take
690  * steps to avoid an infinite loop.
691  */
692 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 {
694 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
695 }
696 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
697 
698 /**
699  * pci_find_ht_capability - query a device's HyperTransport capabilities
700  * @dev: PCI device to query
701  * @ht_cap: HyperTransport capability code
702  *
703  * Tell if a device supports a given HyperTransport capability.
704  * Returns an address within the device's PCI configuration space
705  * or 0 in case the device does not support the request capability.
706  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707  * which has a HyperTransport capability matching @ht_cap.
708  */
709 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710 {
711 	u8 pos;
712 
713 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
714 	if (pos)
715 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
716 
717 	return pos;
718 }
719 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
720 
721 /**
722  * pci_find_vsec_capability - Find a vendor-specific extended capability
723  * @dev: PCI device to query
724  * @vendor: Vendor ID for which capability is defined
725  * @cap: Vendor-specific capability ID
726  *
727  * If @dev has Vendor ID @vendor, search for a VSEC capability with
728  * VSEC ID @cap. If found, return the capability offset in
729  * config space; otherwise return 0.
730  */
731 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
732 {
733 	u16 vsec = 0;
734 	u32 header;
735 
736 	if (vendor != dev->vendor)
737 		return 0;
738 
739 	while ((vsec = pci_find_next_ext_capability(dev, vsec,
740 						     PCI_EXT_CAP_ID_VNDR))) {
741 		if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER,
742 					  &header) == PCIBIOS_SUCCESSFUL &&
743 		    PCI_VNDR_HEADER_ID(header) == cap)
744 			return vsec;
745 	}
746 
747 	return 0;
748 }
749 EXPORT_SYMBOL_GPL(pci_find_vsec_capability);
750 
751 /**
752  * pci_find_dvsec_capability - Find DVSEC for vendor
753  * @dev: PCI device to query
754  * @vendor: Vendor ID to match for the DVSEC
755  * @dvsec: Designated Vendor-specific capability ID
756  *
757  * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
758  * offset in config space; otherwise return 0.
759  */
760 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
761 {
762 	int pos;
763 
764 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
765 	if (!pos)
766 		return 0;
767 
768 	while (pos) {
769 		u16 v, id;
770 
771 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
772 		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
773 		if (vendor == v && dvsec == id)
774 			return pos;
775 
776 		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
777 	}
778 
779 	return 0;
780 }
781 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);
782 
783 /**
784  * pci_find_parent_resource - return resource region of parent bus of given
785  *			      region
786  * @dev: PCI device structure contains resources to be searched
787  * @res: child resource record for which parent is sought
788  *
789  * For given resource region of given device, return the resource region of
790  * parent bus the given region is contained in.
791  */
792 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
793 					  struct resource *res)
794 {
795 	const struct pci_bus *bus = dev->bus;
796 	struct resource *r;
797 
798 	pci_bus_for_each_resource(bus, r) {
799 		if (!r)
800 			continue;
801 		if (resource_contains(r, res)) {
802 
803 			/*
804 			 * If the window is prefetchable but the BAR is
805 			 * not, the allocator made a mistake.
806 			 */
807 			if (r->flags & IORESOURCE_PREFETCH &&
808 			    !(res->flags & IORESOURCE_PREFETCH))
809 				return NULL;
810 
811 			/*
812 			 * If we're below a transparent bridge, there may
813 			 * be both a positively-decoded aperture and a
814 			 * subtractively-decoded region that contain the BAR.
815 			 * We want the positively-decoded one, so this depends
816 			 * on pci_bus_for_each_resource() giving us those
817 			 * first.
818 			 */
819 			return r;
820 		}
821 	}
822 	return NULL;
823 }
824 EXPORT_SYMBOL(pci_find_parent_resource);
825 
826 /**
827  * pci_find_resource - Return matching PCI device resource
828  * @dev: PCI device to query
829  * @res: Resource to look for
830  *
831  * Goes over standard PCI resources (BARs) and checks if the given resource
832  * is partially or fully contained in any of them. In that case the
833  * matching resource is returned, %NULL otherwise.
834  */
835 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
836 {
837 	int i;
838 
839 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
840 		struct resource *r = &dev->resource[i];
841 
842 		if (r->start && resource_contains(r, res))
843 			return r;
844 	}
845 
846 	return NULL;
847 }
848 EXPORT_SYMBOL(pci_find_resource);
849 
850 /**
851  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
852  * @dev: the PCI device to operate on
853  * @pos: config space offset of status word
854  * @mask: mask of bit(s) to care about in status word
855  *
856  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
857  */
858 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
859 {
860 	int i;
861 
862 	/* Wait for Transaction Pending bit clean */
863 	for (i = 0; i < 4; i++) {
864 		u16 status;
865 		if (i)
866 			msleep((1 << (i - 1)) * 100);
867 
868 		pci_read_config_word(dev, pos, &status);
869 		if (!(status & mask))
870 			return 1;
871 	}
872 
873 	return 0;
874 }
875 
876 static int pci_acs_enable;
877 
878 /**
879  * pci_request_acs - ask for ACS to be enabled if supported
880  */
881 void pci_request_acs(void)
882 {
883 	pci_acs_enable = 1;
884 }
885 
886 static const char *disable_acs_redir_param;
887 
888 /**
889  * pci_disable_acs_redir - disable ACS redirect capabilities
890  * @dev: the PCI device
891  *
892  * For only devices specified in the disable_acs_redir parameter.
893  */
894 static void pci_disable_acs_redir(struct pci_dev *dev)
895 {
896 	int ret = 0;
897 	const char *p;
898 	int pos;
899 	u16 ctrl;
900 
901 	if (!disable_acs_redir_param)
902 		return;
903 
904 	p = disable_acs_redir_param;
905 	while (*p) {
906 		ret = pci_dev_str_match(dev, p, &p);
907 		if (ret < 0) {
908 			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
909 				     disable_acs_redir_param);
910 
911 			break;
912 		} else if (ret == 1) {
913 			/* Found a match */
914 			break;
915 		}
916 
917 		if (*p != ';' && *p != ',') {
918 			/* End of param or invalid format */
919 			break;
920 		}
921 		p++;
922 	}
923 
924 	if (ret != 1)
925 		return;
926 
927 	if (!pci_dev_specific_disable_acs_redir(dev))
928 		return;
929 
930 	pos = dev->acs_cap;
931 	if (!pos) {
932 		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
933 		return;
934 	}
935 
936 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
937 
938 	/* P2P Request & Completion Redirect */
939 	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);
940 
941 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
942 
943 	pci_info(dev, "disabled ACS redirect\n");
944 }
945 
946 /**
947  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
948  * @dev: the PCI device
949  */
950 static void pci_std_enable_acs(struct pci_dev *dev)
951 {
952 	int pos;
953 	u16 cap;
954 	u16 ctrl;
955 
956 	pos = dev->acs_cap;
957 	if (!pos)
958 		return;
959 
960 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
961 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
962 
963 	/* Source Validation */
964 	ctrl |= (cap & PCI_ACS_SV);
965 
966 	/* P2P Request Redirect */
967 	ctrl |= (cap & PCI_ACS_RR);
968 
969 	/* P2P Completion Redirect */
970 	ctrl |= (cap & PCI_ACS_CR);
971 
972 	/* Upstream Forwarding */
973 	ctrl |= (cap & PCI_ACS_UF);
974 
975 	/* Enable Translation Blocking for external devices and noats */
976 	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
977 		ctrl |= (cap & PCI_ACS_TB);
978 
979 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
980 }
981 
982 /**
983  * pci_enable_acs - enable ACS if hardware support it
984  * @dev: the PCI device
985  */
986 static void pci_enable_acs(struct pci_dev *dev)
987 {
988 	if (!pci_acs_enable)
989 		goto disable_acs_redir;
990 
991 	if (!pci_dev_specific_enable_acs(dev))
992 		goto disable_acs_redir;
993 
994 	pci_std_enable_acs(dev);
995 
996 disable_acs_redir:
997 	/*
998 	 * Note: pci_disable_acs_redir() must be called even if ACS was not
999 	 * enabled by the kernel because it may have been enabled by
1000 	 * platform firmware.  So if we are told to disable it, we should
1001 	 * always disable it after setting the kernel's default
1002 	 * preferences.
1003 	 */
1004 	pci_disable_acs_redir(dev);
1005 }
1006 
1007 /**
1008  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1009  * @dev: PCI device to have its BARs restored
1010  *
1011  * Restore the BAR values for a given device, so as to make it
1012  * accessible by its driver.
1013  */
1014 static void pci_restore_bars(struct pci_dev *dev)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1019 		pci_update_resource(dev, i);
1020 }
1021 
1022 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
1023 {
1024 	if (pci_use_mid_pm())
1025 		return true;
1026 
1027 	return acpi_pci_power_manageable(dev);
1028 }
1029 
1030 static inline int platform_pci_set_power_state(struct pci_dev *dev,
1031 					       pci_power_t t)
1032 {
1033 	if (pci_use_mid_pm())
1034 		return mid_pci_set_power_state(dev, t);
1035 
1036 	return acpi_pci_set_power_state(dev, t);
1037 }
1038 
1039 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
1040 {
1041 	if (pci_use_mid_pm())
1042 		return mid_pci_get_power_state(dev);
1043 
1044 	return acpi_pci_get_power_state(dev);
1045 }
1046 
1047 static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
1048 {
1049 	if (!pci_use_mid_pm())
1050 		acpi_pci_refresh_power_state(dev);
1051 }
1052 
1053 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
1054 {
1055 	if (pci_use_mid_pm())
1056 		return PCI_POWER_ERROR;
1057 
1058 	return acpi_pci_choose_state(dev);
1059 }
1060 
1061 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1062 {
1063 	if (pci_use_mid_pm())
1064 		return PCI_POWER_ERROR;
1065 
1066 	return acpi_pci_wakeup(dev, enable);
1067 }
1068 
1069 static inline bool platform_pci_need_resume(struct pci_dev *dev)
1070 {
1071 	if (pci_use_mid_pm())
1072 		return false;
1073 
1074 	return acpi_pci_need_resume(dev);
1075 }
1076 
1077 static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
1078 {
1079 	if (pci_use_mid_pm())
1080 		return false;
1081 
1082 	return acpi_pci_bridge_d3(dev);
1083 }
1084 
1085 /**
1086  * pci_update_current_state - Read power state of given device and cache it
1087  * @dev: PCI device to handle.
1088  * @state: State to cache in case the device doesn't have the PM capability
1089  *
1090  * The power state is read from the PMCSR register, which however is
1091  * inaccessible in D3cold.  The platform firmware is therefore queried first
1092  * to detect accessibility of the register.  In case the platform firmware
1093  * reports an incorrect state or the device isn't power manageable by the
1094  * platform at all, we try to detect D3cold by testing accessibility of the
1095  * vendor ID in config space.
1096  */
1097 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1098 {
1099 	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1100 		dev->current_state = PCI_D3cold;
1101 	} else if (dev->pm_cap) {
1102 		u16 pmcsr;
1103 
1104 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1105 		if (PCI_POSSIBLE_ERROR(pmcsr)) {
1106 			dev->current_state = PCI_D3cold;
1107 			return;
1108 		}
1109 		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1110 	} else {
1111 		dev->current_state = state;
1112 	}
1113 }
1114 
1115 /**
1116  * pci_refresh_power_state - Refresh the given device's power state data
1117  * @dev: Target PCI device.
1118  *
1119  * Ask the platform to refresh the devices power state information and invoke
1120  * pci_update_current_state() to update its current PCI power state.
1121  */
1122 void pci_refresh_power_state(struct pci_dev *dev)
1123 {
1124 	platform_pci_refresh_power_state(dev);
1125 	pci_update_current_state(dev, dev->current_state);
1126 }
1127 
1128 /**
1129  * pci_platform_power_transition - Use platform to change device power state
1130  * @dev: PCI device to handle.
1131  * @state: State to put the device into.
1132  */
1133 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1134 {
1135 	int error;
1136 
1137 	error = platform_pci_set_power_state(dev, state);
1138 	if (!error)
1139 		pci_update_current_state(dev, state);
1140 	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1141 		dev->current_state = PCI_D0;
1142 
1143 	return error;
1144 }
1145 EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1146 
1147 static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1148 {
1149 	pm_request_resume(&pci_dev->dev);
1150 	return 0;
1151 }
1152 
1153 /**
1154  * pci_resume_bus - Walk given bus and runtime resume devices on it
1155  * @bus: Top bus of the subtree to walk.
1156  */
1157 void pci_resume_bus(struct pci_bus *bus)
1158 {
1159 	if (bus)
1160 		pci_walk_bus(bus, pci_resume_one, NULL);
1161 }
1162 
1163 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
1164 {
1165 	int delay = 1;
1166 	bool retrain = false;
1167 	struct pci_dev *bridge;
1168 
1169 	if (pci_is_pcie(dev)) {
1170 		bridge = pci_upstream_bridge(dev);
1171 		if (bridge)
1172 			retrain = true;
1173 	}
1174 
1175 	/*
1176 	 * After reset, the device should not silently discard config
1177 	 * requests, but it may still indicate that it needs more time by
1178 	 * responding to them with CRS completions.  The Root Port will
1179 	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
1180 	 * the read (except when CRS SV is enabled and the read was for the
1181 	 * Vendor ID; in that case it synthesizes 0x0001 data).
1182 	 *
1183 	 * Wait for the device to return a non-CRS completion.  Read the
1184 	 * Command register instead of Vendor ID so we don't have to
1185 	 * contend with the CRS SV value.
1186 	 */
1187 	for (;;) {
1188 		u32 id;
1189 
1190 		pci_read_config_dword(dev, PCI_COMMAND, &id);
1191 		if (!PCI_POSSIBLE_ERROR(id))
1192 			break;
1193 
1194 		if (delay > timeout) {
1195 			pci_warn(dev, "not ready %dms after %s; giving up\n",
1196 				 delay - 1, reset_type);
1197 			return -ENOTTY;
1198 		}
1199 
1200 		if (delay > PCI_RESET_WAIT) {
1201 			if (retrain) {
1202 				retrain = false;
1203 				if (pcie_failed_link_retrain(bridge)) {
1204 					delay = 1;
1205 					continue;
1206 				}
1207 			}
1208 			pci_info(dev, "not ready %dms after %s; waiting\n",
1209 				 delay - 1, reset_type);
1210 		}
1211 
1212 		msleep(delay);
1213 		delay *= 2;
1214 	}
1215 
1216 	if (delay > PCI_RESET_WAIT)
1217 		pci_info(dev, "ready %dms after %s\n", delay - 1,
1218 			 reset_type);
1219 
1220 	return 0;
1221 }
1222 
1223 /**
1224  * pci_power_up - Put the given device into D0
1225  * @dev: PCI device to power up
1226  *
1227  * On success, return 0 or 1, depending on whether or not it is necessary to
1228  * restore the device's BARs subsequently (1 is returned in that case).
1229  */
1230 int pci_power_up(struct pci_dev *dev)
1231 {
1232 	bool need_restore;
1233 	pci_power_t state;
1234 	u16 pmcsr;
1235 
1236 	platform_pci_set_power_state(dev, PCI_D0);
1237 
1238 	if (!dev->pm_cap) {
1239 		state = platform_pci_get_power_state(dev);
1240 		if (state == PCI_UNKNOWN)
1241 			dev->current_state = PCI_D0;
1242 		else
1243 			dev->current_state = state;
1244 
1245 		if (state == PCI_D0)
1246 			return 0;
1247 
1248 		return -EIO;
1249 	}
1250 
1251 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1252 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1253 		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
1254 			pci_power_name(dev->current_state));
1255 		dev->current_state = PCI_D3cold;
1256 		return -EIO;
1257 	}
1258 
1259 	state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1260 
1261 	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
1262 			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);
1263 
1264 	if (state == PCI_D0)
1265 		goto end;
1266 
1267 	/*
1268 	 * Force the entire word to 0. This doesn't affect PME_Status, disables
1269 	 * PME_En, and sets PowerState to 0.
1270 	 */
1271 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1272 
1273 	/* Mandatory transition delays; see PCI PM 1.2. */
1274 	if (state == PCI_D3hot)
1275 		pci_dev_d3_sleep(dev);
1276 	else if (state == PCI_D2)
1277 		udelay(PCI_PM_D2_DELAY);
1278 
1279 end:
1280 	dev->current_state = PCI_D0;
1281 	if (need_restore)
1282 		return 1;
1283 
1284 	return 0;
1285 }
1286 
1287 /**
1288  * pci_set_full_power_state - Put a PCI device into D0 and update its state
1289  * @dev: PCI device to power up
1290  *
1291  * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
1292  * to confirm the state change, restore its BARs if they might be lost and
1293  * reconfigure ASPM in acordance with the new power state.
1294  *
1295  * If pci_restore_state() is going to be called right after a power state change
1296  * to D0, it is more efficient to use pci_power_up() directly instead of this
1297  * function.
1298  */
1299 static int pci_set_full_power_state(struct pci_dev *dev)
1300 {
1301 	u16 pmcsr;
1302 	int ret;
1303 
1304 	ret = pci_power_up(dev);
1305 	if (ret < 0)
1306 		return ret;
1307 
1308 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1309 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1310 	if (dev->current_state != PCI_D0) {
1311 		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
1312 				     pci_power_name(dev->current_state));
1313 	} else if (ret > 0) {
1314 		/*
1315 		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
1316 		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
1317 		 * from D3hot to D0 _may_ perform an internal reset, thereby
1318 		 * going to "D0 Uninitialized" rather than "D0 Initialized".
1319 		 * For example, at least some versions of the 3c905B and the
1320 		 * 3c556B exhibit this behaviour.
1321 		 *
1322 		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
1323 		 * devices in a D3hot state at boot.  Consequently, we need to
1324 		 * restore at least the BARs so that the device will be
1325 		 * accessible to its driver.
1326 		 */
1327 		pci_restore_bars(dev);
1328 	}
1329 
1330 	return 0;
1331 }
1332 
1333 /**
1334  * __pci_dev_set_current_state - Set current state of a PCI device
1335  * @dev: Device to handle
1336  * @data: pointer to state to be set
1337  */
1338 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
1339 {
1340 	pci_power_t state = *(pci_power_t *)data;
1341 
1342 	dev->current_state = state;
1343 	return 0;
1344 }
1345 
1346 /**
1347  * pci_bus_set_current_state - Walk given bus and set current state of devices
1348  * @bus: Top bus of the subtree to walk.
1349  * @state: state to be set
1350  */
1351 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1352 {
1353 	if (bus)
1354 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1355 }
1356 
1357 /**
1358  * pci_set_low_power_state - Put a PCI device into a low-power state.
1359  * @dev: PCI device to handle.
1360  * @state: PCI power state (D1, D2, D3hot) to put the device into.
1361  *
1362  * Use the device's PCI_PM_CTRL register to put it into a low-power state.
1363  *
1364  * RETURN VALUE:
1365  * -EINVAL if the requested state is invalid.
1366  * -EIO if device does not support PCI PM or its PM capabilities register has a
1367  * wrong version, or device doesn't support the requested state.
1368  * 0 if device already is in the requested state.
1369  * 0 if device's power state has been successfully changed.
1370  */
1371 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state)
1372 {
1373 	u16 pmcsr;
1374 
1375 	if (!dev->pm_cap)
1376 		return -EIO;
1377 
1378 	/*
1379 	 * Validate transition: We can enter D0 from any state, but if
1380 	 * we're already in a low-power state, we can only go deeper.  E.g.,
1381 	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
1382 	 * we'd have to go from D3 to D0, then to D1.
1383 	 */
1384 	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1385 		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1386 			pci_power_name(dev->current_state),
1387 			pci_power_name(state));
1388 		return -EINVAL;
1389 	}
1390 
1391 	/* Check if this device supports the desired state */
1392 	if ((state == PCI_D1 && !dev->d1_support)
1393 	   || (state == PCI_D2 && !dev->d2_support))
1394 		return -EIO;
1395 
1396 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1397 	if (PCI_POSSIBLE_ERROR(pmcsr)) {
1398 		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
1399 			pci_power_name(dev->current_state),
1400 			pci_power_name(state));
1401 		dev->current_state = PCI_D3cold;
1402 		return -EIO;
1403 	}
1404 
1405 	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
1406 	pmcsr |= state;
1407 
1408 	/* Enter specified state */
1409 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1410 
1411 	/* Mandatory power management transition delays; see PCI PM 1.2. */
1412 	if (state == PCI_D3hot)
1413 		pci_dev_d3_sleep(dev);
1414 	else if (state == PCI_D2)
1415 		udelay(PCI_PM_D2_DELAY);
1416 
1417 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1418 	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1419 	if (dev->current_state != state)
1420 		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
1421 				     pci_power_name(dev->current_state),
1422 				     pci_power_name(state));
1423 
1424 	return 0;
1425 }
1426 
1427 /**
1428  * pci_set_power_state - Set the power state of a PCI device
1429  * @dev: PCI device to handle.
1430  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
1431  *
1432  * Transition a device to a new power state, using the platform firmware and/or
1433  * the device's PCI PM registers.
1434  *
1435  * RETURN VALUE:
1436  * -EINVAL if the requested state is invalid.
1437  * -EIO if device does not support PCI PM or its PM capabilities register has a
1438  * wrong version, or device doesn't support the requested state.
1439  * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
1440  * 0 if device already is in the requested state.
1441  * 0 if the transition is to D3 but D3 is not supported.
1442  * 0 if device's power state has been successfully changed.
1443  */
1444 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
1445 {
1446 	int error;
1447 
1448 	/* Bound the state we're entering */
1449 	if (state > PCI_D3cold)
1450 		state = PCI_D3cold;
1451 	else if (state < PCI_D0)
1452 		state = PCI_D0;
1453 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
1454 
1455 		/*
1456 		 * If the device or the parent bridge do not support PCI
1457 		 * PM, ignore the request if we're doing anything other
1458 		 * than putting it into D0 (which would only happen on
1459 		 * boot).
1460 		 */
1461 		return 0;
1462 
1463 	/* Check if we're already there */
1464 	if (dev->current_state == state)
1465 		return 0;
1466 
1467 	if (state == PCI_D0)
1468 		return pci_set_full_power_state(dev);
1469 
1470 	/*
1471 	 * This device is quirked not to be put into D3, so don't put it in
1472 	 * D3
1473 	 */
1474 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1475 		return 0;
1476 
1477 	if (state == PCI_D3cold) {
1478 		/*
1479 		 * To put the device in D3cold, put it into D3hot in the native
1480 		 * way, then put it into D3cold using platform ops.
1481 		 */
1482 		error = pci_set_low_power_state(dev, PCI_D3hot);
1483 
1484 		if (pci_platform_power_transition(dev, PCI_D3cold))
1485 			return error;
1486 
1487 		/* Powering off a bridge may power off the whole hierarchy */
1488 		if (dev->current_state == PCI_D3cold)
1489 			pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
1490 	} else {
1491 		error = pci_set_low_power_state(dev, state);
1492 
1493 		if (pci_platform_power_transition(dev, state))
1494 			return error;
1495 	}
1496 
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL(pci_set_power_state);
1500 
1501 #define PCI_EXP_SAVE_REGS	7
1502 
1503 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
1504 						       u16 cap, bool extended)
1505 {
1506 	struct pci_cap_saved_state *tmp;
1507 
1508 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1509 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1510 			return tmp;
1511 	}
1512 	return NULL;
1513 }
1514 
1515 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
1516 {
1517 	return _pci_find_saved_cap(dev, cap, false);
1518 }
1519 
1520 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
1521 {
1522 	return _pci_find_saved_cap(dev, cap, true);
1523 }
1524 
1525 static int pci_save_pcie_state(struct pci_dev *dev)
1526 {
1527 	int i = 0;
1528 	struct pci_cap_saved_state *save_state;
1529 	u16 *cap;
1530 
1531 	if (!pci_is_pcie(dev))
1532 		return 0;
1533 
1534 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1535 	if (!save_state) {
1536 		pci_err(dev, "buffer not found in %s\n", __func__);
1537 		return -ENOMEM;
1538 	}
1539 
1540 	cap = (u16 *)&save_state->cap.data[0];
1541 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
1542 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1543 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1544 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1545 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1546 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1547 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1548 
1549 	return 0;
1550 }
1551 
1552 void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
1553 {
1554 #ifdef CONFIG_PCIEASPM
1555 	struct pci_dev *bridge;
1556 	u32 ctl;
1557 
1558 	bridge = pci_upstream_bridge(dev);
1559 	if (bridge && bridge->ltr_path) {
1560 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
1561 		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
1562 			pci_dbg(bridge, "re-enabling LTR\n");
1563 			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
1564 						 PCI_EXP_DEVCTL2_LTR_EN);
1565 		}
1566 	}
1567 #endif
1568 }
1569 
1570 static void pci_restore_pcie_state(struct pci_dev *dev)
1571 {
1572 	int i = 0;
1573 	struct pci_cap_saved_state *save_state;
1574 	u16 *cap;
1575 
1576 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1577 	if (!save_state)
1578 		return;
1579 
1580 	/*
1581 	 * Downstream ports reset the LTR enable bit when link goes down.
1582 	 * Check and re-configure the bit here before restoring device.
1583 	 * PCIe r5.0, sec 7.5.3.16.
1584 	 */
1585 	pci_bridge_reconfigure_ltr(dev);
1586 
1587 	cap = (u16 *)&save_state->cap.data[0];
1588 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1589 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1590 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1591 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1592 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1593 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1594 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1595 }
1596 
1597 static int pci_save_pcix_state(struct pci_dev *dev)
1598 {
1599 	int pos;
1600 	struct pci_cap_saved_state *save_state;
1601 
1602 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1603 	if (!pos)
1604 		return 0;
1605 
1606 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1607 	if (!save_state) {
1608 		pci_err(dev, "buffer not found in %s\n", __func__);
1609 		return -ENOMEM;
1610 	}
1611 
1612 	pci_read_config_word(dev, pos + PCI_X_CMD,
1613 			     (u16 *)save_state->cap.data);
1614 
1615 	return 0;
1616 }
1617 
1618 static void pci_restore_pcix_state(struct pci_dev *dev)
1619 {
1620 	int i = 0, pos;
1621 	struct pci_cap_saved_state *save_state;
1622 	u16 *cap;
1623 
1624 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1625 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1626 	if (!save_state || !pos)
1627 		return;
1628 	cap = (u16 *)&save_state->cap.data[0];
1629 
1630 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1631 }
1632 
1633 static void pci_save_ltr_state(struct pci_dev *dev)
1634 {
1635 	int ltr;
1636 	struct pci_cap_saved_state *save_state;
1637 	u32 *cap;
1638 
1639 	if (!pci_is_pcie(dev))
1640 		return;
1641 
1642 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1643 	if (!ltr)
1644 		return;
1645 
1646 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1647 	if (!save_state) {
1648 		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
1649 		return;
1650 	}
1651 
1652 	/* Some broken devices only support dword access to LTR */
1653 	cap = &save_state->cap.data[0];
1654 	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1655 }
1656 
1657 static void pci_restore_ltr_state(struct pci_dev *dev)
1658 {
1659 	struct pci_cap_saved_state *save_state;
1660 	int ltr;
1661 	u32 *cap;
1662 
1663 	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
1664 	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
1665 	if (!save_state || !ltr)
1666 		return;
1667 
1668 	/* Some broken devices only support dword access to LTR */
1669 	cap = &save_state->cap.data[0];
1670 	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1671 }
1672 
1673 /**
1674  * pci_save_state - save the PCI configuration space of a device before
1675  *		    suspending
1676  * @dev: PCI device that we're dealing with
1677  */
1678 int pci_save_state(struct pci_dev *dev)
1679 {
1680 	int i;
1681 	/* XXX: 100% dword access ok here? */
1682 	for (i = 0; i < 16; i++) {
1683 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1684 		pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n",
1685 			i * 4, dev->saved_config_space[i]);
1686 	}
1687 	dev->state_saved = true;
1688 
1689 	i = pci_save_pcie_state(dev);
1690 	if (i != 0)
1691 		return i;
1692 
1693 	i = pci_save_pcix_state(dev);
1694 	if (i != 0)
1695 		return i;
1696 
1697 	pci_save_ltr_state(dev);
1698 	pci_save_dpc_state(dev);
1699 	pci_save_aer_state(dev);
1700 	pci_save_ptm_state(dev);
1701 	return pci_save_vc_state(dev);
1702 }
1703 EXPORT_SYMBOL(pci_save_state);
1704 
1705 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1706 				     u32 saved_val, int retry, bool force)
1707 {
1708 	u32 val;
1709 
1710 	pci_read_config_dword(pdev, offset, &val);
1711 	if (!force && val == saved_val)
1712 		return;
1713 
1714 	for (;;) {
1715 		pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1716 			offset, val, saved_val);
1717 		pci_write_config_dword(pdev, offset, saved_val);
1718 		if (retry-- <= 0)
1719 			return;
1720 
1721 		pci_read_config_dword(pdev, offset, &val);
1722 		if (val == saved_val)
1723 			return;
1724 
1725 		mdelay(1);
1726 	}
1727 }
1728 
1729 static void pci_restore_config_space_range(struct pci_dev *pdev,
1730 					   int start, int end, int retry,
1731 					   bool force)
1732 {
1733 	int index;
1734 
1735 	for (index = end; index >= start; index--)
1736 		pci_restore_config_dword(pdev, 4 * index,
1737 					 pdev->saved_config_space[index],
1738 					 retry, force);
1739 }
1740 
1741 static void pci_restore_config_space(struct pci_dev *pdev)
1742 {
1743 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1744 		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1745 		/* Restore BARs before the command register. */
1746 		pci_restore_config_space_range(pdev, 4, 9, 10, false);
1747 		pci_restore_config_space_range(pdev, 0, 3, 0, false);
1748 	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1749 		pci_restore_config_space_range(pdev, 12, 15, 0, false);
1750 
1751 		/*
1752 		 * Force rewriting of prefetch registers to avoid S3 resume
1753 		 * issues on Intel PCI bridges that occur when these
1754 		 * registers are not explicitly written.
1755 		 */
1756 		pci_restore_config_space_range(pdev, 9, 11, 0, true);
1757 		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1758 	} else {
1759 		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1760 	}
1761 }
1762 
1763 static void pci_restore_rebar_state(struct pci_dev *pdev)
1764 {
1765 	unsigned int pos, nbars, i;
1766 	u32 ctrl;
1767 
1768 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
1769 	if (!pos)
1770 		return;
1771 
1772 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1773 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
1774 		    PCI_REBAR_CTRL_NBAR_SHIFT;
1775 
1776 	for (i = 0; i < nbars; i++, pos += 8) {
1777 		struct resource *res;
1778 		int bar_idx, size;
1779 
1780 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
1781 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
1782 		res = pdev->resource + bar_idx;
1783 		size = pci_rebar_bytes_to_size(resource_size(res));
1784 		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
1785 		ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
1786 		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
1787 	}
1788 }
1789 
1790 /**
1791  * pci_restore_state - Restore the saved state of a PCI device
1792  * @dev: PCI device that we're dealing with
1793  */
1794 void pci_restore_state(struct pci_dev *dev)
1795 {
1796 	if (!dev->state_saved)
1797 		return;
1798 
1799 	/*
1800 	 * Restore max latencies (in the LTR capability) before enabling
1801 	 * LTR itself (in the PCIe capability).
1802 	 */
1803 	pci_restore_ltr_state(dev);
1804 
1805 	pci_restore_pcie_state(dev);
1806 	pci_restore_pasid_state(dev);
1807 	pci_restore_pri_state(dev);
1808 	pci_restore_ats_state(dev);
1809 	pci_restore_vc_state(dev);
1810 	pci_restore_rebar_state(dev);
1811 	pci_restore_dpc_state(dev);
1812 	pci_restore_ptm_state(dev);
1813 
1814 	pci_aer_clear_status(dev);
1815 	pci_restore_aer_state(dev);
1816 
1817 	pci_restore_config_space(dev);
1818 
1819 	pci_restore_pcix_state(dev);
1820 	pci_restore_msi_state(dev);
1821 
1822 	/* Restore ACS and IOV configuration state */
1823 	pci_enable_acs(dev);
1824 	pci_restore_iov_state(dev);
1825 
1826 	dev->state_saved = false;
1827 }
1828 EXPORT_SYMBOL(pci_restore_state);
1829 
1830 struct pci_saved_state {
1831 	u32 config_space[16];
1832 	struct pci_cap_saved_data cap[];
1833 };
1834 
1835 /**
1836  * pci_store_saved_state - Allocate and return an opaque struct containing
1837  *			   the device saved state.
1838  * @dev: PCI device that we're dealing with
1839  *
1840  * Return NULL if no state or error.
1841  */
1842 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1843 {
1844 	struct pci_saved_state *state;
1845 	struct pci_cap_saved_state *tmp;
1846 	struct pci_cap_saved_data *cap;
1847 	size_t size;
1848 
1849 	if (!dev->state_saved)
1850 		return NULL;
1851 
1852 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1853 
1854 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1855 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1856 
1857 	state = kzalloc(size, GFP_KERNEL);
1858 	if (!state)
1859 		return NULL;
1860 
1861 	memcpy(state->config_space, dev->saved_config_space,
1862 	       sizeof(state->config_space));
1863 
1864 	cap = state->cap;
1865 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1866 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1867 		memcpy(cap, &tmp->cap, len);
1868 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1869 	}
1870 	/* Empty cap_save terminates list */
1871 
1872 	return state;
1873 }
1874 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1875 
1876 /**
1877  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1878  * @dev: PCI device that we're dealing with
1879  * @state: Saved state returned from pci_store_saved_state()
1880  */
1881 int pci_load_saved_state(struct pci_dev *dev,
1882 			 struct pci_saved_state *state)
1883 {
1884 	struct pci_cap_saved_data *cap;
1885 
1886 	dev->state_saved = false;
1887 
1888 	if (!state)
1889 		return 0;
1890 
1891 	memcpy(dev->saved_config_space, state->config_space,
1892 	       sizeof(state->config_space));
1893 
1894 	cap = state->cap;
1895 	while (cap->size) {
1896 		struct pci_cap_saved_state *tmp;
1897 
1898 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1899 		if (!tmp || tmp->cap.size != cap->size)
1900 			return -EINVAL;
1901 
1902 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1903 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1904 		       sizeof(struct pci_cap_saved_data) + cap->size);
1905 	}
1906 
1907 	dev->state_saved = true;
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1911 
1912 /**
1913  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1914  *				   and free the memory allocated for it.
1915  * @dev: PCI device that we're dealing with
1916  * @state: Pointer to saved state returned from pci_store_saved_state()
1917  */
1918 int pci_load_and_free_saved_state(struct pci_dev *dev,
1919 				  struct pci_saved_state **state)
1920 {
1921 	int ret = pci_load_saved_state(dev, *state);
1922 	kfree(*state);
1923 	*state = NULL;
1924 	return ret;
1925 }
1926 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1927 
1928 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1929 {
1930 	return pci_enable_resources(dev, bars);
1931 }
1932 
1933 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1934 {
1935 	int err;
1936 	struct pci_dev *bridge;
1937 	u16 cmd;
1938 	u8 pin;
1939 
1940 	err = pci_set_power_state(dev, PCI_D0);
1941 	if (err < 0 && err != -EIO)
1942 		return err;
1943 
1944 	bridge = pci_upstream_bridge(dev);
1945 	if (bridge)
1946 		pcie_aspm_powersave_config_link(bridge);
1947 
1948 	err = pcibios_enable_device(dev, bars);
1949 	if (err < 0)
1950 		return err;
1951 	pci_fixup_device(pci_fixup_enable, dev);
1952 
1953 	if (dev->msi_enabled || dev->msix_enabled)
1954 		return 0;
1955 
1956 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1957 	if (pin) {
1958 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1959 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1960 			pci_write_config_word(dev, PCI_COMMAND,
1961 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1962 	}
1963 
1964 	return 0;
1965 }
1966 
1967 /**
1968  * pci_reenable_device - Resume abandoned device
1969  * @dev: PCI device to be resumed
1970  *
1971  * NOTE: This function is a backend of pci_default_resume() and is not supposed
1972  * to be called by normal code, write proper resume handler and use it instead.
1973  */
1974 int pci_reenable_device(struct pci_dev *dev)
1975 {
1976 	if (pci_is_enabled(dev))
1977 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1978 	return 0;
1979 }
1980 EXPORT_SYMBOL(pci_reenable_device);
1981 
1982 static void pci_enable_bridge(struct pci_dev *dev)
1983 {
1984 	struct pci_dev *bridge;
1985 	int retval;
1986 
1987 	bridge = pci_upstream_bridge(dev);
1988 	if (bridge)
1989 		pci_enable_bridge(bridge);
1990 
1991 	if (pci_is_enabled(dev)) {
1992 		if (!dev->is_busmaster)
1993 			pci_set_master(dev);
1994 		return;
1995 	}
1996 
1997 	retval = pci_enable_device(dev);
1998 	if (retval)
1999 		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2000 			retval);
2001 	pci_set_master(dev);
2002 }
2003 
2004 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
2005 {
2006 	struct pci_dev *bridge;
2007 	int err;
2008 	int i, bars = 0;
2009 
2010 	/*
2011 	 * Power state could be unknown at this point, either due to a fresh
2012 	 * boot or a device removal call.  So get the current power state
2013 	 * so that things like MSI message writing will behave as expected
2014 	 * (e.g. if the device really is in D0 at enable time).
2015 	 */
2016 	pci_update_current_state(dev, dev->current_state);
2017 
2018 	if (atomic_inc_return(&dev->enable_cnt) > 1)
2019 		return 0;		/* already enabled */
2020 
2021 	bridge = pci_upstream_bridge(dev);
2022 	if (bridge)
2023 		pci_enable_bridge(bridge);
2024 
2025 	/* only skip sriov related */
2026 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2027 		if (dev->resource[i].flags & flags)
2028 			bars |= (1 << i);
2029 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2030 		if (dev->resource[i].flags & flags)
2031 			bars |= (1 << i);
2032 
2033 	err = do_pci_enable_device(dev, bars);
2034 	if (err < 0)
2035 		atomic_dec(&dev->enable_cnt);
2036 	return err;
2037 }
2038 
2039 /**
2040  * pci_enable_device_io - Initialize a device for use with IO space
2041  * @dev: PCI device to be initialized
2042  *
2043  * Initialize device before it's used by a driver. Ask low-level code
2044  * to enable I/O resources. Wake up the device if it was suspended.
2045  * Beware, this function can fail.
2046  */
2047 int pci_enable_device_io(struct pci_dev *dev)
2048 {
2049 	return pci_enable_device_flags(dev, IORESOURCE_IO);
2050 }
2051 EXPORT_SYMBOL(pci_enable_device_io);
2052 
2053 /**
2054  * pci_enable_device_mem - Initialize a device for use with Memory space
2055  * @dev: PCI device to be initialized
2056  *
2057  * Initialize device before it's used by a driver. Ask low-level code
2058  * to enable Memory resources. Wake up the device if it was suspended.
2059  * Beware, this function can fail.
2060  */
2061 int pci_enable_device_mem(struct pci_dev *dev)
2062 {
2063 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2064 }
2065 EXPORT_SYMBOL(pci_enable_device_mem);
2066 
2067 /**
2068  * pci_enable_device - Initialize device before it's used by a driver.
2069  * @dev: PCI device to be initialized
2070  *
2071  * Initialize device before it's used by a driver. Ask low-level code
2072  * to enable I/O and memory. Wake up the device if it was suspended.
2073  * Beware, this function can fail.
2074  *
2075  * Note we don't actually enable the device many times if we call
2076  * this function repeatedly (we just increment the count).
2077  */
2078 int pci_enable_device(struct pci_dev *dev)
2079 {
2080 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2081 }
2082 EXPORT_SYMBOL(pci_enable_device);
2083 
2084 /*
2085  * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
2086  * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2087  * there's no need to track it separately.  pci_devres is initialized
2088  * when a device is enabled using managed PCI device enable interface.
2089  */
2090 struct pci_devres {
2091 	unsigned int enabled:1;
2092 	unsigned int pinned:1;
2093 	unsigned int orig_intx:1;
2094 	unsigned int restore_intx:1;
2095 	unsigned int mwi:1;
2096 	u32 region_mask;
2097 };
2098 
2099 static void pcim_release(struct device *gendev, void *res)
2100 {
2101 	struct pci_dev *dev = to_pci_dev(gendev);
2102 	struct pci_devres *this = res;
2103 	int i;
2104 
2105 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
2106 		if (this->region_mask & (1 << i))
2107 			pci_release_region(dev, i);
2108 
2109 	if (this->mwi)
2110 		pci_clear_mwi(dev);
2111 
2112 	if (this->restore_intx)
2113 		pci_intx(dev, this->orig_intx);
2114 
2115 	if (this->enabled && !this->pinned)
2116 		pci_disable_device(dev);
2117 }
2118 
2119 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2120 {
2121 	struct pci_devres *dr, *new_dr;
2122 
2123 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
2124 	if (dr)
2125 		return dr;
2126 
2127 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
2128 	if (!new_dr)
2129 		return NULL;
2130 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
2131 }
2132 
2133 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2134 {
2135 	if (pci_is_managed(pdev))
2136 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
2137 	return NULL;
2138 }
2139 
2140 /**
2141  * pcim_enable_device - Managed pci_enable_device()
2142  * @pdev: PCI device to be initialized
2143  *
2144  * Managed pci_enable_device().
2145  */
2146 int pcim_enable_device(struct pci_dev *pdev)
2147 {
2148 	struct pci_devres *dr;
2149 	int rc;
2150 
2151 	dr = get_pci_dr(pdev);
2152 	if (unlikely(!dr))
2153 		return -ENOMEM;
2154 	if (dr->enabled)
2155 		return 0;
2156 
2157 	rc = pci_enable_device(pdev);
2158 	if (!rc) {
2159 		pdev->is_managed = 1;
2160 		dr->enabled = 1;
2161 	}
2162 	return rc;
2163 }
2164 EXPORT_SYMBOL(pcim_enable_device);
2165 
2166 /**
2167  * pcim_pin_device - Pin managed PCI device
2168  * @pdev: PCI device to pin
2169  *
2170  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
2171  * driver detach.  @pdev must have been enabled with
2172  * pcim_enable_device().
2173  */
2174 void pcim_pin_device(struct pci_dev *pdev)
2175 {
2176 	struct pci_devres *dr;
2177 
2178 	dr = find_pci_dr(pdev);
2179 	WARN_ON(!dr || !dr->enabled);
2180 	if (dr)
2181 		dr->pinned = 1;
2182 }
2183 EXPORT_SYMBOL(pcim_pin_device);
2184 
2185 /*
2186  * pcibios_device_add - provide arch specific hooks when adding device dev
2187  * @dev: the PCI device being added
2188  *
2189  * Permits the platform to provide architecture specific functionality when
2190  * devices are added. This is the default implementation. Architecture
2191  * implementations can override this.
2192  */
2193 int __weak pcibios_device_add(struct pci_dev *dev)
2194 {
2195 	return 0;
2196 }
2197 
2198 /**
2199  * pcibios_release_device - provide arch specific hooks when releasing
2200  *			    device dev
2201  * @dev: the PCI device being released
2202  *
2203  * Permits the platform to provide architecture specific functionality when
2204  * devices are released. This is the default implementation. Architecture
2205  * implementations can override this.
2206  */
2207 void __weak pcibios_release_device(struct pci_dev *dev) {}
2208 
2209 /**
2210  * pcibios_disable_device - disable arch specific PCI resources for device dev
2211  * @dev: the PCI device to disable
2212  *
2213  * Disables architecture specific PCI resources for the device. This
2214  * is the default implementation. Architecture implementations can
2215  * override this.
2216  */
2217 void __weak pcibios_disable_device(struct pci_dev *dev) {}
2218 
2219 /**
2220  * pcibios_penalize_isa_irq - penalize an ISA IRQ
2221  * @irq: ISA IRQ to penalize
2222  * @active: IRQ active or not
2223  *
2224  * Permits the platform to provide architecture-specific functionality when
2225  * penalizing ISA IRQs. This is the default implementation. Architecture
2226  * implementations can override this.
2227  */
2228 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
2229 
2230 static void do_pci_disable_device(struct pci_dev *dev)
2231 {
2232 	u16 pci_command;
2233 
2234 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
2235 	if (pci_command & PCI_COMMAND_MASTER) {
2236 		pci_command &= ~PCI_COMMAND_MASTER;
2237 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
2238 	}
2239 
2240 	pcibios_disable_device(dev);
2241 }
2242 
2243 /**
2244  * pci_disable_enabled_device - Disable device without updating enable_cnt
2245  * @dev: PCI device to disable
2246  *
2247  * NOTE: This function is a backend of PCI power management routines and is
2248  * not supposed to be called drivers.
2249  */
2250 void pci_disable_enabled_device(struct pci_dev *dev)
2251 {
2252 	if (pci_is_enabled(dev))
2253 		do_pci_disable_device(dev);
2254 }
2255 
2256 /**
2257  * pci_disable_device - Disable PCI device after use
2258  * @dev: PCI device to be disabled
2259  *
2260  * Signal to the system that the PCI device is not in use by the system
2261  * anymore.  This only involves disabling PCI bus-mastering, if active.
2262  *
2263  * Note we don't actually disable the device until all callers of
2264  * pci_enable_device() have called pci_disable_device().
2265  */
2266 void pci_disable_device(struct pci_dev *dev)
2267 {
2268 	struct pci_devres *dr;
2269 
2270 	dr = find_pci_dr(dev);
2271 	if (dr)
2272 		dr->enabled = 0;
2273 
2274 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
2275 		      "disabling already-disabled device");
2276 
2277 	if (atomic_dec_return(&dev->enable_cnt) != 0)
2278 		return;
2279 
2280 	do_pci_disable_device(dev);
2281 
2282 	dev->is_busmaster = 0;
2283 }
2284 EXPORT_SYMBOL(pci_disable_device);
2285 
2286 /**
2287  * pcibios_set_pcie_reset_state - set reset state for device dev
2288  * @dev: the PCIe device reset
2289  * @state: Reset state to enter into
2290  *
2291  * Set the PCIe reset state for the device. This is the default
2292  * implementation. Architecture implementations can override this.
2293  */
2294 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
2295 					enum pcie_reset_state state)
2296 {
2297 	return -EINVAL;
2298 }
2299 
2300 /**
2301  * pci_set_pcie_reset_state - set reset state for device dev
2302  * @dev: the PCIe device reset
2303  * @state: Reset state to enter into
2304  *
2305  * Sets the PCI reset state for the device.
2306  */
2307 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
2308 {
2309 	return pcibios_set_pcie_reset_state(dev, state);
2310 }
2311 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
2312 
2313 #ifdef CONFIG_PCIEAER
2314 void pcie_clear_device_status(struct pci_dev *dev)
2315 {
2316 	u16 sta;
2317 
2318 	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
2319 	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
2320 }
2321 #endif
2322 
2323 /**
2324  * pcie_clear_root_pme_status - Clear root port PME interrupt status.
2325  * @dev: PCIe root port or event collector.
2326  */
2327 void pcie_clear_root_pme_status(struct pci_dev *dev)
2328 {
2329 	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
2330 }
2331 
2332 /**
2333  * pci_check_pme_status - Check if given device has generated PME.
2334  * @dev: Device to check.
2335  *
2336  * Check the PME status of the device and if set, clear it and clear PME enable
2337  * (if set).  Return 'true' if PME status and PME enable were both set or
2338  * 'false' otherwise.
2339  */
2340 bool pci_check_pme_status(struct pci_dev *dev)
2341 {
2342 	int pmcsr_pos;
2343 	u16 pmcsr;
2344 	bool ret = false;
2345 
2346 	if (!dev->pm_cap)
2347 		return false;
2348 
2349 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
2350 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
2351 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
2352 		return false;
2353 
2354 	/* Clear PME status. */
2355 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
2356 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
2357 		/* Disable PME to avoid interrupt flood. */
2358 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2359 		ret = true;
2360 	}
2361 
2362 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
2363 
2364 	return ret;
2365 }
2366 
2367 /**
2368  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
2369  * @dev: Device to handle.
2370  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2371  *
2372  * Check if @dev has generated PME and queue a resume request for it in that
2373  * case.
2374  */
2375 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2376 {
2377 	if (pme_poll_reset && dev->pme_poll)
2378 		dev->pme_poll = false;
2379 
2380 	if (pci_check_pme_status(dev)) {
2381 		pci_wakeup_event(dev);
2382 		pm_request_resume(&dev->dev);
2383 	}
2384 	return 0;
2385 }
2386 
2387 /**
2388  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
2389  * @bus: Top bus of the subtree to walk.
2390  */
2391 void pci_pme_wakeup_bus(struct pci_bus *bus)
2392 {
2393 	if (bus)
2394 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2395 }
2396 
2397 
2398 /**
2399  * pci_pme_capable - check the capability of PCI device to generate PME#
2400  * @dev: PCI device to handle.
2401  * @state: PCI state from which device will issue PME#.
2402  */
2403 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2404 {
2405 	if (!dev->pm_cap)
2406 		return false;
2407 
2408 	return !!(dev->pme_support & (1 << state));
2409 }
2410 EXPORT_SYMBOL(pci_pme_capable);
2411 
2412 static void pci_pme_list_scan(struct work_struct *work)
2413 {
2414 	struct pci_pme_device *pme_dev, *n;
2415 
2416 	mutex_lock(&pci_pme_list_mutex);
2417 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2418 		if (pme_dev->dev->pme_poll) {
2419 			struct pci_dev *bridge;
2420 
2421 			bridge = pme_dev->dev->bus->self;
2422 			/*
2423 			 * If bridge is in low power state, the
2424 			 * configuration space of subordinate devices
2425 			 * may be not accessible
2426 			 */
2427 			if (bridge && bridge->current_state != PCI_D0)
2428 				continue;
2429 			/*
2430 			 * If the device is in D3cold it should not be
2431 			 * polled either.
2432 			 */
2433 			if (pme_dev->dev->current_state == PCI_D3cold)
2434 				continue;
2435 
2436 			pci_pme_wakeup(pme_dev->dev, NULL);
2437 		} else {
2438 			list_del(&pme_dev->list);
2439 			kfree(pme_dev);
2440 		}
2441 	}
2442 	if (!list_empty(&pci_pme_list))
2443 		queue_delayed_work(system_freezable_wq, &pci_pme_work,
2444 				   msecs_to_jiffies(PME_TIMEOUT));
2445 	mutex_unlock(&pci_pme_list_mutex);
2446 }
2447 
2448 static void __pci_pme_active(struct pci_dev *dev, bool enable)
2449 {
2450 	u16 pmcsr;
2451 
2452 	if (!dev->pme_support)
2453 		return;
2454 
2455 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2456 	/* Clear PME_Status by writing 1 to it and enable PME# */
2457 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
2458 	if (!enable)
2459 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2460 
2461 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2462 }
2463 
2464 /**
2465  * pci_pme_restore - Restore PME configuration after config space restore.
2466  * @dev: PCI device to update.
2467  */
2468 void pci_pme_restore(struct pci_dev *dev)
2469 {
2470 	u16 pmcsr;
2471 
2472 	if (!dev->pme_support)
2473 		return;
2474 
2475 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2476 	if (dev->wakeup_prepared) {
2477 		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2478 		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2479 	} else {
2480 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
2481 		pmcsr |= PCI_PM_CTRL_PME_STATUS;
2482 	}
2483 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2484 }
2485 
2486 /**
2487  * pci_pme_active - enable or disable PCI device's PME# function
2488  * @dev: PCI device to handle.
2489  * @enable: 'true' to enable PME# generation; 'false' to disable it.
2490  *
2491  * The caller must verify that the device is capable of generating PME# before
2492  * calling this function with @enable equal to 'true'.
2493  */
2494 void pci_pme_active(struct pci_dev *dev, bool enable)
2495 {
2496 	__pci_pme_active(dev, enable);
2497 
2498 	/*
2499 	 * PCI (as opposed to PCIe) PME requires that the device have
2500 	 * its PME# line hooked up correctly. Not all hardware vendors
2501 	 * do this, so the PME never gets delivered and the device
2502 	 * remains asleep. The easiest way around this is to
2503 	 * periodically walk the list of suspended devices and check
2504 	 * whether any have their PME flag set. The assumption is that
2505 	 * we'll wake up often enough anyway that this won't be a huge
2506 	 * hit, and the power savings from the devices will still be a
2507 	 * win.
2508 	 *
2509 	 * Although PCIe uses in-band PME message instead of PME# line
2510 	 * to report PME, PME does not work for some PCIe devices in
2511 	 * reality.  For example, there are devices that set their PME
2512 	 * status bits, but don't really bother to send a PME message;
2513 	 * there are PCI Express Root Ports that don't bother to
2514 	 * trigger interrupts when they receive PME messages from the
2515 	 * devices below.  So PME poll is used for PCIe devices too.
2516 	 */
2517 
2518 	if (dev->pme_poll) {
2519 		struct pci_pme_device *pme_dev;
2520 		if (enable) {
2521 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
2522 					  GFP_KERNEL);
2523 			if (!pme_dev) {
2524 				pci_warn(dev, "can't enable PME#\n");
2525 				return;
2526 			}
2527 			pme_dev->dev = dev;
2528 			mutex_lock(&pci_pme_list_mutex);
2529 			list_add(&pme_dev->list, &pci_pme_list);
2530 			if (list_is_singular(&pci_pme_list))
2531 				queue_delayed_work(system_freezable_wq,
2532 						   &pci_pme_work,
2533 						   msecs_to_jiffies(PME_TIMEOUT));
2534 			mutex_unlock(&pci_pme_list_mutex);
2535 		} else {
2536 			mutex_lock(&pci_pme_list_mutex);
2537 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
2538 				if (pme_dev->dev == dev) {
2539 					list_del(&pme_dev->list);
2540 					kfree(pme_dev);
2541 					break;
2542 				}
2543 			}
2544 			mutex_unlock(&pci_pme_list_mutex);
2545 		}
2546 	}
2547 
2548 	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2549 }
2550 EXPORT_SYMBOL(pci_pme_active);
2551 
2552 /**
2553  * __pci_enable_wake - enable PCI device as wakeup event source
2554  * @dev: PCI device affected
2555  * @state: PCI state from which device will issue wakeup events
2556  * @enable: True to enable event generation; false to disable
2557  *
2558  * This enables the device as a wakeup event source, or disables it.
2559  * When such events involves platform-specific hooks, those hooks are
2560  * called automatically by this routine.
2561  *
2562  * Devices with legacy power management (no standard PCI PM capabilities)
2563  * always require such platform hooks.
2564  *
2565  * RETURN VALUE:
2566  * 0 is returned on success
2567  * -EINVAL is returned if device is not supposed to wake up the system
2568  * Error code depending on the platform is returned if both the platform and
2569  * the native mechanism fail to enable the generation of wake-up events
2570  */
2571 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
2572 {
2573 	int ret = 0;
2574 
2575 	/*
2576 	 * Bridges that are not power-manageable directly only signal
2577 	 * wakeup on behalf of subordinate devices which is set up
2578 	 * elsewhere, so skip them. However, bridges that are
2579 	 * power-manageable may signal wakeup for themselves (for example,
2580 	 * on a hotplug event) and they need to be covered here.
2581 	 */
2582 	if (!pci_power_manageable(dev))
2583 		return 0;
2584 
2585 	/* Don't do the same thing twice in a row for one device. */
2586 	if (!!enable == !!dev->wakeup_prepared)
2587 		return 0;
2588 
2589 	/*
2590 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
2591 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
2592 	 * enable.  To disable wake-up we call the platform first, for symmetry.
2593 	 */
2594 
2595 	if (enable) {
2596 		int error;
2597 
2598 		/*
2599 		 * Enable PME signaling if the device can signal PME from
2600 		 * D3cold regardless of whether or not it can signal PME from
2601 		 * the current target state, because that will allow it to
2602 		 * signal PME when the hierarchy above it goes into D3cold and
2603 		 * the device itself ends up in D3cold as a result of that.
2604 		 */
2605 		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2606 			pci_pme_active(dev, true);
2607 		else
2608 			ret = 1;
2609 		error = platform_pci_set_wakeup(dev, true);
2610 		if (ret)
2611 			ret = error;
2612 		if (!ret)
2613 			dev->wakeup_prepared = true;
2614 	} else {
2615 		platform_pci_set_wakeup(dev, false);
2616 		pci_pme_active(dev, false);
2617 		dev->wakeup_prepared = false;
2618 	}
2619 
2620 	return ret;
2621 }
2622 
2623 /**
2624  * pci_enable_wake - change wakeup settings for a PCI device
2625  * @pci_dev: Target device
2626  * @state: PCI state from which device will issue wakeup events
2627  * @enable: Whether or not to enable event generation
2628  *
2629  * If @enable is set, check device_may_wakeup() for the device before calling
2630  * __pci_enable_wake() for it.
2631  */
2632 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
2633 {
2634 	if (enable && !device_may_wakeup(&pci_dev->dev))
2635 		return -EINVAL;
2636 
2637 	return __pci_enable_wake(pci_dev, state, enable);
2638 }
2639 EXPORT_SYMBOL(pci_enable_wake);
2640 
2641 /**
2642  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
2643  * @dev: PCI device to prepare
2644  * @enable: True to enable wake-up event generation; false to disable
2645  *
2646  * Many drivers want the device to wake up the system from D3_hot or D3_cold
2647  * and this function allows them to set that up cleanly - pci_enable_wake()
2648  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
2649  * ordering constraints.
2650  *
2651  * This function only returns error code if the device is not allowed to wake
2652  * up the system from sleep or it is not capable of generating PME# from both
2653  * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2654  */
2655 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
2656 {
2657 	return pci_pme_capable(dev, PCI_D3cold) ?
2658 			pci_enable_wake(dev, PCI_D3cold, enable) :
2659 			pci_enable_wake(dev, PCI_D3hot, enable);
2660 }
2661 EXPORT_SYMBOL(pci_wake_from_d3);
2662 
2663 /**
2664  * pci_target_state - find an appropriate low power state for a given PCI dev
2665  * @dev: PCI device
2666  * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2667  *
2668  * Use underlying platform code to find a supported low power state for @dev.
2669  * If the platform can't manage @dev, return the deepest state from which it
2670  * can generate wake events, based on any available PME info.
2671  */
2672 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2673 {
2674 	if (platform_pci_power_manageable(dev)) {
2675 		/*
2676 		 * Call the platform to find the target state for the device.
2677 		 */
2678 		pci_power_t state = platform_pci_choose_state(dev);
2679 
2680 		switch (state) {
2681 		case PCI_POWER_ERROR:
2682 		case PCI_UNKNOWN:
2683 			return PCI_D3hot;
2684 
2685 		case PCI_D1:
2686 		case PCI_D2:
2687 			if (pci_no_d1d2(dev))
2688 				return PCI_D3hot;
2689 		}
2690 
2691 		return state;
2692 	}
2693 
2694 	/*
2695 	 * If the device is in D3cold even though it's not power-manageable by
2696 	 * the platform, it may have been powered down by non-standard means.
2697 	 * Best to let it slumber.
2698 	 */
2699 	if (dev->current_state == PCI_D3cold)
2700 		return PCI_D3cold;
2701 	else if (!dev->pm_cap)
2702 		return PCI_D0;
2703 
2704 	if (wakeup && dev->pme_support) {
2705 		pci_power_t state = PCI_D3hot;
2706 
2707 		/*
2708 		 * Find the deepest state from which the device can generate
2709 		 * PME#.
2710 		 */
2711 		while (state && !(dev->pme_support & (1 << state)))
2712 			state--;
2713 
2714 		if (state)
2715 			return state;
2716 		else if (dev->pme_support & 1)
2717 			return PCI_D0;
2718 	}
2719 
2720 	return PCI_D3hot;
2721 }
2722 
2723 /**
2724  * pci_prepare_to_sleep - prepare PCI device for system-wide transition
2725  *			  into a sleep state
2726  * @dev: Device to handle.
2727  *
2728  * Choose the power state appropriate for the device depending on whether
2729  * it can wake up the system and/or is power manageable by the platform
2730  * (PCI_D3hot is the default) and put the device into that state.
2731  */
2732 int pci_prepare_to_sleep(struct pci_dev *dev)
2733 {
2734 	bool wakeup = device_may_wakeup(&dev->dev);
2735 	pci_power_t target_state = pci_target_state(dev, wakeup);
2736 	int error;
2737 
2738 	if (target_state == PCI_POWER_ERROR)
2739 		return -EIO;
2740 
2741 	pci_enable_wake(dev, target_state, wakeup);
2742 
2743 	error = pci_set_power_state(dev, target_state);
2744 
2745 	if (error)
2746 		pci_enable_wake(dev, target_state, false);
2747 
2748 	return error;
2749 }
2750 EXPORT_SYMBOL(pci_prepare_to_sleep);
2751 
2752 /**
2753  * pci_back_from_sleep - turn PCI device on during system-wide transition
2754  *			 into working state
2755  * @dev: Device to handle.
2756  *
2757  * Disable device's system wake-up capability and put it into D0.
2758  */
2759 int pci_back_from_sleep(struct pci_dev *dev)
2760 {
2761 	int ret = pci_set_power_state(dev, PCI_D0);
2762 
2763 	if (ret)
2764 		return ret;
2765 
2766 	pci_enable_wake(dev, PCI_D0, false);
2767 	return 0;
2768 }
2769 EXPORT_SYMBOL(pci_back_from_sleep);
2770 
2771 /**
2772  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2773  * @dev: PCI device being suspended.
2774  *
2775  * Prepare @dev to generate wake-up events at run time and put it into a low
2776  * power state.
2777  */
2778 int pci_finish_runtime_suspend(struct pci_dev *dev)
2779 {
2780 	pci_power_t target_state;
2781 	int error;
2782 
2783 	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2784 	if (target_state == PCI_POWER_ERROR)
2785 		return -EIO;
2786 
2787 	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2788 
2789 	error = pci_set_power_state(dev, target_state);
2790 
2791 	if (error)
2792 		pci_enable_wake(dev, target_state, false);
2793 
2794 	return error;
2795 }
2796 
2797 /**
2798  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2799  * @dev: Device to check.
2800  *
2801  * Return true if the device itself is capable of generating wake-up events
2802  * (through the platform or using the native PCIe PME) or if the device supports
2803  * PME and one of its upstream bridges can generate wake-up events.
2804  */
2805 bool pci_dev_run_wake(struct pci_dev *dev)
2806 {
2807 	struct pci_bus *bus = dev->bus;
2808 
2809 	if (!dev->pme_support)
2810 		return false;
2811 
2812 	/* PME-capable in principle, but not from the target power state */
2813 	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2814 		return false;
2815 
2816 	if (device_can_wakeup(&dev->dev))
2817 		return true;
2818 
2819 	while (bus->parent) {
2820 		struct pci_dev *bridge = bus->self;
2821 
2822 		if (device_can_wakeup(&bridge->dev))
2823 			return true;
2824 
2825 		bus = bus->parent;
2826 	}
2827 
2828 	/* We have reached the root bus. */
2829 	if (bus->bridge)
2830 		return device_can_wakeup(bus->bridge);
2831 
2832 	return false;
2833 }
2834 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2835 
2836 /**
2837  * pci_dev_need_resume - Check if it is necessary to resume the device.
2838  * @pci_dev: Device to check.
2839  *
2840  * Return 'true' if the device is not runtime-suspended or it has to be
2841  * reconfigured due to wakeup settings difference between system and runtime
2842  * suspend, or the current power state of it is not suitable for the upcoming
2843  * (system-wide) transition.
2844  */
2845 bool pci_dev_need_resume(struct pci_dev *pci_dev)
2846 {
2847 	struct device *dev = &pci_dev->dev;
2848 	pci_power_t target_state;
2849 
2850 	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2851 		return true;
2852 
2853 	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2854 
2855 	/*
2856 	 * If the earlier platform check has not triggered, D3cold is just power
2857 	 * removal on top of D3hot, so no need to resume the device in that
2858 	 * case.
2859 	 */
2860 	return target_state != pci_dev->current_state &&
2861 		target_state != PCI_D3cold &&
2862 		pci_dev->current_state != PCI_D3hot;
2863 }
2864 
2865 /**
2866  * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
2867  * @pci_dev: Device to check.
2868  *
2869  * If the device is suspended and it is not configured for system wakeup,
2870  * disable PME for it to prevent it from waking up the system unnecessarily.
2871  *
2872  * Note that if the device's power state is D3cold and the platform check in
2873  * pci_dev_need_resume() has not triggered, the device's configuration need not
2874  * be changed.
2875  */
2876 void pci_dev_adjust_pme(struct pci_dev *pci_dev)
2877 {
2878 	struct device *dev = &pci_dev->dev;
2879 
2880 	spin_lock_irq(&dev->power.lock);
2881 
2882 	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
2883 	    pci_dev->current_state < PCI_D3cold)
2884 		__pci_pme_active(pci_dev, false);
2885 
2886 	spin_unlock_irq(&dev->power.lock);
2887 }
2888 
2889 /**
2890  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2891  * @pci_dev: Device to handle.
2892  *
2893  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2894  * it might have been disabled during the prepare phase of system suspend if
2895  * the device was not configured for system wakeup.
2896  */
2897 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2898 {
2899 	struct device *dev = &pci_dev->dev;
2900 
2901 	if (!pci_dev_run_wake(pci_dev))
2902 		return;
2903 
2904 	spin_lock_irq(&dev->power.lock);
2905 
2906 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2907 		__pci_pme_active(pci_dev, true);
2908 
2909 	spin_unlock_irq(&dev->power.lock);
2910 }
2911 
2912 /**
2913  * pci_choose_state - Choose the power state of a PCI device.
2914  * @dev: Target PCI device.
2915  * @state: Target state for the whole system.
2916  *
2917  * Returns PCI power state suitable for @dev and @state.
2918  */
2919 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
2920 {
2921 	if (state.event == PM_EVENT_ON)
2922 		return PCI_D0;
2923 
2924 	return pci_target_state(dev, false);
2925 }
2926 EXPORT_SYMBOL(pci_choose_state);
2927 
2928 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2929 {
2930 	struct device *dev = &pdev->dev;
2931 	struct device *parent = dev->parent;
2932 
2933 	if (parent)
2934 		pm_runtime_get_sync(parent);
2935 	pm_runtime_get_noresume(dev);
2936 	/*
2937 	 * pdev->current_state is set to PCI_D3cold during suspending,
2938 	 * so wait until suspending completes
2939 	 */
2940 	pm_runtime_barrier(dev);
2941 	/*
2942 	 * Only need to resume devices in D3cold, because config
2943 	 * registers are still accessible for devices suspended but
2944 	 * not in D3cold.
2945 	 */
2946 	if (pdev->current_state == PCI_D3cold)
2947 		pm_runtime_resume(dev);
2948 }
2949 
2950 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2951 {
2952 	struct device *dev = &pdev->dev;
2953 	struct device *parent = dev->parent;
2954 
2955 	pm_runtime_put(dev);
2956 	if (parent)
2957 		pm_runtime_put_sync(parent);
2958 }
2959 
2960 static const struct dmi_system_id bridge_d3_blacklist[] = {
2961 #ifdef CONFIG_X86
2962 	{
2963 		/*
2964 		 * Gigabyte X299 root port is not marked as hotplug capable
2965 		 * which allows Linux to power manage it.  However, this
2966 		 * confuses the BIOS SMI handler so don't power manage root
2967 		 * ports on that system.
2968 		 */
2969 		.ident = "X299 DESIGNARE EX-CF",
2970 		.matches = {
2971 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
2972 			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
2973 		},
2974 	},
2975 	{
2976 		/*
2977 		 * Downstream device is not accessible after putting a root port
2978 		 * into D3cold and back into D0 on Elo Continental Z2 board
2979 		 */
2980 		.ident = "Elo Continental Z2",
2981 		.matches = {
2982 			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
2983 			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
2984 			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
2985 		},
2986 	},
2987 #endif
2988 	{ }
2989 };
2990 
2991 /**
2992  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2993  * @bridge: Bridge to check
2994  *
2995  * This function checks if it is possible to move the bridge to D3.
2996  * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
2997  */
2998 bool pci_bridge_d3_possible(struct pci_dev *bridge)
2999 {
3000 	if (!pci_is_pcie(bridge))
3001 		return false;
3002 
3003 	switch (pci_pcie_type(bridge)) {
3004 	case PCI_EXP_TYPE_ROOT_PORT:
3005 	case PCI_EXP_TYPE_UPSTREAM:
3006 	case PCI_EXP_TYPE_DOWNSTREAM:
3007 		if (pci_bridge_d3_disable)
3008 			return false;
3009 
3010 		/*
3011 		 * Hotplug ports handled by firmware in System Management Mode
3012 		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
3013 		 */
3014 		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3015 			return false;
3016 
3017 		if (pci_bridge_d3_force)
3018 			return true;
3019 
3020 		/* Even the oldest 2010 Thunderbolt controller supports D3. */
3021 		if (bridge->is_thunderbolt)
3022 			return true;
3023 
3024 		/* Platform might know better if the bridge supports D3 */
3025 		if (platform_pci_bridge_d3(bridge))
3026 			return true;
3027 
3028 		/*
3029 		 * Hotplug ports handled natively by the OS were not validated
3030 		 * by vendors for runtime D3 at least until 2018 because there
3031 		 * was no OS support.
3032 		 */
3033 		if (bridge->is_hotplug_bridge)
3034 			return false;
3035 
3036 		if (dmi_check_system(bridge_d3_blacklist))
3037 			return false;
3038 
3039 		/*
3040 		 * It should be safe to put PCIe ports from 2015 or newer
3041 		 * to D3.
3042 		 */
3043 		if (dmi_get_bios_year() >= 2015)
3044 			return true;
3045 		break;
3046 	}
3047 
3048 	return false;
3049 }
3050 
3051 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
3052 {
3053 	bool *d3cold_ok = data;
3054 
3055 	if (/* The device needs to be allowed to go D3cold ... */
3056 	    dev->no_d3cold || !dev->d3cold_allowed ||
3057 
3058 	    /* ... and if it is wakeup capable to do so from D3cold. */
3059 	    (device_may_wakeup(&dev->dev) &&
3060 	     !pci_pme_capable(dev, PCI_D3cold)) ||
3061 
3062 	    /* If it is a bridge it must be allowed to go to D3. */
3063 	    !pci_power_manageable(dev))
3064 
3065 		*d3cold_ok = false;
3066 
3067 	return !*d3cold_ok;
3068 }
3069 
3070 /*
3071  * pci_bridge_d3_update - Update bridge D3 capabilities
3072  * @dev: PCI device which is changed
3073  *
3074  * Update upstream bridge PM capabilities accordingly depending on if the
3075  * device PM configuration was changed or the device is being removed.  The
3076  * change is also propagated upstream.
3077  */
3078 void pci_bridge_d3_update(struct pci_dev *dev)
3079 {
3080 	bool remove = !device_is_registered(&dev->dev);
3081 	struct pci_dev *bridge;
3082 	bool d3cold_ok = true;
3083 
3084 	bridge = pci_upstream_bridge(dev);
3085 	if (!bridge || !pci_bridge_d3_possible(bridge))
3086 		return;
3087 
3088 	/*
3089 	 * If D3 is currently allowed for the bridge, removing one of its
3090 	 * children won't change that.
3091 	 */
3092 	if (remove && bridge->bridge_d3)
3093 		return;
3094 
3095 	/*
3096 	 * If D3 is currently allowed for the bridge and a child is added or
3097 	 * changed, disallowance of D3 can only be caused by that child, so
3098 	 * we only need to check that single device, not any of its siblings.
3099 	 *
3100 	 * If D3 is currently not allowed for the bridge, checking the device
3101 	 * first may allow us to skip checking its siblings.
3102 	 */
3103 	if (!remove)
3104 		pci_dev_check_d3cold(dev, &d3cold_ok);
3105 
3106 	/*
3107 	 * If D3 is currently not allowed for the bridge, this may be caused
3108 	 * either by the device being changed/removed or any of its siblings,
3109 	 * so we need to go through all children to find out if one of them
3110 	 * continues to block D3.
3111 	 */
3112 	if (d3cold_ok && !bridge->bridge_d3)
3113 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
3114 			     &d3cold_ok);
3115 
3116 	if (bridge->bridge_d3 != d3cold_ok) {
3117 		bridge->bridge_d3 = d3cold_ok;
3118 		/* Propagate change to upstream bridges */
3119 		pci_bridge_d3_update(bridge);
3120 	}
3121 }
3122 
3123 /**
3124  * pci_d3cold_enable - Enable D3cold for device
3125  * @dev: PCI device to handle
3126  *
3127  * This function can be used in drivers to enable D3cold from the device
3128  * they handle.  It also updates upstream PCI bridge PM capabilities
3129  * accordingly.
3130  */
3131 void pci_d3cold_enable(struct pci_dev *dev)
3132 {
3133 	if (dev->no_d3cold) {
3134 		dev->no_d3cold = false;
3135 		pci_bridge_d3_update(dev);
3136 	}
3137 }
3138 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
3139 
3140 /**
3141  * pci_d3cold_disable - Disable D3cold for device
3142  * @dev: PCI device to handle
3143  *
3144  * This function can be used in drivers to disable D3cold from the device
3145  * they handle.  It also updates upstream PCI bridge PM capabilities
3146  * accordingly.
3147  */
3148 void pci_d3cold_disable(struct pci_dev *dev)
3149 {
3150 	if (!dev->no_d3cold) {
3151 		dev->no_d3cold = true;
3152 		pci_bridge_d3_update(dev);
3153 	}
3154 }
3155 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
3156 
3157 /**
3158  * pci_pm_init - Initialize PM functions of given PCI device
3159  * @dev: PCI device to handle.
3160  */
3161 void pci_pm_init(struct pci_dev *dev)
3162 {
3163 	int pm;
3164 	u16 status;
3165 	u16 pmc;
3166 
3167 	pm_runtime_forbid(&dev->dev);
3168 	pm_runtime_set_active(&dev->dev);
3169 	pm_runtime_enable(&dev->dev);
3170 	device_enable_async_suspend(&dev->dev);
3171 	dev->wakeup_prepared = false;
3172 
3173 	dev->pm_cap = 0;
3174 	dev->pme_support = 0;
3175 
3176 	/* find PCI PM capability in list */
3177 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
3178 	if (!pm)
3179 		return;
3180 	/* Check device's ability to generate PME# */
3181 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3182 
3183 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3184 		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3185 			pmc & PCI_PM_CAP_VER_MASK);
3186 		return;
3187 	}
3188 
3189 	dev->pm_cap = pm;
3190 	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3191 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3192 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3193 	dev->d3cold_allowed = true;
3194 
3195 	dev->d1_support = false;
3196 	dev->d2_support = false;
3197 	if (!pci_no_d1d2(dev)) {
3198 		if (pmc & PCI_PM_CAP_D1)
3199 			dev->d1_support = true;
3200 		if (pmc & PCI_PM_CAP_D2)
3201 			dev->d2_support = true;
3202 
3203 		if (dev->d1_support || dev->d2_support)
3204 			pci_info(dev, "supports%s%s\n",
3205 				   dev->d1_support ? " D1" : "",
3206 				   dev->d2_support ? " D2" : "");
3207 	}
3208 
3209 	pmc &= PCI_PM_CAP_PME_MASK;
3210 	if (pmc) {
3211 		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3212 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
3213 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
3214 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3215 			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3216 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
3217 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
3218 		dev->pme_poll = true;
3219 		/*
3220 		 * Make device's PM flags reflect the wake-up capability, but
3221 		 * let the user space enable it to wake up the system as needed.
3222 		 */
3223 		device_set_wakeup_capable(&dev->dev, true);
3224 		/* Disable the PME# generation functionality */
3225 		pci_pme_active(dev, false);
3226 	}
3227 
3228 	pci_read_config_word(dev, PCI_STATUS, &status);
3229 	if (status & PCI_STATUS_IMM_READY)
3230 		dev->imm_ready = 1;
3231 }
3232 
3233 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
3234 {
3235 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3236 
3237 	switch (prop) {
3238 	case PCI_EA_P_MEM:
3239 	case PCI_EA_P_VF_MEM:
3240 		flags |= IORESOURCE_MEM;
3241 		break;
3242 	case PCI_EA_P_MEM_PREFETCH:
3243 	case PCI_EA_P_VF_MEM_PREFETCH:
3244 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
3245 		break;
3246 	case PCI_EA_P_IO:
3247 		flags |= IORESOURCE_IO;
3248 		break;
3249 	default:
3250 		return 0;
3251 	}
3252 
3253 	return flags;
3254 }
3255 
3256 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
3257 					    u8 prop)
3258 {
3259 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
3260 		return &dev->resource[bei];
3261 #ifdef CONFIG_PCI_IOV
3262 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
3263 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
3264 		return &dev->resource[PCI_IOV_RESOURCES +
3265 				      bei - PCI_EA_BEI_VF_BAR0];
3266 #endif
3267 	else if (bei == PCI_EA_BEI_ROM)
3268 		return &dev->resource[PCI_ROM_RESOURCE];
3269 	else
3270 		return NULL;
3271 }
3272 
3273 /* Read an Enhanced Allocation (EA) entry */
3274 static int pci_ea_read(struct pci_dev *dev, int offset)
3275 {
3276 	struct resource *res;
3277 	int ent_size, ent_offset = offset;
3278 	resource_size_t start, end;
3279 	unsigned long flags;
3280 	u32 dw0, bei, base, max_offset;
3281 	u8 prop;
3282 	bool support_64 = (sizeof(resource_size_t) >= 8);
3283 
3284 	pci_read_config_dword(dev, ent_offset, &dw0);
3285 	ent_offset += 4;
3286 
3287 	/* Entry size field indicates DWORDs after 1st */
3288 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
3289 
3290 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
3291 		goto out;
3292 
3293 	bei = (dw0 & PCI_EA_BEI) >> 4;
3294 	prop = (dw0 & PCI_EA_PP) >> 8;
3295 
3296 	/*
3297 	 * If the Property is in the reserved range, try the Secondary
3298 	 * Property instead.
3299 	 */
3300 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
3301 		prop = (dw0 & PCI_EA_SP) >> 16;
3302 	if (prop > PCI_EA_P_BRIDGE_IO)
3303 		goto out;
3304 
3305 	res = pci_ea_get_resource(dev, bei, prop);
3306 	if (!res) {
3307 		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3308 		goto out;
3309 	}
3310 
3311 	flags = pci_ea_flags(dev, prop);
3312 	if (!flags) {
3313 		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3314 		goto out;
3315 	}
3316 
3317 	/* Read Base */
3318 	pci_read_config_dword(dev, ent_offset, &base);
3319 	start = (base & PCI_EA_FIELD_MASK);
3320 	ent_offset += 4;
3321 
3322 	/* Read MaxOffset */
3323 	pci_read_config_dword(dev, ent_offset, &max_offset);
3324 	ent_offset += 4;
3325 
3326 	/* Read Base MSBs (if 64-bit entry) */
3327 	if (base & PCI_EA_IS_64) {
3328 		u32 base_upper;
3329 
3330 		pci_read_config_dword(dev, ent_offset, &base_upper);
3331 		ent_offset += 4;
3332 
3333 		flags |= IORESOURCE_MEM_64;
3334 
3335 		/* entry starts above 32-bit boundary, can't use */
3336 		if (!support_64 && base_upper)
3337 			goto out;
3338 
3339 		if (support_64)
3340 			start |= ((u64)base_upper << 32);
3341 	}
3342 
3343 	end = start + (max_offset | 0x03);
3344 
3345 	/* Read MaxOffset MSBs (if 64-bit entry) */
3346 	if (max_offset & PCI_EA_IS_64) {
3347 		u32 max_offset_upper;
3348 
3349 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
3350 		ent_offset += 4;
3351 
3352 		flags |= IORESOURCE_MEM_64;
3353 
3354 		/* entry too big, can't use */
3355 		if (!support_64 && max_offset_upper)
3356 			goto out;
3357 
3358 		if (support_64)
3359 			end += ((u64)max_offset_upper << 32);
3360 	}
3361 
3362 	if (end < start) {
3363 		pci_err(dev, "EA Entry crosses address boundary\n");
3364 		goto out;
3365 	}
3366 
3367 	if (ent_size != ent_offset - offset) {
3368 		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3369 			ent_size, ent_offset - offset);
3370 		goto out;
3371 	}
3372 
3373 	res->name = pci_name(dev);
3374 	res->start = start;
3375 	res->end = end;
3376 	res->flags = flags;
3377 
3378 	if (bei <= PCI_EA_BEI_BAR5)
3379 		pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3380 			   bei, res, prop);
3381 	else if (bei == PCI_EA_BEI_ROM)
3382 		pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
3383 			   res, prop);
3384 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3385 		pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
3386 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
3387 	else
3388 		pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
3389 			   bei, res, prop);
3390 
3391 out:
3392 	return offset + ent_size;
3393 }
3394 
3395 /* Enhanced Allocation Initialization */
3396 void pci_ea_init(struct pci_dev *dev)
3397 {
3398 	int ea;
3399 	u8 num_ent;
3400 	int offset;
3401 	int i;
3402 
3403 	/* find PCI EA capability in list */
3404 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
3405 	if (!ea)
3406 		return;
3407 
3408 	/* determine the number of entries */
3409 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
3410 					&num_ent);
3411 	num_ent &= PCI_EA_NUM_ENT_MASK;
3412 
3413 	offset = ea + PCI_EA_FIRST_ENT;
3414 
3415 	/* Skip DWORD 2 for type 1 functions */
3416 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
3417 		offset += 4;
3418 
3419 	/* parse each EA entry */
3420 	for (i = 0; i < num_ent; ++i)
3421 		offset = pci_ea_read(dev, offset);
3422 }
3423 
3424 static void pci_add_saved_cap(struct pci_dev *pci_dev,
3425 	struct pci_cap_saved_state *new_cap)
3426 {
3427 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
3428 }
3429 
3430 /**
3431  * _pci_add_cap_save_buffer - allocate buffer for saving given
3432  *			      capability registers
3433  * @dev: the PCI device
3434  * @cap: the capability to allocate the buffer for
3435  * @extended: Standard or Extended capability ID
3436  * @size: requested size of the buffer
3437  */
3438 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
3439 				    bool extended, unsigned int size)
3440 {
3441 	int pos;
3442 	struct pci_cap_saved_state *save_state;
3443 
3444 	if (extended)
3445 		pos = pci_find_ext_capability(dev, cap);
3446 	else
3447 		pos = pci_find_capability(dev, cap);
3448 
3449 	if (!pos)
3450 		return 0;
3451 
3452 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
3453 	if (!save_state)
3454 		return -ENOMEM;
3455 
3456 	save_state->cap.cap_nr = cap;
3457 	save_state->cap.cap_extended = extended;
3458 	save_state->cap.size = size;
3459 	pci_add_saved_cap(dev, save_state);
3460 
3461 	return 0;
3462 }
3463 
3464 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
3465 {
3466 	return _pci_add_cap_save_buffer(dev, cap, false, size);
3467 }
3468 
3469 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
3470 {
3471 	return _pci_add_cap_save_buffer(dev, cap, true, size);
3472 }
3473 
3474 /**
3475  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
3476  * @dev: the PCI device
3477  */
3478 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
3479 {
3480 	int error;
3481 
3482 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
3483 					PCI_EXP_SAVE_REGS * sizeof(u16));
3484 	if (error)
3485 		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3486 
3487 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
3488 	if (error)
3489 		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3490 
3491 	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
3492 					    2 * sizeof(u16));
3493 	if (error)
3494 		pci_err(dev, "unable to allocate suspend buffer for LTR\n");
3495 
3496 	pci_allocate_vc_save_buffers(dev);
3497 }
3498 
3499 void pci_free_cap_save_buffers(struct pci_dev *dev)
3500 {
3501 	struct pci_cap_saved_state *tmp;
3502 	struct hlist_node *n;
3503 
3504 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3505 		kfree(tmp);
3506 }
3507 
3508 /**
3509  * pci_configure_ari - enable or disable ARI forwarding
3510  * @dev: the PCI device
3511  *
3512  * If @dev and its upstream bridge both support ARI, enable ARI in the
3513  * bridge.  Otherwise, disable ARI in the bridge.
3514  */
3515 void pci_configure_ari(struct pci_dev *dev)
3516 {
3517 	u32 cap;
3518 	struct pci_dev *bridge;
3519 
3520 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
3521 		return;
3522 
3523 	bridge = dev->bus->self;
3524 	if (!bridge)
3525 		return;
3526 
3527 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3528 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
3529 		return;
3530 
3531 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
3532 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
3533 					 PCI_EXP_DEVCTL2_ARI);
3534 		bridge->ari_enabled = 1;
3535 	} else {
3536 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
3537 					   PCI_EXP_DEVCTL2_ARI);
3538 		bridge->ari_enabled = 0;
3539 	}
3540 }
3541 
3542 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
3543 {
3544 	int pos;
3545 	u16 cap, ctrl;
3546 
3547 	pos = pdev->acs_cap;
3548 	if (!pos)
3549 		return false;
3550 
3551 	/*
3552 	 * Except for egress control, capabilities are either required
3553 	 * or only required if controllable.  Features missing from the
3554 	 * capability field can therefore be assumed as hard-wired enabled.
3555 	 */
3556 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
3557 	acs_flags &= (cap | PCI_ACS_EC);
3558 
3559 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
3560 	return (ctrl & acs_flags) == acs_flags;
3561 }
3562 
3563 /**
3564  * pci_acs_enabled - test ACS against required flags for a given device
3565  * @pdev: device to test
3566  * @acs_flags: required PCI ACS flags
3567  *
3568  * Return true if the device supports the provided flags.  Automatically
3569  * filters out flags that are not implemented on multifunction devices.
3570  *
3571  * Note that this interface checks the effective ACS capabilities of the
3572  * device rather than the actual capabilities.  For instance, most single
3573  * function endpoints are not required to support ACS because they have no
3574  * opportunity for peer-to-peer access.  We therefore return 'true'
3575  * regardless of whether the device exposes an ACS capability.  This makes
3576  * it much easier for callers of this function to ignore the actual type
3577  * or topology of the device when testing ACS support.
3578  */
3579 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
3580 {
3581 	int ret;
3582 
3583 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
3584 	if (ret >= 0)
3585 		return ret > 0;
3586 
3587 	/*
3588 	 * Conventional PCI and PCI-X devices never support ACS, either
3589 	 * effectively or actually.  The shared bus topology implies that
3590 	 * any device on the bus can receive or snoop DMA.
3591 	 */
3592 	if (!pci_is_pcie(pdev))
3593 		return false;
3594 
3595 	switch (pci_pcie_type(pdev)) {
3596 	/*
3597 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3598 	 * but since their primary interface is PCI/X, we conservatively
3599 	 * handle them as we would a non-PCIe device.
3600 	 */
3601 	case PCI_EXP_TYPE_PCIE_BRIDGE:
3602 	/*
3603 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
3604 	 * applicable... must never implement an ACS Extended Capability...".
3605 	 * This seems arbitrary, but we take a conservative interpretation
3606 	 * of this statement.
3607 	 */
3608 	case PCI_EXP_TYPE_PCI_BRIDGE:
3609 	case PCI_EXP_TYPE_RC_EC:
3610 		return false;
3611 	/*
3612 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
3613 	 * implement ACS in order to indicate their peer-to-peer capabilities,
3614 	 * regardless of whether they are single- or multi-function devices.
3615 	 */
3616 	case PCI_EXP_TYPE_DOWNSTREAM:
3617 	case PCI_EXP_TYPE_ROOT_PORT:
3618 		return pci_acs_flags_enabled(pdev, acs_flags);
3619 	/*
3620 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
3621 	 * implemented by the remaining PCIe types to indicate peer-to-peer
3622 	 * capabilities, but only when they are part of a multifunction
3623 	 * device.  The footnote for section 6.12 indicates the specific
3624 	 * PCIe types included here.
3625 	 */
3626 	case PCI_EXP_TYPE_ENDPOINT:
3627 	case PCI_EXP_TYPE_UPSTREAM:
3628 	case PCI_EXP_TYPE_LEG_END:
3629 	case PCI_EXP_TYPE_RC_END:
3630 		if (!pdev->multifunction)
3631 			break;
3632 
3633 		return pci_acs_flags_enabled(pdev, acs_flags);
3634 	}
3635 
3636 	/*
3637 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3638 	 * to single function devices with the exception of downstream ports.
3639 	 */
3640 	return true;
3641 }
3642 
3643 /**
3644  * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3645  * @start: starting downstream device
3646  * @end: ending upstream device or NULL to search to the root bus
3647  * @acs_flags: required flags
3648  *
3649  * Walk up a device tree from start to end testing PCI ACS support.  If
3650  * any step along the way does not support the required flags, return false.
3651  */
3652 bool pci_acs_path_enabled(struct pci_dev *start,
3653 			  struct pci_dev *end, u16 acs_flags)
3654 {
3655 	struct pci_dev *pdev, *parent = start;
3656 
3657 	do {
3658 		pdev = parent;
3659 
3660 		if (!pci_acs_enabled(pdev, acs_flags))
3661 			return false;
3662 
3663 		if (pci_is_root_bus(pdev->bus))
3664 			return (end == NULL);
3665 
3666 		parent = pdev->bus->self;
3667 	} while (pdev != end);
3668 
3669 	return true;
3670 }
3671 
3672 /**
3673  * pci_acs_init - Initialize ACS if hardware supports it
3674  * @dev: the PCI device
3675  */
3676 void pci_acs_init(struct pci_dev *dev)
3677 {
3678 	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
3679 
3680 	/*
3681 	 * Attempt to enable ACS regardless of capability because some Root
3682 	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
3683 	 * the standard ACS capability but still support ACS via those
3684 	 * quirks.
3685 	 */
3686 	pci_enable_acs(dev);
3687 }
3688 
3689 /**
3690  * pci_rebar_find_pos - find position of resize ctrl reg for BAR
3691  * @pdev: PCI device
3692  * @bar: BAR to find
3693  *
3694  * Helper to find the position of the ctrl register for a BAR.
3695  * Returns -ENOTSUPP if resizable BARs are not supported at all.
3696  * Returns -ENOENT if no ctrl register for the BAR could be found.
3697  */
3698 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
3699 {
3700 	unsigned int pos, nbars, i;
3701 	u32 ctrl;
3702 
3703 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
3704 	if (!pos)
3705 		return -ENOTSUPP;
3706 
3707 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3708 	nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >>
3709 		    PCI_REBAR_CTRL_NBAR_SHIFT;
3710 
3711 	for (i = 0; i < nbars; i++, pos += 8) {
3712 		int bar_idx;
3713 
3714 		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3715 		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
3716 		if (bar_idx == bar)
3717 			return pos;
3718 	}
3719 
3720 	return -ENOENT;
3721 }
3722 
3723 /**
3724  * pci_rebar_get_possible_sizes - get possible sizes for BAR
3725  * @pdev: PCI device
3726  * @bar: BAR to query
3727  *
3728  * Get the possible sizes of a resizable BAR as bitmask defined in the spec
3729  * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
3730  */
3731 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
3732 {
3733 	int pos;
3734 	u32 cap;
3735 
3736 	pos = pci_rebar_find_pos(pdev, bar);
3737 	if (pos < 0)
3738 		return 0;
3739 
3740 	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3741 	cap &= PCI_REBAR_CAP_SIZES;
3742 
3743 	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
3744 	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3745 	    bar == 0 && cap == 0x7000)
3746 		cap = 0x3f000;
3747 
3748 	return cap >> 4;
3749 }
3750 EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3751 
3752 /**
3753  * pci_rebar_get_current_size - get the current size of a BAR
3754  * @pdev: PCI device
3755  * @bar: BAR to set size to
3756  *
3757  * Read the size of a BAR from the resizable BAR config.
3758  * Returns size if found or negative error code.
3759  */
3760 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
3761 {
3762 	int pos;
3763 	u32 ctrl;
3764 
3765 	pos = pci_rebar_find_pos(pdev, bar);
3766 	if (pos < 0)
3767 		return pos;
3768 
3769 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3770 	return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT;
3771 }
3772 
3773 /**
3774  * pci_rebar_set_size - set a new size for a BAR
3775  * @pdev: PCI device
3776  * @bar: BAR to set size to
3777  * @size: new size as defined in the spec (0=1MB, 19=512GB)
3778  *
3779  * Set the new size of a BAR as defined in the spec.
3780  * Returns zero if resizing was successful, error code otherwise.
3781  */
3782 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
3783 {
3784 	int pos;
3785 	u32 ctrl;
3786 
3787 	pos = pci_rebar_find_pos(pdev, bar);
3788 	if (pos < 0)
3789 		return pos;
3790 
3791 	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
3792 	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
3793 	ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT;
3794 	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
3795 	return 0;
3796 }
3797 
3798 /**
3799  * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
3800  * @dev: the PCI device
3801  * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
3802  *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
3803  *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
3804  *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
3805  *
3806  * Return 0 if all upstream bridges support AtomicOp routing, egress
3807  * blocking is disabled on all upstream ports, and the root port supports
3808  * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
3809  * AtomicOp completion), or negative otherwise.
3810  */
3811 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
3812 {
3813 	struct pci_bus *bus = dev->bus;
3814 	struct pci_dev *bridge;
3815 	u32 cap, ctl2;
3816 
3817 	/*
3818 	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
3819 	 * in Device Control 2 is reserved in VFs and the PF value applies
3820 	 * to all associated VFs.
3821 	 */
3822 	if (dev->is_virtfn)
3823 		return -EINVAL;
3824 
3825 	if (!pci_is_pcie(dev))
3826 		return -EINVAL;
3827 
3828 	/*
3829 	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
3830 	 * AtomicOp requesters.  For now, we only support endpoints as
3831 	 * requesters and root ports as completers.  No endpoints as
3832 	 * completers, and no peer-to-peer.
3833 	 */
3834 
3835 	switch (pci_pcie_type(dev)) {
3836 	case PCI_EXP_TYPE_ENDPOINT:
3837 	case PCI_EXP_TYPE_LEG_END:
3838 	case PCI_EXP_TYPE_RC_END:
3839 		break;
3840 	default:
3841 		return -EINVAL;
3842 	}
3843 
3844 	while (bus->parent) {
3845 		bridge = bus->self;
3846 
3847 		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
3848 
3849 		switch (pci_pcie_type(bridge)) {
3850 		/* Ensure switch ports support AtomicOp routing */
3851 		case PCI_EXP_TYPE_UPSTREAM:
3852 		case PCI_EXP_TYPE_DOWNSTREAM:
3853 			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
3854 				return -EINVAL;
3855 			break;
3856 
3857 		/* Ensure root port supports all the sizes we care about */
3858 		case PCI_EXP_TYPE_ROOT_PORT:
3859 			if ((cap & cap_mask) != cap_mask)
3860 				return -EINVAL;
3861 			break;
3862 		}
3863 
3864 		/* Ensure upstream ports don't block AtomicOps on egress */
3865 		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3866 			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
3867 						   &ctl2);
3868 			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
3869 				return -EINVAL;
3870 		}
3871 
3872 		bus = bus->parent;
3873 	}
3874 
3875 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
3876 				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
3877 	return 0;
3878 }
3879 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);
3880 
3881 /**
3882  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
3883  * @dev: the PCI device
3884  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
3885  *
3886  * Perform INTx swizzling for a device behind one level of bridge.  This is
3887  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
3888  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
3889  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
3890  * the PCI Express Base Specification, Revision 2.1)
3891  */
3892 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
3893 {
3894 	int slot;
3895 
3896 	if (pci_ari_enabled(dev->bus))
3897 		slot = 0;
3898 	else
3899 		slot = PCI_SLOT(dev->devfn);
3900 
3901 	return (((pin - 1) + slot) % 4) + 1;
3902 }
3903 
3904 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
3905 {
3906 	u8 pin;
3907 
3908 	pin = dev->pin;
3909 	if (!pin)
3910 		return -1;
3911 
3912 	while (!pci_is_root_bus(dev->bus)) {
3913 		pin = pci_swizzle_interrupt_pin(dev, pin);
3914 		dev = dev->bus->self;
3915 	}
3916 	*bridge = dev;
3917 	return pin;
3918 }
3919 
3920 /**
3921  * pci_common_swizzle - swizzle INTx all the way to root bridge
3922  * @dev: the PCI device
3923  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
3924  *
3925  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
3926  * bridges all the way up to a PCI root bus.
3927  */
3928 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
3929 {
3930 	u8 pin = *pinp;
3931 
3932 	while (!pci_is_root_bus(dev->bus)) {
3933 		pin = pci_swizzle_interrupt_pin(dev, pin);
3934 		dev = dev->bus->self;
3935 	}
3936 	*pinp = pin;
3937 	return PCI_SLOT(dev->devfn);
3938 }
3939 EXPORT_SYMBOL_GPL(pci_common_swizzle);
3940 
3941 /**
3942  * pci_release_region - Release a PCI bar
3943  * @pdev: PCI device whose resources were previously reserved by
3944  *	  pci_request_region()
3945  * @bar: BAR to release
3946  *
3947  * Releases the PCI I/O and memory resources previously reserved by a
3948  * successful call to pci_request_region().  Call this function only
3949  * after all use of the PCI regions has ceased.
3950  */
3951 void pci_release_region(struct pci_dev *pdev, int bar)
3952 {
3953 	struct pci_devres *dr;
3954 
3955 	if (pci_resource_len(pdev, bar) == 0)
3956 		return;
3957 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
3958 		release_region(pci_resource_start(pdev, bar),
3959 				pci_resource_len(pdev, bar));
3960 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
3961 		release_mem_region(pci_resource_start(pdev, bar),
3962 				pci_resource_len(pdev, bar));
3963 
3964 	dr = find_pci_dr(pdev);
3965 	if (dr)
3966 		dr->region_mask &= ~(1 << bar);
3967 }
3968 EXPORT_SYMBOL(pci_release_region);
3969 
3970 /**
3971  * __pci_request_region - Reserved PCI I/O and memory resource
3972  * @pdev: PCI device whose resources are to be reserved
3973  * @bar: BAR to be reserved
3974  * @res_name: Name to be associated with resource.
3975  * @exclusive: whether the region access is exclusive or not
3976  *
3977  * Mark the PCI region associated with PCI device @pdev BAR @bar as
3978  * being reserved by owner @res_name.  Do not access any
3979  * address inside the PCI regions unless this call returns
3980  * successfully.
3981  *
3982  * If @exclusive is set, then the region is marked so that userspace
3983  * is explicitly not allowed to map the resource via /dev/mem or
3984  * sysfs MMIO access.
3985  *
3986  * Returns 0 on success, or %EBUSY on error.  A warning
3987  * message is also printed on failure.
3988  */
3989 static int __pci_request_region(struct pci_dev *pdev, int bar,
3990 				const char *res_name, int exclusive)
3991 {
3992 	struct pci_devres *dr;
3993 
3994 	if (pci_resource_len(pdev, bar) == 0)
3995 		return 0;
3996 
3997 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3998 		if (!request_region(pci_resource_start(pdev, bar),
3999 			    pci_resource_len(pdev, bar), res_name))
4000 			goto err_out;
4001 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4002 		if (!__request_mem_region(pci_resource_start(pdev, bar),
4003 					pci_resource_len(pdev, bar), res_name,
4004 					exclusive))
4005 			goto err_out;
4006 	}
4007 
4008 	dr = find_pci_dr(pdev);
4009 	if (dr)
4010 		dr->region_mask |= 1 << bar;
4011 
4012 	return 0;
4013 
4014 err_out:
4015 	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4016 		 &pdev->resource[bar]);
4017 	return -EBUSY;
4018 }
4019 
4020 /**
4021  * pci_request_region - Reserve PCI I/O and memory resource
4022  * @pdev: PCI device whose resources are to be reserved
4023  * @bar: BAR to be reserved
4024  * @res_name: Name to be associated with resource
4025  *
4026  * Mark the PCI region associated with PCI device @pdev BAR @bar as
4027  * being reserved by owner @res_name.  Do not access any
4028  * address inside the PCI regions unless this call returns
4029  * successfully.
4030  *
4031  * Returns 0 on success, or %EBUSY on error.  A warning
4032  * message is also printed on failure.
4033  */
4034 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
4035 {
4036 	return __pci_request_region(pdev, bar, res_name, 0);
4037 }
4038 EXPORT_SYMBOL(pci_request_region);
4039 
4040 /**
4041  * pci_release_selected_regions - Release selected PCI I/O and memory resources
4042  * @pdev: PCI device whose resources were previously reserved
4043  * @bars: Bitmask of BARs to be released
4044  *
4045  * Release selected PCI I/O and memory resources previously reserved.
4046  * Call this function only after all use of the PCI regions has ceased.
4047  */
4048 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
4049 {
4050 	int i;
4051 
4052 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4053 		if (bars & (1 << i))
4054 			pci_release_region(pdev, i);
4055 }
4056 EXPORT_SYMBOL(pci_release_selected_regions);
4057 
4058 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
4059 					  const char *res_name, int excl)
4060 {
4061 	int i;
4062 
4063 	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4064 		if (bars & (1 << i))
4065 			if (__pci_request_region(pdev, i, res_name, excl))
4066 				goto err_out;
4067 	return 0;
4068 
4069 err_out:
4070 	while (--i >= 0)
4071 		if (bars & (1 << i))
4072 			pci_release_region(pdev, i);
4073 
4074 	return -EBUSY;
4075 }
4076 
4077 
4078 /**
4079  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
4080  * @pdev: PCI device whose resources are to be reserved
4081  * @bars: Bitmask of BARs to be requested
4082  * @res_name: Name to be associated with resource
4083  */
4084 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
4085 				 const char *res_name)
4086 {
4087 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
4088 }
4089 EXPORT_SYMBOL(pci_request_selected_regions);
4090 
4091 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
4092 					   const char *res_name)
4093 {
4094 	return __pci_request_selected_regions(pdev, bars, res_name,
4095 			IORESOURCE_EXCLUSIVE);
4096 }
4097 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4098 
4099 /**
4100  * pci_release_regions - Release reserved PCI I/O and memory resources
4101  * @pdev: PCI device whose resources were previously reserved by
4102  *	  pci_request_regions()
4103  *
4104  * Releases all PCI I/O and memory resources previously reserved by a
4105  * successful call to pci_request_regions().  Call this function only
4106  * after all use of the PCI regions has ceased.
4107  */
4108 
4109 void pci_release_regions(struct pci_dev *pdev)
4110 {
4111 	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
4112 }
4113 EXPORT_SYMBOL(pci_release_regions);
4114 
4115 /**
4116  * pci_request_regions - Reserve PCI I/O and memory resources
4117  * @pdev: PCI device whose resources are to be reserved
4118  * @res_name: Name to be associated with resource.
4119  *
4120  * Mark all PCI regions associated with PCI device @pdev as
4121  * being reserved by owner @res_name.  Do not access any
4122  * address inside the PCI regions unless this call returns
4123  * successfully.
4124  *
4125  * Returns 0 on success, or %EBUSY on error.  A warning
4126  * message is also printed on failure.
4127  */
4128 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
4129 {
4130 	return pci_request_selected_regions(pdev,
4131 			((1 << PCI_STD_NUM_BARS) - 1), res_name);
4132 }
4133 EXPORT_SYMBOL(pci_request_regions);
4134 
4135 /**
4136  * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
4137  * @pdev: PCI device whose resources are to be reserved
4138  * @res_name: Name to be associated with resource.
4139  *
4140  * Mark all PCI regions associated with PCI device @pdev as being reserved
4141  * by owner @res_name.  Do not access any address inside the PCI regions
4142  * unless this call returns successfully.
4143  *
4144  * pci_request_regions_exclusive() will mark the region so that /dev/mem
4145  * and the sysfs MMIO access will not be allowed.
4146  *
4147  * Returns 0 on success, or %EBUSY on error.  A warning message is also
4148  * printed on failure.
4149  */
4150 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
4151 {
4152 	return pci_request_selected_regions_exclusive(pdev,
4153 				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4154 }
4155 EXPORT_SYMBOL(pci_request_regions_exclusive);
4156 
4157 /*
4158  * Record the PCI IO range (expressed as CPU physical address + size).
4159  * Return a negative value if an error has occurred, zero otherwise
4160  */
4161 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
4162 			resource_size_t	size)
4163 {
4164 	int ret = 0;
4165 #ifdef PCI_IOBASE
4166 	struct logic_pio_hwaddr *range;
4167 
4168 	if (!size || addr + size < addr)
4169 		return -EINVAL;
4170 
4171 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4172 	if (!range)
4173 		return -ENOMEM;
4174 
4175 	range->fwnode = fwnode;
4176 	range->size = size;
4177 	range->hw_start = addr;
4178 	range->flags = LOGIC_PIO_CPU_MMIO;
4179 
4180 	ret = logic_pio_register_range(range);
4181 	if (ret)
4182 		kfree(range);
4183 
4184 	/* Ignore duplicates due to deferred probing */
4185 	if (ret == -EEXIST)
4186 		ret = 0;
4187 #endif
4188 
4189 	return ret;
4190 }
4191 
4192 phys_addr_t pci_pio_to_address(unsigned long pio)
4193 {
4194 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
4195 
4196 #ifdef PCI_IOBASE
4197 	if (pio >= MMIO_UPPER_LIMIT)
4198 		return address;
4199 
4200 	address = logic_pio_to_hwaddr(pio);
4201 #endif
4202 
4203 	return address;
4204 }
4205 EXPORT_SYMBOL_GPL(pci_pio_to_address);
4206 
4207 unsigned long __weak pci_address_to_pio(phys_addr_t address)
4208 {
4209 #ifdef PCI_IOBASE
4210 	return logic_pio_trans_cpuaddr(address);
4211 #else
4212 	if (address > IO_SPACE_LIMIT)
4213 		return (unsigned long)-1;
4214 
4215 	return (unsigned long) address;
4216 #endif
4217 }
4218 
4219 /**
4220  * pci_remap_iospace - Remap the memory mapped I/O space
4221  * @res: Resource describing the I/O space
4222  * @phys_addr: physical address of range to be mapped
4223  *
4224  * Remap the memory mapped I/O space described by the @res and the CPU
4225  * physical address @phys_addr into virtual address space.  Only
4226  * architectures that have memory mapped IO functions defined (and the
4227  * PCI_IOBASE value defined) should call this function.
4228  */
4229 #ifndef pci_remap_iospace
4230 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4231 {
4232 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4233 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4234 
4235 	if (!(res->flags & IORESOURCE_IO))
4236 		return -EINVAL;
4237 
4238 	if (res->end > IO_SPACE_LIMIT)
4239 		return -EINVAL;
4240 
4241 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
4242 				  pgprot_device(PAGE_KERNEL));
4243 #else
4244 	/*
4245 	 * This architecture does not have memory mapped I/O space,
4246 	 * so this function should never be called
4247 	 */
4248 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
4249 	return -ENODEV;
4250 #endif
4251 }
4252 EXPORT_SYMBOL(pci_remap_iospace);
4253 #endif
4254 
4255 /**
4256  * pci_unmap_iospace - Unmap the memory mapped I/O space
4257  * @res: resource to be unmapped
4258  *
4259  * Unmap the CPU virtual address @res from virtual address space.  Only
4260  * architectures that have memory mapped IO functions defined (and the
4261  * PCI_IOBASE value defined) should call this function.
4262  */
4263 void pci_unmap_iospace(struct resource *res)
4264 {
4265 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
4266 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
4267 
4268 	vunmap_range(vaddr, vaddr + resource_size(res));
4269 #endif
4270 }
4271 EXPORT_SYMBOL(pci_unmap_iospace);
4272 
4273 static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
4274 {
4275 	struct resource **res = ptr;
4276 
4277 	pci_unmap_iospace(*res);
4278 }
4279 
4280 /**
4281  * devm_pci_remap_iospace - Managed pci_remap_iospace()
4282  * @dev: Generic device to remap IO address for
4283  * @res: Resource describing the I/O space
4284  * @phys_addr: physical address of range to be mapped
4285  *
4286  * Managed pci_remap_iospace().  Map is automatically unmapped on driver
4287  * detach.
4288  */
4289 int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
4290 			   phys_addr_t phys_addr)
4291 {
4292 	const struct resource **ptr;
4293 	int error;
4294 
4295 	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
4296 	if (!ptr)
4297 		return -ENOMEM;
4298 
4299 	error = pci_remap_iospace(res, phys_addr);
4300 	if (error) {
4301 		devres_free(ptr);
4302 	} else	{
4303 		*ptr = res;
4304 		devres_add(dev, ptr);
4305 	}
4306 
4307 	return error;
4308 }
4309 EXPORT_SYMBOL(devm_pci_remap_iospace);
4310 
4311 /**
4312  * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
4313  * @dev: Generic device to remap IO address for
4314  * @offset: Resource address to map
4315  * @size: Size of map
4316  *
4317  * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
4318  * detach.
4319  */
4320 void __iomem *devm_pci_remap_cfgspace(struct device *dev,
4321 				      resource_size_t offset,
4322 				      resource_size_t size)
4323 {
4324 	void __iomem **ptr, *addr;
4325 
4326 	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
4327 	if (!ptr)
4328 		return NULL;
4329 
4330 	addr = pci_remap_cfgspace(offset, size);
4331 	if (addr) {
4332 		*ptr = addr;
4333 		devres_add(dev, ptr);
4334 	} else
4335 		devres_free(ptr);
4336 
4337 	return addr;
4338 }
4339 EXPORT_SYMBOL(devm_pci_remap_cfgspace);
4340 
4341 /**
4342  * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
4343  * @dev: generic device to handle the resource for
4344  * @res: configuration space resource to be handled
4345  *
4346  * Checks that a resource is a valid memory region, requests the memory
4347  * region and ioremaps with pci_remap_cfgspace() API that ensures the
4348  * proper PCI configuration space memory attributes are guaranteed.
4349  *
4350  * All operations are managed and will be undone on driver detach.
4351  *
4352  * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4353  * on failure. Usage example::
4354  *
4355  *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4356  *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
4357  *	if (IS_ERR(base))
4358  *		return PTR_ERR(base);
4359  */
4360 void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
4361 					  struct resource *res)
4362 {
4363 	resource_size_t size;
4364 	const char *name;
4365 	void __iomem *dest_ptr;
4366 
4367 	BUG_ON(!dev);
4368 
4369 	if (!res || resource_type(res) != IORESOURCE_MEM) {
4370 		dev_err(dev, "invalid resource\n");
4371 		return IOMEM_ERR_PTR(-EINVAL);
4372 	}
4373 
4374 	size = resource_size(res);
4375 
4376 	if (res->name)
4377 		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
4378 				      res->name);
4379 	else
4380 		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
4381 	if (!name)
4382 		return IOMEM_ERR_PTR(-ENOMEM);
4383 
4384 	if (!devm_request_mem_region(dev, res->start, size, name)) {
4385 		dev_err(dev, "can't request region for resource %pR\n", res);
4386 		return IOMEM_ERR_PTR(-EBUSY);
4387 	}
4388 
4389 	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
4390 	if (!dest_ptr) {
4391 		dev_err(dev, "ioremap failed for resource %pR\n", res);
4392 		devm_release_mem_region(dev, res->start, size);
4393 		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
4394 	}
4395 
4396 	return dest_ptr;
4397 }
4398 EXPORT_SYMBOL(devm_pci_remap_cfg_resource);
4399 
4400 static void __pci_set_master(struct pci_dev *dev, bool enable)
4401 {
4402 	u16 old_cmd, cmd;
4403 
4404 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
4405 	if (enable)
4406 		cmd = old_cmd | PCI_COMMAND_MASTER;
4407 	else
4408 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
4409 	if (cmd != old_cmd) {
4410 		pci_dbg(dev, "%s bus mastering\n",
4411 			enable ? "enabling" : "disabling");
4412 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4413 	}
4414 	dev->is_busmaster = enable;
4415 }
4416 
4417 /**
4418  * pcibios_setup - process "pci=" kernel boot arguments
4419  * @str: string used to pass in "pci=" kernel boot arguments
4420  *
4421  * Process kernel boot arguments.  This is the default implementation.
4422  * Architecture specific implementations can override this as necessary.
4423  */
4424 char * __weak __init pcibios_setup(char *str)
4425 {
4426 	return str;
4427 }
4428 
4429 /**
4430  * pcibios_set_master - enable PCI bus-mastering for device dev
4431  * @dev: the PCI device to enable
4432  *
4433  * Enables PCI bus-mastering for the device.  This is the default
4434  * implementation.  Architecture specific implementations can override
4435  * this if necessary.
4436  */
4437 void __weak pcibios_set_master(struct pci_dev *dev)
4438 {
4439 	u8 lat;
4440 
4441 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
4442 	if (pci_is_pcie(dev))
4443 		return;
4444 
4445 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
4446 	if (lat < 16)
4447 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
4448 	else if (lat > pcibios_max_latency)
4449 		lat = pcibios_max_latency;
4450 	else
4451 		return;
4452 
4453 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
4454 }
4455 
4456 /**
4457  * pci_set_master - enables bus-mastering for device dev
4458  * @dev: the PCI device to enable
4459  *
4460  * Enables bus-mastering on the device and calls pcibios_set_master()
4461  * to do the needed arch specific settings.
4462  */
4463 void pci_set_master(struct pci_dev *dev)
4464 {
4465 	__pci_set_master(dev, true);
4466 	pcibios_set_master(dev);
4467 }
4468 EXPORT_SYMBOL(pci_set_master);
4469 
4470 /**
4471  * pci_clear_master - disables bus-mastering for device dev
4472  * @dev: the PCI device to disable
4473  */
4474 void pci_clear_master(struct pci_dev *dev)
4475 {
4476 	__pci_set_master(dev, false);
4477 }
4478 EXPORT_SYMBOL(pci_clear_master);
4479 
4480 /**
4481  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
4482  * @dev: the PCI device for which MWI is to be enabled
4483  *
4484  * Helper function for pci_set_mwi.
4485  * Originally copied from drivers/net/acenic.c.
4486  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
4487  *
4488  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4489  */
4490 int pci_set_cacheline_size(struct pci_dev *dev)
4491 {
4492 	u8 cacheline_size;
4493 
4494 	if (!pci_cache_line_size)
4495 		return -EINVAL;
4496 
4497 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
4498 	   equal to or multiple of the right value. */
4499 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4500 	if (cacheline_size >= pci_cache_line_size &&
4501 	    (cacheline_size % pci_cache_line_size) == 0)
4502 		return 0;
4503 
4504 	/* Write the correct value. */
4505 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
4506 	/* Read it back. */
4507 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
4508 	if (cacheline_size == pci_cache_line_size)
4509 		return 0;
4510 
4511 	pci_dbg(dev, "cache line size of %d is not supported\n",
4512 		   pci_cache_line_size << 2);
4513 
4514 	return -EINVAL;
4515 }
4516 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
4517 
4518 /**
4519  * pci_set_mwi - enables memory-write-invalidate PCI transaction
4520  * @dev: the PCI device for which MWI is enabled
4521  *
4522  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4523  *
4524  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4525  */
4526 int pci_set_mwi(struct pci_dev *dev)
4527 {
4528 #ifdef PCI_DISABLE_MWI
4529 	return 0;
4530 #else
4531 	int rc;
4532 	u16 cmd;
4533 
4534 	rc = pci_set_cacheline_size(dev);
4535 	if (rc)
4536 		return rc;
4537 
4538 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4539 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4540 		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
4541 		cmd |= PCI_COMMAND_INVALIDATE;
4542 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4543 	}
4544 	return 0;
4545 #endif
4546 }
4547 EXPORT_SYMBOL(pci_set_mwi);
4548 
4549 /**
4550  * pcim_set_mwi - a device-managed pci_set_mwi()
4551  * @dev: the PCI device for which MWI is enabled
4552  *
4553  * Managed pci_set_mwi().
4554  *
4555  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4556  */
4557 int pcim_set_mwi(struct pci_dev *dev)
4558 {
4559 	struct pci_devres *dr;
4560 
4561 	dr = find_pci_dr(dev);
4562 	if (!dr)
4563 		return -ENOMEM;
4564 
4565 	dr->mwi = 1;
4566 	return pci_set_mwi(dev);
4567 }
4568 EXPORT_SYMBOL(pcim_set_mwi);
4569 
4570 /**
4571  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
4572  * @dev: the PCI device for which MWI is enabled
4573  *
4574  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
4575  * Callers are not required to check the return value.
4576  *
4577  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
4578  */
4579 int pci_try_set_mwi(struct pci_dev *dev)
4580 {
4581 #ifdef PCI_DISABLE_MWI
4582 	return 0;
4583 #else
4584 	return pci_set_mwi(dev);
4585 #endif
4586 }
4587 EXPORT_SYMBOL(pci_try_set_mwi);
4588 
4589 /**
4590  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
4591  * @dev: the PCI device to disable
4592  *
4593  * Disables PCI Memory-Write-Invalidate transaction on the device
4594  */
4595 void pci_clear_mwi(struct pci_dev *dev)
4596 {
4597 #ifndef PCI_DISABLE_MWI
4598 	u16 cmd;
4599 
4600 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4601 	if (cmd & PCI_COMMAND_INVALIDATE) {
4602 		cmd &= ~PCI_COMMAND_INVALIDATE;
4603 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4604 	}
4605 #endif
4606 }
4607 EXPORT_SYMBOL(pci_clear_mwi);
4608 
4609 /**
4610  * pci_disable_parity - disable parity checking for device
4611  * @dev: the PCI device to operate on
4612  *
4613  * Disable parity checking for device @dev
4614  */
4615 void pci_disable_parity(struct pci_dev *dev)
4616 {
4617 	u16 cmd;
4618 
4619 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
4620 	if (cmd & PCI_COMMAND_PARITY) {
4621 		cmd &= ~PCI_COMMAND_PARITY;
4622 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4623 	}
4624 }
4625 
4626 /**
4627  * pci_intx - enables/disables PCI INTx for device dev
4628  * @pdev: the PCI device to operate on
4629  * @enable: boolean: whether to enable or disable PCI INTx
4630  *
4631  * Enables/disables PCI INTx for device @pdev
4632  */
4633 void pci_intx(struct pci_dev *pdev, int enable)
4634 {
4635 	u16 pci_command, new;
4636 
4637 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
4638 
4639 	if (enable)
4640 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
4641 	else
4642 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
4643 
4644 	if (new != pci_command) {
4645 		struct pci_devres *dr;
4646 
4647 		pci_write_config_word(pdev, PCI_COMMAND, new);
4648 
4649 		dr = find_pci_dr(pdev);
4650 		if (dr && !dr->restore_intx) {
4651 			dr->restore_intx = 1;
4652 			dr->orig_intx = !enable;
4653 		}
4654 	}
4655 }
4656 EXPORT_SYMBOL_GPL(pci_intx);
4657 
4658 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
4659 {
4660 	struct pci_bus *bus = dev->bus;
4661 	bool mask_updated = true;
4662 	u32 cmd_status_dword;
4663 	u16 origcmd, newcmd;
4664 	unsigned long flags;
4665 	bool irq_pending;
4666 
4667 	/*
4668 	 * We do a single dword read to retrieve both command and status.
4669 	 * Document assumptions that make this possible.
4670 	 */
4671 	BUILD_BUG_ON(PCI_COMMAND % 4);
4672 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
4673 
4674 	raw_spin_lock_irqsave(&pci_lock, flags);
4675 
4676 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
4677 
4678 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
4679 
4680 	/*
4681 	 * Check interrupt status register to see whether our device
4682 	 * triggered the interrupt (when masking) or the next IRQ is
4683 	 * already pending (when unmasking).
4684 	 */
4685 	if (mask != irq_pending) {
4686 		mask_updated = false;
4687 		goto done;
4688 	}
4689 
4690 	origcmd = cmd_status_dword;
4691 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
4692 	if (mask)
4693 		newcmd |= PCI_COMMAND_INTX_DISABLE;
4694 	if (newcmd != origcmd)
4695 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
4696 
4697 done:
4698 	raw_spin_unlock_irqrestore(&pci_lock, flags);
4699 
4700 	return mask_updated;
4701 }
4702 
4703 /**
4704  * pci_check_and_mask_intx - mask INTx on pending interrupt
4705  * @dev: the PCI device to operate on
4706  *
4707  * Check if the device dev has its INTx line asserted, mask it and return
4708  * true in that case. False is returned if no interrupt was pending.
4709  */
4710 bool pci_check_and_mask_intx(struct pci_dev *dev)
4711 {
4712 	return pci_check_and_set_intx_mask(dev, true);
4713 }
4714 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
4715 
4716 /**
4717  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4718  * @dev: the PCI device to operate on
4719  *
4720  * Check if the device dev has its INTx line asserted, unmask it if not and
4721  * return true. False is returned and the mask remains active if there was
4722  * still an interrupt pending.
4723  */
4724 bool pci_check_and_unmask_intx(struct pci_dev *dev)
4725 {
4726 	return pci_check_and_set_intx_mask(dev, false);
4727 }
4728 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
4729 
4730 /**
4731  * pci_wait_for_pending_transaction - wait for pending transaction
4732  * @dev: the PCI device to operate on
4733  *
4734  * Return 0 if transaction is pending 1 otherwise.
4735  */
4736 int pci_wait_for_pending_transaction(struct pci_dev *dev)
4737 {
4738 	if (!pci_is_pcie(dev))
4739 		return 1;
4740 
4741 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
4742 				    PCI_EXP_DEVSTA_TRPND);
4743 }
4744 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
4745 
4746 /**
4747  * pcie_flr - initiate a PCIe function level reset
4748  * @dev: device to reset
4749  *
4750  * Initiate a function level reset unconditionally on @dev without
4751  * checking any flags and DEVCAP
4752  */
4753 int pcie_flr(struct pci_dev *dev)
4754 {
4755 	if (!pci_wait_for_pending_transaction(dev))
4756 		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
4757 
4758 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4759 
4760 	if (dev->imm_ready)
4761 		return 0;
4762 
4763 	/*
4764 	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
4765 	 * 100ms, but may silently discard requests while the FLR is in
4766 	 * progress.  Wait 100ms before trying to access the device.
4767 	 */
4768 	msleep(100);
4769 
4770 	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4771 }
4772 EXPORT_SYMBOL_GPL(pcie_flr);
4773 
4774 /**
4775  * pcie_reset_flr - initiate a PCIe function level reset
4776  * @dev: device to reset
4777  * @probe: if true, return 0 if device can be reset this way
4778  *
4779  * Initiate a function level reset on @dev.
4780  */
4781 int pcie_reset_flr(struct pci_dev *dev, bool probe)
4782 {
4783 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4784 		return -ENOTTY;
4785 
4786 	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
4787 		return -ENOTTY;
4788 
4789 	if (probe)
4790 		return 0;
4791 
4792 	return pcie_flr(dev);
4793 }
4794 EXPORT_SYMBOL_GPL(pcie_reset_flr);
4795 
4796 static int pci_af_flr(struct pci_dev *dev, bool probe)
4797 {
4798 	int pos;
4799 	u8 cap;
4800 
4801 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
4802 	if (!pos)
4803 		return -ENOTTY;
4804 
4805 	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
4806 		return -ENOTTY;
4807 
4808 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4809 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
4810 		return -ENOTTY;
4811 
4812 	if (probe)
4813 		return 0;
4814 
4815 	/*
4816 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4817 	 * is used, so we use the control offset rather than status and shift
4818 	 * the test bit to match.
4819 	 */
4820 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4821 				 PCI_AF_STATUS_TP << 8))
4822 		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4823 
4824 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4825 
4826 	if (dev->imm_ready)
4827 		return 0;
4828 
4829 	/*
4830 	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
4831 	 * updated 27 July 2006; a device must complete an FLR within
4832 	 * 100ms, but may silently discard requests while the FLR is in
4833 	 * progress.  Wait 100ms before trying to access the device.
4834 	 */
4835 	msleep(100);
4836 
4837 	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4838 }
4839 
4840 /**
4841  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
4842  * @dev: Device to reset.
4843  * @probe: if true, return 0 if the device can be reset this way.
4844  *
4845  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
4846  * unset, it will be reinitialized internally when going from PCI_D3hot to
4847  * PCI_D0.  If that's the case and the device is not in a low-power state
4848  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
4849  *
4850  * NOTE: This causes the caller to sleep for twice the device power transition
4851  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4852  * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4853  * Moreover, only devices in D0 can be reset by this function.
4854  */
4855 static int pci_pm_reset(struct pci_dev *dev, bool probe)
4856 {
4857 	u16 csr;
4858 
4859 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4860 		return -ENOTTY;
4861 
4862 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
4863 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
4864 		return -ENOTTY;
4865 
4866 	if (probe)
4867 		return 0;
4868 
4869 	if (dev->current_state != PCI_D0)
4870 		return -EINVAL;
4871 
4872 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4873 	csr |= PCI_D3hot;
4874 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4875 	pci_dev_d3_sleep(dev);
4876 
4877 	csr &= ~PCI_PM_CTRL_STATE_MASK;
4878 	csr |= PCI_D0;
4879 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4880 	pci_dev_d3_sleep(dev);
4881 
4882 	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4883 }
4884 
4885 /**
4886  * pcie_wait_for_link_status - Wait for link status change
4887  * @pdev: Device whose link to wait for.
4888  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
4889  * @active: Waiting for active or inactive?
4890  *
4891  * Return 0 if successful, or -ETIMEDOUT if status has not changed within
4892  * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4893  */
4894 static int pcie_wait_for_link_status(struct pci_dev *pdev,
4895 				     bool use_lt, bool active)
4896 {
4897 	u16 lnksta_mask, lnksta_match;
4898 	unsigned long end_jiffies;
4899 	u16 lnksta;
4900 
4901 	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
4902 	lnksta_match = active ? lnksta_mask : 0;
4903 
4904 	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
4905 	do {
4906 		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
4907 		if ((lnksta & lnksta_mask) == lnksta_match)
4908 			return 0;
4909 		msleep(1);
4910 	} while (time_before(jiffies, end_jiffies));
4911 
4912 	return -ETIMEDOUT;
4913 }
4914 
4915 /**
4916  * pcie_retrain_link - Request a link retrain and wait for it to complete
4917  * @pdev: Device whose link to retrain.
4918  * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
4919  *
4920  * Retrain completion status is retrieved from the Link Status Register
4921  * according to @use_lt.  It is not verified whether the use of the DLLLA
4922  * bit is valid.
4923  *
4924  * Return 0 if successful, or -ETIMEDOUT if training has not completed
4925  * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
4926  */
4927 int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
4928 {
4929 	int rc;
4930 	u16 lnkctl;
4931 
4932 	/*
4933 	 * Ensure the updated LNKCTL parameters are used during link
4934 	 * training by checking that there is no ongoing link training to
4935 	 * avoid LTSSM race as recommended in Implementation Note at the
4936 	 * end of PCIe r6.0.1 sec 7.5.3.7.
4937 	 */
4938 	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4939 	if (rc)
4940 		return rc;
4941 
4942 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &lnkctl);
4943 	lnkctl |= PCI_EXP_LNKCTL_RL;
4944 	pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, lnkctl);
4945 	if (pdev->clear_retrain_link) {
4946 		/*
4947 		 * Due to an erratum in some devices the Retrain Link bit
4948 		 * needs to be cleared again manually to allow the link
4949 		 * training to succeed.
4950 		 */
4951 		lnkctl &= ~PCI_EXP_LNKCTL_RL;
4952 		pcie_capability_write_word(pdev, PCI_EXP_LNKCTL, lnkctl);
4953 	}
4954 
4955 	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
4956 }
4957 
4958 /**
4959  * pcie_wait_for_link_delay - Wait until link is active or inactive
4960  * @pdev: Bridge device
4961  * @active: waiting for active or inactive?
4962  * @delay: Delay to wait after link has become active (in ms)
4963  *
4964  * Use this to wait till link becomes active or inactive.
4965  */
4966 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
4967 				     int delay)
4968 {
4969 	int rc;
4970 
4971 	/*
4972 	 * Some controllers might not implement link active reporting. In this
4973 	 * case, we wait for 1000 ms + any delay requested by the caller.
4974 	 */
4975 	if (!pdev->link_active_reporting) {
4976 		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
4977 		return true;
4978 	}
4979 
4980 	/*
4981 	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
4982 	 * after which we should expect an link active if the reset was
4983 	 * successful. If so, software must wait a minimum 100ms before sending
4984 	 * configuration requests to devices downstream this port.
4985 	 *
4986 	 * If the link fails to activate, either the device was physically
4987 	 * removed or the link is permanently failed.
4988 	 */
4989 	if (active)
4990 		msleep(20);
4991 	rc = pcie_wait_for_link_status(pdev, false, active);
4992 	if (active) {
4993 		if (rc)
4994 			rc = pcie_failed_link_retrain(pdev);
4995 		if (rc)
4996 			return false;
4997 
4998 		msleep(delay);
4999 		return true;
5000 	}
5001 
5002 	if (rc)
5003 		return false;
5004 
5005 	return true;
5006 }
5007 
5008 /**
5009  * pcie_wait_for_link - Wait until link is active or inactive
5010  * @pdev: Bridge device
5011  * @active: waiting for active or inactive?
5012  *
5013  * Use this to wait till link becomes active or inactive.
5014  */
5015 bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
5016 {
5017 	return pcie_wait_for_link_delay(pdev, active, 100);
5018 }
5019 
5020 /*
5021  * Find maximum D3cold delay required by all the devices on the bus.  The
5022  * spec says 100 ms, but firmware can lower it and we allow drivers to
5023  * increase it as well.
5024  *
5025  * Called with @pci_bus_sem locked for reading.
5026  */
5027 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
5028 {
5029 	const struct pci_dev *pdev;
5030 	int min_delay = 100;
5031 	int max_delay = 0;
5032 
5033 	list_for_each_entry(pdev, &bus->devices, bus_list) {
5034 		if (pdev->d3cold_delay < min_delay)
5035 			min_delay = pdev->d3cold_delay;
5036 		if (pdev->d3cold_delay > max_delay)
5037 			max_delay = pdev->d3cold_delay;
5038 	}
5039 
5040 	return max(min_delay, max_delay);
5041 }
5042 
5043 /**
5044  * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
5045  * @dev: PCI bridge
5046  * @reset_type: reset type in human-readable form
5047  *
5048  * Handle necessary delays before access to the devices on the secondary
5049  * side of the bridge are permitted after D3cold to D0 transition
5050  * or Conventional Reset.
5051  *
5052  * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
5053  * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
5054  * 4.3.2.
5055  *
5056  * Return 0 on success or -ENOTTY if the first device on the secondary bus
5057  * failed to become accessible.
5058  */
5059 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5060 {
5061 	struct pci_dev *child;
5062 	int delay;
5063 
5064 	if (pci_dev_is_disconnected(dev))
5065 		return 0;
5066 
5067 	if (!pci_is_bridge(dev))
5068 		return 0;
5069 
5070 	down_read(&pci_bus_sem);
5071 
5072 	/*
5073 	 * We only deal with devices that are present currently on the bus.
5074 	 * For any hot-added devices the access delay is handled in pciehp
5075 	 * board_added(). In case of ACPI hotplug the firmware is expected
5076 	 * to configure the devices before OS is notified.
5077 	 */
5078 	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
5079 		up_read(&pci_bus_sem);
5080 		return 0;
5081 	}
5082 
5083 	/* Take d3cold_delay requirements into account */
5084 	delay = pci_bus_max_d3cold_delay(dev->subordinate);
5085 	if (!delay) {
5086 		up_read(&pci_bus_sem);
5087 		return 0;
5088 	}
5089 
5090 	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
5091 				 bus_list);
5092 	up_read(&pci_bus_sem);
5093 
5094 	/*
5095 	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5096 	 * accessing the device after reset (that is 1000 ms + 100 ms).
5097 	 */
5098 	if (!pci_is_pcie(dev)) {
5099 		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
5100 		msleep(1000 + delay);
5101 		return 0;
5102 	}
5103 
5104 	/*
5105 	 * For PCIe downstream and root ports that do not support speeds
5106 	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
5107 	 * speeds (gen3) we need to wait first for the data link layer to
5108 	 * become active.
5109 	 *
5110 	 * However, 100 ms is the minimum and the PCIe spec says the
5111 	 * software must allow at least 1s before it can determine that the
5112 	 * device that did not respond is a broken device. Also device can
5113 	 * take longer than that to respond if it indicates so through Request
5114 	 * Retry Status completions.
5115 	 *
5116 	 * Therefore we wait for 100 ms and check for the device presence
5117 	 * until the timeout expires.
5118 	 */
5119 	if (!pcie_downstream_port(dev))
5120 		return 0;
5121 
5122 	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5123 		u16 status;
5124 
5125 		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
5126 		msleep(delay);
5127 
5128 		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
5129 			return 0;
5130 
5131 		/*
5132 		 * If the port supports active link reporting we now check
5133 		 * whether the link is active and if not bail out early with
5134 		 * the assumption that the device is not present anymore.
5135 		 */
5136 		if (!dev->link_active_reporting)
5137 			return -ENOTTY;
5138 
5139 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
5140 		if (!(status & PCI_EXP_LNKSTA_DLLLA))
5141 			return -ENOTTY;
5142 
5143 		return pci_dev_wait(child, reset_type,
5144 				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
5145 	}
5146 
5147 	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
5148 		delay);
5149 	if (!pcie_wait_for_link_delay(dev, true, delay)) {
5150 		/* Did not train, no need to wait any further */
5151 		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
5152 		return -ENOTTY;
5153 	}
5154 
5155 	return pci_dev_wait(child, reset_type,
5156 			    PCIE_RESET_READY_POLL_MS - delay);
5157 }
5158 
5159 void pci_reset_secondary_bus(struct pci_dev *dev)
5160 {
5161 	u16 ctrl;
5162 
5163 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
5164 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
5165 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5166 
5167 	/*
5168 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5169 	 * this to 2ms to ensure that we meet the minimum requirement.
5170 	 */
5171 	msleep(2);
5172 
5173 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
5174 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
5175 }
5176 
5177 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
5178 {
5179 	pci_reset_secondary_bus(dev);
5180 }
5181 
5182 /**
5183  * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5184  * @dev: Bridge device
5185  *
5186  * Use the bridge control register to assert reset on the secondary bus.
5187  * Devices on the secondary bus are left in power-on state.
5188  */
5189 int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5190 {
5191 	pcibios_reset_secondary_bus(dev);
5192 
5193 	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5194 }
5195 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5196 
5197 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5198 {
5199 	struct pci_dev *pdev;
5200 
5201 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
5202 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5203 		return -ENOTTY;
5204 
5205 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
5206 		if (pdev != dev)
5207 			return -ENOTTY;
5208 
5209 	if (probe)
5210 		return 0;
5211 
5212 	return pci_bridge_secondary_bus_reset(dev->bus->self);
5213 }
5214 
5215 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5216 {
5217 	int rc = -ENOTTY;
5218 
5219 	if (!hotplug || !try_module_get(hotplug->owner))
5220 		return rc;
5221 
5222 	if (hotplug->ops->reset_slot)
5223 		rc = hotplug->ops->reset_slot(hotplug, probe);
5224 
5225 	module_put(hotplug->owner);
5226 
5227 	return rc;
5228 }
5229 
5230 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5231 {
5232 	if (dev->multifunction || dev->subordinate || !dev->slot ||
5233 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5234 		return -ENOTTY;
5235 
5236 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
5237 }
5238 
5239 static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5240 {
5241 	int rc;
5242 
5243 	rc = pci_dev_reset_slot_function(dev, probe);
5244 	if (rc != -ENOTTY)
5245 		return rc;
5246 	return pci_parent_bus_reset(dev, probe);
5247 }
5248 
5249 void pci_dev_lock(struct pci_dev *dev)
5250 {
5251 	/* block PM suspend, driver probe, etc. */
5252 	device_lock(&dev->dev);
5253 	pci_cfg_access_lock(dev);
5254 }
5255 EXPORT_SYMBOL_GPL(pci_dev_lock);
5256 
5257 /* Return 1 on successful lock, 0 on contention */
5258 int pci_dev_trylock(struct pci_dev *dev)
5259 {
5260 	if (device_trylock(&dev->dev)) {
5261 		if (pci_cfg_access_trylock(dev))
5262 			return 1;
5263 		device_unlock(&dev->dev);
5264 	}
5265 
5266 	return 0;
5267 }
5268 EXPORT_SYMBOL_GPL(pci_dev_trylock);
5269 
5270 void pci_dev_unlock(struct pci_dev *dev)
5271 {
5272 	pci_cfg_access_unlock(dev);
5273 	device_unlock(&dev->dev);
5274 }
5275 EXPORT_SYMBOL_GPL(pci_dev_unlock);
5276 
5277 static void pci_dev_save_and_disable(struct pci_dev *dev)
5278 {
5279 	const struct pci_error_handlers *err_handler =
5280 			dev->driver ? dev->driver->err_handler : NULL;
5281 
5282 	/*
5283 	 * dev->driver->err_handler->reset_prepare() is protected against
5284 	 * races with ->remove() by the device lock, which must be held by
5285 	 * the caller.
5286 	 */
5287 	if (err_handler && err_handler->reset_prepare)
5288 		err_handler->reset_prepare(dev);
5289 
5290 	/*
5291 	 * Wake-up device prior to save.  PM registers default to D0 after
5292 	 * reset and a simple register restore doesn't reliably return
5293 	 * to a non-D0 state anyway.
5294 	 */
5295 	pci_set_power_state(dev, PCI_D0);
5296 
5297 	pci_save_state(dev);
5298 	/*
5299 	 * Disable the device by clearing the Command register, except for
5300 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
5301 	 * BARs, but also prevents the device from being Bus Master, preventing
5302 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
5303 	 * compliant devices, INTx-disable prevents legacy interrupts.
5304 	 */
5305 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
5306 }
5307 
5308 static void pci_dev_restore(struct pci_dev *dev)
5309 {
5310 	const struct pci_error_handlers *err_handler =
5311 			dev->driver ? dev->driver->err_handler : NULL;
5312 
5313 	pci_restore_state(dev);
5314 
5315 	/*
5316 	 * dev->driver->err_handler->reset_done() is protected against
5317 	 * races with ->remove() by the device lock, which must be held by
5318 	 * the caller.
5319 	 */
5320 	if (err_handler && err_handler->reset_done)
5321 		err_handler->reset_done(dev);
5322 }
5323 
5324 /* dev->reset_methods[] is a 0-terminated list of indices into this array */
5325 static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
5326 	{ },
5327 	{ pci_dev_specific_reset, .name = "device_specific" },
5328 	{ pci_dev_acpi_reset, .name = "acpi" },
5329 	{ pcie_reset_flr, .name = "flr" },
5330 	{ pci_af_flr, .name = "af_flr" },
5331 	{ pci_pm_reset, .name = "pm" },
5332 	{ pci_reset_bus_function, .name = "bus" },
5333 };
5334 
5335 static ssize_t reset_method_show(struct device *dev,
5336 				 struct device_attribute *attr, char *buf)
5337 {
5338 	struct pci_dev *pdev = to_pci_dev(dev);
5339 	ssize_t len = 0;
5340 	int i, m;
5341 
5342 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5343 		m = pdev->reset_methods[i];
5344 		if (!m)
5345 			break;
5346 
5347 		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
5348 				     pci_reset_fn_methods[m].name);
5349 	}
5350 
5351 	if (len)
5352 		len += sysfs_emit_at(buf, len, "\n");
5353 
5354 	return len;
5355 }
5356 
5357 static int reset_method_lookup(const char *name)
5358 {
5359 	int m;
5360 
5361 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5362 		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
5363 			return m;
5364 	}
5365 
5366 	return 0;	/* not found */
5367 }
5368 
5369 static ssize_t reset_method_store(struct device *dev,
5370 				  struct device_attribute *attr,
5371 				  const char *buf, size_t count)
5372 {
5373 	struct pci_dev *pdev = to_pci_dev(dev);
5374 	char *options, *name;
5375 	int m, n;
5376 	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };
5377 
5378 	if (sysfs_streq(buf, "")) {
5379 		pdev->reset_methods[0] = 0;
5380 		pci_warn(pdev, "All device reset methods disabled by user");
5381 		return count;
5382 	}
5383 
5384 	if (sysfs_streq(buf, "default")) {
5385 		pci_init_reset_methods(pdev);
5386 		return count;
5387 	}
5388 
5389 	options = kstrndup(buf, count, GFP_KERNEL);
5390 	if (!options)
5391 		return -ENOMEM;
5392 
5393 	n = 0;
5394 	while ((name = strsep(&options, " ")) != NULL) {
5395 		if (sysfs_streq(name, ""))
5396 			continue;
5397 
5398 		name = strim(name);
5399 
5400 		m = reset_method_lookup(name);
5401 		if (!m) {
5402 			pci_err(pdev, "Invalid reset method '%s'", name);
5403 			goto error;
5404 		}
5405 
5406 		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5407 			pci_err(pdev, "Unsupported reset method '%s'", name);
5408 			goto error;
5409 		}
5410 
5411 		if (n == PCI_NUM_RESET_METHODS - 1) {
5412 			pci_err(pdev, "Too many reset methods\n");
5413 			goto error;
5414 		}
5415 
5416 		reset_methods[n++] = m;
5417 	}
5418 
5419 	reset_methods[n] = 0;
5420 
5421 	/* Warn if dev-specific supported but not highest priority */
5422 	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5423 	    reset_methods[0] != 1)
5424 		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
5425 	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
5426 	kfree(options);
5427 	return count;
5428 
5429 error:
5430 	/* Leave previous methods unchanged */
5431 	kfree(options);
5432 	return -EINVAL;
5433 }
5434 static DEVICE_ATTR_RW(reset_method);
5435 
5436 static struct attribute *pci_dev_reset_method_attrs[] = {
5437 	&dev_attr_reset_method.attr,
5438 	NULL,
5439 };
5440 
5441 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
5442 						    struct attribute *a, int n)
5443 {
5444 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
5445 
5446 	if (!pci_reset_supported(pdev))
5447 		return 0;
5448 
5449 	return a->mode;
5450 }
5451 
5452 const struct attribute_group pci_dev_reset_method_attr_group = {
5453 	.attrs = pci_dev_reset_method_attrs,
5454 	.is_visible = pci_dev_reset_method_attr_is_visible,
5455 };
5456 
5457 /**
5458  * __pci_reset_function_locked - reset a PCI device function while holding
5459  * the @dev mutex lock.
5460  * @dev: PCI device to reset
5461  *
5462  * Some devices allow an individual function to be reset without affecting
5463  * other functions in the same device.  The PCI device must be responsive
5464  * to PCI config space in order to use this function.
5465  *
5466  * The device function is presumed to be unused and the caller is holding
5467  * the device mutex lock when this function is called.
5468  *
5469  * Resetting the device will make the contents of PCI configuration space
5470  * random, so any caller of this must be prepared to reinitialise the
5471  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
5472  * etc.
5473  *
5474  * Returns 0 if the device function was successfully reset or negative if the
5475  * device doesn't support resetting a single function.
5476  */
5477 int __pci_reset_function_locked(struct pci_dev *dev)
5478 {
5479 	int i, m, rc;
5480 
5481 	might_sleep();
5482 
5483 	/*
5484 	 * A reset method returns -ENOTTY if it doesn't support this device and
5485 	 * we should try the next method.
5486 	 *
5487 	 * If it returns 0 (success), we're finished.  If it returns any other
5488 	 * error, we're also finished: this indicates that further reset
5489 	 * mechanisms might be broken on the device.
5490 	 */
5491 	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
5492 		m = dev->reset_methods[i];
5493 		if (!m)
5494 			return -ENOTTY;
5495 
5496 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5497 		if (!rc)
5498 			return 0;
5499 		if (rc != -ENOTTY)
5500 			return rc;
5501 	}
5502 
5503 	return -ENOTTY;
5504 }
5505 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
5506 
5507 /**
5508  * pci_init_reset_methods - check whether device can be safely reset
5509  * and store supported reset mechanisms.
5510  * @dev: PCI device to check for reset mechanisms
5511  *
5512  * Some devices allow an individual function to be reset without affecting
5513  * other functions in the same device.  The PCI device must be in D0-D3hot
5514  * state.
5515  *
5516  * Stores reset mechanisms supported by device in reset_methods byte array
5517  * which is a member of struct pci_dev.
5518  */
5519 void pci_init_reset_methods(struct pci_dev *dev)
5520 {
5521 	int m, i, rc;
5522 
5523 	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5524 
5525 	might_sleep();
5526 
5527 	i = 0;
5528 	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5529 		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5530 		if (!rc)
5531 			dev->reset_methods[i++] = m;
5532 		else if (rc != -ENOTTY)
5533 			break;
5534 	}
5535 
5536 	dev->reset_methods[i] = 0;
5537 }
5538 
5539 /**
5540  * pci_reset_function - quiesce and reset a PCI device function
5541  * @dev: PCI device to reset
5542  *
5543  * Some devices allow an individual function to be reset without affecting
5544  * other functions in the same device.  The PCI device must be responsive
5545  * to PCI config space in order to use this function.
5546  *
5547  * This function does not just reset the PCI portion of a device, but
5548  * clears all the state associated with the device.  This function differs
5549  * from __pci_reset_function_locked() in that it saves and restores device state
5550  * over the reset and takes the PCI device lock.
5551  *
5552  * Returns 0 if the device function was successfully reset or negative if the
5553  * device doesn't support resetting a single function.
5554  */
5555 int pci_reset_function(struct pci_dev *dev)
5556 {
5557 	int rc;
5558 
5559 	if (!pci_reset_supported(dev))
5560 		return -ENOTTY;
5561 
5562 	pci_dev_lock(dev);
5563 	pci_dev_save_and_disable(dev);
5564 
5565 	rc = __pci_reset_function_locked(dev);
5566 
5567 	pci_dev_restore(dev);
5568 	pci_dev_unlock(dev);
5569 
5570 	return rc;
5571 }
5572 EXPORT_SYMBOL_GPL(pci_reset_function);
5573 
5574 /**
5575  * pci_reset_function_locked - quiesce and reset a PCI device function
5576  * @dev: PCI device to reset
5577  *
5578  * Some devices allow an individual function to be reset without affecting
5579  * other functions in the same device.  The PCI device must be responsive
5580  * to PCI config space in order to use this function.
5581  *
5582  * This function does not just reset the PCI portion of a device, but
5583  * clears all the state associated with the device.  This function differs
5584  * from __pci_reset_function_locked() in that it saves and restores device state
5585  * over the reset.  It also differs from pci_reset_function() in that it
5586  * requires the PCI device lock to be held.
5587  *
5588  * Returns 0 if the device function was successfully reset or negative if the
5589  * device doesn't support resetting a single function.
5590  */
5591 int pci_reset_function_locked(struct pci_dev *dev)
5592 {
5593 	int rc;
5594 
5595 	if (!pci_reset_supported(dev))
5596 		return -ENOTTY;
5597 
5598 	pci_dev_save_and_disable(dev);
5599 
5600 	rc = __pci_reset_function_locked(dev);
5601 
5602 	pci_dev_restore(dev);
5603 
5604 	return rc;
5605 }
5606 EXPORT_SYMBOL_GPL(pci_reset_function_locked);
5607 
5608 /**
5609  * pci_try_reset_function - quiesce and reset a PCI device function
5610  * @dev: PCI device to reset
5611  *
5612  * Same as above, except return -EAGAIN if unable to lock device.
5613  */
5614 int pci_try_reset_function(struct pci_dev *dev)
5615 {
5616 	int rc;
5617 
5618 	if (!pci_reset_supported(dev))
5619 		return -ENOTTY;
5620 
5621 	if (!pci_dev_trylock(dev))
5622 		return -EAGAIN;
5623 
5624 	pci_dev_save_and_disable(dev);
5625 	rc = __pci_reset_function_locked(dev);
5626 	pci_dev_restore(dev);
5627 	pci_dev_unlock(dev);
5628 
5629 	return rc;
5630 }
5631 EXPORT_SYMBOL_GPL(pci_try_reset_function);
5632 
5633 /* Do any devices on or below this bus prevent a bus reset? */
5634 static bool pci_bus_resetable(struct pci_bus *bus)
5635 {
5636 	struct pci_dev *dev;
5637 
5638 
5639 	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5640 		return false;
5641 
5642 	list_for_each_entry(dev, &bus->devices, bus_list) {
5643 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5644 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5645 			return false;
5646 	}
5647 
5648 	return true;
5649 }
5650 
5651 /* Lock devices from the top of the tree down */
5652 static void pci_bus_lock(struct pci_bus *bus)
5653 {
5654 	struct pci_dev *dev;
5655 
5656 	list_for_each_entry(dev, &bus->devices, bus_list) {
5657 		pci_dev_lock(dev);
5658 		if (dev->subordinate)
5659 			pci_bus_lock(dev->subordinate);
5660 	}
5661 }
5662 
5663 /* Unlock devices from the bottom of the tree up */
5664 static void pci_bus_unlock(struct pci_bus *bus)
5665 {
5666 	struct pci_dev *dev;
5667 
5668 	list_for_each_entry(dev, &bus->devices, bus_list) {
5669 		if (dev->subordinate)
5670 			pci_bus_unlock(dev->subordinate);
5671 		pci_dev_unlock(dev);
5672 	}
5673 }
5674 
5675 /* Return 1 on successful lock, 0 on contention */
5676 static int pci_bus_trylock(struct pci_bus *bus)
5677 {
5678 	struct pci_dev *dev;
5679 
5680 	list_for_each_entry(dev, &bus->devices, bus_list) {
5681 		if (!pci_dev_trylock(dev))
5682 			goto unlock;
5683 		if (dev->subordinate) {
5684 			if (!pci_bus_trylock(dev->subordinate)) {
5685 				pci_dev_unlock(dev);
5686 				goto unlock;
5687 			}
5688 		}
5689 	}
5690 	return 1;
5691 
5692 unlock:
5693 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
5694 		if (dev->subordinate)
5695 			pci_bus_unlock(dev->subordinate);
5696 		pci_dev_unlock(dev);
5697 	}
5698 	return 0;
5699 }
5700 
5701 /* Do any devices on or below this slot prevent a bus reset? */
5702 static bool pci_slot_resetable(struct pci_slot *slot)
5703 {
5704 	struct pci_dev *dev;
5705 
5706 	if (slot->bus->self &&
5707 	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
5708 		return false;
5709 
5710 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5711 		if (!dev->slot || dev->slot != slot)
5712 			continue;
5713 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5714 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
5715 			return false;
5716 	}
5717 
5718 	return true;
5719 }
5720 
5721 /* Lock devices from the top of the tree down */
5722 static void pci_slot_lock(struct pci_slot *slot)
5723 {
5724 	struct pci_dev *dev;
5725 
5726 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5727 		if (!dev->slot || dev->slot != slot)
5728 			continue;
5729 		pci_dev_lock(dev);
5730 		if (dev->subordinate)
5731 			pci_bus_lock(dev->subordinate);
5732 	}
5733 }
5734 
5735 /* Unlock devices from the bottom of the tree up */
5736 static void pci_slot_unlock(struct pci_slot *slot)
5737 {
5738 	struct pci_dev *dev;
5739 
5740 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5741 		if (!dev->slot || dev->slot != slot)
5742 			continue;
5743 		if (dev->subordinate)
5744 			pci_bus_unlock(dev->subordinate);
5745 		pci_dev_unlock(dev);
5746 	}
5747 }
5748 
5749 /* Return 1 on successful lock, 0 on contention */
5750 static int pci_slot_trylock(struct pci_slot *slot)
5751 {
5752 	struct pci_dev *dev;
5753 
5754 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5755 		if (!dev->slot || dev->slot != slot)
5756 			continue;
5757 		if (!pci_dev_trylock(dev))
5758 			goto unlock;
5759 		if (dev->subordinate) {
5760 			if (!pci_bus_trylock(dev->subordinate)) {
5761 				pci_dev_unlock(dev);
5762 				goto unlock;
5763 			}
5764 		}
5765 	}
5766 	return 1;
5767 
5768 unlock:
5769 	list_for_each_entry_continue_reverse(dev,
5770 					     &slot->bus->devices, bus_list) {
5771 		if (!dev->slot || dev->slot != slot)
5772 			continue;
5773 		if (dev->subordinate)
5774 			pci_bus_unlock(dev->subordinate);
5775 		pci_dev_unlock(dev);
5776 	}
5777 	return 0;
5778 }
5779 
5780 /*
5781  * Save and disable devices from the top of the tree down while holding
5782  * the @dev mutex lock for the entire tree.
5783  */
5784 static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5785 {
5786 	struct pci_dev *dev;
5787 
5788 	list_for_each_entry(dev, &bus->devices, bus_list) {
5789 		pci_dev_save_and_disable(dev);
5790 		if (dev->subordinate)
5791 			pci_bus_save_and_disable_locked(dev->subordinate);
5792 	}
5793 }
5794 
5795 /*
5796  * Restore devices from top of the tree down while holding @dev mutex lock
5797  * for the entire tree.  Parent bridges need to be restored before we can
5798  * get to subordinate devices.
5799  */
5800 static void pci_bus_restore_locked(struct pci_bus *bus)
5801 {
5802 	struct pci_dev *dev;
5803 
5804 	list_for_each_entry(dev, &bus->devices, bus_list) {
5805 		pci_dev_restore(dev);
5806 		if (dev->subordinate)
5807 			pci_bus_restore_locked(dev->subordinate);
5808 	}
5809 }
5810 
5811 /*
5812  * Save and disable devices from the top of the tree down while holding
5813  * the @dev mutex lock for the entire tree.
5814  */
5815 static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5816 {
5817 	struct pci_dev *dev;
5818 
5819 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5820 		if (!dev->slot || dev->slot != slot)
5821 			continue;
5822 		pci_dev_save_and_disable(dev);
5823 		if (dev->subordinate)
5824 			pci_bus_save_and_disable_locked(dev->subordinate);
5825 	}
5826 }
5827 
5828 /*
5829  * Restore devices from top of the tree down while holding @dev mutex lock
5830  * for the entire tree.  Parent bridges need to be restored before we can
5831  * get to subordinate devices.
5832  */
5833 static void pci_slot_restore_locked(struct pci_slot *slot)
5834 {
5835 	struct pci_dev *dev;
5836 
5837 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
5838 		if (!dev->slot || dev->slot != slot)
5839 			continue;
5840 		pci_dev_restore(dev);
5841 		if (dev->subordinate)
5842 			pci_bus_restore_locked(dev->subordinate);
5843 	}
5844 }
5845 
5846 static int pci_slot_reset(struct pci_slot *slot, bool probe)
5847 {
5848 	int rc;
5849 
5850 	if (!slot || !pci_slot_resetable(slot))
5851 		return -ENOTTY;
5852 
5853 	if (!probe)
5854 		pci_slot_lock(slot);
5855 
5856 	might_sleep();
5857 
5858 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
5859 
5860 	if (!probe)
5861 		pci_slot_unlock(slot);
5862 
5863 	return rc;
5864 }
5865 
5866 /**
5867  * pci_probe_reset_slot - probe whether a PCI slot can be reset
5868  * @slot: PCI slot to probe
5869  *
5870  * Return 0 if slot can be reset, negative if a slot reset is not supported.
5871  */
5872 int pci_probe_reset_slot(struct pci_slot *slot)
5873 {
5874 	return pci_slot_reset(slot, PCI_RESET_PROBE);
5875 }
5876 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
5877 
5878 /**
5879  * __pci_reset_slot - Try to reset a PCI slot
5880  * @slot: PCI slot to reset
5881  *
5882  * A PCI bus may host multiple slots, each slot may support a reset mechanism
5883  * independent of other slots.  For instance, some slots may support slot power
5884  * control.  In the case of a 1:1 bus to slot architecture, this function may
5885  * wrap the bus reset to avoid spurious slot related events such as hotplug.
5886  * Generally a slot reset should be attempted before a bus reset.  All of the
5887  * function of the slot and any subordinate buses behind the slot are reset
5888  * through this function.  PCI config space of all devices in the slot and
5889  * behind the slot is saved before and restored after reset.
5890  *
5891  * Same as above except return -EAGAIN if the slot cannot be locked
5892  */
5893 static int __pci_reset_slot(struct pci_slot *slot)
5894 {
5895 	int rc;
5896 
5897 	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
5898 	if (rc)
5899 		return rc;
5900 
5901 	if (pci_slot_trylock(slot)) {
5902 		pci_slot_save_and_disable_locked(slot);
5903 		might_sleep();
5904 		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
5905 		pci_slot_restore_locked(slot);
5906 		pci_slot_unlock(slot);
5907 	} else
5908 		rc = -EAGAIN;
5909 
5910 	return rc;
5911 }
5912 
5913 static int pci_bus_reset(struct pci_bus *bus, bool probe)
5914 {
5915 	int ret;
5916 
5917 	if (!bus->self || !pci_bus_resetable(bus))
5918 		return -ENOTTY;
5919 
5920 	if (probe)
5921 		return 0;
5922 
5923 	pci_bus_lock(bus);
5924 
5925 	might_sleep();
5926 
5927 	ret = pci_bridge_secondary_bus_reset(bus->self);
5928 
5929 	pci_bus_unlock(bus);
5930 
5931 	return ret;
5932 }
5933 
5934 /**
5935  * pci_bus_error_reset - reset the bridge's subordinate bus
5936  * @bridge: The parent device that connects to the bus to reset
5937  *
5938  * This function will first try to reset the slots on this bus if the method is
5939  * available. If slot reset fails or is not available, this will fall back to a
5940  * secondary bus reset.
5941  */
5942 int pci_bus_error_reset(struct pci_dev *bridge)
5943 {
5944 	struct pci_bus *bus = bridge->subordinate;
5945 	struct pci_slot *slot;
5946 
5947 	if (!bus)
5948 		return -ENOTTY;
5949 
5950 	mutex_lock(&pci_slot_mutex);
5951 	if (list_empty(&bus->slots))
5952 		goto bus_reset;
5953 
5954 	list_for_each_entry(slot, &bus->slots, list)
5955 		if (pci_probe_reset_slot(slot))
5956 			goto bus_reset;
5957 
5958 	list_for_each_entry(slot, &bus->slots, list)
5959 		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
5960 			goto bus_reset;
5961 
5962 	mutex_unlock(&pci_slot_mutex);
5963 	return 0;
5964 bus_reset:
5965 	mutex_unlock(&pci_slot_mutex);
5966 	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
5967 }
5968 
5969 /**
5970  * pci_probe_reset_bus - probe whether a PCI bus can be reset
5971  * @bus: PCI bus to probe
5972  *
5973  * Return 0 if bus can be reset, negative if a bus reset is not supported.
5974  */
5975 int pci_probe_reset_bus(struct pci_bus *bus)
5976 {
5977 	return pci_bus_reset(bus, PCI_RESET_PROBE);
5978 }
5979 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
5980 
5981 /**
5982  * __pci_reset_bus - Try to reset a PCI bus
5983  * @bus: top level PCI bus to reset
5984  *
5985  * Same as above except return -EAGAIN if the bus cannot be locked
5986  */
5987 static int __pci_reset_bus(struct pci_bus *bus)
5988 {
5989 	int rc;
5990 
5991 	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
5992 	if (rc)
5993 		return rc;
5994 
5995 	if (pci_bus_trylock(bus)) {
5996 		pci_bus_save_and_disable_locked(bus);
5997 		might_sleep();
5998 		rc = pci_bridge_secondary_bus_reset(bus->self);
5999 		pci_bus_restore_locked(bus);
6000 		pci_bus_unlock(bus);
6001 	} else
6002 		rc = -EAGAIN;
6003 
6004 	return rc;
6005 }
6006 
6007 /**
6008  * pci_reset_bus - Try to reset a PCI bus
6009  * @pdev: top level PCI device to reset via slot/bus
6010  *
6011  * Same as above except return -EAGAIN if the bus cannot be locked
6012  */
6013 int pci_reset_bus(struct pci_dev *pdev)
6014 {
6015 	return (!pci_probe_reset_slot(pdev->slot)) ?
6016 	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6017 }
6018 EXPORT_SYMBOL_GPL(pci_reset_bus);
6019 
6020 /**
6021  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
6022  * @dev: PCI device to query
6023  *
6024  * Returns mmrbc: maximum designed memory read count in bytes or
6025  * appropriate error value.
6026  */
6027 int pcix_get_max_mmrbc(struct pci_dev *dev)
6028 {
6029 	int cap;
6030 	u32 stat;
6031 
6032 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6033 	if (!cap)
6034 		return -EINVAL;
6035 
6036 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6037 		return -EINVAL;
6038 
6039 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
6040 }
6041 EXPORT_SYMBOL(pcix_get_max_mmrbc);
6042 
6043 /**
6044  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
6045  * @dev: PCI device to query
6046  *
6047  * Returns mmrbc: maximum memory read count in bytes or appropriate error
6048  * value.
6049  */
6050 int pcix_get_mmrbc(struct pci_dev *dev)
6051 {
6052 	int cap;
6053 	u16 cmd;
6054 
6055 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6056 	if (!cap)
6057 		return -EINVAL;
6058 
6059 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6060 		return -EINVAL;
6061 
6062 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
6063 }
6064 EXPORT_SYMBOL(pcix_get_mmrbc);
6065 
6066 /**
6067  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
6068  * @dev: PCI device to query
6069  * @mmrbc: maximum memory read count in bytes
6070  *    valid values are 512, 1024, 2048, 4096
6071  *
6072  * If possible sets maximum memory read byte count, some bridges have errata
6073  * that prevent this.
6074  */
6075 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
6076 {
6077 	int cap;
6078 	u32 stat, v, o;
6079 	u16 cmd;
6080 
6081 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6082 		return -EINVAL;
6083 
6084 	v = ffs(mmrbc) - 10;
6085 
6086 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
6087 	if (!cap)
6088 		return -EINVAL;
6089 
6090 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6091 		return -EINVAL;
6092 
6093 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
6094 		return -E2BIG;
6095 
6096 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
6097 		return -EINVAL;
6098 
6099 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
6100 	if (o != v) {
6101 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6102 			return -EIO;
6103 
6104 		cmd &= ~PCI_X_CMD_MAX_READ;
6105 		cmd |= v << 2;
6106 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
6107 			return -EIO;
6108 	}
6109 	return 0;
6110 }
6111 EXPORT_SYMBOL(pcix_set_mmrbc);
6112 
6113 /**
6114  * pcie_get_readrq - get PCI Express read request size
6115  * @dev: PCI device to query
6116  *
6117  * Returns maximum memory read request in bytes or appropriate error value.
6118  */
6119 int pcie_get_readrq(struct pci_dev *dev)
6120 {
6121 	u16 ctl;
6122 
6123 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6124 
6125 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6126 }
6127 EXPORT_SYMBOL(pcie_get_readrq);
6128 
6129 /**
6130  * pcie_set_readrq - set PCI Express maximum memory read request
6131  * @dev: PCI device to query
6132  * @rq: maximum memory read count in bytes
6133  *    valid values are 128, 256, 512, 1024, 2048, 4096
6134  *
6135  * If possible sets maximum memory read request in bytes
6136  */
6137 int pcie_set_readrq(struct pci_dev *dev, int rq)
6138 {
6139 	u16 v;
6140 	int ret;
6141 	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6142 
6143 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6144 		return -EINVAL;
6145 
6146 	/*
6147 	 * If using the "performance" PCIe config, we clamp the read rq
6148 	 * size to the max packet size to keep the host bridge from
6149 	 * generating requests larger than we can cope with.
6150 	 */
6151 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
6152 		int mps = pcie_get_mps(dev);
6153 
6154 		if (mps < rq)
6155 			rq = mps;
6156 	}
6157 
6158 	v = (ffs(rq) - 8) << 12;
6159 
6160 	if (bridge->no_inc_mrrs) {
6161 		int max_mrrs = pcie_get_readrq(dev);
6162 
6163 		if (rq > max_mrrs) {
6164 			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
6165 			return -EINVAL;
6166 		}
6167 	}
6168 
6169 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6170 						  PCI_EXP_DEVCTL_READRQ, v);
6171 
6172 	return pcibios_err_to_errno(ret);
6173 }
6174 EXPORT_SYMBOL(pcie_set_readrq);
6175 
6176 /**
6177  * pcie_get_mps - get PCI Express maximum payload size
6178  * @dev: PCI device to query
6179  *
6180  * Returns maximum payload size in bytes
6181  */
6182 int pcie_get_mps(struct pci_dev *dev)
6183 {
6184 	u16 ctl;
6185 
6186 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6187 
6188 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6189 }
6190 EXPORT_SYMBOL(pcie_get_mps);
6191 
6192 /**
6193  * pcie_set_mps - set PCI Express maximum payload size
6194  * @dev: PCI device to query
6195  * @mps: maximum payload size in bytes
6196  *    valid values are 128, 256, 512, 1024, 2048, 4096
6197  *
6198  * If possible sets maximum payload size
6199  */
6200 int pcie_set_mps(struct pci_dev *dev, int mps)
6201 {
6202 	u16 v;
6203 	int ret;
6204 
6205 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6206 		return -EINVAL;
6207 
6208 	v = ffs(mps) - 8;
6209 	if (v > dev->pcie_mpss)
6210 		return -EINVAL;
6211 	v <<= 5;
6212 
6213 	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6214 						  PCI_EXP_DEVCTL_PAYLOAD, v);
6215 
6216 	return pcibios_err_to_errno(ret);
6217 }
6218 EXPORT_SYMBOL(pcie_set_mps);
6219 
6220 /**
6221  * pcie_bandwidth_available - determine minimum link settings of a PCIe
6222  *			      device and its bandwidth limitation
6223  * @dev: PCI device to query
6224  * @limiting_dev: storage for device causing the bandwidth limitation
6225  * @speed: storage for speed of limiting device
6226  * @width: storage for width of limiting device
6227  *
6228  * Walk up the PCI device chain and find the point where the minimum
6229  * bandwidth is available.  Return the bandwidth available there and (if
6230  * limiting_dev, speed, and width pointers are supplied) information about
6231  * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
6232  * raw bandwidth.
6233  */
6234 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
6235 			     enum pci_bus_speed *speed,
6236 			     enum pcie_link_width *width)
6237 {
6238 	u16 lnksta;
6239 	enum pci_bus_speed next_speed;
6240 	enum pcie_link_width next_width;
6241 	u32 bw, next_bw;
6242 
6243 	if (speed)
6244 		*speed = PCI_SPEED_UNKNOWN;
6245 	if (width)
6246 		*width = PCIE_LNK_WIDTH_UNKNOWN;
6247 
6248 	bw = 0;
6249 
6250 	while (dev) {
6251 		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
6252 
6253 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
6254 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
6255 			PCI_EXP_LNKSTA_NLW_SHIFT;
6256 
6257 		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);
6258 
6259 		/* Check if current device limits the total bandwidth */
6260 		if (!bw || next_bw <= bw) {
6261 			bw = next_bw;
6262 
6263 			if (limiting_dev)
6264 				*limiting_dev = dev;
6265 			if (speed)
6266 				*speed = next_speed;
6267 			if (width)
6268 				*width = next_width;
6269 		}
6270 
6271 		dev = pci_upstream_bridge(dev);
6272 	}
6273 
6274 	return bw;
6275 }
6276 EXPORT_SYMBOL(pcie_bandwidth_available);
6277 
6278 /**
6279  * pcie_get_speed_cap - query for the PCI device's link speed capability
6280  * @dev: PCI device to query
6281  *
6282  * Query the PCI device speed capability.  Return the maximum link speed
6283  * supported by the device.
6284  */
6285 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
6286 {
6287 	u32 lnkcap2, lnkcap;
6288 
6289 	/*
6290 	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
6291 	 * implementation note there recommends using the Supported Link
6292 	 * Speeds Vector in Link Capabilities 2 when supported.
6293 	 *
6294 	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
6295 	 * should use the Supported Link Speeds field in Link Capabilities,
6296 	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6297 	 */
6298 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6299 
6300 	/* PCIe r3.0-compliant */
6301 	if (lnkcap2)
6302 		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6303 
6304 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6305 	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
6306 		return PCIE_SPEED_5_0GT;
6307 	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
6308 		return PCIE_SPEED_2_5GT;
6309 
6310 	return PCI_SPEED_UNKNOWN;
6311 }
6312 EXPORT_SYMBOL(pcie_get_speed_cap);
6313 
6314 /**
6315  * pcie_get_width_cap - query for the PCI device's link width capability
6316  * @dev: PCI device to query
6317  *
6318  * Query the PCI device width capability.  Return the maximum link width
6319  * supported by the device.
6320  */
6321 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
6322 {
6323 	u32 lnkcap;
6324 
6325 	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6326 	if (lnkcap)
6327 		return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4;
6328 
6329 	return PCIE_LNK_WIDTH_UNKNOWN;
6330 }
6331 EXPORT_SYMBOL(pcie_get_width_cap);
6332 
6333 /**
6334  * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
6335  * @dev: PCI device
6336  * @speed: storage for link speed
6337  * @width: storage for link width
6338  *
6339  * Calculate a PCI device's link bandwidth by querying for its link speed
6340  * and width, multiplying them, and applying encoding overhead.  The result
6341  * is in Mb/s, i.e., megabits/second of raw bandwidth.
6342  */
6343 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
6344 			   enum pcie_link_width *width)
6345 {
6346 	*speed = pcie_get_speed_cap(dev);
6347 	*width = pcie_get_width_cap(dev);
6348 
6349 	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
6350 		return 0;
6351 
6352 	return *width * PCIE_SPEED2MBS_ENC(*speed);
6353 }
6354 
6355 /**
6356  * __pcie_print_link_status - Report the PCI device's link speed and width
6357  * @dev: PCI device to query
6358  * @verbose: Print info even when enough bandwidth is available
6359  *
6360  * If the available bandwidth at the device is less than the device is
6361  * capable of, report the device's maximum possible bandwidth and the
6362  * upstream link that limits its performance.  If @verbose, always print
6363  * the available bandwidth, even if the device isn't constrained.
6364  */
6365 void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6366 {
6367 	enum pcie_link_width width, width_cap;
6368 	enum pci_bus_speed speed, speed_cap;
6369 	struct pci_dev *limiting_dev = NULL;
6370 	u32 bw_avail, bw_cap;
6371 
6372 	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
6373 	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);
6374 
6375 	if (bw_avail >= bw_cap && verbose)
6376 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6377 			 bw_cap / 1000, bw_cap % 1000,
6378 			 pci_speed_string(speed_cap), width_cap);
6379 	else if (bw_avail < bw_cap)
6380 		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6381 			 bw_avail / 1000, bw_avail % 1000,
6382 			 pci_speed_string(speed), width,
6383 			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
6384 			 bw_cap / 1000, bw_cap % 1000,
6385 			 pci_speed_string(speed_cap), width_cap);
6386 }
6387 
6388 /**
6389  * pcie_print_link_status - Report the PCI device's link speed and width
6390  * @dev: PCI device to query
6391  *
6392  * Report the available bandwidth at the device.
6393  */
6394 void pcie_print_link_status(struct pci_dev *dev)
6395 {
6396 	__pcie_print_link_status(dev, true);
6397 }
6398 EXPORT_SYMBOL(pcie_print_link_status);
6399 
6400 /**
6401  * pci_select_bars - Make BAR mask from the type of resource
6402  * @dev: the PCI device for which BAR mask is made
6403  * @flags: resource type mask to be selected
6404  *
6405  * This helper routine makes bar mask from the type of resource.
6406  */
6407 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
6408 {
6409 	int i, bars = 0;
6410 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
6411 		if (pci_resource_flags(dev, i) & flags)
6412 			bars |= (1 << i);
6413 	return bars;
6414 }
6415 EXPORT_SYMBOL(pci_select_bars);
6416 
6417 /* Some architectures require additional programming to enable VGA */
6418 static arch_set_vga_state_t arch_set_vga_state;
6419 
6420 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
6421 {
6422 	arch_set_vga_state = func;	/* NULL disables */
6423 }
6424 
6425 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
6426 				  unsigned int command_bits, u32 flags)
6427 {
6428 	if (arch_set_vga_state)
6429 		return arch_set_vga_state(dev, decode, command_bits,
6430 						flags);
6431 	return 0;
6432 }
6433 
6434 /**
6435  * pci_set_vga_state - set VGA decode state on device and parents if requested
6436  * @dev: the PCI device
6437  * @decode: true = enable decoding, false = disable decoding
6438  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6439  * @flags: traverse ancestors and change bridges
6440  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6441  */
6442 int pci_set_vga_state(struct pci_dev *dev, bool decode,
6443 		      unsigned int command_bits, u32 flags)
6444 {
6445 	struct pci_bus *bus;
6446 	struct pci_dev *bridge;
6447 	u16 cmd;
6448 	int rc;
6449 
6450 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6451 
6452 	/* ARCH specific VGA enables */
6453 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6454 	if (rc)
6455 		return rc;
6456 
6457 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
6458 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6459 		if (decode)
6460 			cmd |= command_bits;
6461 		else
6462 			cmd &= ~command_bits;
6463 		pci_write_config_word(dev, PCI_COMMAND, cmd);
6464 	}
6465 
6466 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6467 		return 0;
6468 
6469 	bus = dev->bus;
6470 	while (bus) {
6471 		bridge = bus->self;
6472 		if (bridge) {
6473 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
6474 					     &cmd);
6475 			if (decode)
6476 				cmd |= PCI_BRIDGE_CTL_VGA;
6477 			else
6478 				cmd &= ~PCI_BRIDGE_CTL_VGA;
6479 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
6480 					      cmd);
6481 		}
6482 		bus = bus->parent;
6483 	}
6484 	return 0;
6485 }
6486 
6487 #ifdef CONFIG_ACPI
6488 bool pci_pr3_present(struct pci_dev *pdev)
6489 {
6490 	struct acpi_device *adev;
6491 
6492 	if (acpi_disabled)
6493 		return false;
6494 
6495 	adev = ACPI_COMPANION(&pdev->dev);
6496 	if (!adev)
6497 		return false;
6498 
6499 	return adev->power.flags.power_resources &&
6500 		acpi_has_method(adev->handle, "_PR3");
6501 }
6502 EXPORT_SYMBOL_GPL(pci_pr3_present);
6503 #endif
6504 
6505 /**
6506  * pci_add_dma_alias - Add a DMA devfn alias for a device
6507  * @dev: the PCI device for which alias is added
6508  * @devfn_from: alias slot and function
6509  * @nr_devfns: number of subsequent devfns to alias
6510  *
6511  * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
6512  * which is used to program permissible bus-devfn source addresses for DMA
6513  * requests in an IOMMU.  These aliases factor into IOMMU group creation
6514  * and are useful for devices generating DMA requests beyond or different
6515  * from their logical bus-devfn.  Examples include device quirks where the
6516  * device simply uses the wrong devfn, as well as non-transparent bridges
6517  * where the alias may be a proxy for devices in another domain.
6518  *
6519  * IOMMU group creation is performed during device discovery or addition,
6520  * prior to any potential DMA mapping and therefore prior to driver probing
6521  * (especially for userspace assigned devices where IOMMU group definition
6522  * cannot be left as a userspace activity).  DMA aliases should therefore
6523  * be configured via quirks, such as the PCI fixup header quirk.
6524  */
6525 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
6526 		       unsigned int nr_devfns)
6527 {
6528 	int devfn_to;
6529 
6530 	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6531 	devfn_to = devfn_from + nr_devfns - 1;
6532 
6533 	if (!dev->dma_alias_mask)
6534 		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6535 	if (!dev->dma_alias_mask) {
6536 		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6537 		return;
6538 	}
6539 
6540 	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);
6541 
6542 	if (nr_devfns == 1)
6543 		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
6544 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
6545 	else if (nr_devfns > 1)
6546 		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
6547 				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
6548 				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6549 }
6550 
6551 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
6552 {
6553 	return (dev1->dma_alias_mask &&
6554 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
6555 	       (dev2->dma_alias_mask &&
6556 		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
6557 	       pci_real_dma_dev(dev1) == dev2 ||
6558 	       pci_real_dma_dev(dev2) == dev1;
6559 }
6560 
6561 bool pci_device_is_present(struct pci_dev *pdev)
6562 {
6563 	u32 v;
6564 
6565 	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
6566 	pdev = pci_physfn(pdev);
6567 	if (pci_dev_is_disconnected(pdev))
6568 		return false;
6569 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
6570 }
6571 EXPORT_SYMBOL_GPL(pci_device_is_present);
6572 
6573 void pci_ignore_hotplug(struct pci_dev *dev)
6574 {
6575 	struct pci_dev *bridge = dev->bus->self;
6576 
6577 	dev->ignore_hotplug = 1;
6578 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
6579 	if (bridge)
6580 		bridge->ignore_hotplug = 1;
6581 }
6582 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
6583 
6584 /**
6585  * pci_real_dma_dev - Get PCI DMA device for PCI device
6586  * @dev: the PCI device that may have a PCI DMA alias
6587  *
6588  * Permits the platform to provide architecture-specific functionality to
6589  * devices needing to alias DMA to another PCI device on another PCI bus. If
6590  * the PCI device is on the same bus, it is recommended to use
6591  * pci_add_dma_alias(). This is the default implementation. Architecture
6592  * implementations can override this.
6593  */
6594 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
6595 {
6596 	return dev;
6597 }
6598 
6599 resource_size_t __weak pcibios_default_alignment(void)
6600 {
6601 	return 0;
6602 }
6603 
6604 /*
6605  * Arches that don't want to expose struct resource to userland as-is in
6606  * sysfs and /proc can implement their own pci_resource_to_user().
6607  */
6608 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
6609 				 const struct resource *rsrc,
6610 				 resource_size_t *start, resource_size_t *end)
6611 {
6612 	*start = rsrc->start;
6613 	*end = rsrc->end;
6614 }
6615 
6616 static char *resource_alignment_param;
6617 static DEFINE_SPINLOCK(resource_alignment_lock);
6618 
6619 /**
6620  * pci_specified_resource_alignment - get resource alignment specified by user.
6621  * @dev: the PCI device to get
6622  * @resize: whether or not to change resources' size when reassigning alignment
6623  *
6624  * RETURNS: Resource alignment if it is specified.
6625  *          Zero if it is not specified.
6626  */
6627 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
6628 							bool *resize)
6629 {
6630 	int align_order, count;
6631 	resource_size_t align = pcibios_default_alignment();
6632 	const char *p;
6633 	int ret;
6634 
6635 	spin_lock(&resource_alignment_lock);
6636 	p = resource_alignment_param;
6637 	if (!p || !*p)
6638 		goto out;
6639 	if (pci_has_flag(PCI_PROBE_ONLY)) {
6640 		align = 0;
6641 		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
6642 		goto out;
6643 	}
6644 
6645 	while (*p) {
6646 		count = 0;
6647 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6648 		    p[count] == '@') {
6649 			p += count + 1;
6650 			if (align_order > 63) {
6651 				pr_err("PCI: Invalid requested alignment (order %d)\n",
6652 				       align_order);
6653 				align_order = PAGE_SHIFT;
6654 			}
6655 		} else {
6656 			align_order = PAGE_SHIFT;
6657 		}
6658 
6659 		ret = pci_dev_str_match(dev, p, &p);
6660 		if (ret == 1) {
6661 			*resize = true;
6662 			align = 1ULL << align_order;
6663 			break;
6664 		} else if (ret < 0) {
6665 			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
6666 			       p);
6667 			break;
6668 		}
6669 
6670 		if (*p != ';' && *p != ',') {
6671 			/* End of param or invalid format */
6672 			break;
6673 		}
6674 		p++;
6675 	}
6676 out:
6677 	spin_unlock(&resource_alignment_lock);
6678 	return align;
6679 }
6680 
6681 static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6682 					   resource_size_t align, bool resize)
6683 {
6684 	struct resource *r = &dev->resource[bar];
6685 	resource_size_t size;
6686 
6687 	if (!(r->flags & IORESOURCE_MEM))
6688 		return;
6689 
6690 	if (r->flags & IORESOURCE_PCI_FIXED) {
6691 		pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n",
6692 			 bar, r, (unsigned long long)align);
6693 		return;
6694 	}
6695 
6696 	size = resource_size(r);
6697 	if (size >= align)
6698 		return;
6699 
6700 	/*
6701 	 * Increase the alignment of the resource.  There are two ways we
6702 	 * can do this:
6703 	 *
6704 	 * 1) Increase the size of the resource.  BARs are aligned on their
6705 	 *    size, so when we reallocate space for this resource, we'll
6706 	 *    allocate it with the larger alignment.  This also prevents
6707 	 *    assignment of any other BARs inside the alignment region, so
6708 	 *    if we're requesting page alignment, this means no other BARs
6709 	 *    will share the page.
6710 	 *
6711 	 *    The disadvantage is that this makes the resource larger than
6712 	 *    the hardware BAR, which may break drivers that compute things
6713 	 *    based on the resource size, e.g., to find registers at a
6714 	 *    fixed offset before the end of the BAR.
6715 	 *
6716 	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
6717 	 *    set r->start to the desired alignment.  By itself this
6718 	 *    doesn't prevent other BARs being put inside the alignment
6719 	 *    region, but if we realign *every* resource of every device in
6720 	 *    the system, none of them will share an alignment region.
6721 	 *
6722 	 * When the user has requested alignment for only some devices via
6723 	 * the "pci=resource_alignment" argument, "resize" is true and we
6724 	 * use the first method.  Otherwise we assume we're aligning all
6725 	 * devices and we use the second.
6726 	 */
6727 
6728 	pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n",
6729 		 bar, r, (unsigned long long)align);
6730 
6731 	if (resize) {
6732 		r->start = 0;
6733 		r->end = align - 1;
6734 	} else {
6735 		r->flags &= ~IORESOURCE_SIZEALIGN;
6736 		r->flags |= IORESOURCE_STARTALIGN;
6737 		r->start = align;
6738 		r->end = r->start + size - 1;
6739 	}
6740 	r->flags |= IORESOURCE_UNSET;
6741 }
6742 
6743 /*
6744  * This function disables memory decoding and releases memory resources
6745  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
6746  * It also rounds up size to specified alignment.
6747  * Later on, the kernel will assign page-aligned memory resource back
6748  * to the device.
6749  */
6750 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
6751 {
6752 	int i;
6753 	struct resource *r;
6754 	resource_size_t align;
6755 	u16 command;
6756 	bool resize = false;
6757 
6758 	/*
6759 	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
6760 	 * 3.4.1.11.  Their resources are allocated from the space
6761 	 * described by the VF BARx register in the PF's SR-IOV capability.
6762 	 * We can't influence their alignment here.
6763 	 */
6764 	if (dev->is_virtfn)
6765 		return;
6766 
6767 	/* check if specified PCI is target device to reassign */
6768 	align = pci_specified_resource_alignment(dev, &resize);
6769 	if (!align)
6770 		return;
6771 
6772 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
6773 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6774 		pci_warn(dev, "Can't reassign resources to host bridge\n");
6775 		return;
6776 	}
6777 
6778 	pci_read_config_word(dev, PCI_COMMAND, &command);
6779 	command &= ~PCI_COMMAND_MEMORY;
6780 	pci_write_config_word(dev, PCI_COMMAND, command);
6781 
6782 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6783 		pci_request_resource_alignment(dev, i, align, resize);
6784 
6785 	/*
6786 	 * Need to disable bridge's resource window,
6787 	 * to enable the kernel to reassign new resource
6788 	 * window later on.
6789 	 */
6790 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6791 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
6792 			r = &dev->resource[i];
6793 			if (!(r->flags & IORESOURCE_MEM))
6794 				continue;
6795 			r->flags |= IORESOURCE_UNSET;
6796 			r->end = resource_size(r) - 1;
6797 			r->start = 0;
6798 		}
6799 		pci_disable_bridge_window(dev);
6800 	}
6801 }
6802 
6803 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6804 {
6805 	size_t count = 0;
6806 
6807 	spin_lock(&resource_alignment_lock);
6808 	if (resource_alignment_param)
6809 		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6810 	spin_unlock(&resource_alignment_lock);
6811 
6812 	return count;
6813 }
6814 
6815 static ssize_t resource_alignment_store(const struct bus_type *bus,
6816 					const char *buf, size_t count)
6817 {
6818 	char *param, *old, *end;
6819 
6820 	if (count >= (PAGE_SIZE - 1))
6821 		return -EINVAL;
6822 
6823 	param = kstrndup(buf, count, GFP_KERNEL);
6824 	if (!param)
6825 		return -ENOMEM;
6826 
6827 	end = strchr(param, '\n');
6828 	if (end)
6829 		*end = '\0';
6830 
6831 	spin_lock(&resource_alignment_lock);
6832 	old = resource_alignment_param;
6833 	if (strlen(param)) {
6834 		resource_alignment_param = param;
6835 	} else {
6836 		kfree(param);
6837 		resource_alignment_param = NULL;
6838 	}
6839 	spin_unlock(&resource_alignment_lock);
6840 
6841 	kfree(old);
6842 
6843 	return count;
6844 }
6845 
6846 static BUS_ATTR_RW(resource_alignment);
6847 
6848 static int __init pci_resource_alignment_sysfs_init(void)
6849 {
6850 	return bus_create_file(&pci_bus_type,
6851 					&bus_attr_resource_alignment);
6852 }
6853 late_initcall(pci_resource_alignment_sysfs_init);
6854 
6855 static void pci_no_domains(void)
6856 {
6857 #ifdef CONFIG_PCI_DOMAINS
6858 	pci_domains_supported = 0;
6859 #endif
6860 }
6861 
6862 #ifdef CONFIG_PCI_DOMAINS_GENERIC
6863 static DEFINE_IDA(pci_domain_nr_static_ida);
6864 static DEFINE_IDA(pci_domain_nr_dynamic_ida);
6865 
6866 static void of_pci_reserve_static_domain_nr(void)
6867 {
6868 	struct device_node *np;
6869 	int domain_nr;
6870 
6871 	for_each_node_by_type(np, "pci") {
6872 		domain_nr = of_get_pci_domain_nr(np);
6873 		if (domain_nr < 0)
6874 			continue;
6875 		/*
6876 		 * Permanently allocate domain_nr in dynamic_ida
6877 		 * to prevent it from dynamic allocation.
6878 		 */
6879 		ida_alloc_range(&pci_domain_nr_dynamic_ida,
6880 				domain_nr, domain_nr, GFP_KERNEL);
6881 	}
6882 }
6883 
6884 static int of_pci_bus_find_domain_nr(struct device *parent)
6885 {
6886 	static bool static_domains_reserved = false;
6887 	int domain_nr;
6888 
6889 	/* On the first call scan device tree for static allocations. */
6890 	if (!static_domains_reserved) {
6891 		of_pci_reserve_static_domain_nr();
6892 		static_domains_reserved = true;
6893 	}
6894 
6895 	if (parent) {
6896 		/*
6897 		 * If domain is in DT, allocate it in static IDA.  This
6898 		 * prevents duplicate static allocations in case of errors
6899 		 * in DT.
6900 		 */
6901 		domain_nr = of_get_pci_domain_nr(parent->of_node);
6902 		if (domain_nr >= 0)
6903 			return ida_alloc_range(&pci_domain_nr_static_ida,
6904 					       domain_nr, domain_nr,
6905 					       GFP_KERNEL);
6906 	}
6907 
6908 	/*
6909 	 * If domain was not specified in DT, choose a free ID from dynamic
6910 	 * allocations. All domain numbers from DT are permanently in
6911 	 * dynamic allocations to prevent assigning them to other DT nodes
6912 	 * without static domain.
6913 	 */
6914 	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
6915 }
6916 
6917 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6918 {
6919 	if (bus->domain_nr < 0)
6920 		return;
6921 
6922 	/* Release domain from IDA where it was allocated. */
6923 	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
6924 		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
6925 	else
6926 		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
6927 }
6928 
6929 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
6930 {
6931 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
6932 			       acpi_pci_bus_find_domain_nr(bus);
6933 }
6934 
6935 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
6936 {
6937 	if (!acpi_disabled)
6938 		return;
6939 	of_pci_bus_release_domain_nr(bus, parent);
6940 }
6941 #endif
6942 
6943 /**
6944  * pci_ext_cfg_avail - can we access extended PCI config space?
6945  *
6946  * Returns 1 if we can access PCI extended config space (offsets
6947  * greater than 0xff). This is the default implementation. Architecture
6948  * implementations can override this.
6949  */
6950 int __weak pci_ext_cfg_avail(void)
6951 {
6952 	return 1;
6953 }
6954 
6955 void __weak pci_fixup_cardbus(struct pci_bus *bus)
6956 {
6957 }
6958 EXPORT_SYMBOL(pci_fixup_cardbus);
6959 
6960 static int __init pci_setup(char *str)
6961 {
6962 	while (str) {
6963 		char *k = strchr(str, ',');
6964 		if (k)
6965 			*k++ = 0;
6966 		if (*str && (str = pcibios_setup(str)) && *str) {
6967 			if (!strcmp(str, "nomsi")) {
6968 				pci_no_msi();
6969 			} else if (!strncmp(str, "noats", 5)) {
6970 				pr_info("PCIe: ATS is disabled\n");
6971 				pcie_ats_disabled = true;
6972 			} else if (!strcmp(str, "noaer")) {
6973 				pci_no_aer();
6974 			} else if (!strcmp(str, "earlydump")) {
6975 				pci_early_dump = true;
6976 			} else if (!strncmp(str, "realloc=", 8)) {
6977 				pci_realloc_get_opt(str + 8);
6978 			} else if (!strncmp(str, "realloc", 7)) {
6979 				pci_realloc_get_opt("on");
6980 			} else if (!strcmp(str, "nodomains")) {
6981 				pci_no_domains();
6982 			} else if (!strncmp(str, "noari", 5)) {
6983 				pcie_ari_disabled = true;
6984 			} else if (!strncmp(str, "cbiosize=", 9)) {
6985 				pci_cardbus_io_size = memparse(str + 9, &str);
6986 			} else if (!strncmp(str, "cbmemsize=", 10)) {
6987 				pci_cardbus_mem_size = memparse(str + 10, &str);
6988 			} else if (!strncmp(str, "resource_alignment=", 19)) {
6989 				resource_alignment_param = str + 19;
6990 			} else if (!strncmp(str, "ecrc=", 5)) {
6991 				pcie_ecrc_get_policy(str + 5);
6992 			} else if (!strncmp(str, "hpiosize=", 9)) {
6993 				pci_hotplug_io_size = memparse(str + 9, &str);
6994 			} else if (!strncmp(str, "hpmmiosize=", 11)) {
6995 				pci_hotplug_mmio_size = memparse(str + 11, &str);
6996 			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
6997 				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
6998 			} else if (!strncmp(str, "hpmemsize=", 10)) {
6999 				pci_hotplug_mmio_size = memparse(str + 10, &str);
7000 				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7001 			} else if (!strncmp(str, "hpbussize=", 10)) {
7002 				pci_hotplug_bus_size =
7003 					simple_strtoul(str + 10, &str, 0);
7004 				if (pci_hotplug_bus_size > 0xff)
7005 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7006 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
7007 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7008 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
7009 				pcie_bus_config = PCIE_BUS_SAFE;
7010 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
7011 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7012 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
7013 				pcie_bus_config = PCIE_BUS_PEER2PEER;
7014 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
7015 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7016 			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7017 				disable_acs_redir_param = str + 18;
7018 			} else {
7019 				pr_err("PCI: Unknown option `%s'\n", str);
7020 			}
7021 		}
7022 		str = k;
7023 	}
7024 	return 0;
7025 }
7026 early_param("pci", pci_setup);
7027 
7028 /*
7029  * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
7030  * in pci_setup(), above, to point to data in the __initdata section which
7031  * will be freed after the init sequence is complete. We can't allocate memory
7032  * in pci_setup() because some architectures do not have any memory allocation
7033  * service available during an early_param() call. So we allocate memory and
7034  * copy the variable here before the init section is freed.
7035  *
7036  */
7037 static int __init pci_realloc_setup_params(void)
7038 {
7039 	resource_alignment_param = kstrdup(resource_alignment_param,
7040 					   GFP_KERNEL);
7041 	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);
7042 
7043 	return 0;
7044 }
7045 pure_initcall(pci_realloc_setup_params);
7046