1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Bus Services, see include/linux/pci.h for further explanation. 4 * 5 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter, 6 * David Mosberger-Tang 7 * 8 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz> 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/kernel.h> 13 #include <linux/delay.h> 14 #include <linux/dmi.h> 15 #include <linux/init.h> 16 #include <linux/msi.h> 17 #include <linux/of.h> 18 #include <linux/pci.h> 19 #include <linux/pm.h> 20 #include <linux/slab.h> 21 #include <linux/module.h> 22 #include <linux/spinlock.h> 23 #include <linux/string.h> 24 #include <linux/log2.h> 25 #include <linux/logic_pio.h> 26 #include <linux/pm_wakeup.h> 27 #include <linux/interrupt.h> 28 #include <linux/device.h> 29 #include <linux/pm_runtime.h> 30 #include <linux/pci_hotplug.h> 31 #include <linux/vmalloc.h> 32 #include <asm/dma.h> 33 #include <linux/aer.h> 34 #include <linux/bitfield.h> 35 #include "pci.h" 36 37 DEFINE_MUTEX(pci_slot_mutex); 38 39 const char *pci_power_names[] = { 40 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown", 41 }; 42 EXPORT_SYMBOL_GPL(pci_power_names); 43 44 #ifdef CONFIG_X86_32 45 int isa_dma_bridge_buggy; 46 EXPORT_SYMBOL(isa_dma_bridge_buggy); 47 #endif 48 49 int pci_pci_problems; 50 EXPORT_SYMBOL(pci_pci_problems); 51 52 unsigned int pci_pm_d3hot_delay; 53 54 static void pci_pme_list_scan(struct work_struct *work); 55 56 static LIST_HEAD(pci_pme_list); 57 static DEFINE_MUTEX(pci_pme_list_mutex); 58 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan); 59 60 struct pci_pme_device { 61 struct list_head list; 62 struct pci_dev *dev; 63 }; 64 65 #define PME_TIMEOUT 1000 /* How long between PME checks */ 66 67 /* 68 * Devices may extend the 1 sec period through Request Retry Status 69 * completions (PCIe r6.0 sec 2.3.1). The spec does not provide an upper 70 * limit, but 60 sec ought to be enough for any device to become 71 * responsive. 72 */ 73 #define PCIE_RESET_READY_POLL_MS 60000 /* msec */ 74 75 static void pci_dev_d3_sleep(struct pci_dev *dev) 76 { 77 unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay); 78 unsigned int upper; 79 80 if (delay_ms) { 81 /* Use a 20% upper bound, 1ms minimum */ 82 upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U); 83 usleep_range(delay_ms * USEC_PER_MSEC, 84 (delay_ms + upper) * USEC_PER_MSEC); 85 } 86 } 87 88 bool pci_reset_supported(struct pci_dev *dev) 89 { 90 return dev->reset_methods[0] != 0; 91 } 92 93 #ifdef CONFIG_PCI_DOMAINS 94 int pci_domains_supported = 1; 95 #endif 96 97 #define DEFAULT_CARDBUS_IO_SIZE (256) 98 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024) 99 /* pci=cbmemsize=nnM,cbiosize=nn can override this */ 100 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE; 101 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE; 102 103 #define DEFAULT_HOTPLUG_IO_SIZE (256) 104 #define DEFAULT_HOTPLUG_MMIO_SIZE (2*1024*1024) 105 #define DEFAULT_HOTPLUG_MMIO_PREF_SIZE (2*1024*1024) 106 /* hpiosize=nn can override this */ 107 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE; 108 /* 109 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size, 110 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size; 111 * pci=hpmemsize=nnM overrides both 112 */ 113 unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE; 114 unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE; 115 116 #define DEFAULT_HOTPLUG_BUS_SIZE 1 117 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 118 119 120 /* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */ 121 #ifdef CONFIG_PCIE_BUS_TUNE_OFF 122 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF; 123 #elif defined CONFIG_PCIE_BUS_SAFE 124 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE; 125 #elif defined CONFIG_PCIE_BUS_PERFORMANCE 126 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE; 127 #elif defined CONFIG_PCIE_BUS_PEER2PEER 128 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER; 129 #else 130 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT; 131 #endif 132 133 /* 134 * The default CLS is used if arch didn't set CLS explicitly and not 135 * all pci devices agree on the same value. Arch can override either 136 * the dfl or actual value as it sees fit. Don't forget this is 137 * measured in 32-bit words, not bytes. 138 */ 139 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2; 140 u8 pci_cache_line_size; 141 142 /* 143 * If we set up a device for bus mastering, we need to check the latency 144 * timer as certain BIOSes forget to set it properly. 145 */ 146 unsigned int pcibios_max_latency = 255; 147 148 /* If set, the PCIe ARI capability will not be used. */ 149 static bool pcie_ari_disabled; 150 151 /* If set, the PCIe ATS capability will not be used. */ 152 static bool pcie_ats_disabled; 153 154 /* If set, the PCI config space of each device is printed during boot. */ 155 bool pci_early_dump; 156 157 bool pci_ats_disabled(void) 158 { 159 return pcie_ats_disabled; 160 } 161 EXPORT_SYMBOL_GPL(pci_ats_disabled); 162 163 /* Disable bridge_d3 for all PCIe ports */ 164 static bool pci_bridge_d3_disable; 165 /* Force bridge_d3 for all PCIe ports */ 166 static bool pci_bridge_d3_force; 167 168 static int __init pcie_port_pm_setup(char *str) 169 { 170 if (!strcmp(str, "off")) 171 pci_bridge_d3_disable = true; 172 else if (!strcmp(str, "force")) 173 pci_bridge_d3_force = true; 174 return 1; 175 } 176 __setup("pcie_port_pm=", pcie_port_pm_setup); 177 178 /** 179 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children 180 * @bus: pointer to PCI bus structure to search 181 * 182 * Given a PCI bus, returns the highest PCI bus number present in the set 183 * including the given PCI bus and its list of child PCI buses. 184 */ 185 unsigned char pci_bus_max_busnr(struct pci_bus *bus) 186 { 187 struct pci_bus *tmp; 188 unsigned char max, n; 189 190 max = bus->busn_res.end; 191 list_for_each_entry(tmp, &bus->children, node) { 192 n = pci_bus_max_busnr(tmp); 193 if (n > max) 194 max = n; 195 } 196 return max; 197 } 198 EXPORT_SYMBOL_GPL(pci_bus_max_busnr); 199 200 /** 201 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS 202 * @pdev: the PCI device 203 * 204 * Returns error bits set in PCI_STATUS and clears them. 205 */ 206 int pci_status_get_and_clear_errors(struct pci_dev *pdev) 207 { 208 u16 status; 209 int ret; 210 211 ret = pci_read_config_word(pdev, PCI_STATUS, &status); 212 if (ret != PCIBIOS_SUCCESSFUL) 213 return -EIO; 214 215 status &= PCI_STATUS_ERROR_BITS; 216 if (status) 217 pci_write_config_word(pdev, PCI_STATUS, status); 218 219 return status; 220 } 221 EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors); 222 223 #ifdef CONFIG_HAS_IOMEM 224 static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar, 225 bool write_combine) 226 { 227 struct resource *res = &pdev->resource[bar]; 228 resource_size_t start = res->start; 229 resource_size_t size = resource_size(res); 230 231 /* 232 * Make sure the BAR is actually a memory resource, not an IO resource 233 */ 234 if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) { 235 pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res); 236 return NULL; 237 } 238 239 if (write_combine) 240 return ioremap_wc(start, size); 241 242 return ioremap(start, size); 243 } 244 245 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar) 246 { 247 return __pci_ioremap_resource(pdev, bar, false); 248 } 249 EXPORT_SYMBOL_GPL(pci_ioremap_bar); 250 251 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar) 252 { 253 return __pci_ioremap_resource(pdev, bar, true); 254 } 255 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar); 256 #endif 257 258 /** 259 * pci_dev_str_match_path - test if a path string matches a device 260 * @dev: the PCI device to test 261 * @path: string to match the device against 262 * @endptr: pointer to the string after the match 263 * 264 * Test if a string (typically from a kernel parameter) formatted as a 265 * path of device/function addresses matches a PCI device. The string must 266 * be of the form: 267 * 268 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 269 * 270 * A path for a device can be obtained using 'lspci -t'. Using a path 271 * is more robust against bus renumbering than using only a single bus, 272 * device and function address. 273 * 274 * Returns 1 if the string matches the device, 0 if it does not and 275 * a negative error code if it fails to parse the string. 276 */ 277 static int pci_dev_str_match_path(struct pci_dev *dev, const char *path, 278 const char **endptr) 279 { 280 int ret; 281 unsigned int seg, bus, slot, func; 282 char *wpath, *p; 283 char end; 284 285 *endptr = strchrnul(path, ';'); 286 287 wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC); 288 if (!wpath) 289 return -ENOMEM; 290 291 while (1) { 292 p = strrchr(wpath, '/'); 293 if (!p) 294 break; 295 ret = sscanf(p, "/%x.%x%c", &slot, &func, &end); 296 if (ret != 2) { 297 ret = -EINVAL; 298 goto free_and_exit; 299 } 300 301 if (dev->devfn != PCI_DEVFN(slot, func)) { 302 ret = 0; 303 goto free_and_exit; 304 } 305 306 /* 307 * Note: we don't need to get a reference to the upstream 308 * bridge because we hold a reference to the top level 309 * device which should hold a reference to the bridge, 310 * and so on. 311 */ 312 dev = pci_upstream_bridge(dev); 313 if (!dev) { 314 ret = 0; 315 goto free_and_exit; 316 } 317 318 *p = 0; 319 } 320 321 ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot, 322 &func, &end); 323 if (ret != 4) { 324 seg = 0; 325 ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end); 326 if (ret != 3) { 327 ret = -EINVAL; 328 goto free_and_exit; 329 } 330 } 331 332 ret = (seg == pci_domain_nr(dev->bus) && 333 bus == dev->bus->number && 334 dev->devfn == PCI_DEVFN(slot, func)); 335 336 free_and_exit: 337 kfree(wpath); 338 return ret; 339 } 340 341 /** 342 * pci_dev_str_match - test if a string matches a device 343 * @dev: the PCI device to test 344 * @p: string to match the device against 345 * @endptr: pointer to the string after the match 346 * 347 * Test if a string (typically from a kernel parameter) matches a specified 348 * PCI device. The string may be of one of the following formats: 349 * 350 * [<domain>:]<bus>:<device>.<func>[/<device>.<func>]* 351 * pci:<vendor>:<device>[:<subvendor>:<subdevice>] 352 * 353 * The first format specifies a PCI bus/device/function address which 354 * may change if new hardware is inserted, if motherboard firmware changes, 355 * or due to changes caused in kernel parameters. If the domain is 356 * left unspecified, it is taken to be 0. In order to be robust against 357 * bus renumbering issues, a path of PCI device/function numbers may be used 358 * to address the specific device. The path for a device can be determined 359 * through the use of 'lspci -t'. 360 * 361 * The second format matches devices using IDs in the configuration 362 * space which may match multiple devices in the system. A value of 0 363 * for any field will match all devices. (Note: this differs from 364 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for 365 * legacy reasons and convenience so users don't have to specify 366 * FFFFFFFFs on the command line.) 367 * 368 * Returns 1 if the string matches the device, 0 if it does not and 369 * a negative error code if the string cannot be parsed. 370 */ 371 static int pci_dev_str_match(struct pci_dev *dev, const char *p, 372 const char **endptr) 373 { 374 int ret; 375 int count; 376 unsigned short vendor, device, subsystem_vendor, subsystem_device; 377 378 if (strncmp(p, "pci:", 4) == 0) { 379 /* PCI vendor/device (subvendor/subdevice) IDs are specified */ 380 p += 4; 381 ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device, 382 &subsystem_vendor, &subsystem_device, &count); 383 if (ret != 4) { 384 ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count); 385 if (ret != 2) 386 return -EINVAL; 387 388 subsystem_vendor = 0; 389 subsystem_device = 0; 390 } 391 392 p += count; 393 394 if ((!vendor || vendor == dev->vendor) && 395 (!device || device == dev->device) && 396 (!subsystem_vendor || 397 subsystem_vendor == dev->subsystem_vendor) && 398 (!subsystem_device || 399 subsystem_device == dev->subsystem_device)) 400 goto found; 401 } else { 402 /* 403 * PCI Bus, Device, Function IDs are specified 404 * (optionally, may include a path of devfns following it) 405 */ 406 ret = pci_dev_str_match_path(dev, p, &p); 407 if (ret < 0) 408 return ret; 409 else if (ret) 410 goto found; 411 } 412 413 *endptr = p; 414 return 0; 415 416 found: 417 *endptr = p; 418 return 1; 419 } 420 421 static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn, 422 u8 pos, int cap, int *ttl) 423 { 424 u8 id; 425 u16 ent; 426 427 pci_bus_read_config_byte(bus, devfn, pos, &pos); 428 429 while ((*ttl)--) { 430 if (pos < 0x40) 431 break; 432 pos &= ~3; 433 pci_bus_read_config_word(bus, devfn, pos, &ent); 434 435 id = ent & 0xff; 436 if (id == 0xff) 437 break; 438 if (id == cap) 439 return pos; 440 pos = (ent >> 8); 441 } 442 return 0; 443 } 444 445 static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn, 446 u8 pos, int cap) 447 { 448 int ttl = PCI_FIND_CAP_TTL; 449 450 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl); 451 } 452 453 u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap) 454 { 455 return __pci_find_next_cap(dev->bus, dev->devfn, 456 pos + PCI_CAP_LIST_NEXT, cap); 457 } 458 EXPORT_SYMBOL_GPL(pci_find_next_capability); 459 460 static u8 __pci_bus_find_cap_start(struct pci_bus *bus, 461 unsigned int devfn, u8 hdr_type) 462 { 463 u16 status; 464 465 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status); 466 if (!(status & PCI_STATUS_CAP_LIST)) 467 return 0; 468 469 switch (hdr_type) { 470 case PCI_HEADER_TYPE_NORMAL: 471 case PCI_HEADER_TYPE_BRIDGE: 472 return PCI_CAPABILITY_LIST; 473 case PCI_HEADER_TYPE_CARDBUS: 474 return PCI_CB_CAPABILITY_LIST; 475 } 476 477 return 0; 478 } 479 480 /** 481 * pci_find_capability - query for devices' capabilities 482 * @dev: PCI device to query 483 * @cap: capability code 484 * 485 * Tell if a device supports a given PCI capability. 486 * Returns the address of the requested capability structure within the 487 * device's PCI configuration space or 0 in case the device does not 488 * support it. Possible values for @cap include: 489 * 490 * %PCI_CAP_ID_PM Power Management 491 * %PCI_CAP_ID_AGP Accelerated Graphics Port 492 * %PCI_CAP_ID_VPD Vital Product Data 493 * %PCI_CAP_ID_SLOTID Slot Identification 494 * %PCI_CAP_ID_MSI Message Signalled Interrupts 495 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap 496 * %PCI_CAP_ID_PCIX PCI-X 497 * %PCI_CAP_ID_EXP PCI Express 498 */ 499 u8 pci_find_capability(struct pci_dev *dev, int cap) 500 { 501 u8 pos; 502 503 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 504 if (pos) 505 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap); 506 507 return pos; 508 } 509 EXPORT_SYMBOL(pci_find_capability); 510 511 /** 512 * pci_bus_find_capability - query for devices' capabilities 513 * @bus: the PCI bus to query 514 * @devfn: PCI device to query 515 * @cap: capability code 516 * 517 * Like pci_find_capability() but works for PCI devices that do not have a 518 * pci_dev structure set up yet. 519 * 520 * Returns the address of the requested capability structure within the 521 * device's PCI configuration space or 0 in case the device does not 522 * support it. 523 */ 524 u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap) 525 { 526 u8 hdr_type, pos; 527 528 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type); 529 530 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f); 531 if (pos) 532 pos = __pci_find_next_cap(bus, devfn, pos, cap); 533 534 return pos; 535 } 536 EXPORT_SYMBOL(pci_bus_find_capability); 537 538 /** 539 * pci_find_next_ext_capability - Find an extended capability 540 * @dev: PCI device to query 541 * @start: address at which to start looking (0 to start at beginning of list) 542 * @cap: capability code 543 * 544 * Returns the address of the next matching extended capability structure 545 * within the device's PCI configuration space or 0 if the device does 546 * not support it. Some capabilities can occur several times, e.g., the 547 * vendor-specific capability, and this provides a way to find them all. 548 */ 549 u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap) 550 { 551 u32 header; 552 int ttl; 553 u16 pos = PCI_CFG_SPACE_SIZE; 554 555 /* minimum 8 bytes per capability */ 556 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8; 557 558 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE) 559 return 0; 560 561 if (start) 562 pos = start; 563 564 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 565 return 0; 566 567 /* 568 * If we have no capabilities, this is indicated by cap ID, 569 * cap version and next pointer all being 0. 570 */ 571 if (header == 0) 572 return 0; 573 574 while (ttl-- > 0) { 575 if (PCI_EXT_CAP_ID(header) == cap && pos != start) 576 return pos; 577 578 pos = PCI_EXT_CAP_NEXT(header); 579 if (pos < PCI_CFG_SPACE_SIZE) 580 break; 581 582 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL) 583 break; 584 } 585 586 return 0; 587 } 588 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability); 589 590 /** 591 * pci_find_ext_capability - Find an extended capability 592 * @dev: PCI device to query 593 * @cap: capability code 594 * 595 * Returns the address of the requested extended capability structure 596 * within the device's PCI configuration space or 0 if the device does 597 * not support it. Possible values for @cap include: 598 * 599 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting 600 * %PCI_EXT_CAP_ID_VC Virtual Channel 601 * %PCI_EXT_CAP_ID_DSN Device Serial Number 602 * %PCI_EXT_CAP_ID_PWR Power Budgeting 603 */ 604 u16 pci_find_ext_capability(struct pci_dev *dev, int cap) 605 { 606 return pci_find_next_ext_capability(dev, 0, cap); 607 } 608 EXPORT_SYMBOL_GPL(pci_find_ext_capability); 609 610 /** 611 * pci_get_dsn - Read and return the 8-byte Device Serial Number 612 * @dev: PCI device to query 613 * 614 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial 615 * Number. 616 * 617 * Returns the DSN, or zero if the capability does not exist. 618 */ 619 u64 pci_get_dsn(struct pci_dev *dev) 620 { 621 u32 dword; 622 u64 dsn; 623 int pos; 624 625 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN); 626 if (!pos) 627 return 0; 628 629 /* 630 * The Device Serial Number is two dwords offset 4 bytes from the 631 * capability position. The specification says that the first dword is 632 * the lower half, and the second dword is the upper half. 633 */ 634 pos += 4; 635 pci_read_config_dword(dev, pos, &dword); 636 dsn = (u64)dword; 637 pci_read_config_dword(dev, pos + 4, &dword); 638 dsn |= ((u64)dword) << 32; 639 640 return dsn; 641 } 642 EXPORT_SYMBOL_GPL(pci_get_dsn); 643 644 static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap) 645 { 646 int rc, ttl = PCI_FIND_CAP_TTL; 647 u8 cap, mask; 648 649 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST) 650 mask = HT_3BIT_CAP_MASK; 651 else 652 mask = HT_5BIT_CAP_MASK; 653 654 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos, 655 PCI_CAP_ID_HT, &ttl); 656 while (pos) { 657 rc = pci_read_config_byte(dev, pos + 3, &cap); 658 if (rc != PCIBIOS_SUCCESSFUL) 659 return 0; 660 661 if ((cap & mask) == ht_cap) 662 return pos; 663 664 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, 665 pos + PCI_CAP_LIST_NEXT, 666 PCI_CAP_ID_HT, &ttl); 667 } 668 669 return 0; 670 } 671 672 /** 673 * pci_find_next_ht_capability - query a device's HyperTransport capabilities 674 * @dev: PCI device to query 675 * @pos: Position from which to continue searching 676 * @ht_cap: HyperTransport capability code 677 * 678 * To be used in conjunction with pci_find_ht_capability() to search for 679 * all capabilities matching @ht_cap. @pos should always be a value returned 680 * from pci_find_ht_capability(). 681 * 682 * NB. To be 100% safe against broken PCI devices, the caller should take 683 * steps to avoid an infinite loop. 684 */ 685 u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap) 686 { 687 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap); 688 } 689 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability); 690 691 /** 692 * pci_find_ht_capability - query a device's HyperTransport capabilities 693 * @dev: PCI device to query 694 * @ht_cap: HyperTransport capability code 695 * 696 * Tell if a device supports a given HyperTransport capability. 697 * Returns an address within the device's PCI configuration space 698 * or 0 in case the device does not support the request capability. 699 * The address points to the PCI capability, of type PCI_CAP_ID_HT, 700 * which has a HyperTransport capability matching @ht_cap. 701 */ 702 u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap) 703 { 704 u8 pos; 705 706 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type); 707 if (pos) 708 pos = __pci_find_next_ht_cap(dev, pos, ht_cap); 709 710 return pos; 711 } 712 EXPORT_SYMBOL_GPL(pci_find_ht_capability); 713 714 /** 715 * pci_find_vsec_capability - Find a vendor-specific extended capability 716 * @dev: PCI device to query 717 * @vendor: Vendor ID for which capability is defined 718 * @cap: Vendor-specific capability ID 719 * 720 * If @dev has Vendor ID @vendor, search for a VSEC capability with 721 * VSEC ID @cap. If found, return the capability offset in 722 * config space; otherwise return 0. 723 */ 724 u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap) 725 { 726 u16 vsec = 0; 727 u32 header; 728 729 if (vendor != dev->vendor) 730 return 0; 731 732 while ((vsec = pci_find_next_ext_capability(dev, vsec, 733 PCI_EXT_CAP_ID_VNDR))) { 734 if (pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, 735 &header) == PCIBIOS_SUCCESSFUL && 736 PCI_VNDR_HEADER_ID(header) == cap) 737 return vsec; 738 } 739 740 return 0; 741 } 742 EXPORT_SYMBOL_GPL(pci_find_vsec_capability); 743 744 /** 745 * pci_find_dvsec_capability - Find DVSEC for vendor 746 * @dev: PCI device to query 747 * @vendor: Vendor ID to match for the DVSEC 748 * @dvsec: Designated Vendor-specific capability ID 749 * 750 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability 751 * offset in config space; otherwise return 0. 752 */ 753 u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec) 754 { 755 int pos; 756 757 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC); 758 if (!pos) 759 return 0; 760 761 while (pos) { 762 u16 v, id; 763 764 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v); 765 pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id); 766 if (vendor == v && dvsec == id) 767 return pos; 768 769 pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC); 770 } 771 772 return 0; 773 } 774 EXPORT_SYMBOL_GPL(pci_find_dvsec_capability); 775 776 /** 777 * pci_find_parent_resource - return resource region of parent bus of given 778 * region 779 * @dev: PCI device structure contains resources to be searched 780 * @res: child resource record for which parent is sought 781 * 782 * For given resource region of given device, return the resource region of 783 * parent bus the given region is contained in. 784 */ 785 struct resource *pci_find_parent_resource(const struct pci_dev *dev, 786 struct resource *res) 787 { 788 const struct pci_bus *bus = dev->bus; 789 struct resource *r; 790 791 pci_bus_for_each_resource(bus, r) { 792 if (!r) 793 continue; 794 if (resource_contains(r, res)) { 795 796 /* 797 * If the window is prefetchable but the BAR is 798 * not, the allocator made a mistake. 799 */ 800 if (r->flags & IORESOURCE_PREFETCH && 801 !(res->flags & IORESOURCE_PREFETCH)) 802 return NULL; 803 804 /* 805 * If we're below a transparent bridge, there may 806 * be both a positively-decoded aperture and a 807 * subtractively-decoded region that contain the BAR. 808 * We want the positively-decoded one, so this depends 809 * on pci_bus_for_each_resource() giving us those 810 * first. 811 */ 812 return r; 813 } 814 } 815 return NULL; 816 } 817 EXPORT_SYMBOL(pci_find_parent_resource); 818 819 /** 820 * pci_find_resource - Return matching PCI device resource 821 * @dev: PCI device to query 822 * @res: Resource to look for 823 * 824 * Goes over standard PCI resources (BARs) and checks if the given resource 825 * is partially or fully contained in any of them. In that case the 826 * matching resource is returned, %NULL otherwise. 827 */ 828 struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res) 829 { 830 int i; 831 832 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 833 struct resource *r = &dev->resource[i]; 834 835 if (r->start && resource_contains(r, res)) 836 return r; 837 } 838 839 return NULL; 840 } 841 EXPORT_SYMBOL(pci_find_resource); 842 843 /** 844 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos 845 * @dev: the PCI device to operate on 846 * @pos: config space offset of status word 847 * @mask: mask of bit(s) to care about in status word 848 * 849 * Return 1 when mask bit(s) in status word clear, 0 otherwise. 850 */ 851 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask) 852 { 853 int i; 854 855 /* Wait for Transaction Pending bit clean */ 856 for (i = 0; i < 4; i++) { 857 u16 status; 858 if (i) 859 msleep((1 << (i - 1)) * 100); 860 861 pci_read_config_word(dev, pos, &status); 862 if (!(status & mask)) 863 return 1; 864 } 865 866 return 0; 867 } 868 869 static int pci_acs_enable; 870 871 /** 872 * pci_request_acs - ask for ACS to be enabled if supported 873 */ 874 void pci_request_acs(void) 875 { 876 pci_acs_enable = 1; 877 } 878 879 static const char *disable_acs_redir_param; 880 881 /** 882 * pci_disable_acs_redir - disable ACS redirect capabilities 883 * @dev: the PCI device 884 * 885 * For only devices specified in the disable_acs_redir parameter. 886 */ 887 static void pci_disable_acs_redir(struct pci_dev *dev) 888 { 889 int ret = 0; 890 const char *p; 891 int pos; 892 u16 ctrl; 893 894 if (!disable_acs_redir_param) 895 return; 896 897 p = disable_acs_redir_param; 898 while (*p) { 899 ret = pci_dev_str_match(dev, p, &p); 900 if (ret < 0) { 901 pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n", 902 disable_acs_redir_param); 903 904 break; 905 } else if (ret == 1) { 906 /* Found a match */ 907 break; 908 } 909 910 if (*p != ';' && *p != ',') { 911 /* End of param or invalid format */ 912 break; 913 } 914 p++; 915 } 916 917 if (ret != 1) 918 return; 919 920 if (!pci_dev_specific_disable_acs_redir(dev)) 921 return; 922 923 pos = dev->acs_cap; 924 if (!pos) { 925 pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n"); 926 return; 927 } 928 929 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 930 931 /* P2P Request & Completion Redirect */ 932 ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC); 933 934 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 935 936 pci_info(dev, "disabled ACS redirect\n"); 937 } 938 939 /** 940 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities 941 * @dev: the PCI device 942 */ 943 static void pci_std_enable_acs(struct pci_dev *dev) 944 { 945 int pos; 946 u16 cap; 947 u16 ctrl; 948 949 pos = dev->acs_cap; 950 if (!pos) 951 return; 952 953 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap); 954 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl); 955 956 /* Source Validation */ 957 ctrl |= (cap & PCI_ACS_SV); 958 959 /* P2P Request Redirect */ 960 ctrl |= (cap & PCI_ACS_RR); 961 962 /* P2P Completion Redirect */ 963 ctrl |= (cap & PCI_ACS_CR); 964 965 /* Upstream Forwarding */ 966 ctrl |= (cap & PCI_ACS_UF); 967 968 /* Enable Translation Blocking for external devices and noats */ 969 if (pci_ats_disabled() || dev->external_facing || dev->untrusted) 970 ctrl |= (cap & PCI_ACS_TB); 971 972 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl); 973 } 974 975 /** 976 * pci_enable_acs - enable ACS if hardware support it 977 * @dev: the PCI device 978 */ 979 static void pci_enable_acs(struct pci_dev *dev) 980 { 981 if (!pci_acs_enable) 982 goto disable_acs_redir; 983 984 if (!pci_dev_specific_enable_acs(dev)) 985 goto disable_acs_redir; 986 987 pci_std_enable_acs(dev); 988 989 disable_acs_redir: 990 /* 991 * Note: pci_disable_acs_redir() must be called even if ACS was not 992 * enabled by the kernel because it may have been enabled by 993 * platform firmware. So if we are told to disable it, we should 994 * always disable it after setting the kernel's default 995 * preferences. 996 */ 997 pci_disable_acs_redir(dev); 998 } 999 1000 /** 1001 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up) 1002 * @dev: PCI device to have its BARs restored 1003 * 1004 * Restore the BAR values for a given device, so as to make it 1005 * accessible by its driver. 1006 */ 1007 static void pci_restore_bars(struct pci_dev *dev) 1008 { 1009 int i; 1010 1011 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) 1012 pci_update_resource(dev, i); 1013 } 1014 1015 static inline bool platform_pci_power_manageable(struct pci_dev *dev) 1016 { 1017 if (pci_use_mid_pm()) 1018 return true; 1019 1020 return acpi_pci_power_manageable(dev); 1021 } 1022 1023 static inline int platform_pci_set_power_state(struct pci_dev *dev, 1024 pci_power_t t) 1025 { 1026 if (pci_use_mid_pm()) 1027 return mid_pci_set_power_state(dev, t); 1028 1029 return acpi_pci_set_power_state(dev, t); 1030 } 1031 1032 static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev) 1033 { 1034 if (pci_use_mid_pm()) 1035 return mid_pci_get_power_state(dev); 1036 1037 return acpi_pci_get_power_state(dev); 1038 } 1039 1040 static inline void platform_pci_refresh_power_state(struct pci_dev *dev) 1041 { 1042 if (!pci_use_mid_pm()) 1043 acpi_pci_refresh_power_state(dev); 1044 } 1045 1046 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev) 1047 { 1048 if (pci_use_mid_pm()) 1049 return PCI_POWER_ERROR; 1050 1051 return acpi_pci_choose_state(dev); 1052 } 1053 1054 static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable) 1055 { 1056 if (pci_use_mid_pm()) 1057 return PCI_POWER_ERROR; 1058 1059 return acpi_pci_wakeup(dev, enable); 1060 } 1061 1062 static inline bool platform_pci_need_resume(struct pci_dev *dev) 1063 { 1064 if (pci_use_mid_pm()) 1065 return false; 1066 1067 return acpi_pci_need_resume(dev); 1068 } 1069 1070 static inline bool platform_pci_bridge_d3(struct pci_dev *dev) 1071 { 1072 if (pci_use_mid_pm()) 1073 return false; 1074 1075 return acpi_pci_bridge_d3(dev); 1076 } 1077 1078 /** 1079 * pci_update_current_state - Read power state of given device and cache it 1080 * @dev: PCI device to handle. 1081 * @state: State to cache in case the device doesn't have the PM capability 1082 * 1083 * The power state is read from the PMCSR register, which however is 1084 * inaccessible in D3cold. The platform firmware is therefore queried first 1085 * to detect accessibility of the register. In case the platform firmware 1086 * reports an incorrect state or the device isn't power manageable by the 1087 * platform at all, we try to detect D3cold by testing accessibility of the 1088 * vendor ID in config space. 1089 */ 1090 void pci_update_current_state(struct pci_dev *dev, pci_power_t state) 1091 { 1092 if (platform_pci_get_power_state(dev) == PCI_D3cold) { 1093 dev->current_state = PCI_D3cold; 1094 } else if (dev->pm_cap) { 1095 u16 pmcsr; 1096 1097 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1098 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1099 dev->current_state = PCI_D3cold; 1100 return; 1101 } 1102 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1103 } else { 1104 dev->current_state = state; 1105 } 1106 } 1107 1108 /** 1109 * pci_refresh_power_state - Refresh the given device's power state data 1110 * @dev: Target PCI device. 1111 * 1112 * Ask the platform to refresh the devices power state information and invoke 1113 * pci_update_current_state() to update its current PCI power state. 1114 */ 1115 void pci_refresh_power_state(struct pci_dev *dev) 1116 { 1117 platform_pci_refresh_power_state(dev); 1118 pci_update_current_state(dev, dev->current_state); 1119 } 1120 1121 /** 1122 * pci_platform_power_transition - Use platform to change device power state 1123 * @dev: PCI device to handle. 1124 * @state: State to put the device into. 1125 */ 1126 int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state) 1127 { 1128 int error; 1129 1130 error = platform_pci_set_power_state(dev, state); 1131 if (!error) 1132 pci_update_current_state(dev, state); 1133 else if (!dev->pm_cap) /* Fall back to PCI_D0 */ 1134 dev->current_state = PCI_D0; 1135 1136 return error; 1137 } 1138 EXPORT_SYMBOL_GPL(pci_platform_power_transition); 1139 1140 static int pci_resume_one(struct pci_dev *pci_dev, void *ign) 1141 { 1142 pm_request_resume(&pci_dev->dev); 1143 return 0; 1144 } 1145 1146 /** 1147 * pci_resume_bus - Walk given bus and runtime resume devices on it 1148 * @bus: Top bus of the subtree to walk. 1149 */ 1150 void pci_resume_bus(struct pci_bus *bus) 1151 { 1152 if (bus) 1153 pci_walk_bus(bus, pci_resume_one, NULL); 1154 } 1155 1156 static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout) 1157 { 1158 int delay = 1; 1159 u32 id; 1160 1161 /* 1162 * After reset, the device should not silently discard config 1163 * requests, but it may still indicate that it needs more time by 1164 * responding to them with CRS completions. The Root Port will 1165 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete 1166 * the read (except when CRS SV is enabled and the read was for the 1167 * Vendor ID; in that case it synthesizes 0x0001 data). 1168 * 1169 * Wait for the device to return a non-CRS completion. Read the 1170 * Command register instead of Vendor ID so we don't have to 1171 * contend with the CRS SV value. 1172 */ 1173 pci_read_config_dword(dev, PCI_COMMAND, &id); 1174 while (PCI_POSSIBLE_ERROR(id)) { 1175 if (delay > timeout) { 1176 pci_warn(dev, "not ready %dms after %s; giving up\n", 1177 delay - 1, reset_type); 1178 return -ENOTTY; 1179 } 1180 1181 if (delay > PCI_RESET_WAIT) 1182 pci_info(dev, "not ready %dms after %s; waiting\n", 1183 delay - 1, reset_type); 1184 1185 msleep(delay); 1186 delay *= 2; 1187 pci_read_config_dword(dev, PCI_COMMAND, &id); 1188 } 1189 1190 if (delay > PCI_RESET_WAIT) 1191 pci_info(dev, "ready %dms after %s\n", delay - 1, 1192 reset_type); 1193 1194 return 0; 1195 } 1196 1197 /** 1198 * pci_power_up - Put the given device into D0 1199 * @dev: PCI device to power up 1200 * 1201 * On success, return 0 or 1, depending on whether or not it is necessary to 1202 * restore the device's BARs subsequently (1 is returned in that case). 1203 */ 1204 int pci_power_up(struct pci_dev *dev) 1205 { 1206 bool need_restore; 1207 pci_power_t state; 1208 u16 pmcsr; 1209 1210 platform_pci_set_power_state(dev, PCI_D0); 1211 1212 if (!dev->pm_cap) { 1213 state = platform_pci_get_power_state(dev); 1214 if (state == PCI_UNKNOWN) 1215 dev->current_state = PCI_D0; 1216 else 1217 dev->current_state = state; 1218 1219 if (state == PCI_D0) 1220 return 0; 1221 1222 return -EIO; 1223 } 1224 1225 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1226 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1227 pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n", 1228 pci_power_name(dev->current_state)); 1229 dev->current_state = PCI_D3cold; 1230 return -EIO; 1231 } 1232 1233 state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1234 1235 need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) && 1236 !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET); 1237 1238 if (state == PCI_D0) 1239 goto end; 1240 1241 /* 1242 * Force the entire word to 0. This doesn't affect PME_Status, disables 1243 * PME_En, and sets PowerState to 0. 1244 */ 1245 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0); 1246 1247 /* Mandatory transition delays; see PCI PM 1.2. */ 1248 if (state == PCI_D3hot) 1249 pci_dev_d3_sleep(dev); 1250 else if (state == PCI_D2) 1251 udelay(PCI_PM_D2_DELAY); 1252 1253 end: 1254 dev->current_state = PCI_D0; 1255 if (need_restore) 1256 return 1; 1257 1258 return 0; 1259 } 1260 1261 /** 1262 * pci_set_full_power_state - Put a PCI device into D0 and update its state 1263 * @dev: PCI device to power up 1264 * 1265 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register 1266 * to confirm the state change, restore its BARs if they might be lost and 1267 * reconfigure ASPM in acordance with the new power state. 1268 * 1269 * If pci_restore_state() is going to be called right after a power state change 1270 * to D0, it is more efficient to use pci_power_up() directly instead of this 1271 * function. 1272 */ 1273 static int pci_set_full_power_state(struct pci_dev *dev) 1274 { 1275 u16 pmcsr; 1276 int ret; 1277 1278 ret = pci_power_up(dev); 1279 if (ret < 0) 1280 return ret; 1281 1282 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1283 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1284 if (dev->current_state != PCI_D0) { 1285 pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n", 1286 pci_power_name(dev->current_state)); 1287 } else if (ret > 0) { 1288 /* 1289 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT 1290 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning 1291 * from D3hot to D0 _may_ perform an internal reset, thereby 1292 * going to "D0 Uninitialized" rather than "D0 Initialized". 1293 * For example, at least some versions of the 3c905B and the 1294 * 3c556B exhibit this behaviour. 1295 * 1296 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave 1297 * devices in a D3hot state at boot. Consequently, we need to 1298 * restore at least the BARs so that the device will be 1299 * accessible to its driver. 1300 */ 1301 pci_restore_bars(dev); 1302 } 1303 1304 return 0; 1305 } 1306 1307 /** 1308 * __pci_dev_set_current_state - Set current state of a PCI device 1309 * @dev: Device to handle 1310 * @data: pointer to state to be set 1311 */ 1312 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data) 1313 { 1314 pci_power_t state = *(pci_power_t *)data; 1315 1316 dev->current_state = state; 1317 return 0; 1318 } 1319 1320 /** 1321 * pci_bus_set_current_state - Walk given bus and set current state of devices 1322 * @bus: Top bus of the subtree to walk. 1323 * @state: state to be set 1324 */ 1325 void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state) 1326 { 1327 if (bus) 1328 pci_walk_bus(bus, __pci_dev_set_current_state, &state); 1329 } 1330 1331 /** 1332 * pci_set_low_power_state - Put a PCI device into a low-power state. 1333 * @dev: PCI device to handle. 1334 * @state: PCI power state (D1, D2, D3hot) to put the device into. 1335 * 1336 * Use the device's PCI_PM_CTRL register to put it into a low-power state. 1337 * 1338 * RETURN VALUE: 1339 * -EINVAL if the requested state is invalid. 1340 * -EIO if device does not support PCI PM or its PM capabilities register has a 1341 * wrong version, or device doesn't support the requested state. 1342 * 0 if device already is in the requested state. 1343 * 0 if device's power state has been successfully changed. 1344 */ 1345 static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state) 1346 { 1347 u16 pmcsr; 1348 1349 if (!dev->pm_cap) 1350 return -EIO; 1351 1352 /* 1353 * Validate transition: We can enter D0 from any state, but if 1354 * we're already in a low-power state, we can only go deeper. E.g., 1355 * we can go from D1 to D3, but we can't go directly from D3 to D1; 1356 * we'd have to go from D3 to D0, then to D1. 1357 */ 1358 if (dev->current_state <= PCI_D3cold && dev->current_state > state) { 1359 pci_dbg(dev, "Invalid power transition (from %s to %s)\n", 1360 pci_power_name(dev->current_state), 1361 pci_power_name(state)); 1362 return -EINVAL; 1363 } 1364 1365 /* Check if this device supports the desired state */ 1366 if ((state == PCI_D1 && !dev->d1_support) 1367 || (state == PCI_D2 && !dev->d2_support)) 1368 return -EIO; 1369 1370 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1371 if (PCI_POSSIBLE_ERROR(pmcsr)) { 1372 pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n", 1373 pci_power_name(dev->current_state), 1374 pci_power_name(state)); 1375 dev->current_state = PCI_D3cold; 1376 return -EIO; 1377 } 1378 1379 pmcsr &= ~PCI_PM_CTRL_STATE_MASK; 1380 pmcsr |= state; 1381 1382 /* Enter specified state */ 1383 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 1384 1385 /* Mandatory power management transition delays; see PCI PM 1.2. */ 1386 if (state == PCI_D3hot) 1387 pci_dev_d3_sleep(dev); 1388 else if (state == PCI_D2) 1389 udelay(PCI_PM_D2_DELAY); 1390 1391 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 1392 dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK; 1393 if (dev->current_state != state) 1394 pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n", 1395 pci_power_name(dev->current_state), 1396 pci_power_name(state)); 1397 1398 return 0; 1399 } 1400 1401 /** 1402 * pci_set_power_state - Set the power state of a PCI device 1403 * @dev: PCI device to handle. 1404 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into. 1405 * 1406 * Transition a device to a new power state, using the platform firmware and/or 1407 * the device's PCI PM registers. 1408 * 1409 * RETURN VALUE: 1410 * -EINVAL if the requested state is invalid. 1411 * -EIO if device does not support PCI PM or its PM capabilities register has a 1412 * wrong version, or device doesn't support the requested state. 1413 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported. 1414 * 0 if device already is in the requested state. 1415 * 0 if the transition is to D3 but D3 is not supported. 1416 * 0 if device's power state has been successfully changed. 1417 */ 1418 int pci_set_power_state(struct pci_dev *dev, pci_power_t state) 1419 { 1420 int error; 1421 1422 /* Bound the state we're entering */ 1423 if (state > PCI_D3cold) 1424 state = PCI_D3cold; 1425 else if (state < PCI_D0) 1426 state = PCI_D0; 1427 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev)) 1428 1429 /* 1430 * If the device or the parent bridge do not support PCI 1431 * PM, ignore the request if we're doing anything other 1432 * than putting it into D0 (which would only happen on 1433 * boot). 1434 */ 1435 return 0; 1436 1437 /* Check if we're already there */ 1438 if (dev->current_state == state) 1439 return 0; 1440 1441 if (state == PCI_D0) 1442 return pci_set_full_power_state(dev); 1443 1444 /* 1445 * This device is quirked not to be put into D3, so don't put it in 1446 * D3 1447 */ 1448 if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3)) 1449 return 0; 1450 1451 if (state == PCI_D3cold) { 1452 /* 1453 * To put the device in D3cold, put it into D3hot in the native 1454 * way, then put it into D3cold using platform ops. 1455 */ 1456 error = pci_set_low_power_state(dev, PCI_D3hot); 1457 1458 if (pci_platform_power_transition(dev, PCI_D3cold)) 1459 return error; 1460 1461 /* Powering off a bridge may power off the whole hierarchy */ 1462 if (dev->current_state == PCI_D3cold) 1463 pci_bus_set_current_state(dev->subordinate, PCI_D3cold); 1464 } else { 1465 error = pci_set_low_power_state(dev, state); 1466 1467 if (pci_platform_power_transition(dev, state)) 1468 return error; 1469 } 1470 1471 return 0; 1472 } 1473 EXPORT_SYMBOL(pci_set_power_state); 1474 1475 #define PCI_EXP_SAVE_REGS 7 1476 1477 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev, 1478 u16 cap, bool extended) 1479 { 1480 struct pci_cap_saved_state *tmp; 1481 1482 hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) { 1483 if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap) 1484 return tmp; 1485 } 1486 return NULL; 1487 } 1488 1489 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap) 1490 { 1491 return _pci_find_saved_cap(dev, cap, false); 1492 } 1493 1494 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap) 1495 { 1496 return _pci_find_saved_cap(dev, cap, true); 1497 } 1498 1499 static int pci_save_pcie_state(struct pci_dev *dev) 1500 { 1501 int i = 0; 1502 struct pci_cap_saved_state *save_state; 1503 u16 *cap; 1504 1505 if (!pci_is_pcie(dev)) 1506 return 0; 1507 1508 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1509 if (!save_state) { 1510 pci_err(dev, "buffer not found in %s\n", __func__); 1511 return -ENOMEM; 1512 } 1513 1514 cap = (u16 *)&save_state->cap.data[0]; 1515 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]); 1516 pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]); 1517 pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]); 1518 pcie_capability_read_word(dev, PCI_EXP_RTCTL, &cap[i++]); 1519 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]); 1520 pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]); 1521 pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]); 1522 1523 return 0; 1524 } 1525 1526 void pci_bridge_reconfigure_ltr(struct pci_dev *dev) 1527 { 1528 #ifdef CONFIG_PCIEASPM 1529 struct pci_dev *bridge; 1530 u32 ctl; 1531 1532 bridge = pci_upstream_bridge(dev); 1533 if (bridge && bridge->ltr_path) { 1534 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl); 1535 if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) { 1536 pci_dbg(bridge, "re-enabling LTR\n"); 1537 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 1538 PCI_EXP_DEVCTL2_LTR_EN); 1539 } 1540 } 1541 #endif 1542 } 1543 1544 static void pci_restore_pcie_state(struct pci_dev *dev) 1545 { 1546 int i = 0; 1547 struct pci_cap_saved_state *save_state; 1548 u16 *cap; 1549 1550 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP); 1551 if (!save_state) 1552 return; 1553 1554 /* 1555 * Downstream ports reset the LTR enable bit when link goes down. 1556 * Check and re-configure the bit here before restoring device. 1557 * PCIe r5.0, sec 7.5.3.16. 1558 */ 1559 pci_bridge_reconfigure_ltr(dev); 1560 1561 cap = (u16 *)&save_state->cap.data[0]; 1562 pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]); 1563 pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]); 1564 pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]); 1565 pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]); 1566 pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]); 1567 pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]); 1568 pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]); 1569 } 1570 1571 static int pci_save_pcix_state(struct pci_dev *dev) 1572 { 1573 int pos; 1574 struct pci_cap_saved_state *save_state; 1575 1576 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1577 if (!pos) 1578 return 0; 1579 1580 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1581 if (!save_state) { 1582 pci_err(dev, "buffer not found in %s\n", __func__); 1583 return -ENOMEM; 1584 } 1585 1586 pci_read_config_word(dev, pos + PCI_X_CMD, 1587 (u16 *)save_state->cap.data); 1588 1589 return 0; 1590 } 1591 1592 static void pci_restore_pcix_state(struct pci_dev *dev) 1593 { 1594 int i = 0, pos; 1595 struct pci_cap_saved_state *save_state; 1596 u16 *cap; 1597 1598 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX); 1599 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX); 1600 if (!save_state || !pos) 1601 return; 1602 cap = (u16 *)&save_state->cap.data[0]; 1603 1604 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]); 1605 } 1606 1607 static void pci_save_ltr_state(struct pci_dev *dev) 1608 { 1609 int ltr; 1610 struct pci_cap_saved_state *save_state; 1611 u32 *cap; 1612 1613 if (!pci_is_pcie(dev)) 1614 return; 1615 1616 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1617 if (!ltr) 1618 return; 1619 1620 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1621 if (!save_state) { 1622 pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n"); 1623 return; 1624 } 1625 1626 /* Some broken devices only support dword access to LTR */ 1627 cap = &save_state->cap.data[0]; 1628 pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap); 1629 } 1630 1631 static void pci_restore_ltr_state(struct pci_dev *dev) 1632 { 1633 struct pci_cap_saved_state *save_state; 1634 int ltr; 1635 u32 *cap; 1636 1637 save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR); 1638 ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR); 1639 if (!save_state || !ltr) 1640 return; 1641 1642 /* Some broken devices only support dword access to LTR */ 1643 cap = &save_state->cap.data[0]; 1644 pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap); 1645 } 1646 1647 /** 1648 * pci_save_state - save the PCI configuration space of a device before 1649 * suspending 1650 * @dev: PCI device that we're dealing with 1651 */ 1652 int pci_save_state(struct pci_dev *dev) 1653 { 1654 int i; 1655 /* XXX: 100% dword access ok here? */ 1656 for (i = 0; i < 16; i++) { 1657 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]); 1658 pci_dbg(dev, "saving config space at offset %#x (reading %#x)\n", 1659 i * 4, dev->saved_config_space[i]); 1660 } 1661 dev->state_saved = true; 1662 1663 i = pci_save_pcie_state(dev); 1664 if (i != 0) 1665 return i; 1666 1667 i = pci_save_pcix_state(dev); 1668 if (i != 0) 1669 return i; 1670 1671 pci_save_ltr_state(dev); 1672 pci_save_dpc_state(dev); 1673 pci_save_aer_state(dev); 1674 pci_save_ptm_state(dev); 1675 return pci_save_vc_state(dev); 1676 } 1677 EXPORT_SYMBOL(pci_save_state); 1678 1679 static void pci_restore_config_dword(struct pci_dev *pdev, int offset, 1680 u32 saved_val, int retry, bool force) 1681 { 1682 u32 val; 1683 1684 pci_read_config_dword(pdev, offset, &val); 1685 if (!force && val == saved_val) 1686 return; 1687 1688 for (;;) { 1689 pci_dbg(pdev, "restoring config space at offset %#x (was %#x, writing %#x)\n", 1690 offset, val, saved_val); 1691 pci_write_config_dword(pdev, offset, saved_val); 1692 if (retry-- <= 0) 1693 return; 1694 1695 pci_read_config_dword(pdev, offset, &val); 1696 if (val == saved_val) 1697 return; 1698 1699 mdelay(1); 1700 } 1701 } 1702 1703 static void pci_restore_config_space_range(struct pci_dev *pdev, 1704 int start, int end, int retry, 1705 bool force) 1706 { 1707 int index; 1708 1709 for (index = end; index >= start; index--) 1710 pci_restore_config_dword(pdev, 4 * index, 1711 pdev->saved_config_space[index], 1712 retry, force); 1713 } 1714 1715 static void pci_restore_config_space(struct pci_dev *pdev) 1716 { 1717 if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) { 1718 pci_restore_config_space_range(pdev, 10, 15, 0, false); 1719 /* Restore BARs before the command register. */ 1720 pci_restore_config_space_range(pdev, 4, 9, 10, false); 1721 pci_restore_config_space_range(pdev, 0, 3, 0, false); 1722 } else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 1723 pci_restore_config_space_range(pdev, 12, 15, 0, false); 1724 1725 /* 1726 * Force rewriting of prefetch registers to avoid S3 resume 1727 * issues on Intel PCI bridges that occur when these 1728 * registers are not explicitly written. 1729 */ 1730 pci_restore_config_space_range(pdev, 9, 11, 0, true); 1731 pci_restore_config_space_range(pdev, 0, 8, 0, false); 1732 } else { 1733 pci_restore_config_space_range(pdev, 0, 15, 0, false); 1734 } 1735 } 1736 1737 static void pci_restore_rebar_state(struct pci_dev *pdev) 1738 { 1739 unsigned int pos, nbars, i; 1740 u32 ctrl; 1741 1742 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 1743 if (!pos) 1744 return; 1745 1746 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1747 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 1748 PCI_REBAR_CTRL_NBAR_SHIFT; 1749 1750 for (i = 0; i < nbars; i++, pos += 8) { 1751 struct resource *res; 1752 int bar_idx, size; 1753 1754 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 1755 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 1756 res = pdev->resource + bar_idx; 1757 size = pci_rebar_bytes_to_size(resource_size(res)); 1758 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 1759 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 1760 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 1761 } 1762 } 1763 1764 /** 1765 * pci_restore_state - Restore the saved state of a PCI device 1766 * @dev: PCI device that we're dealing with 1767 */ 1768 void pci_restore_state(struct pci_dev *dev) 1769 { 1770 if (!dev->state_saved) 1771 return; 1772 1773 /* 1774 * Restore max latencies (in the LTR capability) before enabling 1775 * LTR itself (in the PCIe capability). 1776 */ 1777 pci_restore_ltr_state(dev); 1778 1779 pci_restore_pcie_state(dev); 1780 pci_restore_pasid_state(dev); 1781 pci_restore_pri_state(dev); 1782 pci_restore_ats_state(dev); 1783 pci_restore_vc_state(dev); 1784 pci_restore_rebar_state(dev); 1785 pci_restore_dpc_state(dev); 1786 pci_restore_ptm_state(dev); 1787 1788 pci_aer_clear_status(dev); 1789 pci_restore_aer_state(dev); 1790 1791 pci_restore_config_space(dev); 1792 1793 pci_restore_pcix_state(dev); 1794 pci_restore_msi_state(dev); 1795 1796 /* Restore ACS and IOV configuration state */ 1797 pci_enable_acs(dev); 1798 pci_restore_iov_state(dev); 1799 1800 dev->state_saved = false; 1801 } 1802 EXPORT_SYMBOL(pci_restore_state); 1803 1804 struct pci_saved_state { 1805 u32 config_space[16]; 1806 struct pci_cap_saved_data cap[]; 1807 }; 1808 1809 /** 1810 * pci_store_saved_state - Allocate and return an opaque struct containing 1811 * the device saved state. 1812 * @dev: PCI device that we're dealing with 1813 * 1814 * Return NULL if no state or error. 1815 */ 1816 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev) 1817 { 1818 struct pci_saved_state *state; 1819 struct pci_cap_saved_state *tmp; 1820 struct pci_cap_saved_data *cap; 1821 size_t size; 1822 1823 if (!dev->state_saved) 1824 return NULL; 1825 1826 size = sizeof(*state) + sizeof(struct pci_cap_saved_data); 1827 1828 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) 1829 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1830 1831 state = kzalloc(size, GFP_KERNEL); 1832 if (!state) 1833 return NULL; 1834 1835 memcpy(state->config_space, dev->saved_config_space, 1836 sizeof(state->config_space)); 1837 1838 cap = state->cap; 1839 hlist_for_each_entry(tmp, &dev->saved_cap_space, next) { 1840 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size; 1841 memcpy(cap, &tmp->cap, len); 1842 cap = (struct pci_cap_saved_data *)((u8 *)cap + len); 1843 } 1844 /* Empty cap_save terminates list */ 1845 1846 return state; 1847 } 1848 EXPORT_SYMBOL_GPL(pci_store_saved_state); 1849 1850 /** 1851 * pci_load_saved_state - Reload the provided save state into struct pci_dev. 1852 * @dev: PCI device that we're dealing with 1853 * @state: Saved state returned from pci_store_saved_state() 1854 */ 1855 int pci_load_saved_state(struct pci_dev *dev, 1856 struct pci_saved_state *state) 1857 { 1858 struct pci_cap_saved_data *cap; 1859 1860 dev->state_saved = false; 1861 1862 if (!state) 1863 return 0; 1864 1865 memcpy(dev->saved_config_space, state->config_space, 1866 sizeof(state->config_space)); 1867 1868 cap = state->cap; 1869 while (cap->size) { 1870 struct pci_cap_saved_state *tmp; 1871 1872 tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended); 1873 if (!tmp || tmp->cap.size != cap->size) 1874 return -EINVAL; 1875 1876 memcpy(tmp->cap.data, cap->data, tmp->cap.size); 1877 cap = (struct pci_cap_saved_data *)((u8 *)cap + 1878 sizeof(struct pci_cap_saved_data) + cap->size); 1879 } 1880 1881 dev->state_saved = true; 1882 return 0; 1883 } 1884 EXPORT_SYMBOL_GPL(pci_load_saved_state); 1885 1886 /** 1887 * pci_load_and_free_saved_state - Reload the save state pointed to by state, 1888 * and free the memory allocated for it. 1889 * @dev: PCI device that we're dealing with 1890 * @state: Pointer to saved state returned from pci_store_saved_state() 1891 */ 1892 int pci_load_and_free_saved_state(struct pci_dev *dev, 1893 struct pci_saved_state **state) 1894 { 1895 int ret = pci_load_saved_state(dev, *state); 1896 kfree(*state); 1897 *state = NULL; 1898 return ret; 1899 } 1900 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state); 1901 1902 int __weak pcibios_enable_device(struct pci_dev *dev, int bars) 1903 { 1904 return pci_enable_resources(dev, bars); 1905 } 1906 1907 static int do_pci_enable_device(struct pci_dev *dev, int bars) 1908 { 1909 int err; 1910 struct pci_dev *bridge; 1911 u16 cmd; 1912 u8 pin; 1913 1914 err = pci_set_power_state(dev, PCI_D0); 1915 if (err < 0 && err != -EIO) 1916 return err; 1917 1918 bridge = pci_upstream_bridge(dev); 1919 if (bridge) 1920 pcie_aspm_powersave_config_link(bridge); 1921 1922 err = pcibios_enable_device(dev, bars); 1923 if (err < 0) 1924 return err; 1925 pci_fixup_device(pci_fixup_enable, dev); 1926 1927 if (dev->msi_enabled || dev->msix_enabled) 1928 return 0; 1929 1930 pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin); 1931 if (pin) { 1932 pci_read_config_word(dev, PCI_COMMAND, &cmd); 1933 if (cmd & PCI_COMMAND_INTX_DISABLE) 1934 pci_write_config_word(dev, PCI_COMMAND, 1935 cmd & ~PCI_COMMAND_INTX_DISABLE); 1936 } 1937 1938 return 0; 1939 } 1940 1941 /** 1942 * pci_reenable_device - Resume abandoned device 1943 * @dev: PCI device to be resumed 1944 * 1945 * NOTE: This function is a backend of pci_default_resume() and is not supposed 1946 * to be called by normal code, write proper resume handler and use it instead. 1947 */ 1948 int pci_reenable_device(struct pci_dev *dev) 1949 { 1950 if (pci_is_enabled(dev)) 1951 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1); 1952 return 0; 1953 } 1954 EXPORT_SYMBOL(pci_reenable_device); 1955 1956 static void pci_enable_bridge(struct pci_dev *dev) 1957 { 1958 struct pci_dev *bridge; 1959 int retval; 1960 1961 bridge = pci_upstream_bridge(dev); 1962 if (bridge) 1963 pci_enable_bridge(bridge); 1964 1965 if (pci_is_enabled(dev)) { 1966 if (!dev->is_busmaster) 1967 pci_set_master(dev); 1968 return; 1969 } 1970 1971 retval = pci_enable_device(dev); 1972 if (retval) 1973 pci_err(dev, "Error enabling bridge (%d), continuing\n", 1974 retval); 1975 pci_set_master(dev); 1976 } 1977 1978 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags) 1979 { 1980 struct pci_dev *bridge; 1981 int err; 1982 int i, bars = 0; 1983 1984 /* 1985 * Power state could be unknown at this point, either due to a fresh 1986 * boot or a device removal call. So get the current power state 1987 * so that things like MSI message writing will behave as expected 1988 * (e.g. if the device really is in D0 at enable time). 1989 */ 1990 pci_update_current_state(dev, dev->current_state); 1991 1992 if (atomic_inc_return(&dev->enable_cnt) > 1) 1993 return 0; /* already enabled */ 1994 1995 bridge = pci_upstream_bridge(dev); 1996 if (bridge) 1997 pci_enable_bridge(bridge); 1998 1999 /* only skip sriov related */ 2000 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 2001 if (dev->resource[i].flags & flags) 2002 bars |= (1 << i); 2003 for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++) 2004 if (dev->resource[i].flags & flags) 2005 bars |= (1 << i); 2006 2007 err = do_pci_enable_device(dev, bars); 2008 if (err < 0) 2009 atomic_dec(&dev->enable_cnt); 2010 return err; 2011 } 2012 2013 /** 2014 * pci_enable_device_io - Initialize a device for use with IO space 2015 * @dev: PCI device to be initialized 2016 * 2017 * Initialize device before it's used by a driver. Ask low-level code 2018 * to enable I/O resources. Wake up the device if it was suspended. 2019 * Beware, this function can fail. 2020 */ 2021 int pci_enable_device_io(struct pci_dev *dev) 2022 { 2023 return pci_enable_device_flags(dev, IORESOURCE_IO); 2024 } 2025 EXPORT_SYMBOL(pci_enable_device_io); 2026 2027 /** 2028 * pci_enable_device_mem - Initialize a device for use with Memory space 2029 * @dev: PCI device to be initialized 2030 * 2031 * Initialize device before it's used by a driver. Ask low-level code 2032 * to enable Memory resources. Wake up the device if it was suspended. 2033 * Beware, this function can fail. 2034 */ 2035 int pci_enable_device_mem(struct pci_dev *dev) 2036 { 2037 return pci_enable_device_flags(dev, IORESOURCE_MEM); 2038 } 2039 EXPORT_SYMBOL(pci_enable_device_mem); 2040 2041 /** 2042 * pci_enable_device - Initialize device before it's used by a driver. 2043 * @dev: PCI device to be initialized 2044 * 2045 * Initialize device before it's used by a driver. Ask low-level code 2046 * to enable I/O and memory. Wake up the device if it was suspended. 2047 * Beware, this function can fail. 2048 * 2049 * Note we don't actually enable the device many times if we call 2050 * this function repeatedly (we just increment the count). 2051 */ 2052 int pci_enable_device(struct pci_dev *dev) 2053 { 2054 return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO); 2055 } 2056 EXPORT_SYMBOL(pci_enable_device); 2057 2058 /* 2059 * Managed PCI resources. This manages device on/off, INTx/MSI/MSI-X 2060 * on/off and BAR regions. pci_dev itself records MSI/MSI-X status, so 2061 * there's no need to track it separately. pci_devres is initialized 2062 * when a device is enabled using managed PCI device enable interface. 2063 */ 2064 struct pci_devres { 2065 unsigned int enabled:1; 2066 unsigned int pinned:1; 2067 unsigned int orig_intx:1; 2068 unsigned int restore_intx:1; 2069 unsigned int mwi:1; 2070 u32 region_mask; 2071 }; 2072 2073 static void pcim_release(struct device *gendev, void *res) 2074 { 2075 struct pci_dev *dev = to_pci_dev(gendev); 2076 struct pci_devres *this = res; 2077 int i; 2078 2079 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) 2080 if (this->region_mask & (1 << i)) 2081 pci_release_region(dev, i); 2082 2083 if (this->mwi) 2084 pci_clear_mwi(dev); 2085 2086 if (this->restore_intx) 2087 pci_intx(dev, this->orig_intx); 2088 2089 if (this->enabled && !this->pinned) 2090 pci_disable_device(dev); 2091 } 2092 2093 static struct pci_devres *get_pci_dr(struct pci_dev *pdev) 2094 { 2095 struct pci_devres *dr, *new_dr; 2096 2097 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL); 2098 if (dr) 2099 return dr; 2100 2101 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL); 2102 if (!new_dr) 2103 return NULL; 2104 return devres_get(&pdev->dev, new_dr, NULL, NULL); 2105 } 2106 2107 static struct pci_devres *find_pci_dr(struct pci_dev *pdev) 2108 { 2109 if (pci_is_managed(pdev)) 2110 return devres_find(&pdev->dev, pcim_release, NULL, NULL); 2111 return NULL; 2112 } 2113 2114 /** 2115 * pcim_enable_device - Managed pci_enable_device() 2116 * @pdev: PCI device to be initialized 2117 * 2118 * Managed pci_enable_device(). 2119 */ 2120 int pcim_enable_device(struct pci_dev *pdev) 2121 { 2122 struct pci_devres *dr; 2123 int rc; 2124 2125 dr = get_pci_dr(pdev); 2126 if (unlikely(!dr)) 2127 return -ENOMEM; 2128 if (dr->enabled) 2129 return 0; 2130 2131 rc = pci_enable_device(pdev); 2132 if (!rc) { 2133 pdev->is_managed = 1; 2134 dr->enabled = 1; 2135 } 2136 return rc; 2137 } 2138 EXPORT_SYMBOL(pcim_enable_device); 2139 2140 /** 2141 * pcim_pin_device - Pin managed PCI device 2142 * @pdev: PCI device to pin 2143 * 2144 * Pin managed PCI device @pdev. Pinned device won't be disabled on 2145 * driver detach. @pdev must have been enabled with 2146 * pcim_enable_device(). 2147 */ 2148 void pcim_pin_device(struct pci_dev *pdev) 2149 { 2150 struct pci_devres *dr; 2151 2152 dr = find_pci_dr(pdev); 2153 WARN_ON(!dr || !dr->enabled); 2154 if (dr) 2155 dr->pinned = 1; 2156 } 2157 EXPORT_SYMBOL(pcim_pin_device); 2158 2159 /* 2160 * pcibios_device_add - provide arch specific hooks when adding device dev 2161 * @dev: the PCI device being added 2162 * 2163 * Permits the platform to provide architecture specific functionality when 2164 * devices are added. This is the default implementation. Architecture 2165 * implementations can override this. 2166 */ 2167 int __weak pcibios_device_add(struct pci_dev *dev) 2168 { 2169 return 0; 2170 } 2171 2172 /** 2173 * pcibios_release_device - provide arch specific hooks when releasing 2174 * device dev 2175 * @dev: the PCI device being released 2176 * 2177 * Permits the platform to provide architecture specific functionality when 2178 * devices are released. This is the default implementation. Architecture 2179 * implementations can override this. 2180 */ 2181 void __weak pcibios_release_device(struct pci_dev *dev) {} 2182 2183 /** 2184 * pcibios_disable_device - disable arch specific PCI resources for device dev 2185 * @dev: the PCI device to disable 2186 * 2187 * Disables architecture specific PCI resources for the device. This 2188 * is the default implementation. Architecture implementations can 2189 * override this. 2190 */ 2191 void __weak pcibios_disable_device(struct pci_dev *dev) {} 2192 2193 /** 2194 * pcibios_penalize_isa_irq - penalize an ISA IRQ 2195 * @irq: ISA IRQ to penalize 2196 * @active: IRQ active or not 2197 * 2198 * Permits the platform to provide architecture-specific functionality when 2199 * penalizing ISA IRQs. This is the default implementation. Architecture 2200 * implementations can override this. 2201 */ 2202 void __weak pcibios_penalize_isa_irq(int irq, int active) {} 2203 2204 static void do_pci_disable_device(struct pci_dev *dev) 2205 { 2206 u16 pci_command; 2207 2208 pci_read_config_word(dev, PCI_COMMAND, &pci_command); 2209 if (pci_command & PCI_COMMAND_MASTER) { 2210 pci_command &= ~PCI_COMMAND_MASTER; 2211 pci_write_config_word(dev, PCI_COMMAND, pci_command); 2212 } 2213 2214 pcibios_disable_device(dev); 2215 } 2216 2217 /** 2218 * pci_disable_enabled_device - Disable device without updating enable_cnt 2219 * @dev: PCI device to disable 2220 * 2221 * NOTE: This function is a backend of PCI power management routines and is 2222 * not supposed to be called drivers. 2223 */ 2224 void pci_disable_enabled_device(struct pci_dev *dev) 2225 { 2226 if (pci_is_enabled(dev)) 2227 do_pci_disable_device(dev); 2228 } 2229 2230 /** 2231 * pci_disable_device - Disable PCI device after use 2232 * @dev: PCI device to be disabled 2233 * 2234 * Signal to the system that the PCI device is not in use by the system 2235 * anymore. This only involves disabling PCI bus-mastering, if active. 2236 * 2237 * Note we don't actually disable the device until all callers of 2238 * pci_enable_device() have called pci_disable_device(). 2239 */ 2240 void pci_disable_device(struct pci_dev *dev) 2241 { 2242 struct pci_devres *dr; 2243 2244 dr = find_pci_dr(dev); 2245 if (dr) 2246 dr->enabled = 0; 2247 2248 dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0, 2249 "disabling already-disabled device"); 2250 2251 if (atomic_dec_return(&dev->enable_cnt) != 0) 2252 return; 2253 2254 do_pci_disable_device(dev); 2255 2256 dev->is_busmaster = 0; 2257 } 2258 EXPORT_SYMBOL(pci_disable_device); 2259 2260 /** 2261 * pcibios_set_pcie_reset_state - set reset state for device dev 2262 * @dev: the PCIe device reset 2263 * @state: Reset state to enter into 2264 * 2265 * Set the PCIe reset state for the device. This is the default 2266 * implementation. Architecture implementations can override this. 2267 */ 2268 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev, 2269 enum pcie_reset_state state) 2270 { 2271 return -EINVAL; 2272 } 2273 2274 /** 2275 * pci_set_pcie_reset_state - set reset state for device dev 2276 * @dev: the PCIe device reset 2277 * @state: Reset state to enter into 2278 * 2279 * Sets the PCI reset state for the device. 2280 */ 2281 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state) 2282 { 2283 return pcibios_set_pcie_reset_state(dev, state); 2284 } 2285 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state); 2286 2287 #ifdef CONFIG_PCIEAER 2288 void pcie_clear_device_status(struct pci_dev *dev) 2289 { 2290 u16 sta; 2291 2292 pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta); 2293 pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta); 2294 } 2295 #endif 2296 2297 /** 2298 * pcie_clear_root_pme_status - Clear root port PME interrupt status. 2299 * @dev: PCIe root port or event collector. 2300 */ 2301 void pcie_clear_root_pme_status(struct pci_dev *dev) 2302 { 2303 pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME); 2304 } 2305 2306 /** 2307 * pci_check_pme_status - Check if given device has generated PME. 2308 * @dev: Device to check. 2309 * 2310 * Check the PME status of the device and if set, clear it and clear PME enable 2311 * (if set). Return 'true' if PME status and PME enable were both set or 2312 * 'false' otherwise. 2313 */ 2314 bool pci_check_pme_status(struct pci_dev *dev) 2315 { 2316 int pmcsr_pos; 2317 u16 pmcsr; 2318 bool ret = false; 2319 2320 if (!dev->pm_cap) 2321 return false; 2322 2323 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL; 2324 pci_read_config_word(dev, pmcsr_pos, &pmcsr); 2325 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS)) 2326 return false; 2327 2328 /* Clear PME status. */ 2329 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2330 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) { 2331 /* Disable PME to avoid interrupt flood. */ 2332 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2333 ret = true; 2334 } 2335 2336 pci_write_config_word(dev, pmcsr_pos, pmcsr); 2337 2338 return ret; 2339 } 2340 2341 /** 2342 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set. 2343 * @dev: Device to handle. 2344 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag. 2345 * 2346 * Check if @dev has generated PME and queue a resume request for it in that 2347 * case. 2348 */ 2349 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset) 2350 { 2351 if (pme_poll_reset && dev->pme_poll) 2352 dev->pme_poll = false; 2353 2354 if (pci_check_pme_status(dev)) { 2355 pci_wakeup_event(dev); 2356 pm_request_resume(&dev->dev); 2357 } 2358 return 0; 2359 } 2360 2361 /** 2362 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary. 2363 * @bus: Top bus of the subtree to walk. 2364 */ 2365 void pci_pme_wakeup_bus(struct pci_bus *bus) 2366 { 2367 if (bus) 2368 pci_walk_bus(bus, pci_pme_wakeup, (void *)true); 2369 } 2370 2371 2372 /** 2373 * pci_pme_capable - check the capability of PCI device to generate PME# 2374 * @dev: PCI device to handle. 2375 * @state: PCI state from which device will issue PME#. 2376 */ 2377 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state) 2378 { 2379 if (!dev->pm_cap) 2380 return false; 2381 2382 return !!(dev->pme_support & (1 << state)); 2383 } 2384 EXPORT_SYMBOL(pci_pme_capable); 2385 2386 static void pci_pme_list_scan(struct work_struct *work) 2387 { 2388 struct pci_pme_device *pme_dev, *n; 2389 2390 mutex_lock(&pci_pme_list_mutex); 2391 list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) { 2392 if (pme_dev->dev->pme_poll) { 2393 struct pci_dev *bridge; 2394 2395 bridge = pme_dev->dev->bus->self; 2396 /* 2397 * If bridge is in low power state, the 2398 * configuration space of subordinate devices 2399 * may be not accessible 2400 */ 2401 if (bridge && bridge->current_state != PCI_D0) 2402 continue; 2403 /* 2404 * If the device is in D3cold it should not be 2405 * polled either. 2406 */ 2407 if (pme_dev->dev->current_state == PCI_D3cold) 2408 continue; 2409 2410 pci_pme_wakeup(pme_dev->dev, NULL); 2411 } else { 2412 list_del(&pme_dev->list); 2413 kfree(pme_dev); 2414 } 2415 } 2416 if (!list_empty(&pci_pme_list)) 2417 queue_delayed_work(system_freezable_wq, &pci_pme_work, 2418 msecs_to_jiffies(PME_TIMEOUT)); 2419 mutex_unlock(&pci_pme_list_mutex); 2420 } 2421 2422 static void __pci_pme_active(struct pci_dev *dev, bool enable) 2423 { 2424 u16 pmcsr; 2425 2426 if (!dev->pme_support) 2427 return; 2428 2429 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2430 /* Clear PME_Status by writing 1 to it and enable PME# */ 2431 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE; 2432 if (!enable) 2433 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2434 2435 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2436 } 2437 2438 /** 2439 * pci_pme_restore - Restore PME configuration after config space restore. 2440 * @dev: PCI device to update. 2441 */ 2442 void pci_pme_restore(struct pci_dev *dev) 2443 { 2444 u16 pmcsr; 2445 2446 if (!dev->pme_support) 2447 return; 2448 2449 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr); 2450 if (dev->wakeup_prepared) { 2451 pmcsr |= PCI_PM_CTRL_PME_ENABLE; 2452 pmcsr &= ~PCI_PM_CTRL_PME_STATUS; 2453 } else { 2454 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE; 2455 pmcsr |= PCI_PM_CTRL_PME_STATUS; 2456 } 2457 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr); 2458 } 2459 2460 /** 2461 * pci_pme_active - enable or disable PCI device's PME# function 2462 * @dev: PCI device to handle. 2463 * @enable: 'true' to enable PME# generation; 'false' to disable it. 2464 * 2465 * The caller must verify that the device is capable of generating PME# before 2466 * calling this function with @enable equal to 'true'. 2467 */ 2468 void pci_pme_active(struct pci_dev *dev, bool enable) 2469 { 2470 __pci_pme_active(dev, enable); 2471 2472 /* 2473 * PCI (as opposed to PCIe) PME requires that the device have 2474 * its PME# line hooked up correctly. Not all hardware vendors 2475 * do this, so the PME never gets delivered and the device 2476 * remains asleep. The easiest way around this is to 2477 * periodically walk the list of suspended devices and check 2478 * whether any have their PME flag set. The assumption is that 2479 * we'll wake up often enough anyway that this won't be a huge 2480 * hit, and the power savings from the devices will still be a 2481 * win. 2482 * 2483 * Although PCIe uses in-band PME message instead of PME# line 2484 * to report PME, PME does not work for some PCIe devices in 2485 * reality. For example, there are devices that set their PME 2486 * status bits, but don't really bother to send a PME message; 2487 * there are PCI Express Root Ports that don't bother to 2488 * trigger interrupts when they receive PME messages from the 2489 * devices below. So PME poll is used for PCIe devices too. 2490 */ 2491 2492 if (dev->pme_poll) { 2493 struct pci_pme_device *pme_dev; 2494 if (enable) { 2495 pme_dev = kmalloc(sizeof(struct pci_pme_device), 2496 GFP_KERNEL); 2497 if (!pme_dev) { 2498 pci_warn(dev, "can't enable PME#\n"); 2499 return; 2500 } 2501 pme_dev->dev = dev; 2502 mutex_lock(&pci_pme_list_mutex); 2503 list_add(&pme_dev->list, &pci_pme_list); 2504 if (list_is_singular(&pci_pme_list)) 2505 queue_delayed_work(system_freezable_wq, 2506 &pci_pme_work, 2507 msecs_to_jiffies(PME_TIMEOUT)); 2508 mutex_unlock(&pci_pme_list_mutex); 2509 } else { 2510 mutex_lock(&pci_pme_list_mutex); 2511 list_for_each_entry(pme_dev, &pci_pme_list, list) { 2512 if (pme_dev->dev == dev) { 2513 list_del(&pme_dev->list); 2514 kfree(pme_dev); 2515 break; 2516 } 2517 } 2518 mutex_unlock(&pci_pme_list_mutex); 2519 } 2520 } 2521 2522 pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled"); 2523 } 2524 EXPORT_SYMBOL(pci_pme_active); 2525 2526 /** 2527 * __pci_enable_wake - enable PCI device as wakeup event source 2528 * @dev: PCI device affected 2529 * @state: PCI state from which device will issue wakeup events 2530 * @enable: True to enable event generation; false to disable 2531 * 2532 * This enables the device as a wakeup event source, or disables it. 2533 * When such events involves platform-specific hooks, those hooks are 2534 * called automatically by this routine. 2535 * 2536 * Devices with legacy power management (no standard PCI PM capabilities) 2537 * always require such platform hooks. 2538 * 2539 * RETURN VALUE: 2540 * 0 is returned on success 2541 * -EINVAL is returned if device is not supposed to wake up the system 2542 * Error code depending on the platform is returned if both the platform and 2543 * the native mechanism fail to enable the generation of wake-up events 2544 */ 2545 static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable) 2546 { 2547 int ret = 0; 2548 2549 /* 2550 * Bridges that are not power-manageable directly only signal 2551 * wakeup on behalf of subordinate devices which is set up 2552 * elsewhere, so skip them. However, bridges that are 2553 * power-manageable may signal wakeup for themselves (for example, 2554 * on a hotplug event) and they need to be covered here. 2555 */ 2556 if (!pci_power_manageable(dev)) 2557 return 0; 2558 2559 /* Don't do the same thing twice in a row for one device. */ 2560 if (!!enable == !!dev->wakeup_prepared) 2561 return 0; 2562 2563 /* 2564 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don 2565 * Anderson we should be doing PME# wake enable followed by ACPI wake 2566 * enable. To disable wake-up we call the platform first, for symmetry. 2567 */ 2568 2569 if (enable) { 2570 int error; 2571 2572 /* 2573 * Enable PME signaling if the device can signal PME from 2574 * D3cold regardless of whether or not it can signal PME from 2575 * the current target state, because that will allow it to 2576 * signal PME when the hierarchy above it goes into D3cold and 2577 * the device itself ends up in D3cold as a result of that. 2578 */ 2579 if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold)) 2580 pci_pme_active(dev, true); 2581 else 2582 ret = 1; 2583 error = platform_pci_set_wakeup(dev, true); 2584 if (ret) 2585 ret = error; 2586 if (!ret) 2587 dev->wakeup_prepared = true; 2588 } else { 2589 platform_pci_set_wakeup(dev, false); 2590 pci_pme_active(dev, false); 2591 dev->wakeup_prepared = false; 2592 } 2593 2594 return ret; 2595 } 2596 2597 /** 2598 * pci_enable_wake - change wakeup settings for a PCI device 2599 * @pci_dev: Target device 2600 * @state: PCI state from which device will issue wakeup events 2601 * @enable: Whether or not to enable event generation 2602 * 2603 * If @enable is set, check device_may_wakeup() for the device before calling 2604 * __pci_enable_wake() for it. 2605 */ 2606 int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable) 2607 { 2608 if (enable && !device_may_wakeup(&pci_dev->dev)) 2609 return -EINVAL; 2610 2611 return __pci_enable_wake(pci_dev, state, enable); 2612 } 2613 EXPORT_SYMBOL(pci_enable_wake); 2614 2615 /** 2616 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold 2617 * @dev: PCI device to prepare 2618 * @enable: True to enable wake-up event generation; false to disable 2619 * 2620 * Many drivers want the device to wake up the system from D3_hot or D3_cold 2621 * and this function allows them to set that up cleanly - pci_enable_wake() 2622 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI 2623 * ordering constraints. 2624 * 2625 * This function only returns error code if the device is not allowed to wake 2626 * up the system from sleep or it is not capable of generating PME# from both 2627 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it. 2628 */ 2629 int pci_wake_from_d3(struct pci_dev *dev, bool enable) 2630 { 2631 return pci_pme_capable(dev, PCI_D3cold) ? 2632 pci_enable_wake(dev, PCI_D3cold, enable) : 2633 pci_enable_wake(dev, PCI_D3hot, enable); 2634 } 2635 EXPORT_SYMBOL(pci_wake_from_d3); 2636 2637 /** 2638 * pci_target_state - find an appropriate low power state for a given PCI dev 2639 * @dev: PCI device 2640 * @wakeup: Whether or not wakeup functionality will be enabled for the device. 2641 * 2642 * Use underlying platform code to find a supported low power state for @dev. 2643 * If the platform can't manage @dev, return the deepest state from which it 2644 * can generate wake events, based on any available PME info. 2645 */ 2646 static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup) 2647 { 2648 if (platform_pci_power_manageable(dev)) { 2649 /* 2650 * Call the platform to find the target state for the device. 2651 */ 2652 pci_power_t state = platform_pci_choose_state(dev); 2653 2654 switch (state) { 2655 case PCI_POWER_ERROR: 2656 case PCI_UNKNOWN: 2657 return PCI_D3hot; 2658 2659 case PCI_D1: 2660 case PCI_D2: 2661 if (pci_no_d1d2(dev)) 2662 return PCI_D3hot; 2663 } 2664 2665 return state; 2666 } 2667 2668 /* 2669 * If the device is in D3cold even though it's not power-manageable by 2670 * the platform, it may have been powered down by non-standard means. 2671 * Best to let it slumber. 2672 */ 2673 if (dev->current_state == PCI_D3cold) 2674 return PCI_D3cold; 2675 else if (!dev->pm_cap) 2676 return PCI_D0; 2677 2678 if (wakeup && dev->pme_support) { 2679 pci_power_t state = PCI_D3hot; 2680 2681 /* 2682 * Find the deepest state from which the device can generate 2683 * PME#. 2684 */ 2685 while (state && !(dev->pme_support & (1 << state))) 2686 state--; 2687 2688 if (state) 2689 return state; 2690 else if (dev->pme_support & 1) 2691 return PCI_D0; 2692 } 2693 2694 return PCI_D3hot; 2695 } 2696 2697 /** 2698 * pci_prepare_to_sleep - prepare PCI device for system-wide transition 2699 * into a sleep state 2700 * @dev: Device to handle. 2701 * 2702 * Choose the power state appropriate for the device depending on whether 2703 * it can wake up the system and/or is power manageable by the platform 2704 * (PCI_D3hot is the default) and put the device into that state. 2705 */ 2706 int pci_prepare_to_sleep(struct pci_dev *dev) 2707 { 2708 bool wakeup = device_may_wakeup(&dev->dev); 2709 pci_power_t target_state = pci_target_state(dev, wakeup); 2710 int error; 2711 2712 if (target_state == PCI_POWER_ERROR) 2713 return -EIO; 2714 2715 pci_enable_wake(dev, target_state, wakeup); 2716 2717 error = pci_set_power_state(dev, target_state); 2718 2719 if (error) 2720 pci_enable_wake(dev, target_state, false); 2721 2722 return error; 2723 } 2724 EXPORT_SYMBOL(pci_prepare_to_sleep); 2725 2726 /** 2727 * pci_back_from_sleep - turn PCI device on during system-wide transition 2728 * into working state 2729 * @dev: Device to handle. 2730 * 2731 * Disable device's system wake-up capability and put it into D0. 2732 */ 2733 int pci_back_from_sleep(struct pci_dev *dev) 2734 { 2735 int ret = pci_set_power_state(dev, PCI_D0); 2736 2737 if (ret) 2738 return ret; 2739 2740 pci_enable_wake(dev, PCI_D0, false); 2741 return 0; 2742 } 2743 EXPORT_SYMBOL(pci_back_from_sleep); 2744 2745 /** 2746 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend. 2747 * @dev: PCI device being suspended. 2748 * 2749 * Prepare @dev to generate wake-up events at run time and put it into a low 2750 * power state. 2751 */ 2752 int pci_finish_runtime_suspend(struct pci_dev *dev) 2753 { 2754 pci_power_t target_state; 2755 int error; 2756 2757 target_state = pci_target_state(dev, device_can_wakeup(&dev->dev)); 2758 if (target_state == PCI_POWER_ERROR) 2759 return -EIO; 2760 2761 __pci_enable_wake(dev, target_state, pci_dev_run_wake(dev)); 2762 2763 error = pci_set_power_state(dev, target_state); 2764 2765 if (error) 2766 pci_enable_wake(dev, target_state, false); 2767 2768 return error; 2769 } 2770 2771 /** 2772 * pci_dev_run_wake - Check if device can generate run-time wake-up events. 2773 * @dev: Device to check. 2774 * 2775 * Return true if the device itself is capable of generating wake-up events 2776 * (through the platform or using the native PCIe PME) or if the device supports 2777 * PME and one of its upstream bridges can generate wake-up events. 2778 */ 2779 bool pci_dev_run_wake(struct pci_dev *dev) 2780 { 2781 struct pci_bus *bus = dev->bus; 2782 2783 if (!dev->pme_support) 2784 return false; 2785 2786 /* PME-capable in principle, but not from the target power state */ 2787 if (!pci_pme_capable(dev, pci_target_state(dev, true))) 2788 return false; 2789 2790 if (device_can_wakeup(&dev->dev)) 2791 return true; 2792 2793 while (bus->parent) { 2794 struct pci_dev *bridge = bus->self; 2795 2796 if (device_can_wakeup(&bridge->dev)) 2797 return true; 2798 2799 bus = bus->parent; 2800 } 2801 2802 /* We have reached the root bus. */ 2803 if (bus->bridge) 2804 return device_can_wakeup(bus->bridge); 2805 2806 return false; 2807 } 2808 EXPORT_SYMBOL_GPL(pci_dev_run_wake); 2809 2810 /** 2811 * pci_dev_need_resume - Check if it is necessary to resume the device. 2812 * @pci_dev: Device to check. 2813 * 2814 * Return 'true' if the device is not runtime-suspended or it has to be 2815 * reconfigured due to wakeup settings difference between system and runtime 2816 * suspend, or the current power state of it is not suitable for the upcoming 2817 * (system-wide) transition. 2818 */ 2819 bool pci_dev_need_resume(struct pci_dev *pci_dev) 2820 { 2821 struct device *dev = &pci_dev->dev; 2822 pci_power_t target_state; 2823 2824 if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev)) 2825 return true; 2826 2827 target_state = pci_target_state(pci_dev, device_may_wakeup(dev)); 2828 2829 /* 2830 * If the earlier platform check has not triggered, D3cold is just power 2831 * removal on top of D3hot, so no need to resume the device in that 2832 * case. 2833 */ 2834 return target_state != pci_dev->current_state && 2835 target_state != PCI_D3cold && 2836 pci_dev->current_state != PCI_D3hot; 2837 } 2838 2839 /** 2840 * pci_dev_adjust_pme - Adjust PME setting for a suspended device. 2841 * @pci_dev: Device to check. 2842 * 2843 * If the device is suspended and it is not configured for system wakeup, 2844 * disable PME for it to prevent it from waking up the system unnecessarily. 2845 * 2846 * Note that if the device's power state is D3cold and the platform check in 2847 * pci_dev_need_resume() has not triggered, the device's configuration need not 2848 * be changed. 2849 */ 2850 void pci_dev_adjust_pme(struct pci_dev *pci_dev) 2851 { 2852 struct device *dev = &pci_dev->dev; 2853 2854 spin_lock_irq(&dev->power.lock); 2855 2856 if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) && 2857 pci_dev->current_state < PCI_D3cold) 2858 __pci_pme_active(pci_dev, false); 2859 2860 spin_unlock_irq(&dev->power.lock); 2861 } 2862 2863 /** 2864 * pci_dev_complete_resume - Finalize resume from system sleep for a device. 2865 * @pci_dev: Device to handle. 2866 * 2867 * If the device is runtime suspended and wakeup-capable, enable PME for it as 2868 * it might have been disabled during the prepare phase of system suspend if 2869 * the device was not configured for system wakeup. 2870 */ 2871 void pci_dev_complete_resume(struct pci_dev *pci_dev) 2872 { 2873 struct device *dev = &pci_dev->dev; 2874 2875 if (!pci_dev_run_wake(pci_dev)) 2876 return; 2877 2878 spin_lock_irq(&dev->power.lock); 2879 2880 if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold) 2881 __pci_pme_active(pci_dev, true); 2882 2883 spin_unlock_irq(&dev->power.lock); 2884 } 2885 2886 /** 2887 * pci_choose_state - Choose the power state of a PCI device. 2888 * @dev: Target PCI device. 2889 * @state: Target state for the whole system. 2890 * 2891 * Returns PCI power state suitable for @dev and @state. 2892 */ 2893 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state) 2894 { 2895 if (state.event == PM_EVENT_ON) 2896 return PCI_D0; 2897 2898 return pci_target_state(dev, false); 2899 } 2900 EXPORT_SYMBOL(pci_choose_state); 2901 2902 void pci_config_pm_runtime_get(struct pci_dev *pdev) 2903 { 2904 struct device *dev = &pdev->dev; 2905 struct device *parent = dev->parent; 2906 2907 if (parent) 2908 pm_runtime_get_sync(parent); 2909 pm_runtime_get_noresume(dev); 2910 /* 2911 * pdev->current_state is set to PCI_D3cold during suspending, 2912 * so wait until suspending completes 2913 */ 2914 pm_runtime_barrier(dev); 2915 /* 2916 * Only need to resume devices in D3cold, because config 2917 * registers are still accessible for devices suspended but 2918 * not in D3cold. 2919 */ 2920 if (pdev->current_state == PCI_D3cold) 2921 pm_runtime_resume(dev); 2922 } 2923 2924 void pci_config_pm_runtime_put(struct pci_dev *pdev) 2925 { 2926 struct device *dev = &pdev->dev; 2927 struct device *parent = dev->parent; 2928 2929 pm_runtime_put(dev); 2930 if (parent) 2931 pm_runtime_put_sync(parent); 2932 } 2933 2934 static const struct dmi_system_id bridge_d3_blacklist[] = { 2935 #ifdef CONFIG_X86 2936 { 2937 /* 2938 * Gigabyte X299 root port is not marked as hotplug capable 2939 * which allows Linux to power manage it. However, this 2940 * confuses the BIOS SMI handler so don't power manage root 2941 * ports on that system. 2942 */ 2943 .ident = "X299 DESIGNARE EX-CF", 2944 .matches = { 2945 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."), 2946 DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"), 2947 }, 2948 }, 2949 { 2950 /* 2951 * Downstream device is not accessible after putting a root port 2952 * into D3cold and back into D0 on Elo i2. 2953 */ 2954 .ident = "Elo i2", 2955 .matches = { 2956 DMI_MATCH(DMI_SYS_VENDOR, "Elo Touch Solutions"), 2957 DMI_MATCH(DMI_PRODUCT_NAME, "Elo i2"), 2958 DMI_MATCH(DMI_PRODUCT_VERSION, "RevB"), 2959 }, 2960 }, 2961 #endif 2962 { } 2963 }; 2964 2965 /** 2966 * pci_bridge_d3_possible - Is it possible to put the bridge into D3 2967 * @bridge: Bridge to check 2968 * 2969 * This function checks if it is possible to move the bridge to D3. 2970 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt. 2971 */ 2972 bool pci_bridge_d3_possible(struct pci_dev *bridge) 2973 { 2974 if (!pci_is_pcie(bridge)) 2975 return false; 2976 2977 switch (pci_pcie_type(bridge)) { 2978 case PCI_EXP_TYPE_ROOT_PORT: 2979 case PCI_EXP_TYPE_UPSTREAM: 2980 case PCI_EXP_TYPE_DOWNSTREAM: 2981 if (pci_bridge_d3_disable) 2982 return false; 2983 2984 /* 2985 * Hotplug ports handled by firmware in System Management Mode 2986 * may not be put into D3 by the OS (Thunderbolt on non-Macs). 2987 */ 2988 if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge)) 2989 return false; 2990 2991 if (pci_bridge_d3_force) 2992 return true; 2993 2994 /* Even the oldest 2010 Thunderbolt controller supports D3. */ 2995 if (bridge->is_thunderbolt) 2996 return true; 2997 2998 /* Platform might know better if the bridge supports D3 */ 2999 if (platform_pci_bridge_d3(bridge)) 3000 return true; 3001 3002 /* 3003 * Hotplug ports handled natively by the OS were not validated 3004 * by vendors for runtime D3 at least until 2018 because there 3005 * was no OS support. 3006 */ 3007 if (bridge->is_hotplug_bridge) 3008 return false; 3009 3010 if (dmi_check_system(bridge_d3_blacklist)) 3011 return false; 3012 3013 /* 3014 * It should be safe to put PCIe ports from 2015 or newer 3015 * to D3. 3016 */ 3017 if (dmi_get_bios_year() >= 2015) 3018 return true; 3019 break; 3020 } 3021 3022 return false; 3023 } 3024 3025 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data) 3026 { 3027 bool *d3cold_ok = data; 3028 3029 if (/* The device needs to be allowed to go D3cold ... */ 3030 dev->no_d3cold || !dev->d3cold_allowed || 3031 3032 /* ... and if it is wakeup capable to do so from D3cold. */ 3033 (device_may_wakeup(&dev->dev) && 3034 !pci_pme_capable(dev, PCI_D3cold)) || 3035 3036 /* If it is a bridge it must be allowed to go to D3. */ 3037 !pci_power_manageable(dev)) 3038 3039 *d3cold_ok = false; 3040 3041 return !*d3cold_ok; 3042 } 3043 3044 /* 3045 * pci_bridge_d3_update - Update bridge D3 capabilities 3046 * @dev: PCI device which is changed 3047 * 3048 * Update upstream bridge PM capabilities accordingly depending on if the 3049 * device PM configuration was changed or the device is being removed. The 3050 * change is also propagated upstream. 3051 */ 3052 void pci_bridge_d3_update(struct pci_dev *dev) 3053 { 3054 bool remove = !device_is_registered(&dev->dev); 3055 struct pci_dev *bridge; 3056 bool d3cold_ok = true; 3057 3058 bridge = pci_upstream_bridge(dev); 3059 if (!bridge || !pci_bridge_d3_possible(bridge)) 3060 return; 3061 3062 /* 3063 * If D3 is currently allowed for the bridge, removing one of its 3064 * children won't change that. 3065 */ 3066 if (remove && bridge->bridge_d3) 3067 return; 3068 3069 /* 3070 * If D3 is currently allowed for the bridge and a child is added or 3071 * changed, disallowance of D3 can only be caused by that child, so 3072 * we only need to check that single device, not any of its siblings. 3073 * 3074 * If D3 is currently not allowed for the bridge, checking the device 3075 * first may allow us to skip checking its siblings. 3076 */ 3077 if (!remove) 3078 pci_dev_check_d3cold(dev, &d3cold_ok); 3079 3080 /* 3081 * If D3 is currently not allowed for the bridge, this may be caused 3082 * either by the device being changed/removed or any of its siblings, 3083 * so we need to go through all children to find out if one of them 3084 * continues to block D3. 3085 */ 3086 if (d3cold_ok && !bridge->bridge_d3) 3087 pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold, 3088 &d3cold_ok); 3089 3090 if (bridge->bridge_d3 != d3cold_ok) { 3091 bridge->bridge_d3 = d3cold_ok; 3092 /* Propagate change to upstream bridges */ 3093 pci_bridge_d3_update(bridge); 3094 } 3095 } 3096 3097 /** 3098 * pci_d3cold_enable - Enable D3cold for device 3099 * @dev: PCI device to handle 3100 * 3101 * This function can be used in drivers to enable D3cold from the device 3102 * they handle. It also updates upstream PCI bridge PM capabilities 3103 * accordingly. 3104 */ 3105 void pci_d3cold_enable(struct pci_dev *dev) 3106 { 3107 if (dev->no_d3cold) { 3108 dev->no_d3cold = false; 3109 pci_bridge_d3_update(dev); 3110 } 3111 } 3112 EXPORT_SYMBOL_GPL(pci_d3cold_enable); 3113 3114 /** 3115 * pci_d3cold_disable - Disable D3cold for device 3116 * @dev: PCI device to handle 3117 * 3118 * This function can be used in drivers to disable D3cold from the device 3119 * they handle. It also updates upstream PCI bridge PM capabilities 3120 * accordingly. 3121 */ 3122 void pci_d3cold_disable(struct pci_dev *dev) 3123 { 3124 if (!dev->no_d3cold) { 3125 dev->no_d3cold = true; 3126 pci_bridge_d3_update(dev); 3127 } 3128 } 3129 EXPORT_SYMBOL_GPL(pci_d3cold_disable); 3130 3131 /** 3132 * pci_pm_init - Initialize PM functions of given PCI device 3133 * @dev: PCI device to handle. 3134 */ 3135 void pci_pm_init(struct pci_dev *dev) 3136 { 3137 int pm; 3138 u16 status; 3139 u16 pmc; 3140 3141 pm_runtime_forbid(&dev->dev); 3142 pm_runtime_set_active(&dev->dev); 3143 pm_runtime_enable(&dev->dev); 3144 device_enable_async_suspend(&dev->dev); 3145 dev->wakeup_prepared = false; 3146 3147 dev->pm_cap = 0; 3148 dev->pme_support = 0; 3149 3150 /* find PCI PM capability in list */ 3151 pm = pci_find_capability(dev, PCI_CAP_ID_PM); 3152 if (!pm) 3153 return; 3154 /* Check device's ability to generate PME# */ 3155 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc); 3156 3157 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) { 3158 pci_err(dev, "unsupported PM cap regs version (%u)\n", 3159 pmc & PCI_PM_CAP_VER_MASK); 3160 return; 3161 } 3162 3163 dev->pm_cap = pm; 3164 dev->d3hot_delay = PCI_PM_D3HOT_WAIT; 3165 dev->d3cold_delay = PCI_PM_D3COLD_WAIT; 3166 dev->bridge_d3 = pci_bridge_d3_possible(dev); 3167 dev->d3cold_allowed = true; 3168 3169 dev->d1_support = false; 3170 dev->d2_support = false; 3171 if (!pci_no_d1d2(dev)) { 3172 if (pmc & PCI_PM_CAP_D1) 3173 dev->d1_support = true; 3174 if (pmc & PCI_PM_CAP_D2) 3175 dev->d2_support = true; 3176 3177 if (dev->d1_support || dev->d2_support) 3178 pci_info(dev, "supports%s%s\n", 3179 dev->d1_support ? " D1" : "", 3180 dev->d2_support ? " D2" : ""); 3181 } 3182 3183 pmc &= PCI_PM_CAP_PME_MASK; 3184 if (pmc) { 3185 pci_info(dev, "PME# supported from%s%s%s%s%s\n", 3186 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "", 3187 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "", 3188 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "", 3189 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "", 3190 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : ""); 3191 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT; 3192 dev->pme_poll = true; 3193 /* 3194 * Make device's PM flags reflect the wake-up capability, but 3195 * let the user space enable it to wake up the system as needed. 3196 */ 3197 device_set_wakeup_capable(&dev->dev, true); 3198 /* Disable the PME# generation functionality */ 3199 pci_pme_active(dev, false); 3200 } 3201 3202 pci_read_config_word(dev, PCI_STATUS, &status); 3203 if (status & PCI_STATUS_IMM_READY) 3204 dev->imm_ready = 1; 3205 } 3206 3207 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop) 3208 { 3209 unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI; 3210 3211 switch (prop) { 3212 case PCI_EA_P_MEM: 3213 case PCI_EA_P_VF_MEM: 3214 flags |= IORESOURCE_MEM; 3215 break; 3216 case PCI_EA_P_MEM_PREFETCH: 3217 case PCI_EA_P_VF_MEM_PREFETCH: 3218 flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH; 3219 break; 3220 case PCI_EA_P_IO: 3221 flags |= IORESOURCE_IO; 3222 break; 3223 default: 3224 return 0; 3225 } 3226 3227 return flags; 3228 } 3229 3230 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei, 3231 u8 prop) 3232 { 3233 if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO) 3234 return &dev->resource[bei]; 3235 #ifdef CONFIG_PCI_IOV 3236 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 && 3237 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH)) 3238 return &dev->resource[PCI_IOV_RESOURCES + 3239 bei - PCI_EA_BEI_VF_BAR0]; 3240 #endif 3241 else if (bei == PCI_EA_BEI_ROM) 3242 return &dev->resource[PCI_ROM_RESOURCE]; 3243 else 3244 return NULL; 3245 } 3246 3247 /* Read an Enhanced Allocation (EA) entry */ 3248 static int pci_ea_read(struct pci_dev *dev, int offset) 3249 { 3250 struct resource *res; 3251 int ent_size, ent_offset = offset; 3252 resource_size_t start, end; 3253 unsigned long flags; 3254 u32 dw0, bei, base, max_offset; 3255 u8 prop; 3256 bool support_64 = (sizeof(resource_size_t) >= 8); 3257 3258 pci_read_config_dword(dev, ent_offset, &dw0); 3259 ent_offset += 4; 3260 3261 /* Entry size field indicates DWORDs after 1st */ 3262 ent_size = ((dw0 & PCI_EA_ES) + 1) << 2; 3263 3264 if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */ 3265 goto out; 3266 3267 bei = (dw0 & PCI_EA_BEI) >> 4; 3268 prop = (dw0 & PCI_EA_PP) >> 8; 3269 3270 /* 3271 * If the Property is in the reserved range, try the Secondary 3272 * Property instead. 3273 */ 3274 if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED) 3275 prop = (dw0 & PCI_EA_SP) >> 16; 3276 if (prop > PCI_EA_P_BRIDGE_IO) 3277 goto out; 3278 3279 res = pci_ea_get_resource(dev, bei, prop); 3280 if (!res) { 3281 pci_err(dev, "Unsupported EA entry BEI: %u\n", bei); 3282 goto out; 3283 } 3284 3285 flags = pci_ea_flags(dev, prop); 3286 if (!flags) { 3287 pci_err(dev, "Unsupported EA properties: %#x\n", prop); 3288 goto out; 3289 } 3290 3291 /* Read Base */ 3292 pci_read_config_dword(dev, ent_offset, &base); 3293 start = (base & PCI_EA_FIELD_MASK); 3294 ent_offset += 4; 3295 3296 /* Read MaxOffset */ 3297 pci_read_config_dword(dev, ent_offset, &max_offset); 3298 ent_offset += 4; 3299 3300 /* Read Base MSBs (if 64-bit entry) */ 3301 if (base & PCI_EA_IS_64) { 3302 u32 base_upper; 3303 3304 pci_read_config_dword(dev, ent_offset, &base_upper); 3305 ent_offset += 4; 3306 3307 flags |= IORESOURCE_MEM_64; 3308 3309 /* entry starts above 32-bit boundary, can't use */ 3310 if (!support_64 && base_upper) 3311 goto out; 3312 3313 if (support_64) 3314 start |= ((u64)base_upper << 32); 3315 } 3316 3317 end = start + (max_offset | 0x03); 3318 3319 /* Read MaxOffset MSBs (if 64-bit entry) */ 3320 if (max_offset & PCI_EA_IS_64) { 3321 u32 max_offset_upper; 3322 3323 pci_read_config_dword(dev, ent_offset, &max_offset_upper); 3324 ent_offset += 4; 3325 3326 flags |= IORESOURCE_MEM_64; 3327 3328 /* entry too big, can't use */ 3329 if (!support_64 && max_offset_upper) 3330 goto out; 3331 3332 if (support_64) 3333 end += ((u64)max_offset_upper << 32); 3334 } 3335 3336 if (end < start) { 3337 pci_err(dev, "EA Entry crosses address boundary\n"); 3338 goto out; 3339 } 3340 3341 if (ent_size != ent_offset - offset) { 3342 pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n", 3343 ent_size, ent_offset - offset); 3344 goto out; 3345 } 3346 3347 res->name = pci_name(dev); 3348 res->start = start; 3349 res->end = end; 3350 res->flags = flags; 3351 3352 if (bei <= PCI_EA_BEI_BAR5) 3353 pci_info(dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3354 bei, res, prop); 3355 else if (bei == PCI_EA_BEI_ROM) 3356 pci_info(dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n", 3357 res, prop); 3358 else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5) 3359 pci_info(dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n", 3360 bei - PCI_EA_BEI_VF_BAR0, res, prop); 3361 else 3362 pci_info(dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n", 3363 bei, res, prop); 3364 3365 out: 3366 return offset + ent_size; 3367 } 3368 3369 /* Enhanced Allocation Initialization */ 3370 void pci_ea_init(struct pci_dev *dev) 3371 { 3372 int ea; 3373 u8 num_ent; 3374 int offset; 3375 int i; 3376 3377 /* find PCI EA capability in list */ 3378 ea = pci_find_capability(dev, PCI_CAP_ID_EA); 3379 if (!ea) 3380 return; 3381 3382 /* determine the number of entries */ 3383 pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT, 3384 &num_ent); 3385 num_ent &= PCI_EA_NUM_ENT_MASK; 3386 3387 offset = ea + PCI_EA_FIRST_ENT; 3388 3389 /* Skip DWORD 2 for type 1 functions */ 3390 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) 3391 offset += 4; 3392 3393 /* parse each EA entry */ 3394 for (i = 0; i < num_ent; ++i) 3395 offset = pci_ea_read(dev, offset); 3396 } 3397 3398 static void pci_add_saved_cap(struct pci_dev *pci_dev, 3399 struct pci_cap_saved_state *new_cap) 3400 { 3401 hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space); 3402 } 3403 3404 /** 3405 * _pci_add_cap_save_buffer - allocate buffer for saving given 3406 * capability registers 3407 * @dev: the PCI device 3408 * @cap: the capability to allocate the buffer for 3409 * @extended: Standard or Extended capability ID 3410 * @size: requested size of the buffer 3411 */ 3412 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap, 3413 bool extended, unsigned int size) 3414 { 3415 int pos; 3416 struct pci_cap_saved_state *save_state; 3417 3418 if (extended) 3419 pos = pci_find_ext_capability(dev, cap); 3420 else 3421 pos = pci_find_capability(dev, cap); 3422 3423 if (!pos) 3424 return 0; 3425 3426 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL); 3427 if (!save_state) 3428 return -ENOMEM; 3429 3430 save_state->cap.cap_nr = cap; 3431 save_state->cap.cap_extended = extended; 3432 save_state->cap.size = size; 3433 pci_add_saved_cap(dev, save_state); 3434 3435 return 0; 3436 } 3437 3438 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size) 3439 { 3440 return _pci_add_cap_save_buffer(dev, cap, false, size); 3441 } 3442 3443 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size) 3444 { 3445 return _pci_add_cap_save_buffer(dev, cap, true, size); 3446 } 3447 3448 /** 3449 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities 3450 * @dev: the PCI device 3451 */ 3452 void pci_allocate_cap_save_buffers(struct pci_dev *dev) 3453 { 3454 int error; 3455 3456 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP, 3457 PCI_EXP_SAVE_REGS * sizeof(u16)); 3458 if (error) 3459 pci_err(dev, "unable to preallocate PCI Express save buffer\n"); 3460 3461 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16)); 3462 if (error) 3463 pci_err(dev, "unable to preallocate PCI-X save buffer\n"); 3464 3465 error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR, 3466 2 * sizeof(u16)); 3467 if (error) 3468 pci_err(dev, "unable to allocate suspend buffer for LTR\n"); 3469 3470 pci_allocate_vc_save_buffers(dev); 3471 } 3472 3473 void pci_free_cap_save_buffers(struct pci_dev *dev) 3474 { 3475 struct pci_cap_saved_state *tmp; 3476 struct hlist_node *n; 3477 3478 hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next) 3479 kfree(tmp); 3480 } 3481 3482 /** 3483 * pci_configure_ari - enable or disable ARI forwarding 3484 * @dev: the PCI device 3485 * 3486 * If @dev and its upstream bridge both support ARI, enable ARI in the 3487 * bridge. Otherwise, disable ARI in the bridge. 3488 */ 3489 void pci_configure_ari(struct pci_dev *dev) 3490 { 3491 u32 cap; 3492 struct pci_dev *bridge; 3493 3494 if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn) 3495 return; 3496 3497 bridge = dev->bus->self; 3498 if (!bridge) 3499 return; 3500 3501 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3502 if (!(cap & PCI_EXP_DEVCAP2_ARI)) 3503 return; 3504 3505 if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) { 3506 pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2, 3507 PCI_EXP_DEVCTL2_ARI); 3508 bridge->ari_enabled = 1; 3509 } else { 3510 pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2, 3511 PCI_EXP_DEVCTL2_ARI); 3512 bridge->ari_enabled = 0; 3513 } 3514 } 3515 3516 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags) 3517 { 3518 int pos; 3519 u16 cap, ctrl; 3520 3521 pos = pdev->acs_cap; 3522 if (!pos) 3523 return false; 3524 3525 /* 3526 * Except for egress control, capabilities are either required 3527 * or only required if controllable. Features missing from the 3528 * capability field can therefore be assumed as hard-wired enabled. 3529 */ 3530 pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap); 3531 acs_flags &= (cap | PCI_ACS_EC); 3532 3533 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 3534 return (ctrl & acs_flags) == acs_flags; 3535 } 3536 3537 /** 3538 * pci_acs_enabled - test ACS against required flags for a given device 3539 * @pdev: device to test 3540 * @acs_flags: required PCI ACS flags 3541 * 3542 * Return true if the device supports the provided flags. Automatically 3543 * filters out flags that are not implemented on multifunction devices. 3544 * 3545 * Note that this interface checks the effective ACS capabilities of the 3546 * device rather than the actual capabilities. For instance, most single 3547 * function endpoints are not required to support ACS because they have no 3548 * opportunity for peer-to-peer access. We therefore return 'true' 3549 * regardless of whether the device exposes an ACS capability. This makes 3550 * it much easier for callers of this function to ignore the actual type 3551 * or topology of the device when testing ACS support. 3552 */ 3553 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags) 3554 { 3555 int ret; 3556 3557 ret = pci_dev_specific_acs_enabled(pdev, acs_flags); 3558 if (ret >= 0) 3559 return ret > 0; 3560 3561 /* 3562 * Conventional PCI and PCI-X devices never support ACS, either 3563 * effectively or actually. The shared bus topology implies that 3564 * any device on the bus can receive or snoop DMA. 3565 */ 3566 if (!pci_is_pcie(pdev)) 3567 return false; 3568 3569 switch (pci_pcie_type(pdev)) { 3570 /* 3571 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec, 3572 * but since their primary interface is PCI/X, we conservatively 3573 * handle them as we would a non-PCIe device. 3574 */ 3575 case PCI_EXP_TYPE_PCIE_BRIDGE: 3576 /* 3577 * PCIe 3.0, 6.12.1 excludes ACS on these devices. "ACS is never 3578 * applicable... must never implement an ACS Extended Capability...". 3579 * This seems arbitrary, but we take a conservative interpretation 3580 * of this statement. 3581 */ 3582 case PCI_EXP_TYPE_PCI_BRIDGE: 3583 case PCI_EXP_TYPE_RC_EC: 3584 return false; 3585 /* 3586 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should 3587 * implement ACS in order to indicate their peer-to-peer capabilities, 3588 * regardless of whether they are single- or multi-function devices. 3589 */ 3590 case PCI_EXP_TYPE_DOWNSTREAM: 3591 case PCI_EXP_TYPE_ROOT_PORT: 3592 return pci_acs_flags_enabled(pdev, acs_flags); 3593 /* 3594 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be 3595 * implemented by the remaining PCIe types to indicate peer-to-peer 3596 * capabilities, but only when they are part of a multifunction 3597 * device. The footnote for section 6.12 indicates the specific 3598 * PCIe types included here. 3599 */ 3600 case PCI_EXP_TYPE_ENDPOINT: 3601 case PCI_EXP_TYPE_UPSTREAM: 3602 case PCI_EXP_TYPE_LEG_END: 3603 case PCI_EXP_TYPE_RC_END: 3604 if (!pdev->multifunction) 3605 break; 3606 3607 return pci_acs_flags_enabled(pdev, acs_flags); 3608 } 3609 3610 /* 3611 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable 3612 * to single function devices with the exception of downstream ports. 3613 */ 3614 return true; 3615 } 3616 3617 /** 3618 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy 3619 * @start: starting downstream device 3620 * @end: ending upstream device or NULL to search to the root bus 3621 * @acs_flags: required flags 3622 * 3623 * Walk up a device tree from start to end testing PCI ACS support. If 3624 * any step along the way does not support the required flags, return false. 3625 */ 3626 bool pci_acs_path_enabled(struct pci_dev *start, 3627 struct pci_dev *end, u16 acs_flags) 3628 { 3629 struct pci_dev *pdev, *parent = start; 3630 3631 do { 3632 pdev = parent; 3633 3634 if (!pci_acs_enabled(pdev, acs_flags)) 3635 return false; 3636 3637 if (pci_is_root_bus(pdev->bus)) 3638 return (end == NULL); 3639 3640 parent = pdev->bus->self; 3641 } while (pdev != end); 3642 3643 return true; 3644 } 3645 3646 /** 3647 * pci_acs_init - Initialize ACS if hardware supports it 3648 * @dev: the PCI device 3649 */ 3650 void pci_acs_init(struct pci_dev *dev) 3651 { 3652 dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS); 3653 3654 /* 3655 * Attempt to enable ACS regardless of capability because some Root 3656 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have 3657 * the standard ACS capability but still support ACS via those 3658 * quirks. 3659 */ 3660 pci_enable_acs(dev); 3661 } 3662 3663 /** 3664 * pci_rebar_find_pos - find position of resize ctrl reg for BAR 3665 * @pdev: PCI device 3666 * @bar: BAR to find 3667 * 3668 * Helper to find the position of the ctrl register for a BAR. 3669 * Returns -ENOTSUPP if resizable BARs are not supported at all. 3670 * Returns -ENOENT if no ctrl register for the BAR could be found. 3671 */ 3672 static int pci_rebar_find_pos(struct pci_dev *pdev, int bar) 3673 { 3674 unsigned int pos, nbars, i; 3675 u32 ctrl; 3676 3677 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR); 3678 if (!pos) 3679 return -ENOTSUPP; 3680 3681 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3682 nbars = (ctrl & PCI_REBAR_CTRL_NBAR_MASK) >> 3683 PCI_REBAR_CTRL_NBAR_SHIFT; 3684 3685 for (i = 0; i < nbars; i++, pos += 8) { 3686 int bar_idx; 3687 3688 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3689 bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX; 3690 if (bar_idx == bar) 3691 return pos; 3692 } 3693 3694 return -ENOENT; 3695 } 3696 3697 /** 3698 * pci_rebar_get_possible_sizes - get possible sizes for BAR 3699 * @pdev: PCI device 3700 * @bar: BAR to query 3701 * 3702 * Get the possible sizes of a resizable BAR as bitmask defined in the spec 3703 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable. 3704 */ 3705 u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar) 3706 { 3707 int pos; 3708 u32 cap; 3709 3710 pos = pci_rebar_find_pos(pdev, bar); 3711 if (pos < 0) 3712 return 0; 3713 3714 pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap); 3715 cap &= PCI_REBAR_CAP_SIZES; 3716 3717 /* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */ 3718 if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f && 3719 bar == 0 && cap == 0x7000) 3720 cap = 0x3f000; 3721 3722 return cap >> 4; 3723 } 3724 EXPORT_SYMBOL(pci_rebar_get_possible_sizes); 3725 3726 /** 3727 * pci_rebar_get_current_size - get the current size of a BAR 3728 * @pdev: PCI device 3729 * @bar: BAR to set size to 3730 * 3731 * Read the size of a BAR from the resizable BAR config. 3732 * Returns size if found or negative error code. 3733 */ 3734 int pci_rebar_get_current_size(struct pci_dev *pdev, int bar) 3735 { 3736 int pos; 3737 u32 ctrl; 3738 3739 pos = pci_rebar_find_pos(pdev, bar); 3740 if (pos < 0) 3741 return pos; 3742 3743 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3744 return (ctrl & PCI_REBAR_CTRL_BAR_SIZE) >> PCI_REBAR_CTRL_BAR_SHIFT; 3745 } 3746 3747 /** 3748 * pci_rebar_set_size - set a new size for a BAR 3749 * @pdev: PCI device 3750 * @bar: BAR to set size to 3751 * @size: new size as defined in the spec (0=1MB, 19=512GB) 3752 * 3753 * Set the new size of a BAR as defined in the spec. 3754 * Returns zero if resizing was successful, error code otherwise. 3755 */ 3756 int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size) 3757 { 3758 int pos; 3759 u32 ctrl; 3760 3761 pos = pci_rebar_find_pos(pdev, bar); 3762 if (pos < 0) 3763 return pos; 3764 3765 pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl); 3766 ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE; 3767 ctrl |= size << PCI_REBAR_CTRL_BAR_SHIFT; 3768 pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl); 3769 return 0; 3770 } 3771 3772 /** 3773 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port 3774 * @dev: the PCI device 3775 * @cap_mask: mask of desired AtomicOp sizes, including one or more of: 3776 * PCI_EXP_DEVCAP2_ATOMIC_COMP32 3777 * PCI_EXP_DEVCAP2_ATOMIC_COMP64 3778 * PCI_EXP_DEVCAP2_ATOMIC_COMP128 3779 * 3780 * Return 0 if all upstream bridges support AtomicOp routing, egress 3781 * blocking is disabled on all upstream ports, and the root port supports 3782 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit 3783 * AtomicOp completion), or negative otherwise. 3784 */ 3785 int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask) 3786 { 3787 struct pci_bus *bus = dev->bus; 3788 struct pci_dev *bridge; 3789 u32 cap, ctl2; 3790 3791 /* 3792 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit 3793 * in Device Control 2 is reserved in VFs and the PF value applies 3794 * to all associated VFs. 3795 */ 3796 if (dev->is_virtfn) 3797 return -EINVAL; 3798 3799 if (!pci_is_pcie(dev)) 3800 return -EINVAL; 3801 3802 /* 3803 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be 3804 * AtomicOp requesters. For now, we only support endpoints as 3805 * requesters and root ports as completers. No endpoints as 3806 * completers, and no peer-to-peer. 3807 */ 3808 3809 switch (pci_pcie_type(dev)) { 3810 case PCI_EXP_TYPE_ENDPOINT: 3811 case PCI_EXP_TYPE_LEG_END: 3812 case PCI_EXP_TYPE_RC_END: 3813 break; 3814 default: 3815 return -EINVAL; 3816 } 3817 3818 while (bus->parent) { 3819 bridge = bus->self; 3820 3821 pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap); 3822 3823 switch (pci_pcie_type(bridge)) { 3824 /* Ensure switch ports support AtomicOp routing */ 3825 case PCI_EXP_TYPE_UPSTREAM: 3826 case PCI_EXP_TYPE_DOWNSTREAM: 3827 if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE)) 3828 return -EINVAL; 3829 break; 3830 3831 /* Ensure root port supports all the sizes we care about */ 3832 case PCI_EXP_TYPE_ROOT_PORT: 3833 if ((cap & cap_mask) != cap_mask) 3834 return -EINVAL; 3835 break; 3836 } 3837 3838 /* Ensure upstream ports don't block AtomicOps on egress */ 3839 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) { 3840 pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, 3841 &ctl2); 3842 if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK) 3843 return -EINVAL; 3844 } 3845 3846 bus = bus->parent; 3847 } 3848 3849 pcie_capability_set_word(dev, PCI_EXP_DEVCTL2, 3850 PCI_EXP_DEVCTL2_ATOMIC_REQ); 3851 return 0; 3852 } 3853 EXPORT_SYMBOL(pci_enable_atomic_ops_to_root); 3854 3855 /** 3856 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge 3857 * @dev: the PCI device 3858 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD) 3859 * 3860 * Perform INTx swizzling for a device behind one level of bridge. This is 3861 * required by section 9.1 of the PCI-to-PCI bridge specification for devices 3862 * behind bridges on add-in cards. For devices with ARI enabled, the slot 3863 * number is always 0 (see the Implementation Note in section 2.2.8.1 of 3864 * the PCI Express Base Specification, Revision 2.1) 3865 */ 3866 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin) 3867 { 3868 int slot; 3869 3870 if (pci_ari_enabled(dev->bus)) 3871 slot = 0; 3872 else 3873 slot = PCI_SLOT(dev->devfn); 3874 3875 return (((pin - 1) + slot) % 4) + 1; 3876 } 3877 3878 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge) 3879 { 3880 u8 pin; 3881 3882 pin = dev->pin; 3883 if (!pin) 3884 return -1; 3885 3886 while (!pci_is_root_bus(dev->bus)) { 3887 pin = pci_swizzle_interrupt_pin(dev, pin); 3888 dev = dev->bus->self; 3889 } 3890 *bridge = dev; 3891 return pin; 3892 } 3893 3894 /** 3895 * pci_common_swizzle - swizzle INTx all the way to root bridge 3896 * @dev: the PCI device 3897 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD) 3898 * 3899 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI 3900 * bridges all the way up to a PCI root bus. 3901 */ 3902 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp) 3903 { 3904 u8 pin = *pinp; 3905 3906 while (!pci_is_root_bus(dev->bus)) { 3907 pin = pci_swizzle_interrupt_pin(dev, pin); 3908 dev = dev->bus->self; 3909 } 3910 *pinp = pin; 3911 return PCI_SLOT(dev->devfn); 3912 } 3913 EXPORT_SYMBOL_GPL(pci_common_swizzle); 3914 3915 /** 3916 * pci_release_region - Release a PCI bar 3917 * @pdev: PCI device whose resources were previously reserved by 3918 * pci_request_region() 3919 * @bar: BAR to release 3920 * 3921 * Releases the PCI I/O and memory resources previously reserved by a 3922 * successful call to pci_request_region(). Call this function only 3923 * after all use of the PCI regions has ceased. 3924 */ 3925 void pci_release_region(struct pci_dev *pdev, int bar) 3926 { 3927 struct pci_devres *dr; 3928 3929 if (pci_resource_len(pdev, bar) == 0) 3930 return; 3931 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) 3932 release_region(pci_resource_start(pdev, bar), 3933 pci_resource_len(pdev, bar)); 3934 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) 3935 release_mem_region(pci_resource_start(pdev, bar), 3936 pci_resource_len(pdev, bar)); 3937 3938 dr = find_pci_dr(pdev); 3939 if (dr) 3940 dr->region_mask &= ~(1 << bar); 3941 } 3942 EXPORT_SYMBOL(pci_release_region); 3943 3944 /** 3945 * __pci_request_region - Reserved PCI I/O and memory resource 3946 * @pdev: PCI device whose resources are to be reserved 3947 * @bar: BAR to be reserved 3948 * @res_name: Name to be associated with resource. 3949 * @exclusive: whether the region access is exclusive or not 3950 * 3951 * Mark the PCI region associated with PCI device @pdev BAR @bar as 3952 * being reserved by owner @res_name. Do not access any 3953 * address inside the PCI regions unless this call returns 3954 * successfully. 3955 * 3956 * If @exclusive is set, then the region is marked so that userspace 3957 * is explicitly not allowed to map the resource via /dev/mem or 3958 * sysfs MMIO access. 3959 * 3960 * Returns 0 on success, or %EBUSY on error. A warning 3961 * message is also printed on failure. 3962 */ 3963 static int __pci_request_region(struct pci_dev *pdev, int bar, 3964 const char *res_name, int exclusive) 3965 { 3966 struct pci_devres *dr; 3967 3968 if (pci_resource_len(pdev, bar) == 0) 3969 return 0; 3970 3971 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) { 3972 if (!request_region(pci_resource_start(pdev, bar), 3973 pci_resource_len(pdev, bar), res_name)) 3974 goto err_out; 3975 } else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) { 3976 if (!__request_mem_region(pci_resource_start(pdev, bar), 3977 pci_resource_len(pdev, bar), res_name, 3978 exclusive)) 3979 goto err_out; 3980 } 3981 3982 dr = find_pci_dr(pdev); 3983 if (dr) 3984 dr->region_mask |= 1 << bar; 3985 3986 return 0; 3987 3988 err_out: 3989 pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar, 3990 &pdev->resource[bar]); 3991 return -EBUSY; 3992 } 3993 3994 /** 3995 * pci_request_region - Reserve PCI I/O and memory resource 3996 * @pdev: PCI device whose resources are to be reserved 3997 * @bar: BAR to be reserved 3998 * @res_name: Name to be associated with resource 3999 * 4000 * Mark the PCI region associated with PCI device @pdev BAR @bar as 4001 * being reserved by owner @res_name. Do not access any 4002 * address inside the PCI regions unless this call returns 4003 * successfully. 4004 * 4005 * Returns 0 on success, or %EBUSY on error. A warning 4006 * message is also printed on failure. 4007 */ 4008 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name) 4009 { 4010 return __pci_request_region(pdev, bar, res_name, 0); 4011 } 4012 EXPORT_SYMBOL(pci_request_region); 4013 4014 /** 4015 * pci_release_selected_regions - Release selected PCI I/O and memory resources 4016 * @pdev: PCI device whose resources were previously reserved 4017 * @bars: Bitmask of BARs to be released 4018 * 4019 * Release selected PCI I/O and memory resources previously reserved. 4020 * Call this function only after all use of the PCI regions has ceased. 4021 */ 4022 void pci_release_selected_regions(struct pci_dev *pdev, int bars) 4023 { 4024 int i; 4025 4026 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4027 if (bars & (1 << i)) 4028 pci_release_region(pdev, i); 4029 } 4030 EXPORT_SYMBOL(pci_release_selected_regions); 4031 4032 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars, 4033 const char *res_name, int excl) 4034 { 4035 int i; 4036 4037 for (i = 0; i < PCI_STD_NUM_BARS; i++) 4038 if (bars & (1 << i)) 4039 if (__pci_request_region(pdev, i, res_name, excl)) 4040 goto err_out; 4041 return 0; 4042 4043 err_out: 4044 while (--i >= 0) 4045 if (bars & (1 << i)) 4046 pci_release_region(pdev, i); 4047 4048 return -EBUSY; 4049 } 4050 4051 4052 /** 4053 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources 4054 * @pdev: PCI device whose resources are to be reserved 4055 * @bars: Bitmask of BARs to be requested 4056 * @res_name: Name to be associated with resource 4057 */ 4058 int pci_request_selected_regions(struct pci_dev *pdev, int bars, 4059 const char *res_name) 4060 { 4061 return __pci_request_selected_regions(pdev, bars, res_name, 0); 4062 } 4063 EXPORT_SYMBOL(pci_request_selected_regions); 4064 4065 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars, 4066 const char *res_name) 4067 { 4068 return __pci_request_selected_regions(pdev, bars, res_name, 4069 IORESOURCE_EXCLUSIVE); 4070 } 4071 EXPORT_SYMBOL(pci_request_selected_regions_exclusive); 4072 4073 /** 4074 * pci_release_regions - Release reserved PCI I/O and memory resources 4075 * @pdev: PCI device whose resources were previously reserved by 4076 * pci_request_regions() 4077 * 4078 * Releases all PCI I/O and memory resources previously reserved by a 4079 * successful call to pci_request_regions(). Call this function only 4080 * after all use of the PCI regions has ceased. 4081 */ 4082 4083 void pci_release_regions(struct pci_dev *pdev) 4084 { 4085 pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1); 4086 } 4087 EXPORT_SYMBOL(pci_release_regions); 4088 4089 /** 4090 * pci_request_regions - Reserve PCI I/O and memory resources 4091 * @pdev: PCI device whose resources are to be reserved 4092 * @res_name: Name to be associated with resource. 4093 * 4094 * Mark all PCI regions associated with PCI device @pdev as 4095 * being reserved by owner @res_name. Do not access any 4096 * address inside the PCI regions unless this call returns 4097 * successfully. 4098 * 4099 * Returns 0 on success, or %EBUSY on error. A warning 4100 * message is also printed on failure. 4101 */ 4102 int pci_request_regions(struct pci_dev *pdev, const char *res_name) 4103 { 4104 return pci_request_selected_regions(pdev, 4105 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4106 } 4107 EXPORT_SYMBOL(pci_request_regions); 4108 4109 /** 4110 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources 4111 * @pdev: PCI device whose resources are to be reserved 4112 * @res_name: Name to be associated with resource. 4113 * 4114 * Mark all PCI regions associated with PCI device @pdev as being reserved 4115 * by owner @res_name. Do not access any address inside the PCI regions 4116 * unless this call returns successfully. 4117 * 4118 * pci_request_regions_exclusive() will mark the region so that /dev/mem 4119 * and the sysfs MMIO access will not be allowed. 4120 * 4121 * Returns 0 on success, or %EBUSY on error. A warning message is also 4122 * printed on failure. 4123 */ 4124 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name) 4125 { 4126 return pci_request_selected_regions_exclusive(pdev, 4127 ((1 << PCI_STD_NUM_BARS) - 1), res_name); 4128 } 4129 EXPORT_SYMBOL(pci_request_regions_exclusive); 4130 4131 /* 4132 * Record the PCI IO range (expressed as CPU physical address + size). 4133 * Return a negative value if an error has occurred, zero otherwise 4134 */ 4135 int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr, 4136 resource_size_t size) 4137 { 4138 int ret = 0; 4139 #ifdef PCI_IOBASE 4140 struct logic_pio_hwaddr *range; 4141 4142 if (!size || addr + size < addr) 4143 return -EINVAL; 4144 4145 range = kzalloc(sizeof(*range), GFP_ATOMIC); 4146 if (!range) 4147 return -ENOMEM; 4148 4149 range->fwnode = fwnode; 4150 range->size = size; 4151 range->hw_start = addr; 4152 range->flags = LOGIC_PIO_CPU_MMIO; 4153 4154 ret = logic_pio_register_range(range); 4155 if (ret) 4156 kfree(range); 4157 4158 /* Ignore duplicates due to deferred probing */ 4159 if (ret == -EEXIST) 4160 ret = 0; 4161 #endif 4162 4163 return ret; 4164 } 4165 4166 phys_addr_t pci_pio_to_address(unsigned long pio) 4167 { 4168 phys_addr_t address = (phys_addr_t)OF_BAD_ADDR; 4169 4170 #ifdef PCI_IOBASE 4171 if (pio >= MMIO_UPPER_LIMIT) 4172 return address; 4173 4174 address = logic_pio_to_hwaddr(pio); 4175 #endif 4176 4177 return address; 4178 } 4179 EXPORT_SYMBOL_GPL(pci_pio_to_address); 4180 4181 unsigned long __weak pci_address_to_pio(phys_addr_t address) 4182 { 4183 #ifdef PCI_IOBASE 4184 return logic_pio_trans_cpuaddr(address); 4185 #else 4186 if (address > IO_SPACE_LIMIT) 4187 return (unsigned long)-1; 4188 4189 return (unsigned long) address; 4190 #endif 4191 } 4192 4193 /** 4194 * pci_remap_iospace - Remap the memory mapped I/O space 4195 * @res: Resource describing the I/O space 4196 * @phys_addr: physical address of range to be mapped 4197 * 4198 * Remap the memory mapped I/O space described by the @res and the CPU 4199 * physical address @phys_addr into virtual address space. Only 4200 * architectures that have memory mapped IO functions defined (and the 4201 * PCI_IOBASE value defined) should call this function. 4202 */ 4203 #ifndef pci_remap_iospace 4204 int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr) 4205 { 4206 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4207 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4208 4209 if (!(res->flags & IORESOURCE_IO)) 4210 return -EINVAL; 4211 4212 if (res->end > IO_SPACE_LIMIT) 4213 return -EINVAL; 4214 4215 return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr, 4216 pgprot_device(PAGE_KERNEL)); 4217 #else 4218 /* 4219 * This architecture does not have memory mapped I/O space, 4220 * so this function should never be called 4221 */ 4222 WARN_ONCE(1, "This architecture does not support memory mapped I/O\n"); 4223 return -ENODEV; 4224 #endif 4225 } 4226 EXPORT_SYMBOL(pci_remap_iospace); 4227 #endif 4228 4229 /** 4230 * pci_unmap_iospace - Unmap the memory mapped I/O space 4231 * @res: resource to be unmapped 4232 * 4233 * Unmap the CPU virtual address @res from virtual address space. Only 4234 * architectures that have memory mapped IO functions defined (and the 4235 * PCI_IOBASE value defined) should call this function. 4236 */ 4237 void pci_unmap_iospace(struct resource *res) 4238 { 4239 #if defined(PCI_IOBASE) && defined(CONFIG_MMU) 4240 unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start; 4241 4242 vunmap_range(vaddr, vaddr + resource_size(res)); 4243 #endif 4244 } 4245 EXPORT_SYMBOL(pci_unmap_iospace); 4246 4247 static void devm_pci_unmap_iospace(struct device *dev, void *ptr) 4248 { 4249 struct resource **res = ptr; 4250 4251 pci_unmap_iospace(*res); 4252 } 4253 4254 /** 4255 * devm_pci_remap_iospace - Managed pci_remap_iospace() 4256 * @dev: Generic device to remap IO address for 4257 * @res: Resource describing the I/O space 4258 * @phys_addr: physical address of range to be mapped 4259 * 4260 * Managed pci_remap_iospace(). Map is automatically unmapped on driver 4261 * detach. 4262 */ 4263 int devm_pci_remap_iospace(struct device *dev, const struct resource *res, 4264 phys_addr_t phys_addr) 4265 { 4266 const struct resource **ptr; 4267 int error; 4268 4269 ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL); 4270 if (!ptr) 4271 return -ENOMEM; 4272 4273 error = pci_remap_iospace(res, phys_addr); 4274 if (error) { 4275 devres_free(ptr); 4276 } else { 4277 *ptr = res; 4278 devres_add(dev, ptr); 4279 } 4280 4281 return error; 4282 } 4283 EXPORT_SYMBOL(devm_pci_remap_iospace); 4284 4285 /** 4286 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace() 4287 * @dev: Generic device to remap IO address for 4288 * @offset: Resource address to map 4289 * @size: Size of map 4290 * 4291 * Managed pci_remap_cfgspace(). Map is automatically unmapped on driver 4292 * detach. 4293 */ 4294 void __iomem *devm_pci_remap_cfgspace(struct device *dev, 4295 resource_size_t offset, 4296 resource_size_t size) 4297 { 4298 void __iomem **ptr, *addr; 4299 4300 ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL); 4301 if (!ptr) 4302 return NULL; 4303 4304 addr = pci_remap_cfgspace(offset, size); 4305 if (addr) { 4306 *ptr = addr; 4307 devres_add(dev, ptr); 4308 } else 4309 devres_free(ptr); 4310 4311 return addr; 4312 } 4313 EXPORT_SYMBOL(devm_pci_remap_cfgspace); 4314 4315 /** 4316 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource 4317 * @dev: generic device to handle the resource for 4318 * @res: configuration space resource to be handled 4319 * 4320 * Checks that a resource is a valid memory region, requests the memory 4321 * region and ioremaps with pci_remap_cfgspace() API that ensures the 4322 * proper PCI configuration space memory attributes are guaranteed. 4323 * 4324 * All operations are managed and will be undone on driver detach. 4325 * 4326 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code 4327 * on failure. Usage example:: 4328 * 4329 * res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 4330 * base = devm_pci_remap_cfg_resource(&pdev->dev, res); 4331 * if (IS_ERR(base)) 4332 * return PTR_ERR(base); 4333 */ 4334 void __iomem *devm_pci_remap_cfg_resource(struct device *dev, 4335 struct resource *res) 4336 { 4337 resource_size_t size; 4338 const char *name; 4339 void __iomem *dest_ptr; 4340 4341 BUG_ON(!dev); 4342 4343 if (!res || resource_type(res) != IORESOURCE_MEM) { 4344 dev_err(dev, "invalid resource\n"); 4345 return IOMEM_ERR_PTR(-EINVAL); 4346 } 4347 4348 size = resource_size(res); 4349 4350 if (res->name) 4351 name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev), 4352 res->name); 4353 else 4354 name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL); 4355 if (!name) 4356 return IOMEM_ERR_PTR(-ENOMEM); 4357 4358 if (!devm_request_mem_region(dev, res->start, size, name)) { 4359 dev_err(dev, "can't request region for resource %pR\n", res); 4360 return IOMEM_ERR_PTR(-EBUSY); 4361 } 4362 4363 dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size); 4364 if (!dest_ptr) { 4365 dev_err(dev, "ioremap failed for resource %pR\n", res); 4366 devm_release_mem_region(dev, res->start, size); 4367 dest_ptr = IOMEM_ERR_PTR(-ENOMEM); 4368 } 4369 4370 return dest_ptr; 4371 } 4372 EXPORT_SYMBOL(devm_pci_remap_cfg_resource); 4373 4374 static void __pci_set_master(struct pci_dev *dev, bool enable) 4375 { 4376 u16 old_cmd, cmd; 4377 4378 pci_read_config_word(dev, PCI_COMMAND, &old_cmd); 4379 if (enable) 4380 cmd = old_cmd | PCI_COMMAND_MASTER; 4381 else 4382 cmd = old_cmd & ~PCI_COMMAND_MASTER; 4383 if (cmd != old_cmd) { 4384 pci_dbg(dev, "%s bus mastering\n", 4385 enable ? "enabling" : "disabling"); 4386 pci_write_config_word(dev, PCI_COMMAND, cmd); 4387 } 4388 dev->is_busmaster = enable; 4389 } 4390 4391 /** 4392 * pcibios_setup - process "pci=" kernel boot arguments 4393 * @str: string used to pass in "pci=" kernel boot arguments 4394 * 4395 * Process kernel boot arguments. This is the default implementation. 4396 * Architecture specific implementations can override this as necessary. 4397 */ 4398 char * __weak __init pcibios_setup(char *str) 4399 { 4400 return str; 4401 } 4402 4403 /** 4404 * pcibios_set_master - enable PCI bus-mastering for device dev 4405 * @dev: the PCI device to enable 4406 * 4407 * Enables PCI bus-mastering for the device. This is the default 4408 * implementation. Architecture specific implementations can override 4409 * this if necessary. 4410 */ 4411 void __weak pcibios_set_master(struct pci_dev *dev) 4412 { 4413 u8 lat; 4414 4415 /* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */ 4416 if (pci_is_pcie(dev)) 4417 return; 4418 4419 pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat); 4420 if (lat < 16) 4421 lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency; 4422 else if (lat > pcibios_max_latency) 4423 lat = pcibios_max_latency; 4424 else 4425 return; 4426 4427 pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat); 4428 } 4429 4430 /** 4431 * pci_set_master - enables bus-mastering for device dev 4432 * @dev: the PCI device to enable 4433 * 4434 * Enables bus-mastering on the device and calls pcibios_set_master() 4435 * to do the needed arch specific settings. 4436 */ 4437 void pci_set_master(struct pci_dev *dev) 4438 { 4439 __pci_set_master(dev, true); 4440 pcibios_set_master(dev); 4441 } 4442 EXPORT_SYMBOL(pci_set_master); 4443 4444 /** 4445 * pci_clear_master - disables bus-mastering for device dev 4446 * @dev: the PCI device to disable 4447 */ 4448 void pci_clear_master(struct pci_dev *dev) 4449 { 4450 __pci_set_master(dev, false); 4451 } 4452 EXPORT_SYMBOL(pci_clear_master); 4453 4454 /** 4455 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed 4456 * @dev: the PCI device for which MWI is to be enabled 4457 * 4458 * Helper function for pci_set_mwi. 4459 * Originally copied from drivers/net/acenic.c. 4460 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. 4461 * 4462 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4463 */ 4464 int pci_set_cacheline_size(struct pci_dev *dev) 4465 { 4466 u8 cacheline_size; 4467 4468 if (!pci_cache_line_size) 4469 return -EINVAL; 4470 4471 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be 4472 equal to or multiple of the right value. */ 4473 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4474 if (cacheline_size >= pci_cache_line_size && 4475 (cacheline_size % pci_cache_line_size) == 0) 4476 return 0; 4477 4478 /* Write the correct value. */ 4479 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size); 4480 /* Read it back. */ 4481 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size); 4482 if (cacheline_size == pci_cache_line_size) 4483 return 0; 4484 4485 pci_dbg(dev, "cache line size of %d is not supported\n", 4486 pci_cache_line_size << 2); 4487 4488 return -EINVAL; 4489 } 4490 EXPORT_SYMBOL_GPL(pci_set_cacheline_size); 4491 4492 /** 4493 * pci_set_mwi - enables memory-write-invalidate PCI transaction 4494 * @dev: the PCI device for which MWI is enabled 4495 * 4496 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4497 * 4498 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4499 */ 4500 int pci_set_mwi(struct pci_dev *dev) 4501 { 4502 #ifdef PCI_DISABLE_MWI 4503 return 0; 4504 #else 4505 int rc; 4506 u16 cmd; 4507 4508 rc = pci_set_cacheline_size(dev); 4509 if (rc) 4510 return rc; 4511 4512 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4513 if (!(cmd & PCI_COMMAND_INVALIDATE)) { 4514 pci_dbg(dev, "enabling Mem-Wr-Inval\n"); 4515 cmd |= PCI_COMMAND_INVALIDATE; 4516 pci_write_config_word(dev, PCI_COMMAND, cmd); 4517 } 4518 return 0; 4519 #endif 4520 } 4521 EXPORT_SYMBOL(pci_set_mwi); 4522 4523 /** 4524 * pcim_set_mwi - a device-managed pci_set_mwi() 4525 * @dev: the PCI device for which MWI is enabled 4526 * 4527 * Managed pci_set_mwi(). 4528 * 4529 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4530 */ 4531 int pcim_set_mwi(struct pci_dev *dev) 4532 { 4533 struct pci_devres *dr; 4534 4535 dr = find_pci_dr(dev); 4536 if (!dr) 4537 return -ENOMEM; 4538 4539 dr->mwi = 1; 4540 return pci_set_mwi(dev); 4541 } 4542 EXPORT_SYMBOL(pcim_set_mwi); 4543 4544 /** 4545 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction 4546 * @dev: the PCI device for which MWI is enabled 4547 * 4548 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND. 4549 * Callers are not required to check the return value. 4550 * 4551 * RETURNS: An appropriate -ERRNO error value on error, or zero for success. 4552 */ 4553 int pci_try_set_mwi(struct pci_dev *dev) 4554 { 4555 #ifdef PCI_DISABLE_MWI 4556 return 0; 4557 #else 4558 return pci_set_mwi(dev); 4559 #endif 4560 } 4561 EXPORT_SYMBOL(pci_try_set_mwi); 4562 4563 /** 4564 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev 4565 * @dev: the PCI device to disable 4566 * 4567 * Disables PCI Memory-Write-Invalidate transaction on the device 4568 */ 4569 void pci_clear_mwi(struct pci_dev *dev) 4570 { 4571 #ifndef PCI_DISABLE_MWI 4572 u16 cmd; 4573 4574 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4575 if (cmd & PCI_COMMAND_INVALIDATE) { 4576 cmd &= ~PCI_COMMAND_INVALIDATE; 4577 pci_write_config_word(dev, PCI_COMMAND, cmd); 4578 } 4579 #endif 4580 } 4581 EXPORT_SYMBOL(pci_clear_mwi); 4582 4583 /** 4584 * pci_disable_parity - disable parity checking for device 4585 * @dev: the PCI device to operate on 4586 * 4587 * Disable parity checking for device @dev 4588 */ 4589 void pci_disable_parity(struct pci_dev *dev) 4590 { 4591 u16 cmd; 4592 4593 pci_read_config_word(dev, PCI_COMMAND, &cmd); 4594 if (cmd & PCI_COMMAND_PARITY) { 4595 cmd &= ~PCI_COMMAND_PARITY; 4596 pci_write_config_word(dev, PCI_COMMAND, cmd); 4597 } 4598 } 4599 4600 /** 4601 * pci_intx - enables/disables PCI INTx for device dev 4602 * @pdev: the PCI device to operate on 4603 * @enable: boolean: whether to enable or disable PCI INTx 4604 * 4605 * Enables/disables PCI INTx for device @pdev 4606 */ 4607 void pci_intx(struct pci_dev *pdev, int enable) 4608 { 4609 u16 pci_command, new; 4610 4611 pci_read_config_word(pdev, PCI_COMMAND, &pci_command); 4612 4613 if (enable) 4614 new = pci_command & ~PCI_COMMAND_INTX_DISABLE; 4615 else 4616 new = pci_command | PCI_COMMAND_INTX_DISABLE; 4617 4618 if (new != pci_command) { 4619 struct pci_devres *dr; 4620 4621 pci_write_config_word(pdev, PCI_COMMAND, new); 4622 4623 dr = find_pci_dr(pdev); 4624 if (dr && !dr->restore_intx) { 4625 dr->restore_intx = 1; 4626 dr->orig_intx = !enable; 4627 } 4628 } 4629 } 4630 EXPORT_SYMBOL_GPL(pci_intx); 4631 4632 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask) 4633 { 4634 struct pci_bus *bus = dev->bus; 4635 bool mask_updated = true; 4636 u32 cmd_status_dword; 4637 u16 origcmd, newcmd; 4638 unsigned long flags; 4639 bool irq_pending; 4640 4641 /* 4642 * We do a single dword read to retrieve both command and status. 4643 * Document assumptions that make this possible. 4644 */ 4645 BUILD_BUG_ON(PCI_COMMAND % 4); 4646 BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS); 4647 4648 raw_spin_lock_irqsave(&pci_lock, flags); 4649 4650 bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword); 4651 4652 irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT; 4653 4654 /* 4655 * Check interrupt status register to see whether our device 4656 * triggered the interrupt (when masking) or the next IRQ is 4657 * already pending (when unmasking). 4658 */ 4659 if (mask != irq_pending) { 4660 mask_updated = false; 4661 goto done; 4662 } 4663 4664 origcmd = cmd_status_dword; 4665 newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE; 4666 if (mask) 4667 newcmd |= PCI_COMMAND_INTX_DISABLE; 4668 if (newcmd != origcmd) 4669 bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd); 4670 4671 done: 4672 raw_spin_unlock_irqrestore(&pci_lock, flags); 4673 4674 return mask_updated; 4675 } 4676 4677 /** 4678 * pci_check_and_mask_intx - mask INTx on pending interrupt 4679 * @dev: the PCI device to operate on 4680 * 4681 * Check if the device dev has its INTx line asserted, mask it and return 4682 * true in that case. False is returned if no interrupt was pending. 4683 */ 4684 bool pci_check_and_mask_intx(struct pci_dev *dev) 4685 { 4686 return pci_check_and_set_intx_mask(dev, true); 4687 } 4688 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx); 4689 4690 /** 4691 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending 4692 * @dev: the PCI device to operate on 4693 * 4694 * Check if the device dev has its INTx line asserted, unmask it if not and 4695 * return true. False is returned and the mask remains active if there was 4696 * still an interrupt pending. 4697 */ 4698 bool pci_check_and_unmask_intx(struct pci_dev *dev) 4699 { 4700 return pci_check_and_set_intx_mask(dev, false); 4701 } 4702 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx); 4703 4704 /** 4705 * pci_wait_for_pending_transaction - wait for pending transaction 4706 * @dev: the PCI device to operate on 4707 * 4708 * Return 0 if transaction is pending 1 otherwise. 4709 */ 4710 int pci_wait_for_pending_transaction(struct pci_dev *dev) 4711 { 4712 if (!pci_is_pcie(dev)) 4713 return 1; 4714 4715 return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA, 4716 PCI_EXP_DEVSTA_TRPND); 4717 } 4718 EXPORT_SYMBOL(pci_wait_for_pending_transaction); 4719 4720 /** 4721 * pcie_flr - initiate a PCIe function level reset 4722 * @dev: device to reset 4723 * 4724 * Initiate a function level reset unconditionally on @dev without 4725 * checking any flags and DEVCAP 4726 */ 4727 int pcie_flr(struct pci_dev *dev) 4728 { 4729 if (!pci_wait_for_pending_transaction(dev)) 4730 pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n"); 4731 4732 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR); 4733 4734 if (dev->imm_ready) 4735 return 0; 4736 4737 /* 4738 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within 4739 * 100ms, but may silently discard requests while the FLR is in 4740 * progress. Wait 100ms before trying to access the device. 4741 */ 4742 msleep(100); 4743 4744 return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS); 4745 } 4746 EXPORT_SYMBOL_GPL(pcie_flr); 4747 4748 /** 4749 * pcie_reset_flr - initiate a PCIe function level reset 4750 * @dev: device to reset 4751 * @probe: if true, return 0 if device can be reset this way 4752 * 4753 * Initiate a function level reset on @dev. 4754 */ 4755 int pcie_reset_flr(struct pci_dev *dev, bool probe) 4756 { 4757 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4758 return -ENOTTY; 4759 4760 if (!(dev->devcap & PCI_EXP_DEVCAP_FLR)) 4761 return -ENOTTY; 4762 4763 if (probe) 4764 return 0; 4765 4766 return pcie_flr(dev); 4767 } 4768 EXPORT_SYMBOL_GPL(pcie_reset_flr); 4769 4770 static int pci_af_flr(struct pci_dev *dev, bool probe) 4771 { 4772 int pos; 4773 u8 cap; 4774 4775 pos = pci_find_capability(dev, PCI_CAP_ID_AF); 4776 if (!pos) 4777 return -ENOTTY; 4778 4779 if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET) 4780 return -ENOTTY; 4781 4782 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap); 4783 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR)) 4784 return -ENOTTY; 4785 4786 if (probe) 4787 return 0; 4788 4789 /* 4790 * Wait for Transaction Pending bit to clear. A word-aligned test 4791 * is used, so we use the control offset rather than status and shift 4792 * the test bit to match. 4793 */ 4794 if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL, 4795 PCI_AF_STATUS_TP << 8)) 4796 pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n"); 4797 4798 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR); 4799 4800 if (dev->imm_ready) 4801 return 0; 4802 4803 /* 4804 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006, 4805 * updated 27 July 2006; a device must complete an FLR within 4806 * 100ms, but may silently discard requests while the FLR is in 4807 * progress. Wait 100ms before trying to access the device. 4808 */ 4809 msleep(100); 4810 4811 return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS); 4812 } 4813 4814 /** 4815 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0. 4816 * @dev: Device to reset. 4817 * @probe: if true, return 0 if the device can be reset this way. 4818 * 4819 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is 4820 * unset, it will be reinitialized internally when going from PCI_D3hot to 4821 * PCI_D0. If that's the case and the device is not in a low-power state 4822 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset. 4823 * 4824 * NOTE: This causes the caller to sleep for twice the device power transition 4825 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms 4826 * by default (i.e. unless the @dev's d3hot_delay field has a different value). 4827 * Moreover, only devices in D0 can be reset by this function. 4828 */ 4829 static int pci_pm_reset(struct pci_dev *dev, bool probe) 4830 { 4831 u16 csr; 4832 4833 if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET) 4834 return -ENOTTY; 4835 4836 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr); 4837 if (csr & PCI_PM_CTRL_NO_SOFT_RESET) 4838 return -ENOTTY; 4839 4840 if (probe) 4841 return 0; 4842 4843 if (dev->current_state != PCI_D0) 4844 return -EINVAL; 4845 4846 csr &= ~PCI_PM_CTRL_STATE_MASK; 4847 csr |= PCI_D3hot; 4848 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4849 pci_dev_d3_sleep(dev); 4850 4851 csr &= ~PCI_PM_CTRL_STATE_MASK; 4852 csr |= PCI_D0; 4853 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr); 4854 pci_dev_d3_sleep(dev); 4855 4856 return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS); 4857 } 4858 4859 /** 4860 * pcie_wait_for_link_delay - Wait until link is active or inactive 4861 * @pdev: Bridge device 4862 * @active: waiting for active or inactive? 4863 * @delay: Delay to wait after link has become active (in ms) 4864 * 4865 * Use this to wait till link becomes active or inactive. 4866 */ 4867 static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active, 4868 int delay) 4869 { 4870 int timeout = 1000; 4871 bool ret; 4872 u16 lnk_status; 4873 4874 /* 4875 * Some controllers might not implement link active reporting. In this 4876 * case, we wait for 1000 ms + any delay requested by the caller. 4877 */ 4878 if (!pdev->link_active_reporting) { 4879 msleep(timeout + delay); 4880 return true; 4881 } 4882 4883 /* 4884 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms, 4885 * after which we should expect an link active if the reset was 4886 * successful. If so, software must wait a minimum 100ms before sending 4887 * configuration requests to devices downstream this port. 4888 * 4889 * If the link fails to activate, either the device was physically 4890 * removed or the link is permanently failed. 4891 */ 4892 if (active) 4893 msleep(20); 4894 for (;;) { 4895 pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnk_status); 4896 ret = !!(lnk_status & PCI_EXP_LNKSTA_DLLLA); 4897 if (ret == active) 4898 break; 4899 if (timeout <= 0) 4900 break; 4901 msleep(10); 4902 timeout -= 10; 4903 } 4904 if (active && ret) 4905 msleep(delay); 4906 4907 return ret == active; 4908 } 4909 4910 /** 4911 * pcie_wait_for_link - Wait until link is active or inactive 4912 * @pdev: Bridge device 4913 * @active: waiting for active or inactive? 4914 * 4915 * Use this to wait till link becomes active or inactive. 4916 */ 4917 bool pcie_wait_for_link(struct pci_dev *pdev, bool active) 4918 { 4919 return pcie_wait_for_link_delay(pdev, active, 100); 4920 } 4921 4922 /* 4923 * Find maximum D3cold delay required by all the devices on the bus. The 4924 * spec says 100 ms, but firmware can lower it and we allow drivers to 4925 * increase it as well. 4926 * 4927 * Called with @pci_bus_sem locked for reading. 4928 */ 4929 static int pci_bus_max_d3cold_delay(const struct pci_bus *bus) 4930 { 4931 const struct pci_dev *pdev; 4932 int min_delay = 100; 4933 int max_delay = 0; 4934 4935 list_for_each_entry(pdev, &bus->devices, bus_list) { 4936 if (pdev->d3cold_delay < min_delay) 4937 min_delay = pdev->d3cold_delay; 4938 if (pdev->d3cold_delay > max_delay) 4939 max_delay = pdev->d3cold_delay; 4940 } 4941 4942 return max(min_delay, max_delay); 4943 } 4944 4945 /** 4946 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible 4947 * @dev: PCI bridge 4948 * @reset_type: reset type in human-readable form 4949 * 4950 * Handle necessary delays before access to the devices on the secondary 4951 * side of the bridge are permitted after D3cold to D0 transition 4952 * or Conventional Reset. 4953 * 4954 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For 4955 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section 4956 * 4.3.2. 4957 * 4958 * Return 0 on success or -ENOTTY if the first device on the secondary bus 4959 * failed to become accessible. 4960 */ 4961 int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type) 4962 { 4963 struct pci_dev *child; 4964 int delay; 4965 4966 if (pci_dev_is_disconnected(dev)) 4967 return 0; 4968 4969 if (!pci_is_bridge(dev)) 4970 return 0; 4971 4972 down_read(&pci_bus_sem); 4973 4974 /* 4975 * We only deal with devices that are present currently on the bus. 4976 * For any hot-added devices the access delay is handled in pciehp 4977 * board_added(). In case of ACPI hotplug the firmware is expected 4978 * to configure the devices before OS is notified. 4979 */ 4980 if (!dev->subordinate || list_empty(&dev->subordinate->devices)) { 4981 up_read(&pci_bus_sem); 4982 return 0; 4983 } 4984 4985 /* Take d3cold_delay requirements into account */ 4986 delay = pci_bus_max_d3cold_delay(dev->subordinate); 4987 if (!delay) { 4988 up_read(&pci_bus_sem); 4989 return 0; 4990 } 4991 4992 child = list_first_entry(&dev->subordinate->devices, struct pci_dev, 4993 bus_list); 4994 up_read(&pci_bus_sem); 4995 4996 /* 4997 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before 4998 * accessing the device after reset (that is 1000 ms + 100 ms). 4999 */ 5000 if (!pci_is_pcie(dev)) { 5001 pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay); 5002 msleep(1000 + delay); 5003 return 0; 5004 } 5005 5006 /* 5007 * For PCIe downstream and root ports that do not support speeds 5008 * greater than 5 GT/s need to wait minimum 100 ms. For higher 5009 * speeds (gen3) we need to wait first for the data link layer to 5010 * become active. 5011 * 5012 * However, 100 ms is the minimum and the PCIe spec says the 5013 * software must allow at least 1s before it can determine that the 5014 * device that did not respond is a broken device. There is 5015 * evidence that 100 ms is not always enough, for example certain 5016 * Titan Ridge xHCI controller does not always respond to 5017 * configuration requests if we only wait for 100 ms (see 5018 * https://bugzilla.kernel.org/show_bug.cgi?id=203885). 5019 * 5020 * Therefore we wait for 100 ms and check for the device presence 5021 * until the timeout expires. 5022 */ 5023 if (!pcie_downstream_port(dev)) 5024 return 0; 5025 5026 if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) { 5027 pci_dbg(dev, "waiting %d ms for downstream link\n", delay); 5028 msleep(delay); 5029 } else { 5030 pci_dbg(dev, "waiting %d ms for downstream link, after activation\n", 5031 delay); 5032 if (!pcie_wait_for_link_delay(dev, true, delay)) { 5033 /* Did not train, no need to wait any further */ 5034 pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n"); 5035 return -ENOTTY; 5036 } 5037 } 5038 5039 return pci_dev_wait(child, reset_type, 5040 PCIE_RESET_READY_POLL_MS - delay); 5041 } 5042 5043 void pci_reset_secondary_bus(struct pci_dev *dev) 5044 { 5045 u16 ctrl; 5046 5047 pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl); 5048 ctrl |= PCI_BRIDGE_CTL_BUS_RESET; 5049 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5050 5051 /* 5052 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms. Double 5053 * this to 2ms to ensure that we meet the minimum requirement. 5054 */ 5055 msleep(2); 5056 5057 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET; 5058 pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl); 5059 } 5060 5061 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev) 5062 { 5063 pci_reset_secondary_bus(dev); 5064 } 5065 5066 /** 5067 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge. 5068 * @dev: Bridge device 5069 * 5070 * Use the bridge control register to assert reset on the secondary bus. 5071 * Devices on the secondary bus are left in power-on state. 5072 */ 5073 int pci_bridge_secondary_bus_reset(struct pci_dev *dev) 5074 { 5075 pcibios_reset_secondary_bus(dev); 5076 5077 return pci_bridge_wait_for_secondary_bus(dev, "bus reset"); 5078 } 5079 EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset); 5080 5081 static int pci_parent_bus_reset(struct pci_dev *dev, bool probe) 5082 { 5083 struct pci_dev *pdev; 5084 5085 if (pci_is_root_bus(dev->bus) || dev->subordinate || 5086 !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5087 return -ENOTTY; 5088 5089 list_for_each_entry(pdev, &dev->bus->devices, bus_list) 5090 if (pdev != dev) 5091 return -ENOTTY; 5092 5093 if (probe) 5094 return 0; 5095 5096 return pci_bridge_secondary_bus_reset(dev->bus->self); 5097 } 5098 5099 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe) 5100 { 5101 int rc = -ENOTTY; 5102 5103 if (!hotplug || !try_module_get(hotplug->owner)) 5104 return rc; 5105 5106 if (hotplug->ops->reset_slot) 5107 rc = hotplug->ops->reset_slot(hotplug, probe); 5108 5109 module_put(hotplug->owner); 5110 5111 return rc; 5112 } 5113 5114 static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe) 5115 { 5116 if (dev->multifunction || dev->subordinate || !dev->slot || 5117 dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET) 5118 return -ENOTTY; 5119 5120 return pci_reset_hotplug_slot(dev->slot->hotplug, probe); 5121 } 5122 5123 static int pci_reset_bus_function(struct pci_dev *dev, bool probe) 5124 { 5125 int rc; 5126 5127 rc = pci_dev_reset_slot_function(dev, probe); 5128 if (rc != -ENOTTY) 5129 return rc; 5130 return pci_parent_bus_reset(dev, probe); 5131 } 5132 5133 void pci_dev_lock(struct pci_dev *dev) 5134 { 5135 /* block PM suspend, driver probe, etc. */ 5136 device_lock(&dev->dev); 5137 pci_cfg_access_lock(dev); 5138 } 5139 EXPORT_SYMBOL_GPL(pci_dev_lock); 5140 5141 /* Return 1 on successful lock, 0 on contention */ 5142 int pci_dev_trylock(struct pci_dev *dev) 5143 { 5144 if (device_trylock(&dev->dev)) { 5145 if (pci_cfg_access_trylock(dev)) 5146 return 1; 5147 device_unlock(&dev->dev); 5148 } 5149 5150 return 0; 5151 } 5152 EXPORT_SYMBOL_GPL(pci_dev_trylock); 5153 5154 void pci_dev_unlock(struct pci_dev *dev) 5155 { 5156 pci_cfg_access_unlock(dev); 5157 device_unlock(&dev->dev); 5158 } 5159 EXPORT_SYMBOL_GPL(pci_dev_unlock); 5160 5161 static void pci_dev_save_and_disable(struct pci_dev *dev) 5162 { 5163 const struct pci_error_handlers *err_handler = 5164 dev->driver ? dev->driver->err_handler : NULL; 5165 5166 /* 5167 * dev->driver->err_handler->reset_prepare() is protected against 5168 * races with ->remove() by the device lock, which must be held by 5169 * the caller. 5170 */ 5171 if (err_handler && err_handler->reset_prepare) 5172 err_handler->reset_prepare(dev); 5173 5174 /* 5175 * Wake-up device prior to save. PM registers default to D0 after 5176 * reset and a simple register restore doesn't reliably return 5177 * to a non-D0 state anyway. 5178 */ 5179 pci_set_power_state(dev, PCI_D0); 5180 5181 pci_save_state(dev); 5182 /* 5183 * Disable the device by clearing the Command register, except for 5184 * INTx-disable which is set. This not only disables MMIO and I/O port 5185 * BARs, but also prevents the device from being Bus Master, preventing 5186 * DMA from the device including MSI/MSI-X interrupts. For PCI 2.3 5187 * compliant devices, INTx-disable prevents legacy interrupts. 5188 */ 5189 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE); 5190 } 5191 5192 static void pci_dev_restore(struct pci_dev *dev) 5193 { 5194 const struct pci_error_handlers *err_handler = 5195 dev->driver ? dev->driver->err_handler : NULL; 5196 5197 pci_restore_state(dev); 5198 5199 /* 5200 * dev->driver->err_handler->reset_done() is protected against 5201 * races with ->remove() by the device lock, which must be held by 5202 * the caller. 5203 */ 5204 if (err_handler && err_handler->reset_done) 5205 err_handler->reset_done(dev); 5206 } 5207 5208 /* dev->reset_methods[] is a 0-terminated list of indices into this array */ 5209 static const struct pci_reset_fn_method pci_reset_fn_methods[] = { 5210 { }, 5211 { pci_dev_specific_reset, .name = "device_specific" }, 5212 { pci_dev_acpi_reset, .name = "acpi" }, 5213 { pcie_reset_flr, .name = "flr" }, 5214 { pci_af_flr, .name = "af_flr" }, 5215 { pci_pm_reset, .name = "pm" }, 5216 { pci_reset_bus_function, .name = "bus" }, 5217 }; 5218 5219 static ssize_t reset_method_show(struct device *dev, 5220 struct device_attribute *attr, char *buf) 5221 { 5222 struct pci_dev *pdev = to_pci_dev(dev); 5223 ssize_t len = 0; 5224 int i, m; 5225 5226 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5227 m = pdev->reset_methods[i]; 5228 if (!m) 5229 break; 5230 5231 len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "", 5232 pci_reset_fn_methods[m].name); 5233 } 5234 5235 if (len) 5236 len += sysfs_emit_at(buf, len, "\n"); 5237 5238 return len; 5239 } 5240 5241 static int reset_method_lookup(const char *name) 5242 { 5243 int m; 5244 5245 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5246 if (sysfs_streq(name, pci_reset_fn_methods[m].name)) 5247 return m; 5248 } 5249 5250 return 0; /* not found */ 5251 } 5252 5253 static ssize_t reset_method_store(struct device *dev, 5254 struct device_attribute *attr, 5255 const char *buf, size_t count) 5256 { 5257 struct pci_dev *pdev = to_pci_dev(dev); 5258 char *options, *name; 5259 int m, n; 5260 u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 }; 5261 5262 if (sysfs_streq(buf, "")) { 5263 pdev->reset_methods[0] = 0; 5264 pci_warn(pdev, "All device reset methods disabled by user"); 5265 return count; 5266 } 5267 5268 if (sysfs_streq(buf, "default")) { 5269 pci_init_reset_methods(pdev); 5270 return count; 5271 } 5272 5273 options = kstrndup(buf, count, GFP_KERNEL); 5274 if (!options) 5275 return -ENOMEM; 5276 5277 n = 0; 5278 while ((name = strsep(&options, " ")) != NULL) { 5279 if (sysfs_streq(name, "")) 5280 continue; 5281 5282 name = strim(name); 5283 5284 m = reset_method_lookup(name); 5285 if (!m) { 5286 pci_err(pdev, "Invalid reset method '%s'", name); 5287 goto error; 5288 } 5289 5290 if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) { 5291 pci_err(pdev, "Unsupported reset method '%s'", name); 5292 goto error; 5293 } 5294 5295 if (n == PCI_NUM_RESET_METHODS - 1) { 5296 pci_err(pdev, "Too many reset methods\n"); 5297 goto error; 5298 } 5299 5300 reset_methods[n++] = m; 5301 } 5302 5303 reset_methods[n] = 0; 5304 5305 /* Warn if dev-specific supported but not highest priority */ 5306 if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 && 5307 reset_methods[0] != 1) 5308 pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user"); 5309 memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods)); 5310 kfree(options); 5311 return count; 5312 5313 error: 5314 /* Leave previous methods unchanged */ 5315 kfree(options); 5316 return -EINVAL; 5317 } 5318 static DEVICE_ATTR_RW(reset_method); 5319 5320 static struct attribute *pci_dev_reset_method_attrs[] = { 5321 &dev_attr_reset_method.attr, 5322 NULL, 5323 }; 5324 5325 static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj, 5326 struct attribute *a, int n) 5327 { 5328 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 5329 5330 if (!pci_reset_supported(pdev)) 5331 return 0; 5332 5333 return a->mode; 5334 } 5335 5336 const struct attribute_group pci_dev_reset_method_attr_group = { 5337 .attrs = pci_dev_reset_method_attrs, 5338 .is_visible = pci_dev_reset_method_attr_is_visible, 5339 }; 5340 5341 /** 5342 * __pci_reset_function_locked - reset a PCI device function while holding 5343 * the @dev mutex lock. 5344 * @dev: PCI device to reset 5345 * 5346 * Some devices allow an individual function to be reset without affecting 5347 * other functions in the same device. The PCI device must be responsive 5348 * to PCI config space in order to use this function. 5349 * 5350 * The device function is presumed to be unused and the caller is holding 5351 * the device mutex lock when this function is called. 5352 * 5353 * Resetting the device will make the contents of PCI configuration space 5354 * random, so any caller of this must be prepared to reinitialise the 5355 * device including MSI, bus mastering, BARs, decoding IO and memory spaces, 5356 * etc. 5357 * 5358 * Returns 0 if the device function was successfully reset or negative if the 5359 * device doesn't support resetting a single function. 5360 */ 5361 int __pci_reset_function_locked(struct pci_dev *dev) 5362 { 5363 int i, m, rc; 5364 5365 might_sleep(); 5366 5367 /* 5368 * A reset method returns -ENOTTY if it doesn't support this device and 5369 * we should try the next method. 5370 * 5371 * If it returns 0 (success), we're finished. If it returns any other 5372 * error, we're also finished: this indicates that further reset 5373 * mechanisms might be broken on the device. 5374 */ 5375 for (i = 0; i < PCI_NUM_RESET_METHODS; i++) { 5376 m = dev->reset_methods[i]; 5377 if (!m) 5378 return -ENOTTY; 5379 5380 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET); 5381 if (!rc) 5382 return 0; 5383 if (rc != -ENOTTY) 5384 return rc; 5385 } 5386 5387 return -ENOTTY; 5388 } 5389 EXPORT_SYMBOL_GPL(__pci_reset_function_locked); 5390 5391 /** 5392 * pci_init_reset_methods - check whether device can be safely reset 5393 * and store supported reset mechanisms. 5394 * @dev: PCI device to check for reset mechanisms 5395 * 5396 * Some devices allow an individual function to be reset without affecting 5397 * other functions in the same device. The PCI device must be in D0-D3hot 5398 * state. 5399 * 5400 * Stores reset mechanisms supported by device in reset_methods byte array 5401 * which is a member of struct pci_dev. 5402 */ 5403 void pci_init_reset_methods(struct pci_dev *dev) 5404 { 5405 int m, i, rc; 5406 5407 BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS); 5408 5409 might_sleep(); 5410 5411 i = 0; 5412 for (m = 1; m < PCI_NUM_RESET_METHODS; m++) { 5413 rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE); 5414 if (!rc) 5415 dev->reset_methods[i++] = m; 5416 else if (rc != -ENOTTY) 5417 break; 5418 } 5419 5420 dev->reset_methods[i] = 0; 5421 } 5422 5423 /** 5424 * pci_reset_function - quiesce and reset a PCI device function 5425 * @dev: PCI device to reset 5426 * 5427 * Some devices allow an individual function to be reset without affecting 5428 * other functions in the same device. The PCI device must be responsive 5429 * to PCI config space in order to use this function. 5430 * 5431 * This function does not just reset the PCI portion of a device, but 5432 * clears all the state associated with the device. This function differs 5433 * from __pci_reset_function_locked() in that it saves and restores device state 5434 * over the reset and takes the PCI device lock. 5435 * 5436 * Returns 0 if the device function was successfully reset or negative if the 5437 * device doesn't support resetting a single function. 5438 */ 5439 int pci_reset_function(struct pci_dev *dev) 5440 { 5441 int rc; 5442 5443 if (!pci_reset_supported(dev)) 5444 return -ENOTTY; 5445 5446 pci_dev_lock(dev); 5447 pci_dev_save_and_disable(dev); 5448 5449 rc = __pci_reset_function_locked(dev); 5450 5451 pci_dev_restore(dev); 5452 pci_dev_unlock(dev); 5453 5454 return rc; 5455 } 5456 EXPORT_SYMBOL_GPL(pci_reset_function); 5457 5458 /** 5459 * pci_reset_function_locked - quiesce and reset a PCI device function 5460 * @dev: PCI device to reset 5461 * 5462 * Some devices allow an individual function to be reset without affecting 5463 * other functions in the same device. The PCI device must be responsive 5464 * to PCI config space in order to use this function. 5465 * 5466 * This function does not just reset the PCI portion of a device, but 5467 * clears all the state associated with the device. This function differs 5468 * from __pci_reset_function_locked() in that it saves and restores device state 5469 * over the reset. It also differs from pci_reset_function() in that it 5470 * requires the PCI device lock to be held. 5471 * 5472 * Returns 0 if the device function was successfully reset or negative if the 5473 * device doesn't support resetting a single function. 5474 */ 5475 int pci_reset_function_locked(struct pci_dev *dev) 5476 { 5477 int rc; 5478 5479 if (!pci_reset_supported(dev)) 5480 return -ENOTTY; 5481 5482 pci_dev_save_and_disable(dev); 5483 5484 rc = __pci_reset_function_locked(dev); 5485 5486 pci_dev_restore(dev); 5487 5488 return rc; 5489 } 5490 EXPORT_SYMBOL_GPL(pci_reset_function_locked); 5491 5492 /** 5493 * pci_try_reset_function - quiesce and reset a PCI device function 5494 * @dev: PCI device to reset 5495 * 5496 * Same as above, except return -EAGAIN if unable to lock device. 5497 */ 5498 int pci_try_reset_function(struct pci_dev *dev) 5499 { 5500 int rc; 5501 5502 if (!pci_reset_supported(dev)) 5503 return -ENOTTY; 5504 5505 if (!pci_dev_trylock(dev)) 5506 return -EAGAIN; 5507 5508 pci_dev_save_and_disable(dev); 5509 rc = __pci_reset_function_locked(dev); 5510 pci_dev_restore(dev); 5511 pci_dev_unlock(dev); 5512 5513 return rc; 5514 } 5515 EXPORT_SYMBOL_GPL(pci_try_reset_function); 5516 5517 /* Do any devices on or below this bus prevent a bus reset? */ 5518 static bool pci_bus_resetable(struct pci_bus *bus) 5519 { 5520 struct pci_dev *dev; 5521 5522 5523 if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5524 return false; 5525 5526 list_for_each_entry(dev, &bus->devices, bus_list) { 5527 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5528 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5529 return false; 5530 } 5531 5532 return true; 5533 } 5534 5535 /* Lock devices from the top of the tree down */ 5536 static void pci_bus_lock(struct pci_bus *bus) 5537 { 5538 struct pci_dev *dev; 5539 5540 list_for_each_entry(dev, &bus->devices, bus_list) { 5541 pci_dev_lock(dev); 5542 if (dev->subordinate) 5543 pci_bus_lock(dev->subordinate); 5544 } 5545 } 5546 5547 /* Unlock devices from the bottom of the tree up */ 5548 static void pci_bus_unlock(struct pci_bus *bus) 5549 { 5550 struct pci_dev *dev; 5551 5552 list_for_each_entry(dev, &bus->devices, bus_list) { 5553 if (dev->subordinate) 5554 pci_bus_unlock(dev->subordinate); 5555 pci_dev_unlock(dev); 5556 } 5557 } 5558 5559 /* Return 1 on successful lock, 0 on contention */ 5560 static int pci_bus_trylock(struct pci_bus *bus) 5561 { 5562 struct pci_dev *dev; 5563 5564 list_for_each_entry(dev, &bus->devices, bus_list) { 5565 if (!pci_dev_trylock(dev)) 5566 goto unlock; 5567 if (dev->subordinate) { 5568 if (!pci_bus_trylock(dev->subordinate)) { 5569 pci_dev_unlock(dev); 5570 goto unlock; 5571 } 5572 } 5573 } 5574 return 1; 5575 5576 unlock: 5577 list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) { 5578 if (dev->subordinate) 5579 pci_bus_unlock(dev->subordinate); 5580 pci_dev_unlock(dev); 5581 } 5582 return 0; 5583 } 5584 5585 /* Do any devices on or below this slot prevent a bus reset? */ 5586 static bool pci_slot_resetable(struct pci_slot *slot) 5587 { 5588 struct pci_dev *dev; 5589 5590 if (slot->bus->self && 5591 (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)) 5592 return false; 5593 5594 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5595 if (!dev->slot || dev->slot != slot) 5596 continue; 5597 if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET || 5598 (dev->subordinate && !pci_bus_resetable(dev->subordinate))) 5599 return false; 5600 } 5601 5602 return true; 5603 } 5604 5605 /* Lock devices from the top of the tree down */ 5606 static void pci_slot_lock(struct pci_slot *slot) 5607 { 5608 struct pci_dev *dev; 5609 5610 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5611 if (!dev->slot || dev->slot != slot) 5612 continue; 5613 pci_dev_lock(dev); 5614 if (dev->subordinate) 5615 pci_bus_lock(dev->subordinate); 5616 } 5617 } 5618 5619 /* Unlock devices from the bottom of the tree up */ 5620 static void pci_slot_unlock(struct pci_slot *slot) 5621 { 5622 struct pci_dev *dev; 5623 5624 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5625 if (!dev->slot || dev->slot != slot) 5626 continue; 5627 if (dev->subordinate) 5628 pci_bus_unlock(dev->subordinate); 5629 pci_dev_unlock(dev); 5630 } 5631 } 5632 5633 /* Return 1 on successful lock, 0 on contention */ 5634 static int pci_slot_trylock(struct pci_slot *slot) 5635 { 5636 struct pci_dev *dev; 5637 5638 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5639 if (!dev->slot || dev->slot != slot) 5640 continue; 5641 if (!pci_dev_trylock(dev)) 5642 goto unlock; 5643 if (dev->subordinate) { 5644 if (!pci_bus_trylock(dev->subordinate)) { 5645 pci_dev_unlock(dev); 5646 goto unlock; 5647 } 5648 } 5649 } 5650 return 1; 5651 5652 unlock: 5653 list_for_each_entry_continue_reverse(dev, 5654 &slot->bus->devices, bus_list) { 5655 if (!dev->slot || dev->slot != slot) 5656 continue; 5657 if (dev->subordinate) 5658 pci_bus_unlock(dev->subordinate); 5659 pci_dev_unlock(dev); 5660 } 5661 return 0; 5662 } 5663 5664 /* 5665 * Save and disable devices from the top of the tree down while holding 5666 * the @dev mutex lock for the entire tree. 5667 */ 5668 static void pci_bus_save_and_disable_locked(struct pci_bus *bus) 5669 { 5670 struct pci_dev *dev; 5671 5672 list_for_each_entry(dev, &bus->devices, bus_list) { 5673 pci_dev_save_and_disable(dev); 5674 if (dev->subordinate) 5675 pci_bus_save_and_disable_locked(dev->subordinate); 5676 } 5677 } 5678 5679 /* 5680 * Restore devices from top of the tree down while holding @dev mutex lock 5681 * for the entire tree. Parent bridges need to be restored before we can 5682 * get to subordinate devices. 5683 */ 5684 static void pci_bus_restore_locked(struct pci_bus *bus) 5685 { 5686 struct pci_dev *dev; 5687 5688 list_for_each_entry(dev, &bus->devices, bus_list) { 5689 pci_dev_restore(dev); 5690 if (dev->subordinate) 5691 pci_bus_restore_locked(dev->subordinate); 5692 } 5693 } 5694 5695 /* 5696 * Save and disable devices from the top of the tree down while holding 5697 * the @dev mutex lock for the entire tree. 5698 */ 5699 static void pci_slot_save_and_disable_locked(struct pci_slot *slot) 5700 { 5701 struct pci_dev *dev; 5702 5703 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5704 if (!dev->slot || dev->slot != slot) 5705 continue; 5706 pci_dev_save_and_disable(dev); 5707 if (dev->subordinate) 5708 pci_bus_save_and_disable_locked(dev->subordinate); 5709 } 5710 } 5711 5712 /* 5713 * Restore devices from top of the tree down while holding @dev mutex lock 5714 * for the entire tree. Parent bridges need to be restored before we can 5715 * get to subordinate devices. 5716 */ 5717 static void pci_slot_restore_locked(struct pci_slot *slot) 5718 { 5719 struct pci_dev *dev; 5720 5721 list_for_each_entry(dev, &slot->bus->devices, bus_list) { 5722 if (!dev->slot || dev->slot != slot) 5723 continue; 5724 pci_dev_restore(dev); 5725 if (dev->subordinate) 5726 pci_bus_restore_locked(dev->subordinate); 5727 } 5728 } 5729 5730 static int pci_slot_reset(struct pci_slot *slot, bool probe) 5731 { 5732 int rc; 5733 5734 if (!slot || !pci_slot_resetable(slot)) 5735 return -ENOTTY; 5736 5737 if (!probe) 5738 pci_slot_lock(slot); 5739 5740 might_sleep(); 5741 5742 rc = pci_reset_hotplug_slot(slot->hotplug, probe); 5743 5744 if (!probe) 5745 pci_slot_unlock(slot); 5746 5747 return rc; 5748 } 5749 5750 /** 5751 * pci_probe_reset_slot - probe whether a PCI slot can be reset 5752 * @slot: PCI slot to probe 5753 * 5754 * Return 0 if slot can be reset, negative if a slot reset is not supported. 5755 */ 5756 int pci_probe_reset_slot(struct pci_slot *slot) 5757 { 5758 return pci_slot_reset(slot, PCI_RESET_PROBE); 5759 } 5760 EXPORT_SYMBOL_GPL(pci_probe_reset_slot); 5761 5762 /** 5763 * __pci_reset_slot - Try to reset a PCI slot 5764 * @slot: PCI slot to reset 5765 * 5766 * A PCI bus may host multiple slots, each slot may support a reset mechanism 5767 * independent of other slots. For instance, some slots may support slot power 5768 * control. In the case of a 1:1 bus to slot architecture, this function may 5769 * wrap the bus reset to avoid spurious slot related events such as hotplug. 5770 * Generally a slot reset should be attempted before a bus reset. All of the 5771 * function of the slot and any subordinate buses behind the slot are reset 5772 * through this function. PCI config space of all devices in the slot and 5773 * behind the slot is saved before and restored after reset. 5774 * 5775 * Same as above except return -EAGAIN if the slot cannot be locked 5776 */ 5777 static int __pci_reset_slot(struct pci_slot *slot) 5778 { 5779 int rc; 5780 5781 rc = pci_slot_reset(slot, PCI_RESET_PROBE); 5782 if (rc) 5783 return rc; 5784 5785 if (pci_slot_trylock(slot)) { 5786 pci_slot_save_and_disable_locked(slot); 5787 might_sleep(); 5788 rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET); 5789 pci_slot_restore_locked(slot); 5790 pci_slot_unlock(slot); 5791 } else 5792 rc = -EAGAIN; 5793 5794 return rc; 5795 } 5796 5797 static int pci_bus_reset(struct pci_bus *bus, bool probe) 5798 { 5799 int ret; 5800 5801 if (!bus->self || !pci_bus_resetable(bus)) 5802 return -ENOTTY; 5803 5804 if (probe) 5805 return 0; 5806 5807 pci_bus_lock(bus); 5808 5809 might_sleep(); 5810 5811 ret = pci_bridge_secondary_bus_reset(bus->self); 5812 5813 pci_bus_unlock(bus); 5814 5815 return ret; 5816 } 5817 5818 /** 5819 * pci_bus_error_reset - reset the bridge's subordinate bus 5820 * @bridge: The parent device that connects to the bus to reset 5821 * 5822 * This function will first try to reset the slots on this bus if the method is 5823 * available. If slot reset fails or is not available, this will fall back to a 5824 * secondary bus reset. 5825 */ 5826 int pci_bus_error_reset(struct pci_dev *bridge) 5827 { 5828 struct pci_bus *bus = bridge->subordinate; 5829 struct pci_slot *slot; 5830 5831 if (!bus) 5832 return -ENOTTY; 5833 5834 mutex_lock(&pci_slot_mutex); 5835 if (list_empty(&bus->slots)) 5836 goto bus_reset; 5837 5838 list_for_each_entry(slot, &bus->slots, list) 5839 if (pci_probe_reset_slot(slot)) 5840 goto bus_reset; 5841 5842 list_for_each_entry(slot, &bus->slots, list) 5843 if (pci_slot_reset(slot, PCI_RESET_DO_RESET)) 5844 goto bus_reset; 5845 5846 mutex_unlock(&pci_slot_mutex); 5847 return 0; 5848 bus_reset: 5849 mutex_unlock(&pci_slot_mutex); 5850 return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET); 5851 } 5852 5853 /** 5854 * pci_probe_reset_bus - probe whether a PCI bus can be reset 5855 * @bus: PCI bus to probe 5856 * 5857 * Return 0 if bus can be reset, negative if a bus reset is not supported. 5858 */ 5859 int pci_probe_reset_bus(struct pci_bus *bus) 5860 { 5861 return pci_bus_reset(bus, PCI_RESET_PROBE); 5862 } 5863 EXPORT_SYMBOL_GPL(pci_probe_reset_bus); 5864 5865 /** 5866 * __pci_reset_bus - Try to reset a PCI bus 5867 * @bus: top level PCI bus to reset 5868 * 5869 * Same as above except return -EAGAIN if the bus cannot be locked 5870 */ 5871 static int __pci_reset_bus(struct pci_bus *bus) 5872 { 5873 int rc; 5874 5875 rc = pci_bus_reset(bus, PCI_RESET_PROBE); 5876 if (rc) 5877 return rc; 5878 5879 if (pci_bus_trylock(bus)) { 5880 pci_bus_save_and_disable_locked(bus); 5881 might_sleep(); 5882 rc = pci_bridge_secondary_bus_reset(bus->self); 5883 pci_bus_restore_locked(bus); 5884 pci_bus_unlock(bus); 5885 } else 5886 rc = -EAGAIN; 5887 5888 return rc; 5889 } 5890 5891 /** 5892 * pci_reset_bus - Try to reset a PCI bus 5893 * @pdev: top level PCI device to reset via slot/bus 5894 * 5895 * Same as above except return -EAGAIN if the bus cannot be locked 5896 */ 5897 int pci_reset_bus(struct pci_dev *pdev) 5898 { 5899 return (!pci_probe_reset_slot(pdev->slot)) ? 5900 __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus); 5901 } 5902 EXPORT_SYMBOL_GPL(pci_reset_bus); 5903 5904 /** 5905 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count 5906 * @dev: PCI device to query 5907 * 5908 * Returns mmrbc: maximum designed memory read count in bytes or 5909 * appropriate error value. 5910 */ 5911 int pcix_get_max_mmrbc(struct pci_dev *dev) 5912 { 5913 int cap; 5914 u32 stat; 5915 5916 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5917 if (!cap) 5918 return -EINVAL; 5919 5920 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5921 return -EINVAL; 5922 5923 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21); 5924 } 5925 EXPORT_SYMBOL(pcix_get_max_mmrbc); 5926 5927 /** 5928 * pcix_get_mmrbc - get PCI-X maximum memory read byte count 5929 * @dev: PCI device to query 5930 * 5931 * Returns mmrbc: maximum memory read count in bytes or appropriate error 5932 * value. 5933 */ 5934 int pcix_get_mmrbc(struct pci_dev *dev) 5935 { 5936 int cap; 5937 u16 cmd; 5938 5939 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5940 if (!cap) 5941 return -EINVAL; 5942 5943 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5944 return -EINVAL; 5945 5946 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2); 5947 } 5948 EXPORT_SYMBOL(pcix_get_mmrbc); 5949 5950 /** 5951 * pcix_set_mmrbc - set PCI-X maximum memory read byte count 5952 * @dev: PCI device to query 5953 * @mmrbc: maximum memory read count in bytes 5954 * valid values are 512, 1024, 2048, 4096 5955 * 5956 * If possible sets maximum memory read byte count, some bridges have errata 5957 * that prevent this. 5958 */ 5959 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc) 5960 { 5961 int cap; 5962 u32 stat, v, o; 5963 u16 cmd; 5964 5965 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc)) 5966 return -EINVAL; 5967 5968 v = ffs(mmrbc) - 10; 5969 5970 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX); 5971 if (!cap) 5972 return -EINVAL; 5973 5974 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat)) 5975 return -EINVAL; 5976 5977 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21) 5978 return -E2BIG; 5979 5980 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd)) 5981 return -EINVAL; 5982 5983 o = (cmd & PCI_X_CMD_MAX_READ) >> 2; 5984 if (o != v) { 5985 if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC)) 5986 return -EIO; 5987 5988 cmd &= ~PCI_X_CMD_MAX_READ; 5989 cmd |= v << 2; 5990 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd)) 5991 return -EIO; 5992 } 5993 return 0; 5994 } 5995 EXPORT_SYMBOL(pcix_set_mmrbc); 5996 5997 /** 5998 * pcie_get_readrq - get PCI Express read request size 5999 * @dev: PCI device to query 6000 * 6001 * Returns maximum memory read request in bytes or appropriate error value. 6002 */ 6003 int pcie_get_readrq(struct pci_dev *dev) 6004 { 6005 u16 ctl; 6006 6007 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6008 6009 return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12); 6010 } 6011 EXPORT_SYMBOL(pcie_get_readrq); 6012 6013 /** 6014 * pcie_set_readrq - set PCI Express maximum memory read request 6015 * @dev: PCI device to query 6016 * @rq: maximum memory read count in bytes 6017 * valid values are 128, 256, 512, 1024, 2048, 4096 6018 * 6019 * If possible sets maximum memory read request in bytes 6020 */ 6021 int pcie_set_readrq(struct pci_dev *dev, int rq) 6022 { 6023 u16 v; 6024 int ret; 6025 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus); 6026 6027 if (rq < 128 || rq > 4096 || !is_power_of_2(rq)) 6028 return -EINVAL; 6029 6030 /* 6031 * If using the "performance" PCIe config, we clamp the read rq 6032 * size to the max packet size to keep the host bridge from 6033 * generating requests larger than we can cope with. 6034 */ 6035 if (pcie_bus_config == PCIE_BUS_PERFORMANCE) { 6036 int mps = pcie_get_mps(dev); 6037 6038 if (mps < rq) 6039 rq = mps; 6040 } 6041 6042 v = (ffs(rq) - 8) << 12; 6043 6044 if (bridge->no_inc_mrrs) { 6045 int max_mrrs = pcie_get_readrq(dev); 6046 6047 if (rq > max_mrrs) { 6048 pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs); 6049 return -EINVAL; 6050 } 6051 } 6052 6053 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6054 PCI_EXP_DEVCTL_READRQ, v); 6055 6056 return pcibios_err_to_errno(ret); 6057 } 6058 EXPORT_SYMBOL(pcie_set_readrq); 6059 6060 /** 6061 * pcie_get_mps - get PCI Express maximum payload size 6062 * @dev: PCI device to query 6063 * 6064 * Returns maximum payload size in bytes 6065 */ 6066 int pcie_get_mps(struct pci_dev *dev) 6067 { 6068 u16 ctl; 6069 6070 pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl); 6071 6072 return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5); 6073 } 6074 EXPORT_SYMBOL(pcie_get_mps); 6075 6076 /** 6077 * pcie_set_mps - set PCI Express maximum payload size 6078 * @dev: PCI device to query 6079 * @mps: maximum payload size in bytes 6080 * valid values are 128, 256, 512, 1024, 2048, 4096 6081 * 6082 * If possible sets maximum payload size 6083 */ 6084 int pcie_set_mps(struct pci_dev *dev, int mps) 6085 { 6086 u16 v; 6087 int ret; 6088 6089 if (mps < 128 || mps > 4096 || !is_power_of_2(mps)) 6090 return -EINVAL; 6091 6092 v = ffs(mps) - 8; 6093 if (v > dev->pcie_mpss) 6094 return -EINVAL; 6095 v <<= 5; 6096 6097 ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL, 6098 PCI_EXP_DEVCTL_PAYLOAD, v); 6099 6100 return pcibios_err_to_errno(ret); 6101 } 6102 EXPORT_SYMBOL(pcie_set_mps); 6103 6104 /** 6105 * pcie_bandwidth_available - determine minimum link settings of a PCIe 6106 * device and its bandwidth limitation 6107 * @dev: PCI device to query 6108 * @limiting_dev: storage for device causing the bandwidth limitation 6109 * @speed: storage for speed of limiting device 6110 * @width: storage for width of limiting device 6111 * 6112 * Walk up the PCI device chain and find the point where the minimum 6113 * bandwidth is available. Return the bandwidth available there and (if 6114 * limiting_dev, speed, and width pointers are supplied) information about 6115 * that point. The bandwidth returned is in Mb/s, i.e., megabits/second of 6116 * raw bandwidth. 6117 */ 6118 u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev, 6119 enum pci_bus_speed *speed, 6120 enum pcie_link_width *width) 6121 { 6122 u16 lnksta; 6123 enum pci_bus_speed next_speed; 6124 enum pcie_link_width next_width; 6125 u32 bw, next_bw; 6126 6127 if (speed) 6128 *speed = PCI_SPEED_UNKNOWN; 6129 if (width) 6130 *width = PCIE_LNK_WIDTH_UNKNOWN; 6131 6132 bw = 0; 6133 6134 while (dev) { 6135 pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta); 6136 6137 next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS]; 6138 next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >> 6139 PCI_EXP_LNKSTA_NLW_SHIFT; 6140 6141 next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed); 6142 6143 /* Check if current device limits the total bandwidth */ 6144 if (!bw || next_bw <= bw) { 6145 bw = next_bw; 6146 6147 if (limiting_dev) 6148 *limiting_dev = dev; 6149 if (speed) 6150 *speed = next_speed; 6151 if (width) 6152 *width = next_width; 6153 } 6154 6155 dev = pci_upstream_bridge(dev); 6156 } 6157 6158 return bw; 6159 } 6160 EXPORT_SYMBOL(pcie_bandwidth_available); 6161 6162 /** 6163 * pcie_get_speed_cap - query for the PCI device's link speed capability 6164 * @dev: PCI device to query 6165 * 6166 * Query the PCI device speed capability. Return the maximum link speed 6167 * supported by the device. 6168 */ 6169 enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev) 6170 { 6171 u32 lnkcap2, lnkcap; 6172 6173 /* 6174 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18. The 6175 * implementation note there recommends using the Supported Link 6176 * Speeds Vector in Link Capabilities 2 when supported. 6177 * 6178 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software 6179 * should use the Supported Link Speeds field in Link Capabilities, 6180 * where only 2.5 GT/s and 5.0 GT/s speeds were defined. 6181 */ 6182 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2); 6183 6184 /* PCIe r3.0-compliant */ 6185 if (lnkcap2) 6186 return PCIE_LNKCAP2_SLS2SPEED(lnkcap2); 6187 6188 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6189 if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB) 6190 return PCIE_SPEED_5_0GT; 6191 else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB) 6192 return PCIE_SPEED_2_5GT; 6193 6194 return PCI_SPEED_UNKNOWN; 6195 } 6196 EXPORT_SYMBOL(pcie_get_speed_cap); 6197 6198 /** 6199 * pcie_get_width_cap - query for the PCI device's link width capability 6200 * @dev: PCI device to query 6201 * 6202 * Query the PCI device width capability. Return the maximum link width 6203 * supported by the device. 6204 */ 6205 enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev) 6206 { 6207 u32 lnkcap; 6208 6209 pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap); 6210 if (lnkcap) 6211 return (lnkcap & PCI_EXP_LNKCAP_MLW) >> 4; 6212 6213 return PCIE_LNK_WIDTH_UNKNOWN; 6214 } 6215 EXPORT_SYMBOL(pcie_get_width_cap); 6216 6217 /** 6218 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability 6219 * @dev: PCI device 6220 * @speed: storage for link speed 6221 * @width: storage for link width 6222 * 6223 * Calculate a PCI device's link bandwidth by querying for its link speed 6224 * and width, multiplying them, and applying encoding overhead. The result 6225 * is in Mb/s, i.e., megabits/second of raw bandwidth. 6226 */ 6227 u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed, 6228 enum pcie_link_width *width) 6229 { 6230 *speed = pcie_get_speed_cap(dev); 6231 *width = pcie_get_width_cap(dev); 6232 6233 if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN) 6234 return 0; 6235 6236 return *width * PCIE_SPEED2MBS_ENC(*speed); 6237 } 6238 6239 /** 6240 * __pcie_print_link_status - Report the PCI device's link speed and width 6241 * @dev: PCI device to query 6242 * @verbose: Print info even when enough bandwidth is available 6243 * 6244 * If the available bandwidth at the device is less than the device is 6245 * capable of, report the device's maximum possible bandwidth and the 6246 * upstream link that limits its performance. If @verbose, always print 6247 * the available bandwidth, even if the device isn't constrained. 6248 */ 6249 void __pcie_print_link_status(struct pci_dev *dev, bool verbose) 6250 { 6251 enum pcie_link_width width, width_cap; 6252 enum pci_bus_speed speed, speed_cap; 6253 struct pci_dev *limiting_dev = NULL; 6254 u32 bw_avail, bw_cap; 6255 6256 bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap); 6257 bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width); 6258 6259 if (bw_avail >= bw_cap && verbose) 6260 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n", 6261 bw_cap / 1000, bw_cap % 1000, 6262 pci_speed_string(speed_cap), width_cap); 6263 else if (bw_avail < bw_cap) 6264 pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n", 6265 bw_avail / 1000, bw_avail % 1000, 6266 pci_speed_string(speed), width, 6267 limiting_dev ? pci_name(limiting_dev) : "<unknown>", 6268 bw_cap / 1000, bw_cap % 1000, 6269 pci_speed_string(speed_cap), width_cap); 6270 } 6271 6272 /** 6273 * pcie_print_link_status - Report the PCI device's link speed and width 6274 * @dev: PCI device to query 6275 * 6276 * Report the available bandwidth at the device. 6277 */ 6278 void pcie_print_link_status(struct pci_dev *dev) 6279 { 6280 __pcie_print_link_status(dev, true); 6281 } 6282 EXPORT_SYMBOL(pcie_print_link_status); 6283 6284 /** 6285 * pci_select_bars - Make BAR mask from the type of resource 6286 * @dev: the PCI device for which BAR mask is made 6287 * @flags: resource type mask to be selected 6288 * 6289 * This helper routine makes bar mask from the type of resource. 6290 */ 6291 int pci_select_bars(struct pci_dev *dev, unsigned long flags) 6292 { 6293 int i, bars = 0; 6294 for (i = 0; i < PCI_NUM_RESOURCES; i++) 6295 if (pci_resource_flags(dev, i) & flags) 6296 bars |= (1 << i); 6297 return bars; 6298 } 6299 EXPORT_SYMBOL(pci_select_bars); 6300 6301 /* Some architectures require additional programming to enable VGA */ 6302 static arch_set_vga_state_t arch_set_vga_state; 6303 6304 void __init pci_register_set_vga_state(arch_set_vga_state_t func) 6305 { 6306 arch_set_vga_state = func; /* NULL disables */ 6307 } 6308 6309 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode, 6310 unsigned int command_bits, u32 flags) 6311 { 6312 if (arch_set_vga_state) 6313 return arch_set_vga_state(dev, decode, command_bits, 6314 flags); 6315 return 0; 6316 } 6317 6318 /** 6319 * pci_set_vga_state - set VGA decode state on device and parents if requested 6320 * @dev: the PCI device 6321 * @decode: true = enable decoding, false = disable decoding 6322 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY 6323 * @flags: traverse ancestors and change bridges 6324 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE 6325 */ 6326 int pci_set_vga_state(struct pci_dev *dev, bool decode, 6327 unsigned int command_bits, u32 flags) 6328 { 6329 struct pci_bus *bus; 6330 struct pci_dev *bridge; 6331 u16 cmd; 6332 int rc; 6333 6334 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY))); 6335 6336 /* ARCH specific VGA enables */ 6337 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags); 6338 if (rc) 6339 return rc; 6340 6341 if (flags & PCI_VGA_STATE_CHANGE_DECODES) { 6342 pci_read_config_word(dev, PCI_COMMAND, &cmd); 6343 if (decode) 6344 cmd |= command_bits; 6345 else 6346 cmd &= ~command_bits; 6347 pci_write_config_word(dev, PCI_COMMAND, cmd); 6348 } 6349 6350 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE)) 6351 return 0; 6352 6353 bus = dev->bus; 6354 while (bus) { 6355 bridge = bus->self; 6356 if (bridge) { 6357 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL, 6358 &cmd); 6359 if (decode) 6360 cmd |= PCI_BRIDGE_CTL_VGA; 6361 else 6362 cmd &= ~PCI_BRIDGE_CTL_VGA; 6363 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL, 6364 cmd); 6365 } 6366 bus = bus->parent; 6367 } 6368 return 0; 6369 } 6370 6371 #ifdef CONFIG_ACPI 6372 bool pci_pr3_present(struct pci_dev *pdev) 6373 { 6374 struct acpi_device *adev; 6375 6376 if (acpi_disabled) 6377 return false; 6378 6379 adev = ACPI_COMPANION(&pdev->dev); 6380 if (!adev) 6381 return false; 6382 6383 return adev->power.flags.power_resources && 6384 acpi_has_method(adev->handle, "_PR3"); 6385 } 6386 EXPORT_SYMBOL_GPL(pci_pr3_present); 6387 #endif 6388 6389 /** 6390 * pci_add_dma_alias - Add a DMA devfn alias for a device 6391 * @dev: the PCI device for which alias is added 6392 * @devfn_from: alias slot and function 6393 * @nr_devfns: number of subsequent devfns to alias 6394 * 6395 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask 6396 * which is used to program permissible bus-devfn source addresses for DMA 6397 * requests in an IOMMU. These aliases factor into IOMMU group creation 6398 * and are useful for devices generating DMA requests beyond or different 6399 * from their logical bus-devfn. Examples include device quirks where the 6400 * device simply uses the wrong devfn, as well as non-transparent bridges 6401 * where the alias may be a proxy for devices in another domain. 6402 * 6403 * IOMMU group creation is performed during device discovery or addition, 6404 * prior to any potential DMA mapping and therefore prior to driver probing 6405 * (especially for userspace assigned devices where IOMMU group definition 6406 * cannot be left as a userspace activity). DMA aliases should therefore 6407 * be configured via quirks, such as the PCI fixup header quirk. 6408 */ 6409 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from, 6410 unsigned int nr_devfns) 6411 { 6412 int devfn_to; 6413 6414 nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from); 6415 devfn_to = devfn_from + nr_devfns - 1; 6416 6417 if (!dev->dma_alias_mask) 6418 dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL); 6419 if (!dev->dma_alias_mask) { 6420 pci_warn(dev, "Unable to allocate DMA alias mask\n"); 6421 return; 6422 } 6423 6424 bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns); 6425 6426 if (nr_devfns == 1) 6427 pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n", 6428 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from)); 6429 else if (nr_devfns > 1) 6430 pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n", 6431 PCI_SLOT(devfn_from), PCI_FUNC(devfn_from), 6432 PCI_SLOT(devfn_to), PCI_FUNC(devfn_to)); 6433 } 6434 6435 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2) 6436 { 6437 return (dev1->dma_alias_mask && 6438 test_bit(dev2->devfn, dev1->dma_alias_mask)) || 6439 (dev2->dma_alias_mask && 6440 test_bit(dev1->devfn, dev2->dma_alias_mask)) || 6441 pci_real_dma_dev(dev1) == dev2 || 6442 pci_real_dma_dev(dev2) == dev1; 6443 } 6444 6445 bool pci_device_is_present(struct pci_dev *pdev) 6446 { 6447 u32 v; 6448 6449 /* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */ 6450 pdev = pci_physfn(pdev); 6451 if (pci_dev_is_disconnected(pdev)) 6452 return false; 6453 return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0); 6454 } 6455 EXPORT_SYMBOL_GPL(pci_device_is_present); 6456 6457 void pci_ignore_hotplug(struct pci_dev *dev) 6458 { 6459 struct pci_dev *bridge = dev->bus->self; 6460 6461 dev->ignore_hotplug = 1; 6462 /* Propagate the "ignore hotplug" setting to the parent bridge. */ 6463 if (bridge) 6464 bridge->ignore_hotplug = 1; 6465 } 6466 EXPORT_SYMBOL_GPL(pci_ignore_hotplug); 6467 6468 /** 6469 * pci_real_dma_dev - Get PCI DMA device for PCI device 6470 * @dev: the PCI device that may have a PCI DMA alias 6471 * 6472 * Permits the platform to provide architecture-specific functionality to 6473 * devices needing to alias DMA to another PCI device on another PCI bus. If 6474 * the PCI device is on the same bus, it is recommended to use 6475 * pci_add_dma_alias(). This is the default implementation. Architecture 6476 * implementations can override this. 6477 */ 6478 struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev) 6479 { 6480 return dev; 6481 } 6482 6483 resource_size_t __weak pcibios_default_alignment(void) 6484 { 6485 return 0; 6486 } 6487 6488 /* 6489 * Arches that don't want to expose struct resource to userland as-is in 6490 * sysfs and /proc can implement their own pci_resource_to_user(). 6491 */ 6492 void __weak pci_resource_to_user(const struct pci_dev *dev, int bar, 6493 const struct resource *rsrc, 6494 resource_size_t *start, resource_size_t *end) 6495 { 6496 *start = rsrc->start; 6497 *end = rsrc->end; 6498 } 6499 6500 static char *resource_alignment_param; 6501 static DEFINE_SPINLOCK(resource_alignment_lock); 6502 6503 /** 6504 * pci_specified_resource_alignment - get resource alignment specified by user. 6505 * @dev: the PCI device to get 6506 * @resize: whether or not to change resources' size when reassigning alignment 6507 * 6508 * RETURNS: Resource alignment if it is specified. 6509 * Zero if it is not specified. 6510 */ 6511 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev, 6512 bool *resize) 6513 { 6514 int align_order, count; 6515 resource_size_t align = pcibios_default_alignment(); 6516 const char *p; 6517 int ret; 6518 6519 spin_lock(&resource_alignment_lock); 6520 p = resource_alignment_param; 6521 if (!p || !*p) 6522 goto out; 6523 if (pci_has_flag(PCI_PROBE_ONLY)) { 6524 align = 0; 6525 pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n"); 6526 goto out; 6527 } 6528 6529 while (*p) { 6530 count = 0; 6531 if (sscanf(p, "%d%n", &align_order, &count) == 1 && 6532 p[count] == '@') { 6533 p += count + 1; 6534 if (align_order > 63) { 6535 pr_err("PCI: Invalid requested alignment (order %d)\n", 6536 align_order); 6537 align_order = PAGE_SHIFT; 6538 } 6539 } else { 6540 align_order = PAGE_SHIFT; 6541 } 6542 6543 ret = pci_dev_str_match(dev, p, &p); 6544 if (ret == 1) { 6545 *resize = true; 6546 align = 1ULL << align_order; 6547 break; 6548 } else if (ret < 0) { 6549 pr_err("PCI: Can't parse resource_alignment parameter: %s\n", 6550 p); 6551 break; 6552 } 6553 6554 if (*p != ';' && *p != ',') { 6555 /* End of param or invalid format */ 6556 break; 6557 } 6558 p++; 6559 } 6560 out: 6561 spin_unlock(&resource_alignment_lock); 6562 return align; 6563 } 6564 6565 static void pci_request_resource_alignment(struct pci_dev *dev, int bar, 6566 resource_size_t align, bool resize) 6567 { 6568 struct resource *r = &dev->resource[bar]; 6569 resource_size_t size; 6570 6571 if (!(r->flags & IORESOURCE_MEM)) 6572 return; 6573 6574 if (r->flags & IORESOURCE_PCI_FIXED) { 6575 pci_info(dev, "BAR%d %pR: ignoring requested alignment %#llx\n", 6576 bar, r, (unsigned long long)align); 6577 return; 6578 } 6579 6580 size = resource_size(r); 6581 if (size >= align) 6582 return; 6583 6584 /* 6585 * Increase the alignment of the resource. There are two ways we 6586 * can do this: 6587 * 6588 * 1) Increase the size of the resource. BARs are aligned on their 6589 * size, so when we reallocate space for this resource, we'll 6590 * allocate it with the larger alignment. This also prevents 6591 * assignment of any other BARs inside the alignment region, so 6592 * if we're requesting page alignment, this means no other BARs 6593 * will share the page. 6594 * 6595 * The disadvantage is that this makes the resource larger than 6596 * the hardware BAR, which may break drivers that compute things 6597 * based on the resource size, e.g., to find registers at a 6598 * fixed offset before the end of the BAR. 6599 * 6600 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and 6601 * set r->start to the desired alignment. By itself this 6602 * doesn't prevent other BARs being put inside the alignment 6603 * region, but if we realign *every* resource of every device in 6604 * the system, none of them will share an alignment region. 6605 * 6606 * When the user has requested alignment for only some devices via 6607 * the "pci=resource_alignment" argument, "resize" is true and we 6608 * use the first method. Otherwise we assume we're aligning all 6609 * devices and we use the second. 6610 */ 6611 6612 pci_info(dev, "BAR%d %pR: requesting alignment to %#llx\n", 6613 bar, r, (unsigned long long)align); 6614 6615 if (resize) { 6616 r->start = 0; 6617 r->end = align - 1; 6618 } else { 6619 r->flags &= ~IORESOURCE_SIZEALIGN; 6620 r->flags |= IORESOURCE_STARTALIGN; 6621 r->start = align; 6622 r->end = r->start + size - 1; 6623 } 6624 r->flags |= IORESOURCE_UNSET; 6625 } 6626 6627 /* 6628 * This function disables memory decoding and releases memory resources 6629 * of the device specified by kernel's boot parameter 'pci=resource_alignment='. 6630 * It also rounds up size to specified alignment. 6631 * Later on, the kernel will assign page-aligned memory resource back 6632 * to the device. 6633 */ 6634 void pci_reassigndev_resource_alignment(struct pci_dev *dev) 6635 { 6636 int i; 6637 struct resource *r; 6638 resource_size_t align; 6639 u16 command; 6640 bool resize = false; 6641 6642 /* 6643 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec 6644 * 3.4.1.11. Their resources are allocated from the space 6645 * described by the VF BARx register in the PF's SR-IOV capability. 6646 * We can't influence their alignment here. 6647 */ 6648 if (dev->is_virtfn) 6649 return; 6650 6651 /* check if specified PCI is target device to reassign */ 6652 align = pci_specified_resource_alignment(dev, &resize); 6653 if (!align) 6654 return; 6655 6656 if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL && 6657 (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) { 6658 pci_warn(dev, "Can't reassign resources to host bridge\n"); 6659 return; 6660 } 6661 6662 pci_read_config_word(dev, PCI_COMMAND, &command); 6663 command &= ~PCI_COMMAND_MEMORY; 6664 pci_write_config_word(dev, PCI_COMMAND, command); 6665 6666 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 6667 pci_request_resource_alignment(dev, i, align, resize); 6668 6669 /* 6670 * Need to disable bridge's resource window, 6671 * to enable the kernel to reassign new resource 6672 * window later on. 6673 */ 6674 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 6675 for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) { 6676 r = &dev->resource[i]; 6677 if (!(r->flags & IORESOURCE_MEM)) 6678 continue; 6679 r->flags |= IORESOURCE_UNSET; 6680 r->end = resource_size(r) - 1; 6681 r->start = 0; 6682 } 6683 pci_disable_bridge_window(dev); 6684 } 6685 } 6686 6687 static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf) 6688 { 6689 size_t count = 0; 6690 6691 spin_lock(&resource_alignment_lock); 6692 if (resource_alignment_param) 6693 count = sysfs_emit(buf, "%s\n", resource_alignment_param); 6694 spin_unlock(&resource_alignment_lock); 6695 6696 return count; 6697 } 6698 6699 static ssize_t resource_alignment_store(const struct bus_type *bus, 6700 const char *buf, size_t count) 6701 { 6702 char *param, *old, *end; 6703 6704 if (count >= (PAGE_SIZE - 1)) 6705 return -EINVAL; 6706 6707 param = kstrndup(buf, count, GFP_KERNEL); 6708 if (!param) 6709 return -ENOMEM; 6710 6711 end = strchr(param, '\n'); 6712 if (end) 6713 *end = '\0'; 6714 6715 spin_lock(&resource_alignment_lock); 6716 old = resource_alignment_param; 6717 if (strlen(param)) { 6718 resource_alignment_param = param; 6719 } else { 6720 kfree(param); 6721 resource_alignment_param = NULL; 6722 } 6723 spin_unlock(&resource_alignment_lock); 6724 6725 kfree(old); 6726 6727 return count; 6728 } 6729 6730 static BUS_ATTR_RW(resource_alignment); 6731 6732 static int __init pci_resource_alignment_sysfs_init(void) 6733 { 6734 return bus_create_file(&pci_bus_type, 6735 &bus_attr_resource_alignment); 6736 } 6737 late_initcall(pci_resource_alignment_sysfs_init); 6738 6739 static void pci_no_domains(void) 6740 { 6741 #ifdef CONFIG_PCI_DOMAINS 6742 pci_domains_supported = 0; 6743 #endif 6744 } 6745 6746 #ifdef CONFIG_PCI_DOMAINS_GENERIC 6747 static DEFINE_IDA(pci_domain_nr_static_ida); 6748 static DEFINE_IDA(pci_domain_nr_dynamic_ida); 6749 6750 static void of_pci_reserve_static_domain_nr(void) 6751 { 6752 struct device_node *np; 6753 int domain_nr; 6754 6755 for_each_node_by_type(np, "pci") { 6756 domain_nr = of_get_pci_domain_nr(np); 6757 if (domain_nr < 0) 6758 continue; 6759 /* 6760 * Permanently allocate domain_nr in dynamic_ida 6761 * to prevent it from dynamic allocation. 6762 */ 6763 ida_alloc_range(&pci_domain_nr_dynamic_ida, 6764 domain_nr, domain_nr, GFP_KERNEL); 6765 } 6766 } 6767 6768 static int of_pci_bus_find_domain_nr(struct device *parent) 6769 { 6770 static bool static_domains_reserved = false; 6771 int domain_nr; 6772 6773 /* On the first call scan device tree for static allocations. */ 6774 if (!static_domains_reserved) { 6775 of_pci_reserve_static_domain_nr(); 6776 static_domains_reserved = true; 6777 } 6778 6779 if (parent) { 6780 /* 6781 * If domain is in DT, allocate it in static IDA. This 6782 * prevents duplicate static allocations in case of errors 6783 * in DT. 6784 */ 6785 domain_nr = of_get_pci_domain_nr(parent->of_node); 6786 if (domain_nr >= 0) 6787 return ida_alloc_range(&pci_domain_nr_static_ida, 6788 domain_nr, domain_nr, 6789 GFP_KERNEL); 6790 } 6791 6792 /* 6793 * If domain was not specified in DT, choose a free ID from dynamic 6794 * allocations. All domain numbers from DT are permanently in 6795 * dynamic allocations to prevent assigning them to other DT nodes 6796 * without static domain. 6797 */ 6798 return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL); 6799 } 6800 6801 static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6802 { 6803 if (bus->domain_nr < 0) 6804 return; 6805 6806 /* Release domain from IDA where it was allocated. */ 6807 if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr) 6808 ida_free(&pci_domain_nr_static_ida, bus->domain_nr); 6809 else 6810 ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr); 6811 } 6812 6813 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent) 6814 { 6815 return acpi_disabled ? of_pci_bus_find_domain_nr(parent) : 6816 acpi_pci_bus_find_domain_nr(bus); 6817 } 6818 6819 void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent) 6820 { 6821 if (!acpi_disabled) 6822 return; 6823 of_pci_bus_release_domain_nr(bus, parent); 6824 } 6825 #endif 6826 6827 /** 6828 * pci_ext_cfg_avail - can we access extended PCI config space? 6829 * 6830 * Returns 1 if we can access PCI extended config space (offsets 6831 * greater than 0xff). This is the default implementation. Architecture 6832 * implementations can override this. 6833 */ 6834 int __weak pci_ext_cfg_avail(void) 6835 { 6836 return 1; 6837 } 6838 6839 void __weak pci_fixup_cardbus(struct pci_bus *bus) 6840 { 6841 } 6842 EXPORT_SYMBOL(pci_fixup_cardbus); 6843 6844 static int __init pci_setup(char *str) 6845 { 6846 while (str) { 6847 char *k = strchr(str, ','); 6848 if (k) 6849 *k++ = 0; 6850 if (*str && (str = pcibios_setup(str)) && *str) { 6851 if (!strcmp(str, "nomsi")) { 6852 pci_no_msi(); 6853 } else if (!strncmp(str, "noats", 5)) { 6854 pr_info("PCIe: ATS is disabled\n"); 6855 pcie_ats_disabled = true; 6856 } else if (!strcmp(str, "noaer")) { 6857 pci_no_aer(); 6858 } else if (!strcmp(str, "earlydump")) { 6859 pci_early_dump = true; 6860 } else if (!strncmp(str, "realloc=", 8)) { 6861 pci_realloc_get_opt(str + 8); 6862 } else if (!strncmp(str, "realloc", 7)) { 6863 pci_realloc_get_opt("on"); 6864 } else if (!strcmp(str, "nodomains")) { 6865 pci_no_domains(); 6866 } else if (!strncmp(str, "noari", 5)) { 6867 pcie_ari_disabled = true; 6868 } else if (!strncmp(str, "cbiosize=", 9)) { 6869 pci_cardbus_io_size = memparse(str + 9, &str); 6870 } else if (!strncmp(str, "cbmemsize=", 10)) { 6871 pci_cardbus_mem_size = memparse(str + 10, &str); 6872 } else if (!strncmp(str, "resource_alignment=", 19)) { 6873 resource_alignment_param = str + 19; 6874 } else if (!strncmp(str, "ecrc=", 5)) { 6875 pcie_ecrc_get_policy(str + 5); 6876 } else if (!strncmp(str, "hpiosize=", 9)) { 6877 pci_hotplug_io_size = memparse(str + 9, &str); 6878 } else if (!strncmp(str, "hpmmiosize=", 11)) { 6879 pci_hotplug_mmio_size = memparse(str + 11, &str); 6880 } else if (!strncmp(str, "hpmmioprefsize=", 15)) { 6881 pci_hotplug_mmio_pref_size = memparse(str + 15, &str); 6882 } else if (!strncmp(str, "hpmemsize=", 10)) { 6883 pci_hotplug_mmio_size = memparse(str + 10, &str); 6884 pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size; 6885 } else if (!strncmp(str, "hpbussize=", 10)) { 6886 pci_hotplug_bus_size = 6887 simple_strtoul(str + 10, &str, 0); 6888 if (pci_hotplug_bus_size > 0xff) 6889 pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE; 6890 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) { 6891 pcie_bus_config = PCIE_BUS_TUNE_OFF; 6892 } else if (!strncmp(str, "pcie_bus_safe", 13)) { 6893 pcie_bus_config = PCIE_BUS_SAFE; 6894 } else if (!strncmp(str, "pcie_bus_perf", 13)) { 6895 pcie_bus_config = PCIE_BUS_PERFORMANCE; 6896 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) { 6897 pcie_bus_config = PCIE_BUS_PEER2PEER; 6898 } else if (!strncmp(str, "pcie_scan_all", 13)) { 6899 pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS); 6900 } else if (!strncmp(str, "disable_acs_redir=", 18)) { 6901 disable_acs_redir_param = str + 18; 6902 } else { 6903 pr_err("PCI: Unknown option `%s'\n", str); 6904 } 6905 } 6906 str = k; 6907 } 6908 return 0; 6909 } 6910 early_param("pci", pci_setup); 6911 6912 /* 6913 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized 6914 * in pci_setup(), above, to point to data in the __initdata section which 6915 * will be freed after the init sequence is complete. We can't allocate memory 6916 * in pci_setup() because some architectures do not have any memory allocation 6917 * service available during an early_param() call. So we allocate memory and 6918 * copy the variable here before the init section is freed. 6919 * 6920 */ 6921 static int __init pci_realloc_setup_params(void) 6922 { 6923 resource_alignment_param = kstrdup(resource_alignment_param, 6924 GFP_KERNEL); 6925 disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL); 6926 6927 return 0; 6928 } 6929 pure_initcall(pci_realloc_setup_params); 6930