xref: /openbmc/linux/drivers/pci/pci.c (revision 0317cd52)
1 /*
2  *	PCI Bus Services, see include/linux/pci.h for further explanation.
3  *
4  *	Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5  *	David Mosberger-Tang
6  *
7  *	Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/kernel.h>
12 #include <linux/delay.h>
13 #include <linux/dmi.h>
14 #include <linux/init.h>
15 #include <linux/of.h>
16 #include <linux/of_pci.h>
17 #include <linux/pci.h>
18 #include <linux/pm.h>
19 #include <linux/slab.h>
20 #include <linux/module.h>
21 #include <linux/spinlock.h>
22 #include <linux/string.h>
23 #include <linux/log2.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/pm_wakeup.h>
26 #include <linux/interrupt.h>
27 #include <linux/device.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/pci_hotplug.h>
30 #include <linux/vmalloc.h>
31 #include <asm/setup.h>
32 #include <asm/dma.h>
33 #include <linux/aer.h>
34 #include "pci.h"
35 
36 const char *pci_power_names[] = {
37 	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
38 };
39 EXPORT_SYMBOL_GPL(pci_power_names);
40 
41 int isa_dma_bridge_buggy;
42 EXPORT_SYMBOL(isa_dma_bridge_buggy);
43 
44 int pci_pci_problems;
45 EXPORT_SYMBOL(pci_pci_problems);
46 
47 unsigned int pci_pm_d3_delay;
48 
49 static void pci_pme_list_scan(struct work_struct *work);
50 
51 static LIST_HEAD(pci_pme_list);
52 static DEFINE_MUTEX(pci_pme_list_mutex);
53 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
54 
55 struct pci_pme_device {
56 	struct list_head list;
57 	struct pci_dev *dev;
58 };
59 
60 #define PME_TIMEOUT 1000 /* How long between PME checks */
61 
62 static void pci_dev_d3_sleep(struct pci_dev *dev)
63 {
64 	unsigned int delay = dev->d3_delay;
65 
66 	if (delay < pci_pm_d3_delay)
67 		delay = pci_pm_d3_delay;
68 
69 	msleep(delay);
70 }
71 
72 #ifdef CONFIG_PCI_DOMAINS
73 int pci_domains_supported = 1;
74 #endif
75 
76 #define DEFAULT_CARDBUS_IO_SIZE		(256)
77 #define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
78 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
79 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
80 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
81 
82 #define DEFAULT_HOTPLUG_IO_SIZE		(256)
83 #define DEFAULT_HOTPLUG_MEM_SIZE	(2*1024*1024)
84 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
85 unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
86 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
87 
88 #define DEFAULT_HOTPLUG_BUS_SIZE	1
89 unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
90 
91 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
92 
93 /*
94  * The default CLS is used if arch didn't set CLS explicitly and not
95  * all pci devices agree on the same value.  Arch can override either
96  * the dfl or actual value as it sees fit.  Don't forget this is
97  * measured in 32-bit words, not bytes.
98  */
99 u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
100 u8 pci_cache_line_size;
101 
102 /*
103  * If we set up a device for bus mastering, we need to check the latency
104  * timer as certain BIOSes forget to set it properly.
105  */
106 unsigned int pcibios_max_latency = 255;
107 
108 /* If set, the PCIe ARI capability will not be used. */
109 static bool pcie_ari_disabled;
110 
111 /* Disable bridge_d3 for all PCIe ports */
112 static bool pci_bridge_d3_disable;
113 /* Force bridge_d3 for all PCIe ports */
114 static bool pci_bridge_d3_force;
115 
116 static int __init pcie_port_pm_setup(char *str)
117 {
118 	if (!strcmp(str, "off"))
119 		pci_bridge_d3_disable = true;
120 	else if (!strcmp(str, "force"))
121 		pci_bridge_d3_force = true;
122 	return 1;
123 }
124 __setup("pcie_port_pm=", pcie_port_pm_setup);
125 
126 /**
127  * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
128  * @bus: pointer to PCI bus structure to search
129  *
130  * Given a PCI bus, returns the highest PCI bus number present in the set
131  * including the given PCI bus and its list of child PCI buses.
132  */
133 unsigned char pci_bus_max_busnr(struct pci_bus *bus)
134 {
135 	struct pci_bus *tmp;
136 	unsigned char max, n;
137 
138 	max = bus->busn_res.end;
139 	list_for_each_entry(tmp, &bus->children, node) {
140 		n = pci_bus_max_busnr(tmp);
141 		if (n > max)
142 			max = n;
143 	}
144 	return max;
145 }
146 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
147 
148 #ifdef CONFIG_HAS_IOMEM
149 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
150 {
151 	struct resource *res = &pdev->resource[bar];
152 
153 	/*
154 	 * Make sure the BAR is actually a memory resource, not an IO resource
155 	 */
156 	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
157 		dev_warn(&pdev->dev, "can't ioremap BAR %d: %pR\n", bar, res);
158 		return NULL;
159 	}
160 	return ioremap_nocache(res->start, resource_size(res));
161 }
162 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
163 
164 void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
165 {
166 	/*
167 	 * Make sure the BAR is actually a memory resource, not an IO resource
168 	 */
169 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
170 		WARN_ON(1);
171 		return NULL;
172 	}
173 	return ioremap_wc(pci_resource_start(pdev, bar),
174 			  pci_resource_len(pdev, bar));
175 }
176 EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
177 #endif
178 
179 
180 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
181 				   u8 pos, int cap, int *ttl)
182 {
183 	u8 id;
184 	u16 ent;
185 
186 	pci_bus_read_config_byte(bus, devfn, pos, &pos);
187 
188 	while ((*ttl)--) {
189 		if (pos < 0x40)
190 			break;
191 		pos &= ~3;
192 		pci_bus_read_config_word(bus, devfn, pos, &ent);
193 
194 		id = ent & 0xff;
195 		if (id == 0xff)
196 			break;
197 		if (id == cap)
198 			return pos;
199 		pos = (ent >> 8);
200 	}
201 	return 0;
202 }
203 
204 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
205 			       u8 pos, int cap)
206 {
207 	int ttl = PCI_FIND_CAP_TTL;
208 
209 	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
210 }
211 
212 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
213 {
214 	return __pci_find_next_cap(dev->bus, dev->devfn,
215 				   pos + PCI_CAP_LIST_NEXT, cap);
216 }
217 EXPORT_SYMBOL_GPL(pci_find_next_capability);
218 
219 static int __pci_bus_find_cap_start(struct pci_bus *bus,
220 				    unsigned int devfn, u8 hdr_type)
221 {
222 	u16 status;
223 
224 	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
225 	if (!(status & PCI_STATUS_CAP_LIST))
226 		return 0;
227 
228 	switch (hdr_type) {
229 	case PCI_HEADER_TYPE_NORMAL:
230 	case PCI_HEADER_TYPE_BRIDGE:
231 		return PCI_CAPABILITY_LIST;
232 	case PCI_HEADER_TYPE_CARDBUS:
233 		return PCI_CB_CAPABILITY_LIST;
234 	}
235 
236 	return 0;
237 }
238 
239 /**
240  * pci_find_capability - query for devices' capabilities
241  * @dev: PCI device to query
242  * @cap: capability code
243  *
244  * Tell if a device supports a given PCI capability.
245  * Returns the address of the requested capability structure within the
246  * device's PCI configuration space or 0 in case the device does not
247  * support it.  Possible values for @cap:
248  *
249  *  %PCI_CAP_ID_PM           Power Management
250  *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
251  *  %PCI_CAP_ID_VPD          Vital Product Data
252  *  %PCI_CAP_ID_SLOTID       Slot Identification
253  *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
254  *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
255  *  %PCI_CAP_ID_PCIX         PCI-X
256  *  %PCI_CAP_ID_EXP          PCI Express
257  */
258 int pci_find_capability(struct pci_dev *dev, int cap)
259 {
260 	int pos;
261 
262 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
263 	if (pos)
264 		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
265 
266 	return pos;
267 }
268 EXPORT_SYMBOL(pci_find_capability);
269 
270 /**
271  * pci_bus_find_capability - query for devices' capabilities
272  * @bus:   the PCI bus to query
273  * @devfn: PCI device to query
274  * @cap:   capability code
275  *
276  * Like pci_find_capability() but works for pci devices that do not have a
277  * pci_dev structure set up yet.
278  *
279  * Returns the address of the requested capability structure within the
280  * device's PCI configuration space or 0 in case the device does not
281  * support it.
282  */
283 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
284 {
285 	int pos;
286 	u8 hdr_type;
287 
288 	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
289 
290 	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
291 	if (pos)
292 		pos = __pci_find_next_cap(bus, devfn, pos, cap);
293 
294 	return pos;
295 }
296 EXPORT_SYMBOL(pci_bus_find_capability);
297 
298 /**
299  * pci_find_next_ext_capability - Find an extended capability
300  * @dev: PCI device to query
301  * @start: address at which to start looking (0 to start at beginning of list)
302  * @cap: capability code
303  *
304  * Returns the address of the next matching extended capability structure
305  * within the device's PCI configuration space or 0 if the device does
306  * not support it.  Some capabilities can occur several times, e.g., the
307  * vendor-specific capability, and this provides a way to find them all.
308  */
309 int pci_find_next_ext_capability(struct pci_dev *dev, int start, int cap)
310 {
311 	u32 header;
312 	int ttl;
313 	int pos = PCI_CFG_SPACE_SIZE;
314 
315 	/* minimum 8 bytes per capability */
316 	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
317 
318 	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
319 		return 0;
320 
321 	if (start)
322 		pos = start;
323 
324 	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
325 		return 0;
326 
327 	/*
328 	 * If we have no capabilities, this is indicated by cap ID,
329 	 * cap version and next pointer all being 0.
330 	 */
331 	if (header == 0)
332 		return 0;
333 
334 	while (ttl-- > 0) {
335 		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
336 			return pos;
337 
338 		pos = PCI_EXT_CAP_NEXT(header);
339 		if (pos < PCI_CFG_SPACE_SIZE)
340 			break;
341 
342 		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
343 			break;
344 	}
345 
346 	return 0;
347 }
348 EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);
349 
350 /**
351  * pci_find_ext_capability - Find an extended capability
352  * @dev: PCI device to query
353  * @cap: capability code
354  *
355  * Returns the address of the requested extended capability structure
356  * within the device's PCI configuration space or 0 if the device does
357  * not support it.  Possible values for @cap:
358  *
359  *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
360  *  %PCI_EXT_CAP_ID_VC		Virtual Channel
361  *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
362  *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
363  */
364 int pci_find_ext_capability(struct pci_dev *dev, int cap)
365 {
366 	return pci_find_next_ext_capability(dev, 0, cap);
367 }
368 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
369 
370 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
371 {
372 	int rc, ttl = PCI_FIND_CAP_TTL;
373 	u8 cap, mask;
374 
375 	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
376 		mask = HT_3BIT_CAP_MASK;
377 	else
378 		mask = HT_5BIT_CAP_MASK;
379 
380 	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
381 				      PCI_CAP_ID_HT, &ttl);
382 	while (pos) {
383 		rc = pci_read_config_byte(dev, pos + 3, &cap);
384 		if (rc != PCIBIOS_SUCCESSFUL)
385 			return 0;
386 
387 		if ((cap & mask) == ht_cap)
388 			return pos;
389 
390 		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
391 					      pos + PCI_CAP_LIST_NEXT,
392 					      PCI_CAP_ID_HT, &ttl);
393 	}
394 
395 	return 0;
396 }
397 /**
398  * pci_find_next_ht_capability - query a device's Hypertransport capabilities
399  * @dev: PCI device to query
400  * @pos: Position from which to continue searching
401  * @ht_cap: Hypertransport capability code
402  *
403  * To be used in conjunction with pci_find_ht_capability() to search for
404  * all capabilities matching @ht_cap. @pos should always be a value returned
405  * from pci_find_ht_capability().
406  *
407  * NB. To be 100% safe against broken PCI devices, the caller should take
408  * steps to avoid an infinite loop.
409  */
410 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
411 {
412 	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
413 }
414 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
415 
416 /**
417  * pci_find_ht_capability - query a device's Hypertransport capabilities
418  * @dev: PCI device to query
419  * @ht_cap: Hypertransport capability code
420  *
421  * Tell if a device supports a given Hypertransport capability.
422  * Returns an address within the device's PCI configuration space
423  * or 0 in case the device does not support the request capability.
424  * The address points to the PCI capability, of type PCI_CAP_ID_HT,
425  * which has a Hypertransport capability matching @ht_cap.
426  */
427 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
428 {
429 	int pos;
430 
431 	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
432 	if (pos)
433 		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
434 
435 	return pos;
436 }
437 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
438 
439 /**
440  * pci_find_parent_resource - return resource region of parent bus of given region
441  * @dev: PCI device structure contains resources to be searched
442  * @res: child resource record for which parent is sought
443  *
444  *  For given resource region of given device, return the resource
445  *  region of parent bus the given region is contained in.
446  */
447 struct resource *pci_find_parent_resource(const struct pci_dev *dev,
448 					  struct resource *res)
449 {
450 	const struct pci_bus *bus = dev->bus;
451 	struct resource *r;
452 	int i;
453 
454 	pci_bus_for_each_resource(bus, r, i) {
455 		if (!r)
456 			continue;
457 		if (res->start && resource_contains(r, res)) {
458 
459 			/*
460 			 * If the window is prefetchable but the BAR is
461 			 * not, the allocator made a mistake.
462 			 */
463 			if (r->flags & IORESOURCE_PREFETCH &&
464 			    !(res->flags & IORESOURCE_PREFETCH))
465 				return NULL;
466 
467 			/*
468 			 * If we're below a transparent bridge, there may
469 			 * be both a positively-decoded aperture and a
470 			 * subtractively-decoded region that contain the BAR.
471 			 * We want the positively-decoded one, so this depends
472 			 * on pci_bus_for_each_resource() giving us those
473 			 * first.
474 			 */
475 			return r;
476 		}
477 	}
478 	return NULL;
479 }
480 EXPORT_SYMBOL(pci_find_parent_resource);
481 
482 /**
483  * pci_find_pcie_root_port - return PCIe Root Port
484  * @dev: PCI device to query
485  *
486  * Traverse up the parent chain and return the PCIe Root Port PCI Device
487  * for a given PCI Device.
488  */
489 struct pci_dev *pci_find_pcie_root_port(struct pci_dev *dev)
490 {
491 	struct pci_dev *bridge, *highest_pcie_bridge = NULL;
492 
493 	bridge = pci_upstream_bridge(dev);
494 	while (bridge && pci_is_pcie(bridge)) {
495 		highest_pcie_bridge = bridge;
496 		bridge = pci_upstream_bridge(bridge);
497 	}
498 
499 	if (pci_pcie_type(highest_pcie_bridge) != PCI_EXP_TYPE_ROOT_PORT)
500 		return NULL;
501 
502 	return highest_pcie_bridge;
503 }
504 EXPORT_SYMBOL(pci_find_pcie_root_port);
505 
506 /**
507  * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
508  * @dev: the PCI device to operate on
509  * @pos: config space offset of status word
510  * @mask: mask of bit(s) to care about in status word
511  *
512  * Return 1 when mask bit(s) in status word clear, 0 otherwise.
513  */
514 int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
515 {
516 	int i;
517 
518 	/* Wait for Transaction Pending bit clean */
519 	for (i = 0; i < 4; i++) {
520 		u16 status;
521 		if (i)
522 			msleep((1 << (i - 1)) * 100);
523 
524 		pci_read_config_word(dev, pos, &status);
525 		if (!(status & mask))
526 			return 1;
527 	}
528 
529 	return 0;
530 }
531 
532 /**
533  * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
534  * @dev: PCI device to have its BARs restored
535  *
536  * Restore the BAR values for a given device, so as to make it
537  * accessible by its driver.
538  */
539 static void pci_restore_bars(struct pci_dev *dev)
540 {
541 	int i;
542 
543 	/* Per SR-IOV spec 3.4.1.11, VF BARs are RO zero */
544 	if (dev->is_virtfn)
545 		return;
546 
547 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
548 		pci_update_resource(dev, i);
549 }
550 
551 static const struct pci_platform_pm_ops *pci_platform_pm;
552 
553 int pci_set_platform_pm(const struct pci_platform_pm_ops *ops)
554 {
555 	if (!ops->is_manageable || !ops->set_state || !ops->choose_state ||
556 	    !ops->sleep_wake || !ops->run_wake || !ops->need_resume)
557 		return -EINVAL;
558 	pci_platform_pm = ops;
559 	return 0;
560 }
561 
562 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
563 {
564 	return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
565 }
566 
567 static inline int platform_pci_set_power_state(struct pci_dev *dev,
568 					       pci_power_t t)
569 {
570 	return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
571 }
572 
573 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
574 {
575 	return pci_platform_pm ?
576 			pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
577 }
578 
579 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
580 {
581 	return pci_platform_pm ?
582 			pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
583 }
584 
585 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
586 {
587 	return pci_platform_pm ?
588 			pci_platform_pm->run_wake(dev, enable) : -ENODEV;
589 }
590 
591 static inline bool platform_pci_need_resume(struct pci_dev *dev)
592 {
593 	return pci_platform_pm ? pci_platform_pm->need_resume(dev) : false;
594 }
595 
596 /**
597  * pci_raw_set_power_state - Use PCI PM registers to set the power state of
598  *                           given PCI device
599  * @dev: PCI device to handle.
600  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
601  *
602  * RETURN VALUE:
603  * -EINVAL if the requested state is invalid.
604  * -EIO if device does not support PCI PM or its PM capabilities register has a
605  * wrong version, or device doesn't support the requested state.
606  * 0 if device already is in the requested state.
607  * 0 if device's power state has been successfully changed.
608  */
609 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
610 {
611 	u16 pmcsr;
612 	bool need_restore = false;
613 
614 	/* Check if we're already there */
615 	if (dev->current_state == state)
616 		return 0;
617 
618 	if (!dev->pm_cap)
619 		return -EIO;
620 
621 	if (state < PCI_D0 || state > PCI_D3hot)
622 		return -EINVAL;
623 
624 	/* Validate current state:
625 	 * Can enter D0 from any state, but if we can only go deeper
626 	 * to sleep if we're already in a low power state
627 	 */
628 	if (state != PCI_D0 && dev->current_state <= PCI_D3cold
629 	    && dev->current_state > state) {
630 		dev_err(&dev->dev, "invalid power transition (from state %d to %d)\n",
631 			dev->current_state, state);
632 		return -EINVAL;
633 	}
634 
635 	/* check if this device supports the desired state */
636 	if ((state == PCI_D1 && !dev->d1_support)
637 	   || (state == PCI_D2 && !dev->d2_support))
638 		return -EIO;
639 
640 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
641 
642 	/* If we're (effectively) in D3, force entire word to 0.
643 	 * This doesn't affect PME_Status, disables PME_En, and
644 	 * sets PowerState to 0.
645 	 */
646 	switch (dev->current_state) {
647 	case PCI_D0:
648 	case PCI_D1:
649 	case PCI_D2:
650 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
651 		pmcsr |= state;
652 		break;
653 	case PCI_D3hot:
654 	case PCI_D3cold:
655 	case PCI_UNKNOWN: /* Boot-up */
656 		if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
657 		 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
658 			need_restore = true;
659 		/* Fall-through: force to D0 */
660 	default:
661 		pmcsr = 0;
662 		break;
663 	}
664 
665 	/* enter specified state */
666 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
667 
668 	/* Mandatory power management transition delays */
669 	/* see PCI PM 1.1 5.6.1 table 18 */
670 	if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
671 		pci_dev_d3_sleep(dev);
672 	else if (state == PCI_D2 || dev->current_state == PCI_D2)
673 		udelay(PCI_PM_D2_DELAY);
674 
675 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
676 	dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
677 	if (dev->current_state != state && printk_ratelimit())
678 		dev_info(&dev->dev, "Refused to change power state, currently in D%d\n",
679 			 dev->current_state);
680 
681 	/*
682 	 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
683 	 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
684 	 * from D3hot to D0 _may_ perform an internal reset, thereby
685 	 * going to "D0 Uninitialized" rather than "D0 Initialized".
686 	 * For example, at least some versions of the 3c905B and the
687 	 * 3c556B exhibit this behaviour.
688 	 *
689 	 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
690 	 * devices in a D3hot state at boot.  Consequently, we need to
691 	 * restore at least the BARs so that the device will be
692 	 * accessible to its driver.
693 	 */
694 	if (need_restore)
695 		pci_restore_bars(dev);
696 
697 	if (dev->bus->self)
698 		pcie_aspm_pm_state_change(dev->bus->self);
699 
700 	return 0;
701 }
702 
703 /**
704  * pci_update_current_state - Read PCI power state of given device from its
705  *                            PCI PM registers and cache it
706  * @dev: PCI device to handle.
707  * @state: State to cache in case the device doesn't have the PM capability
708  */
709 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
710 {
711 	if (dev->pm_cap) {
712 		u16 pmcsr;
713 
714 		/*
715 		 * Configuration space is not accessible for device in
716 		 * D3cold, so just keep or set D3cold for safety
717 		 */
718 		if (dev->current_state == PCI_D3cold)
719 			return;
720 		if (state == PCI_D3cold) {
721 			dev->current_state = PCI_D3cold;
722 			return;
723 		}
724 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
725 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
726 	} else {
727 		dev->current_state = state;
728 	}
729 }
730 
731 /**
732  * pci_power_up - Put the given device into D0 forcibly
733  * @dev: PCI device to power up
734  */
735 void pci_power_up(struct pci_dev *dev)
736 {
737 	if (platform_pci_power_manageable(dev))
738 		platform_pci_set_power_state(dev, PCI_D0);
739 
740 	pci_raw_set_power_state(dev, PCI_D0);
741 	pci_update_current_state(dev, PCI_D0);
742 }
743 
744 /**
745  * pci_platform_power_transition - Use platform to change device power state
746  * @dev: PCI device to handle.
747  * @state: State to put the device into.
748  */
749 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
750 {
751 	int error;
752 
753 	if (platform_pci_power_manageable(dev)) {
754 		error = platform_pci_set_power_state(dev, state);
755 		if (!error)
756 			pci_update_current_state(dev, state);
757 	} else
758 		error = -ENODEV;
759 
760 	if (error && !dev->pm_cap) /* Fall back to PCI_D0 */
761 		dev->current_state = PCI_D0;
762 
763 	return error;
764 }
765 
766 /**
767  * pci_wakeup - Wake up a PCI device
768  * @pci_dev: Device to handle.
769  * @ign: ignored parameter
770  */
771 static int pci_wakeup(struct pci_dev *pci_dev, void *ign)
772 {
773 	pci_wakeup_event(pci_dev);
774 	pm_request_resume(&pci_dev->dev);
775 	return 0;
776 }
777 
778 /**
779  * pci_wakeup_bus - Walk given bus and wake up devices on it
780  * @bus: Top bus of the subtree to walk.
781  */
782 static void pci_wakeup_bus(struct pci_bus *bus)
783 {
784 	if (bus)
785 		pci_walk_bus(bus, pci_wakeup, NULL);
786 }
787 
788 /**
789  * __pci_start_power_transition - Start power transition of a PCI device
790  * @dev: PCI device to handle.
791  * @state: State to put the device into.
792  */
793 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
794 {
795 	if (state == PCI_D0) {
796 		pci_platform_power_transition(dev, PCI_D0);
797 		/*
798 		 * Mandatory power management transition delays, see
799 		 * PCI Express Base Specification Revision 2.0 Section
800 		 * 6.6.1: Conventional Reset.  Do not delay for
801 		 * devices powered on/off by corresponding bridge,
802 		 * because have already delayed for the bridge.
803 		 */
804 		if (dev->runtime_d3cold) {
805 			msleep(dev->d3cold_delay);
806 			/*
807 			 * When powering on a bridge from D3cold, the
808 			 * whole hierarchy may be powered on into
809 			 * D0uninitialized state, resume them to give
810 			 * them a chance to suspend again
811 			 */
812 			pci_wakeup_bus(dev->subordinate);
813 		}
814 	}
815 }
816 
817 /**
818  * __pci_dev_set_current_state - Set current state of a PCI device
819  * @dev: Device to handle
820  * @data: pointer to state to be set
821  */
822 static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
823 {
824 	pci_power_t state = *(pci_power_t *)data;
825 
826 	dev->current_state = state;
827 	return 0;
828 }
829 
830 /**
831  * __pci_bus_set_current_state - Walk given bus and set current state of devices
832  * @bus: Top bus of the subtree to walk.
833  * @state: state to be set
834  */
835 static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
836 {
837 	if (bus)
838 		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
839 }
840 
841 /**
842  * __pci_complete_power_transition - Complete power transition of a PCI device
843  * @dev: PCI device to handle.
844  * @state: State to put the device into.
845  *
846  * This function should not be called directly by device drivers.
847  */
848 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
849 {
850 	int ret;
851 
852 	if (state <= PCI_D0)
853 		return -EINVAL;
854 	ret = pci_platform_power_transition(dev, state);
855 	/* Power off the bridge may power off the whole hierarchy */
856 	if (!ret && state == PCI_D3cold)
857 		__pci_bus_set_current_state(dev->subordinate, PCI_D3cold);
858 	return ret;
859 }
860 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
861 
862 /**
863  * pci_set_power_state - Set the power state of a PCI device
864  * @dev: PCI device to handle.
865  * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
866  *
867  * Transition a device to a new power state, using the platform firmware and/or
868  * the device's PCI PM registers.
869  *
870  * RETURN VALUE:
871  * -EINVAL if the requested state is invalid.
872  * -EIO if device does not support PCI PM or its PM capabilities register has a
873  * wrong version, or device doesn't support the requested state.
874  * 0 if device already is in the requested state.
875  * 0 if device's power state has been successfully changed.
876  */
877 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
878 {
879 	int error;
880 
881 	/* bound the state we're entering */
882 	if (state > PCI_D3cold)
883 		state = PCI_D3cold;
884 	else if (state < PCI_D0)
885 		state = PCI_D0;
886 	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
887 		/*
888 		 * If the device or the parent bridge do not support PCI PM,
889 		 * ignore the request if we're doing anything other than putting
890 		 * it into D0 (which would only happen on boot).
891 		 */
892 		return 0;
893 
894 	/* Check if we're already there */
895 	if (dev->current_state == state)
896 		return 0;
897 
898 	__pci_start_power_transition(dev, state);
899 
900 	/* This device is quirked not to be put into D3, so
901 	   don't put it in D3 */
902 	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
903 		return 0;
904 
905 	/*
906 	 * To put device in D3cold, we put device into D3hot in native
907 	 * way, then put device into D3cold with platform ops
908 	 */
909 	error = pci_raw_set_power_state(dev, state > PCI_D3hot ?
910 					PCI_D3hot : state);
911 
912 	if (!__pci_complete_power_transition(dev, state))
913 		error = 0;
914 
915 	return error;
916 }
917 EXPORT_SYMBOL(pci_set_power_state);
918 
919 /**
920  * pci_choose_state - Choose the power state of a PCI device
921  * @dev: PCI device to be suspended
922  * @state: target sleep state for the whole system. This is the value
923  *	that is passed to suspend() function.
924  *
925  * Returns PCI power state suitable for given device and given system
926  * message.
927  */
928 
929 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
930 {
931 	pci_power_t ret;
932 
933 	if (!dev->pm_cap)
934 		return PCI_D0;
935 
936 	ret = platform_pci_choose_state(dev);
937 	if (ret != PCI_POWER_ERROR)
938 		return ret;
939 
940 	switch (state.event) {
941 	case PM_EVENT_ON:
942 		return PCI_D0;
943 	case PM_EVENT_FREEZE:
944 	case PM_EVENT_PRETHAW:
945 		/* REVISIT both freeze and pre-thaw "should" use D0 */
946 	case PM_EVENT_SUSPEND:
947 	case PM_EVENT_HIBERNATE:
948 		return PCI_D3hot;
949 	default:
950 		dev_info(&dev->dev, "unrecognized suspend event %d\n",
951 			 state.event);
952 		BUG();
953 	}
954 	return PCI_D0;
955 }
956 EXPORT_SYMBOL(pci_choose_state);
957 
958 #define PCI_EXP_SAVE_REGS	7
959 
960 static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
961 						       u16 cap, bool extended)
962 {
963 	struct pci_cap_saved_state *tmp;
964 
965 	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
966 		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
967 			return tmp;
968 	}
969 	return NULL;
970 }
971 
972 struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
973 {
974 	return _pci_find_saved_cap(dev, cap, false);
975 }
976 
977 struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
978 {
979 	return _pci_find_saved_cap(dev, cap, true);
980 }
981 
982 static int pci_save_pcie_state(struct pci_dev *dev)
983 {
984 	int i = 0;
985 	struct pci_cap_saved_state *save_state;
986 	u16 *cap;
987 
988 	if (!pci_is_pcie(dev))
989 		return 0;
990 
991 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
992 	if (!save_state) {
993 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
994 		return -ENOMEM;
995 	}
996 
997 	cap = (u16 *)&save_state->cap.data[0];
998 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
999 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
1000 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
1001 	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
1002 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
1003 	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
1004 	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1005 
1006 	return 0;
1007 }
1008 
1009 static void pci_restore_pcie_state(struct pci_dev *dev)
1010 {
1011 	int i = 0;
1012 	struct pci_cap_saved_state *save_state;
1013 	u16 *cap;
1014 
1015 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1016 	if (!save_state)
1017 		return;
1018 
1019 	cap = (u16 *)&save_state->cap.data[0];
1020 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
1021 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
1022 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
1023 	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
1024 	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
1025 	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
1026 	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1027 }
1028 
1029 
1030 static int pci_save_pcix_state(struct pci_dev *dev)
1031 {
1032 	int pos;
1033 	struct pci_cap_saved_state *save_state;
1034 
1035 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1036 	if (!pos)
1037 		return 0;
1038 
1039 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1040 	if (!save_state) {
1041 		dev_err(&dev->dev, "buffer not found in %s\n", __func__);
1042 		return -ENOMEM;
1043 	}
1044 
1045 	pci_read_config_word(dev, pos + PCI_X_CMD,
1046 			     (u16 *)save_state->cap.data);
1047 
1048 	return 0;
1049 }
1050 
1051 static void pci_restore_pcix_state(struct pci_dev *dev)
1052 {
1053 	int i = 0, pos;
1054 	struct pci_cap_saved_state *save_state;
1055 	u16 *cap;
1056 
1057 	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1058 	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1059 	if (!save_state || !pos)
1060 		return;
1061 	cap = (u16 *)&save_state->cap.data[0];
1062 
1063 	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
1064 }
1065 
1066 
1067 /**
1068  * pci_save_state - save the PCI configuration space of a device before suspending
1069  * @dev: - PCI device that we're dealing with
1070  */
1071 int pci_save_state(struct pci_dev *dev)
1072 {
1073 	int i;
1074 	/* XXX: 100% dword access ok here? */
1075 	for (i = 0; i < 16; i++)
1076 		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1077 	dev->state_saved = true;
1078 
1079 	i = pci_save_pcie_state(dev);
1080 	if (i != 0)
1081 		return i;
1082 
1083 	i = pci_save_pcix_state(dev);
1084 	if (i != 0)
1085 		return i;
1086 
1087 	return pci_save_vc_state(dev);
1088 }
1089 EXPORT_SYMBOL(pci_save_state);
1090 
1091 static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1092 				     u32 saved_val, int retry)
1093 {
1094 	u32 val;
1095 
1096 	pci_read_config_dword(pdev, offset, &val);
1097 	if (val == saved_val)
1098 		return;
1099 
1100 	for (;;) {
1101 		dev_dbg(&pdev->dev, "restoring config space at offset %#x (was %#x, writing %#x)\n",
1102 			offset, val, saved_val);
1103 		pci_write_config_dword(pdev, offset, saved_val);
1104 		if (retry-- <= 0)
1105 			return;
1106 
1107 		pci_read_config_dword(pdev, offset, &val);
1108 		if (val == saved_val)
1109 			return;
1110 
1111 		mdelay(1);
1112 	}
1113 }
1114 
1115 static void pci_restore_config_space_range(struct pci_dev *pdev,
1116 					   int start, int end, int retry)
1117 {
1118 	int index;
1119 
1120 	for (index = end; index >= start; index--)
1121 		pci_restore_config_dword(pdev, 4 * index,
1122 					 pdev->saved_config_space[index],
1123 					 retry);
1124 }
1125 
1126 static void pci_restore_config_space(struct pci_dev *pdev)
1127 {
1128 	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1129 		pci_restore_config_space_range(pdev, 10, 15, 0);
1130 		/* Restore BARs before the command register. */
1131 		pci_restore_config_space_range(pdev, 4, 9, 10);
1132 		pci_restore_config_space_range(pdev, 0, 3, 0);
1133 	} else {
1134 		pci_restore_config_space_range(pdev, 0, 15, 0);
1135 	}
1136 }
1137 
1138 /**
1139  * pci_restore_state - Restore the saved state of a PCI device
1140  * @dev: - PCI device that we're dealing with
1141  */
1142 void pci_restore_state(struct pci_dev *dev)
1143 {
1144 	if (!dev->state_saved)
1145 		return;
1146 
1147 	/* PCI Express register must be restored first */
1148 	pci_restore_pcie_state(dev);
1149 	pci_restore_ats_state(dev);
1150 	pci_restore_vc_state(dev);
1151 
1152 	pci_cleanup_aer_error_status_regs(dev);
1153 
1154 	pci_restore_config_space(dev);
1155 
1156 	pci_restore_pcix_state(dev);
1157 	pci_restore_msi_state(dev);
1158 
1159 	/* Restore ACS and IOV configuration state */
1160 	pci_enable_acs(dev);
1161 	pci_restore_iov_state(dev);
1162 
1163 	dev->state_saved = false;
1164 }
1165 EXPORT_SYMBOL(pci_restore_state);
1166 
1167 struct pci_saved_state {
1168 	u32 config_space[16];
1169 	struct pci_cap_saved_data cap[0];
1170 };
1171 
1172 /**
1173  * pci_store_saved_state - Allocate and return an opaque struct containing
1174  *			   the device saved state.
1175  * @dev: PCI device that we're dealing with
1176  *
1177  * Return NULL if no state or error.
1178  */
1179 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
1180 {
1181 	struct pci_saved_state *state;
1182 	struct pci_cap_saved_state *tmp;
1183 	struct pci_cap_saved_data *cap;
1184 	size_t size;
1185 
1186 	if (!dev->state_saved)
1187 		return NULL;
1188 
1189 	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1190 
1191 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1192 		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1193 
1194 	state = kzalloc(size, GFP_KERNEL);
1195 	if (!state)
1196 		return NULL;
1197 
1198 	memcpy(state->config_space, dev->saved_config_space,
1199 	       sizeof(state->config_space));
1200 
1201 	cap = state->cap;
1202 	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1203 		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1204 		memcpy(cap, &tmp->cap, len);
1205 		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1206 	}
1207 	/* Empty cap_save terminates list */
1208 
1209 	return state;
1210 }
1211 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1212 
1213 /**
1214  * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1215  * @dev: PCI device that we're dealing with
1216  * @state: Saved state returned from pci_store_saved_state()
1217  */
1218 int pci_load_saved_state(struct pci_dev *dev,
1219 			 struct pci_saved_state *state)
1220 {
1221 	struct pci_cap_saved_data *cap;
1222 
1223 	dev->state_saved = false;
1224 
1225 	if (!state)
1226 		return 0;
1227 
1228 	memcpy(dev->saved_config_space, state->config_space,
1229 	       sizeof(state->config_space));
1230 
1231 	cap = state->cap;
1232 	while (cap->size) {
1233 		struct pci_cap_saved_state *tmp;
1234 
1235 		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
1236 		if (!tmp || tmp->cap.size != cap->size)
1237 			return -EINVAL;
1238 
1239 		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1240 		cap = (struct pci_cap_saved_data *)((u8 *)cap +
1241 		       sizeof(struct pci_cap_saved_data) + cap->size);
1242 	}
1243 
1244 	dev->state_saved = true;
1245 	return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1248 
1249 /**
1250  * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1251  *				   and free the memory allocated for it.
1252  * @dev: PCI device that we're dealing with
1253  * @state: Pointer to saved state returned from pci_store_saved_state()
1254  */
1255 int pci_load_and_free_saved_state(struct pci_dev *dev,
1256 				  struct pci_saved_state **state)
1257 {
1258 	int ret = pci_load_saved_state(dev, *state);
1259 	kfree(*state);
1260 	*state = NULL;
1261 	return ret;
1262 }
1263 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1264 
1265 int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
1266 {
1267 	return pci_enable_resources(dev, bars);
1268 }
1269 
1270 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1271 {
1272 	int err;
1273 	struct pci_dev *bridge;
1274 	u16 cmd;
1275 	u8 pin;
1276 
1277 	err = pci_set_power_state(dev, PCI_D0);
1278 	if (err < 0 && err != -EIO)
1279 		return err;
1280 
1281 	bridge = pci_upstream_bridge(dev);
1282 	if (bridge)
1283 		pcie_aspm_powersave_config_link(bridge);
1284 
1285 	err = pcibios_enable_device(dev, bars);
1286 	if (err < 0)
1287 		return err;
1288 	pci_fixup_device(pci_fixup_enable, dev);
1289 
1290 	if (dev->msi_enabled || dev->msix_enabled)
1291 		return 0;
1292 
1293 	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
1294 	if (pin) {
1295 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
1296 		if (cmd & PCI_COMMAND_INTX_DISABLE)
1297 			pci_write_config_word(dev, PCI_COMMAND,
1298 					      cmd & ~PCI_COMMAND_INTX_DISABLE);
1299 	}
1300 
1301 	return 0;
1302 }
1303 
1304 /**
1305  * pci_reenable_device - Resume abandoned device
1306  * @dev: PCI device to be resumed
1307  *
1308  *  Note this function is a backend of pci_default_resume and is not supposed
1309  *  to be called by normal code, write proper resume handler and use it instead.
1310  */
1311 int pci_reenable_device(struct pci_dev *dev)
1312 {
1313 	if (pci_is_enabled(dev))
1314 		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1315 	return 0;
1316 }
1317 EXPORT_SYMBOL(pci_reenable_device);
1318 
1319 static void pci_enable_bridge(struct pci_dev *dev)
1320 {
1321 	struct pci_dev *bridge;
1322 	int retval;
1323 
1324 	bridge = pci_upstream_bridge(dev);
1325 	if (bridge)
1326 		pci_enable_bridge(bridge);
1327 
1328 	if (pci_is_enabled(dev)) {
1329 		if (!dev->is_busmaster)
1330 			pci_set_master(dev);
1331 		return;
1332 	}
1333 
1334 	retval = pci_enable_device(dev);
1335 	if (retval)
1336 		dev_err(&dev->dev, "Error enabling bridge (%d), continuing\n",
1337 			retval);
1338 	pci_set_master(dev);
1339 }
1340 
1341 static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
1342 {
1343 	struct pci_dev *bridge;
1344 	int err;
1345 	int i, bars = 0;
1346 
1347 	/*
1348 	 * Power state could be unknown at this point, either due to a fresh
1349 	 * boot or a device removal call.  So get the current power state
1350 	 * so that things like MSI message writing will behave as expected
1351 	 * (e.g. if the device really is in D0 at enable time).
1352 	 */
1353 	if (dev->pm_cap) {
1354 		u16 pmcsr;
1355 		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1356 		dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1357 	}
1358 
1359 	if (atomic_inc_return(&dev->enable_cnt) > 1)
1360 		return 0;		/* already enabled */
1361 
1362 	bridge = pci_upstream_bridge(dev);
1363 	if (bridge)
1364 		pci_enable_bridge(bridge);
1365 
1366 	/* only skip sriov related */
1367 	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1368 		if (dev->resource[i].flags & flags)
1369 			bars |= (1 << i);
1370 	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
1371 		if (dev->resource[i].flags & flags)
1372 			bars |= (1 << i);
1373 
1374 	err = do_pci_enable_device(dev, bars);
1375 	if (err < 0)
1376 		atomic_dec(&dev->enable_cnt);
1377 	return err;
1378 }
1379 
1380 /**
1381  * pci_enable_device_io - Initialize a device for use with IO space
1382  * @dev: PCI device to be initialized
1383  *
1384  *  Initialize device before it's used by a driver. Ask low-level code
1385  *  to enable I/O resources. Wake up the device if it was suspended.
1386  *  Beware, this function can fail.
1387  */
1388 int pci_enable_device_io(struct pci_dev *dev)
1389 {
1390 	return pci_enable_device_flags(dev, IORESOURCE_IO);
1391 }
1392 EXPORT_SYMBOL(pci_enable_device_io);
1393 
1394 /**
1395  * pci_enable_device_mem - Initialize a device for use with Memory space
1396  * @dev: PCI device to be initialized
1397  *
1398  *  Initialize device before it's used by a driver. Ask low-level code
1399  *  to enable Memory resources. Wake up the device if it was suspended.
1400  *  Beware, this function can fail.
1401  */
1402 int pci_enable_device_mem(struct pci_dev *dev)
1403 {
1404 	return pci_enable_device_flags(dev, IORESOURCE_MEM);
1405 }
1406 EXPORT_SYMBOL(pci_enable_device_mem);
1407 
1408 /**
1409  * pci_enable_device - Initialize device before it's used by a driver.
1410  * @dev: PCI device to be initialized
1411  *
1412  *  Initialize device before it's used by a driver. Ask low-level code
1413  *  to enable I/O and memory. Wake up the device if it was suspended.
1414  *  Beware, this function can fail.
1415  *
1416  *  Note we don't actually enable the device many times if we call
1417  *  this function repeatedly (we just increment the count).
1418  */
1419 int pci_enable_device(struct pci_dev *dev)
1420 {
1421 	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1422 }
1423 EXPORT_SYMBOL(pci_enable_device);
1424 
1425 /*
1426  * Managed PCI resources.  This manages device on/off, intx/msi/msix
1427  * on/off and BAR regions.  pci_dev itself records msi/msix status, so
1428  * there's no need to track it separately.  pci_devres is initialized
1429  * when a device is enabled using managed PCI device enable interface.
1430  */
1431 struct pci_devres {
1432 	unsigned int enabled:1;
1433 	unsigned int pinned:1;
1434 	unsigned int orig_intx:1;
1435 	unsigned int restore_intx:1;
1436 	u32 region_mask;
1437 };
1438 
1439 static void pcim_release(struct device *gendev, void *res)
1440 {
1441 	struct pci_dev *dev = to_pci_dev(gendev);
1442 	struct pci_devres *this = res;
1443 	int i;
1444 
1445 	if (dev->msi_enabled)
1446 		pci_disable_msi(dev);
1447 	if (dev->msix_enabled)
1448 		pci_disable_msix(dev);
1449 
1450 	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1451 		if (this->region_mask & (1 << i))
1452 			pci_release_region(dev, i);
1453 
1454 	if (this->restore_intx)
1455 		pci_intx(dev, this->orig_intx);
1456 
1457 	if (this->enabled && !this->pinned)
1458 		pci_disable_device(dev);
1459 }
1460 
1461 static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
1462 {
1463 	struct pci_devres *dr, *new_dr;
1464 
1465 	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1466 	if (dr)
1467 		return dr;
1468 
1469 	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1470 	if (!new_dr)
1471 		return NULL;
1472 	return devres_get(&pdev->dev, new_dr, NULL, NULL);
1473 }
1474 
1475 static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
1476 {
1477 	if (pci_is_managed(pdev))
1478 		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1479 	return NULL;
1480 }
1481 
1482 /**
1483  * pcim_enable_device - Managed pci_enable_device()
1484  * @pdev: PCI device to be initialized
1485  *
1486  * Managed pci_enable_device().
1487  */
1488 int pcim_enable_device(struct pci_dev *pdev)
1489 {
1490 	struct pci_devres *dr;
1491 	int rc;
1492 
1493 	dr = get_pci_dr(pdev);
1494 	if (unlikely(!dr))
1495 		return -ENOMEM;
1496 	if (dr->enabled)
1497 		return 0;
1498 
1499 	rc = pci_enable_device(pdev);
1500 	if (!rc) {
1501 		pdev->is_managed = 1;
1502 		dr->enabled = 1;
1503 	}
1504 	return rc;
1505 }
1506 EXPORT_SYMBOL(pcim_enable_device);
1507 
1508 /**
1509  * pcim_pin_device - Pin managed PCI device
1510  * @pdev: PCI device to pin
1511  *
1512  * Pin managed PCI device @pdev.  Pinned device won't be disabled on
1513  * driver detach.  @pdev must have been enabled with
1514  * pcim_enable_device().
1515  */
1516 void pcim_pin_device(struct pci_dev *pdev)
1517 {
1518 	struct pci_devres *dr;
1519 
1520 	dr = find_pci_dr(pdev);
1521 	WARN_ON(!dr || !dr->enabled);
1522 	if (dr)
1523 		dr->pinned = 1;
1524 }
1525 EXPORT_SYMBOL(pcim_pin_device);
1526 
1527 /*
1528  * pcibios_add_device - provide arch specific hooks when adding device dev
1529  * @dev: the PCI device being added
1530  *
1531  * Permits the platform to provide architecture specific functionality when
1532  * devices are added. This is the default implementation. Architecture
1533  * implementations can override this.
1534  */
1535 int __weak pcibios_add_device(struct pci_dev *dev)
1536 {
1537 	return 0;
1538 }
1539 
1540 /**
1541  * pcibios_release_device - provide arch specific hooks when releasing device dev
1542  * @dev: the PCI device being released
1543  *
1544  * Permits the platform to provide architecture specific functionality when
1545  * devices are released. This is the default implementation. Architecture
1546  * implementations can override this.
1547  */
1548 void __weak pcibios_release_device(struct pci_dev *dev) {}
1549 
1550 /**
1551  * pcibios_disable_device - disable arch specific PCI resources for device dev
1552  * @dev: the PCI device to disable
1553  *
1554  * Disables architecture specific PCI resources for the device. This
1555  * is the default implementation. Architecture implementations can
1556  * override this.
1557  */
1558 void __weak pcibios_disable_device(struct pci_dev *dev) {}
1559 
1560 /**
1561  * pcibios_penalize_isa_irq - penalize an ISA IRQ
1562  * @irq: ISA IRQ to penalize
1563  * @active: IRQ active or not
1564  *
1565  * Permits the platform to provide architecture-specific functionality when
1566  * penalizing ISA IRQs. This is the default implementation. Architecture
1567  * implementations can override this.
1568  */
1569 void __weak pcibios_penalize_isa_irq(int irq, int active) {}
1570 
1571 static void do_pci_disable_device(struct pci_dev *dev)
1572 {
1573 	u16 pci_command;
1574 
1575 	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1576 	if (pci_command & PCI_COMMAND_MASTER) {
1577 		pci_command &= ~PCI_COMMAND_MASTER;
1578 		pci_write_config_word(dev, PCI_COMMAND, pci_command);
1579 	}
1580 
1581 	pcibios_disable_device(dev);
1582 }
1583 
1584 /**
1585  * pci_disable_enabled_device - Disable device without updating enable_cnt
1586  * @dev: PCI device to disable
1587  *
1588  * NOTE: This function is a backend of PCI power management routines and is
1589  * not supposed to be called drivers.
1590  */
1591 void pci_disable_enabled_device(struct pci_dev *dev)
1592 {
1593 	if (pci_is_enabled(dev))
1594 		do_pci_disable_device(dev);
1595 }
1596 
1597 /**
1598  * pci_disable_device - Disable PCI device after use
1599  * @dev: PCI device to be disabled
1600  *
1601  * Signal to the system that the PCI device is not in use by the system
1602  * anymore.  This only involves disabling PCI bus-mastering, if active.
1603  *
1604  * Note we don't actually disable the device until all callers of
1605  * pci_enable_device() have called pci_disable_device().
1606  */
1607 void pci_disable_device(struct pci_dev *dev)
1608 {
1609 	struct pci_devres *dr;
1610 
1611 	dr = find_pci_dr(dev);
1612 	if (dr)
1613 		dr->enabled = 0;
1614 
1615 	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
1616 		      "disabling already-disabled device");
1617 
1618 	if (atomic_dec_return(&dev->enable_cnt) != 0)
1619 		return;
1620 
1621 	do_pci_disable_device(dev);
1622 
1623 	dev->is_busmaster = 0;
1624 }
1625 EXPORT_SYMBOL(pci_disable_device);
1626 
1627 /**
1628  * pcibios_set_pcie_reset_state - set reset state for device dev
1629  * @dev: the PCIe device reset
1630  * @state: Reset state to enter into
1631  *
1632  *
1633  * Sets the PCIe reset state for the device. This is the default
1634  * implementation. Architecture implementations can override this.
1635  */
1636 int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
1637 					enum pcie_reset_state state)
1638 {
1639 	return -EINVAL;
1640 }
1641 
1642 /**
1643  * pci_set_pcie_reset_state - set reset state for device dev
1644  * @dev: the PCIe device reset
1645  * @state: Reset state to enter into
1646  *
1647  *
1648  * Sets the PCI reset state for the device.
1649  */
1650 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1651 {
1652 	return pcibios_set_pcie_reset_state(dev, state);
1653 }
1654 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
1655 
1656 /**
1657  * pci_check_pme_status - Check if given device has generated PME.
1658  * @dev: Device to check.
1659  *
1660  * Check the PME status of the device and if set, clear it and clear PME enable
1661  * (if set).  Return 'true' if PME status and PME enable were both set or
1662  * 'false' otherwise.
1663  */
1664 bool pci_check_pme_status(struct pci_dev *dev)
1665 {
1666 	int pmcsr_pos;
1667 	u16 pmcsr;
1668 	bool ret = false;
1669 
1670 	if (!dev->pm_cap)
1671 		return false;
1672 
1673 	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1674 	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1675 	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1676 		return false;
1677 
1678 	/* Clear PME status. */
1679 	pmcsr |= PCI_PM_CTRL_PME_STATUS;
1680 	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1681 		/* Disable PME to avoid interrupt flood. */
1682 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1683 		ret = true;
1684 	}
1685 
1686 	pci_write_config_word(dev, pmcsr_pos, pmcsr);
1687 
1688 	return ret;
1689 }
1690 
1691 /**
1692  * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1693  * @dev: Device to handle.
1694  * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
1695  *
1696  * Check if @dev has generated PME and queue a resume request for it in that
1697  * case.
1698  */
1699 static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
1700 {
1701 	if (pme_poll_reset && dev->pme_poll)
1702 		dev->pme_poll = false;
1703 
1704 	if (pci_check_pme_status(dev)) {
1705 		pci_wakeup_event(dev);
1706 		pm_request_resume(&dev->dev);
1707 	}
1708 	return 0;
1709 }
1710 
1711 /**
1712  * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1713  * @bus: Top bus of the subtree to walk.
1714  */
1715 void pci_pme_wakeup_bus(struct pci_bus *bus)
1716 {
1717 	if (bus)
1718 		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
1719 }
1720 
1721 
1722 /**
1723  * pci_pme_capable - check the capability of PCI device to generate PME#
1724  * @dev: PCI device to handle.
1725  * @state: PCI state from which device will issue PME#.
1726  */
1727 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1728 {
1729 	if (!dev->pm_cap)
1730 		return false;
1731 
1732 	return !!(dev->pme_support & (1 << state));
1733 }
1734 EXPORT_SYMBOL(pci_pme_capable);
1735 
1736 static void pci_pme_list_scan(struct work_struct *work)
1737 {
1738 	struct pci_pme_device *pme_dev, *n;
1739 
1740 	mutex_lock(&pci_pme_list_mutex);
1741 	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
1742 		if (pme_dev->dev->pme_poll) {
1743 			struct pci_dev *bridge;
1744 
1745 			bridge = pme_dev->dev->bus->self;
1746 			/*
1747 			 * If bridge is in low power state, the
1748 			 * configuration space of subordinate devices
1749 			 * may be not accessible
1750 			 */
1751 			if (bridge && bridge->current_state != PCI_D0)
1752 				continue;
1753 			pci_pme_wakeup(pme_dev->dev, NULL);
1754 		} else {
1755 			list_del(&pme_dev->list);
1756 			kfree(pme_dev);
1757 		}
1758 	}
1759 	if (!list_empty(&pci_pme_list))
1760 		schedule_delayed_work(&pci_pme_work,
1761 				      msecs_to_jiffies(PME_TIMEOUT));
1762 	mutex_unlock(&pci_pme_list_mutex);
1763 }
1764 
1765 static void __pci_pme_active(struct pci_dev *dev, bool enable)
1766 {
1767 	u16 pmcsr;
1768 
1769 	if (!dev->pme_support)
1770 		return;
1771 
1772 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1773 	/* Clear PME_Status by writing 1 to it and enable PME# */
1774 	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1775 	if (!enable)
1776 		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1777 
1778 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1779 }
1780 
1781 /**
1782  * pci_pme_active - enable or disable PCI device's PME# function
1783  * @dev: PCI device to handle.
1784  * @enable: 'true' to enable PME# generation; 'false' to disable it.
1785  *
1786  * The caller must verify that the device is capable of generating PME# before
1787  * calling this function with @enable equal to 'true'.
1788  */
1789 void pci_pme_active(struct pci_dev *dev, bool enable)
1790 {
1791 	__pci_pme_active(dev, enable);
1792 
1793 	/*
1794 	 * PCI (as opposed to PCIe) PME requires that the device have
1795 	 * its PME# line hooked up correctly. Not all hardware vendors
1796 	 * do this, so the PME never gets delivered and the device
1797 	 * remains asleep. The easiest way around this is to
1798 	 * periodically walk the list of suspended devices and check
1799 	 * whether any have their PME flag set. The assumption is that
1800 	 * we'll wake up often enough anyway that this won't be a huge
1801 	 * hit, and the power savings from the devices will still be a
1802 	 * win.
1803 	 *
1804 	 * Although PCIe uses in-band PME message instead of PME# line
1805 	 * to report PME, PME does not work for some PCIe devices in
1806 	 * reality.  For example, there are devices that set their PME
1807 	 * status bits, but don't really bother to send a PME message;
1808 	 * there are PCI Express Root Ports that don't bother to
1809 	 * trigger interrupts when they receive PME messages from the
1810 	 * devices below.  So PME poll is used for PCIe devices too.
1811 	 */
1812 
1813 	if (dev->pme_poll) {
1814 		struct pci_pme_device *pme_dev;
1815 		if (enable) {
1816 			pme_dev = kmalloc(sizeof(struct pci_pme_device),
1817 					  GFP_KERNEL);
1818 			if (!pme_dev) {
1819 				dev_warn(&dev->dev, "can't enable PME#\n");
1820 				return;
1821 			}
1822 			pme_dev->dev = dev;
1823 			mutex_lock(&pci_pme_list_mutex);
1824 			list_add(&pme_dev->list, &pci_pme_list);
1825 			if (list_is_singular(&pci_pme_list))
1826 				schedule_delayed_work(&pci_pme_work,
1827 						      msecs_to_jiffies(PME_TIMEOUT));
1828 			mutex_unlock(&pci_pme_list_mutex);
1829 		} else {
1830 			mutex_lock(&pci_pme_list_mutex);
1831 			list_for_each_entry(pme_dev, &pci_pme_list, list) {
1832 				if (pme_dev->dev == dev) {
1833 					list_del(&pme_dev->list);
1834 					kfree(pme_dev);
1835 					break;
1836 				}
1837 			}
1838 			mutex_unlock(&pci_pme_list_mutex);
1839 		}
1840 	}
1841 
1842 	dev_dbg(&dev->dev, "PME# %s\n", enable ? "enabled" : "disabled");
1843 }
1844 EXPORT_SYMBOL(pci_pme_active);
1845 
1846 /**
1847  * __pci_enable_wake - enable PCI device as wakeup event source
1848  * @dev: PCI device affected
1849  * @state: PCI state from which device will issue wakeup events
1850  * @runtime: True if the events are to be generated at run time
1851  * @enable: True to enable event generation; false to disable
1852  *
1853  * This enables the device as a wakeup event source, or disables it.
1854  * When such events involves platform-specific hooks, those hooks are
1855  * called automatically by this routine.
1856  *
1857  * Devices with legacy power management (no standard PCI PM capabilities)
1858  * always require such platform hooks.
1859  *
1860  * RETURN VALUE:
1861  * 0 is returned on success
1862  * -EINVAL is returned if device is not supposed to wake up the system
1863  * Error code depending on the platform is returned if both the platform and
1864  * the native mechanism fail to enable the generation of wake-up events
1865  */
1866 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1867 		      bool runtime, bool enable)
1868 {
1869 	int ret = 0;
1870 
1871 	if (enable && !runtime && !device_may_wakeup(&dev->dev))
1872 		return -EINVAL;
1873 
1874 	/* Don't do the same thing twice in a row for one device. */
1875 	if (!!enable == !!dev->wakeup_prepared)
1876 		return 0;
1877 
1878 	/*
1879 	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1880 	 * Anderson we should be doing PME# wake enable followed by ACPI wake
1881 	 * enable.  To disable wake-up we call the platform first, for symmetry.
1882 	 */
1883 
1884 	if (enable) {
1885 		int error;
1886 
1887 		if (pci_pme_capable(dev, state))
1888 			pci_pme_active(dev, true);
1889 		else
1890 			ret = 1;
1891 		error = runtime ? platform_pci_run_wake(dev, true) :
1892 					platform_pci_sleep_wake(dev, true);
1893 		if (ret)
1894 			ret = error;
1895 		if (!ret)
1896 			dev->wakeup_prepared = true;
1897 	} else {
1898 		if (runtime)
1899 			platform_pci_run_wake(dev, false);
1900 		else
1901 			platform_pci_sleep_wake(dev, false);
1902 		pci_pme_active(dev, false);
1903 		dev->wakeup_prepared = false;
1904 	}
1905 
1906 	return ret;
1907 }
1908 EXPORT_SYMBOL(__pci_enable_wake);
1909 
1910 /**
1911  * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1912  * @dev: PCI device to prepare
1913  * @enable: True to enable wake-up event generation; false to disable
1914  *
1915  * Many drivers want the device to wake up the system from D3_hot or D3_cold
1916  * and this function allows them to set that up cleanly - pci_enable_wake()
1917  * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1918  * ordering constraints.
1919  *
1920  * This function only returns error code if the device is not capable of
1921  * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1922  * enable wake-up power for it.
1923  */
1924 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1925 {
1926 	return pci_pme_capable(dev, PCI_D3cold) ?
1927 			pci_enable_wake(dev, PCI_D3cold, enable) :
1928 			pci_enable_wake(dev, PCI_D3hot, enable);
1929 }
1930 EXPORT_SYMBOL(pci_wake_from_d3);
1931 
1932 /**
1933  * pci_target_state - find an appropriate low power state for a given PCI dev
1934  * @dev: PCI device
1935  *
1936  * Use underlying platform code to find a supported low power state for @dev.
1937  * If the platform can't manage @dev, return the deepest state from which it
1938  * can generate wake events, based on any available PME info.
1939  */
1940 static pci_power_t pci_target_state(struct pci_dev *dev)
1941 {
1942 	pci_power_t target_state = PCI_D3hot;
1943 
1944 	if (platform_pci_power_manageable(dev)) {
1945 		/*
1946 		 * Call the platform to choose the target state of the device
1947 		 * and enable wake-up from this state if supported.
1948 		 */
1949 		pci_power_t state = platform_pci_choose_state(dev);
1950 
1951 		switch (state) {
1952 		case PCI_POWER_ERROR:
1953 		case PCI_UNKNOWN:
1954 			break;
1955 		case PCI_D1:
1956 		case PCI_D2:
1957 			if (pci_no_d1d2(dev))
1958 				break;
1959 		default:
1960 			target_state = state;
1961 		}
1962 	} else if (!dev->pm_cap) {
1963 		target_state = PCI_D0;
1964 	} else if (device_may_wakeup(&dev->dev)) {
1965 		/*
1966 		 * Find the deepest state from which the device can generate
1967 		 * wake-up events, make it the target state and enable device
1968 		 * to generate PME#.
1969 		 */
1970 		if (dev->pme_support) {
1971 			while (target_state
1972 			      && !(dev->pme_support & (1 << target_state)))
1973 				target_state--;
1974 		}
1975 	}
1976 
1977 	return target_state;
1978 }
1979 
1980 /**
1981  * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1982  * @dev: Device to handle.
1983  *
1984  * Choose the power state appropriate for the device depending on whether
1985  * it can wake up the system and/or is power manageable by the platform
1986  * (PCI_D3hot is the default) and put the device into that state.
1987  */
1988 int pci_prepare_to_sleep(struct pci_dev *dev)
1989 {
1990 	pci_power_t target_state = pci_target_state(dev);
1991 	int error;
1992 
1993 	if (target_state == PCI_POWER_ERROR)
1994 		return -EIO;
1995 
1996 	pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1997 
1998 	error = pci_set_power_state(dev, target_state);
1999 
2000 	if (error)
2001 		pci_enable_wake(dev, target_state, false);
2002 
2003 	return error;
2004 }
2005 EXPORT_SYMBOL(pci_prepare_to_sleep);
2006 
2007 /**
2008  * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
2009  * @dev: Device to handle.
2010  *
2011  * Disable device's system wake-up capability and put it into D0.
2012  */
2013 int pci_back_from_sleep(struct pci_dev *dev)
2014 {
2015 	pci_enable_wake(dev, PCI_D0, false);
2016 	return pci_set_power_state(dev, PCI_D0);
2017 }
2018 EXPORT_SYMBOL(pci_back_from_sleep);
2019 
2020 /**
2021  * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
2022  * @dev: PCI device being suspended.
2023  *
2024  * Prepare @dev to generate wake-up events at run time and put it into a low
2025  * power state.
2026  */
2027 int pci_finish_runtime_suspend(struct pci_dev *dev)
2028 {
2029 	pci_power_t target_state = pci_target_state(dev);
2030 	int error;
2031 
2032 	if (target_state == PCI_POWER_ERROR)
2033 		return -EIO;
2034 
2035 	dev->runtime_d3cold = target_state == PCI_D3cold;
2036 
2037 	__pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
2038 
2039 	error = pci_set_power_state(dev, target_state);
2040 
2041 	if (error) {
2042 		__pci_enable_wake(dev, target_state, true, false);
2043 		dev->runtime_d3cold = false;
2044 	}
2045 
2046 	return error;
2047 }
2048 
2049 /**
2050  * pci_dev_run_wake - Check if device can generate run-time wake-up events.
2051  * @dev: Device to check.
2052  *
2053  * Return true if the device itself is capable of generating wake-up events
2054  * (through the platform or using the native PCIe PME) or if the device supports
2055  * PME and one of its upstream bridges can generate wake-up events.
2056  */
2057 bool pci_dev_run_wake(struct pci_dev *dev)
2058 {
2059 	struct pci_bus *bus = dev->bus;
2060 
2061 	if (device_run_wake(&dev->dev))
2062 		return true;
2063 
2064 	if (!dev->pme_support)
2065 		return false;
2066 
2067 	while (bus->parent) {
2068 		struct pci_dev *bridge = bus->self;
2069 
2070 		if (device_run_wake(&bridge->dev))
2071 			return true;
2072 
2073 		bus = bus->parent;
2074 	}
2075 
2076 	/* We have reached the root bus. */
2077 	if (bus->bridge)
2078 		return device_run_wake(bus->bridge);
2079 
2080 	return false;
2081 }
2082 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
2083 
2084 /**
2085  * pci_dev_keep_suspended - Check if the device can stay in the suspended state.
2086  * @pci_dev: Device to check.
2087  *
2088  * Return 'true' if the device is runtime-suspended, it doesn't have to be
2089  * reconfigured due to wakeup settings difference between system and runtime
2090  * suspend and the current power state of it is suitable for the upcoming
2091  * (system) transition.
2092  *
2093  * If the device is not configured for system wakeup, disable PME for it before
2094  * returning 'true' to prevent it from waking up the system unnecessarily.
2095  */
2096 bool pci_dev_keep_suspended(struct pci_dev *pci_dev)
2097 {
2098 	struct device *dev = &pci_dev->dev;
2099 
2100 	if (!pm_runtime_suspended(dev)
2101 	    || pci_target_state(pci_dev) != pci_dev->current_state
2102 	    || platform_pci_need_resume(pci_dev))
2103 		return false;
2104 
2105 	/*
2106 	 * At this point the device is good to go unless it's been configured
2107 	 * to generate PME at the runtime suspend time, but it is not supposed
2108 	 * to wake up the system.  In that case, simply disable PME for it
2109 	 * (it will have to be re-enabled on exit from system resume).
2110 	 *
2111 	 * If the device's power state is D3cold and the platform check above
2112 	 * hasn't triggered, the device's configuration is suitable and we don't
2113 	 * need to manipulate it at all.
2114 	 */
2115 	spin_lock_irq(&dev->power.lock);
2116 
2117 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold &&
2118 	    !device_may_wakeup(dev))
2119 		__pci_pme_active(pci_dev, false);
2120 
2121 	spin_unlock_irq(&dev->power.lock);
2122 	return true;
2123 }
2124 
2125 /**
2126  * pci_dev_complete_resume - Finalize resume from system sleep for a device.
2127  * @pci_dev: Device to handle.
2128  *
2129  * If the device is runtime suspended and wakeup-capable, enable PME for it as
2130  * it might have been disabled during the prepare phase of system suspend if
2131  * the device was not configured for system wakeup.
2132  */
2133 void pci_dev_complete_resume(struct pci_dev *pci_dev)
2134 {
2135 	struct device *dev = &pci_dev->dev;
2136 
2137 	if (!pci_dev_run_wake(pci_dev))
2138 		return;
2139 
2140 	spin_lock_irq(&dev->power.lock);
2141 
2142 	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
2143 		__pci_pme_active(pci_dev, true);
2144 
2145 	spin_unlock_irq(&dev->power.lock);
2146 }
2147 
2148 void pci_config_pm_runtime_get(struct pci_dev *pdev)
2149 {
2150 	struct device *dev = &pdev->dev;
2151 	struct device *parent = dev->parent;
2152 
2153 	if (parent)
2154 		pm_runtime_get_sync(parent);
2155 	pm_runtime_get_noresume(dev);
2156 	/*
2157 	 * pdev->current_state is set to PCI_D3cold during suspending,
2158 	 * so wait until suspending completes
2159 	 */
2160 	pm_runtime_barrier(dev);
2161 	/*
2162 	 * Only need to resume devices in D3cold, because config
2163 	 * registers are still accessible for devices suspended but
2164 	 * not in D3cold.
2165 	 */
2166 	if (pdev->current_state == PCI_D3cold)
2167 		pm_runtime_resume(dev);
2168 }
2169 
2170 void pci_config_pm_runtime_put(struct pci_dev *pdev)
2171 {
2172 	struct device *dev = &pdev->dev;
2173 	struct device *parent = dev->parent;
2174 
2175 	pm_runtime_put(dev);
2176 	if (parent)
2177 		pm_runtime_put_sync(parent);
2178 }
2179 
2180 /**
2181  * pci_bridge_d3_possible - Is it possible to put the bridge into D3
2182  * @bridge: Bridge to check
2183  *
2184  * This function checks if it is possible to move the bridge to D3.
2185  * Currently we only allow D3 for recent enough PCIe ports.
2186  */
2187 static bool pci_bridge_d3_possible(struct pci_dev *bridge)
2188 {
2189 	unsigned int year;
2190 
2191 	if (!pci_is_pcie(bridge))
2192 		return false;
2193 
2194 	switch (pci_pcie_type(bridge)) {
2195 	case PCI_EXP_TYPE_ROOT_PORT:
2196 	case PCI_EXP_TYPE_UPSTREAM:
2197 	case PCI_EXP_TYPE_DOWNSTREAM:
2198 		if (pci_bridge_d3_disable)
2199 			return false;
2200 		if (pci_bridge_d3_force)
2201 			return true;
2202 
2203 		/*
2204 		 * It should be safe to put PCIe ports from 2015 or newer
2205 		 * to D3.
2206 		 */
2207 		if (dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL) &&
2208 		    year >= 2015) {
2209 			return true;
2210 		}
2211 		break;
2212 	}
2213 
2214 	return false;
2215 }
2216 
2217 static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
2218 {
2219 	bool *d3cold_ok = data;
2220 	bool no_d3cold;
2221 
2222 	/*
2223 	 * The device needs to be allowed to go D3cold and if it is wake
2224 	 * capable to do so from D3cold.
2225 	 */
2226 	no_d3cold = dev->no_d3cold || !dev->d3cold_allowed ||
2227 		(device_may_wakeup(&dev->dev) && !pci_pme_capable(dev, PCI_D3cold)) ||
2228 		!pci_power_manageable(dev);
2229 
2230 	*d3cold_ok = !no_d3cold;
2231 
2232 	return no_d3cold;
2233 }
2234 
2235 /*
2236  * pci_bridge_d3_update - Update bridge D3 capabilities
2237  * @dev: PCI device which is changed
2238  * @remove: Is the device being removed
2239  *
2240  * Update upstream bridge PM capabilities accordingly depending on if the
2241  * device PM configuration was changed or the device is being removed.  The
2242  * change is also propagated upstream.
2243  */
2244 static void pci_bridge_d3_update(struct pci_dev *dev, bool remove)
2245 {
2246 	struct pci_dev *bridge;
2247 	bool d3cold_ok = true;
2248 
2249 	bridge = pci_upstream_bridge(dev);
2250 	if (!bridge || !pci_bridge_d3_possible(bridge))
2251 		return;
2252 
2253 	pci_dev_get(bridge);
2254 	/*
2255 	 * If the device is removed we do not care about its D3cold
2256 	 * capabilities.
2257 	 */
2258 	if (!remove)
2259 		pci_dev_check_d3cold(dev, &d3cold_ok);
2260 
2261 	if (d3cold_ok) {
2262 		/*
2263 		 * We need to go through all children to find out if all of
2264 		 * them can still go to D3cold.
2265 		 */
2266 		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
2267 			     &d3cold_ok);
2268 	}
2269 
2270 	if (bridge->bridge_d3 != d3cold_ok) {
2271 		bridge->bridge_d3 = d3cold_ok;
2272 		/* Propagate change to upstream bridges */
2273 		pci_bridge_d3_update(bridge, false);
2274 	}
2275 
2276 	pci_dev_put(bridge);
2277 }
2278 
2279 /**
2280  * pci_bridge_d3_device_changed - Update bridge D3 capabilities on change
2281  * @dev: PCI device that was changed
2282  *
2283  * If a device is added or its PM configuration, such as is it allowed to
2284  * enter D3cold, is changed this function updates upstream bridge PM
2285  * capabilities accordingly.
2286  */
2287 void pci_bridge_d3_device_changed(struct pci_dev *dev)
2288 {
2289 	pci_bridge_d3_update(dev, false);
2290 }
2291 
2292 /**
2293  * pci_bridge_d3_device_removed - Update bridge D3 capabilities on remove
2294  * @dev: PCI device being removed
2295  *
2296  * Function updates upstream bridge PM capabilities based on other devices
2297  * still left on the bus.
2298  */
2299 void pci_bridge_d3_device_removed(struct pci_dev *dev)
2300 {
2301 	pci_bridge_d3_update(dev, true);
2302 }
2303 
2304 /**
2305  * pci_d3cold_enable - Enable D3cold for device
2306  * @dev: PCI device to handle
2307  *
2308  * This function can be used in drivers to enable D3cold from the device
2309  * they handle.  It also updates upstream PCI bridge PM capabilities
2310  * accordingly.
2311  */
2312 void pci_d3cold_enable(struct pci_dev *dev)
2313 {
2314 	if (dev->no_d3cold) {
2315 		dev->no_d3cold = false;
2316 		pci_bridge_d3_device_changed(dev);
2317 	}
2318 }
2319 EXPORT_SYMBOL_GPL(pci_d3cold_enable);
2320 
2321 /**
2322  * pci_d3cold_disable - Disable D3cold for device
2323  * @dev: PCI device to handle
2324  *
2325  * This function can be used in drivers to disable D3cold from the device
2326  * they handle.  It also updates upstream PCI bridge PM capabilities
2327  * accordingly.
2328  */
2329 void pci_d3cold_disable(struct pci_dev *dev)
2330 {
2331 	if (!dev->no_d3cold) {
2332 		dev->no_d3cold = true;
2333 		pci_bridge_d3_device_changed(dev);
2334 	}
2335 }
2336 EXPORT_SYMBOL_GPL(pci_d3cold_disable);
2337 
2338 /**
2339  * pci_pm_init - Initialize PM functions of given PCI device
2340  * @dev: PCI device to handle.
2341  */
2342 void pci_pm_init(struct pci_dev *dev)
2343 {
2344 	int pm;
2345 	u16 pmc;
2346 
2347 	pm_runtime_forbid(&dev->dev);
2348 	pm_runtime_set_active(&dev->dev);
2349 	pm_runtime_enable(&dev->dev);
2350 	device_enable_async_suspend(&dev->dev);
2351 	dev->wakeup_prepared = false;
2352 
2353 	dev->pm_cap = 0;
2354 	dev->pme_support = 0;
2355 
2356 	/* find PCI PM capability in list */
2357 	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
2358 	if (!pm)
2359 		return;
2360 	/* Check device's ability to generate PME# */
2361 	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
2362 
2363 	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
2364 		dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
2365 			pmc & PCI_PM_CAP_VER_MASK);
2366 		return;
2367 	}
2368 
2369 	dev->pm_cap = pm;
2370 	dev->d3_delay = PCI_PM_D3_WAIT;
2371 	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
2372 	dev->bridge_d3 = pci_bridge_d3_possible(dev);
2373 	dev->d3cold_allowed = true;
2374 
2375 	dev->d1_support = false;
2376 	dev->d2_support = false;
2377 	if (!pci_no_d1d2(dev)) {
2378 		if (pmc & PCI_PM_CAP_D1)
2379 			dev->d1_support = true;
2380 		if (pmc & PCI_PM_CAP_D2)
2381 			dev->d2_support = true;
2382 
2383 		if (dev->d1_support || dev->d2_support)
2384 			dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
2385 				   dev->d1_support ? " D1" : "",
2386 				   dev->d2_support ? " D2" : "");
2387 	}
2388 
2389 	pmc &= PCI_PM_CAP_PME_MASK;
2390 	if (pmc) {
2391 		dev_printk(KERN_DEBUG, &dev->dev,
2392 			 "PME# supported from%s%s%s%s%s\n",
2393 			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
2394 			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
2395 			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
2396 			 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
2397 			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
2398 		dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
2399 		dev->pme_poll = true;
2400 		/*
2401 		 * Make device's PM flags reflect the wake-up capability, but
2402 		 * let the user space enable it to wake up the system as needed.
2403 		 */
2404 		device_set_wakeup_capable(&dev->dev, true);
2405 		/* Disable the PME# generation functionality */
2406 		pci_pme_active(dev, false);
2407 	}
2408 }
2409 
2410 static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
2411 {
2412 	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
2413 
2414 	switch (prop) {
2415 	case PCI_EA_P_MEM:
2416 	case PCI_EA_P_VF_MEM:
2417 		flags |= IORESOURCE_MEM;
2418 		break;
2419 	case PCI_EA_P_MEM_PREFETCH:
2420 	case PCI_EA_P_VF_MEM_PREFETCH:
2421 		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
2422 		break;
2423 	case PCI_EA_P_IO:
2424 		flags |= IORESOURCE_IO;
2425 		break;
2426 	default:
2427 		return 0;
2428 	}
2429 
2430 	return flags;
2431 }
2432 
2433 static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
2434 					    u8 prop)
2435 {
2436 	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
2437 		return &dev->resource[bei];
2438 #ifdef CONFIG_PCI_IOV
2439 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
2440 		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
2441 		return &dev->resource[PCI_IOV_RESOURCES +
2442 				      bei - PCI_EA_BEI_VF_BAR0];
2443 #endif
2444 	else if (bei == PCI_EA_BEI_ROM)
2445 		return &dev->resource[PCI_ROM_RESOURCE];
2446 	else
2447 		return NULL;
2448 }
2449 
2450 /* Read an Enhanced Allocation (EA) entry */
2451 static int pci_ea_read(struct pci_dev *dev, int offset)
2452 {
2453 	struct resource *res;
2454 	int ent_size, ent_offset = offset;
2455 	resource_size_t start, end;
2456 	unsigned long flags;
2457 	u32 dw0, bei, base, max_offset;
2458 	u8 prop;
2459 	bool support_64 = (sizeof(resource_size_t) >= 8);
2460 
2461 	pci_read_config_dword(dev, ent_offset, &dw0);
2462 	ent_offset += 4;
2463 
2464 	/* Entry size field indicates DWORDs after 1st */
2465 	ent_size = ((dw0 & PCI_EA_ES) + 1) << 2;
2466 
2467 	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
2468 		goto out;
2469 
2470 	bei = (dw0 & PCI_EA_BEI) >> 4;
2471 	prop = (dw0 & PCI_EA_PP) >> 8;
2472 
2473 	/*
2474 	 * If the Property is in the reserved range, try the Secondary
2475 	 * Property instead.
2476 	 */
2477 	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
2478 		prop = (dw0 & PCI_EA_SP) >> 16;
2479 	if (prop > PCI_EA_P_BRIDGE_IO)
2480 		goto out;
2481 
2482 	res = pci_ea_get_resource(dev, bei, prop);
2483 	if (!res) {
2484 		dev_err(&dev->dev, "Unsupported EA entry BEI: %u\n", bei);
2485 		goto out;
2486 	}
2487 
2488 	flags = pci_ea_flags(dev, prop);
2489 	if (!flags) {
2490 		dev_err(&dev->dev, "Unsupported EA properties: %#x\n", prop);
2491 		goto out;
2492 	}
2493 
2494 	/* Read Base */
2495 	pci_read_config_dword(dev, ent_offset, &base);
2496 	start = (base & PCI_EA_FIELD_MASK);
2497 	ent_offset += 4;
2498 
2499 	/* Read MaxOffset */
2500 	pci_read_config_dword(dev, ent_offset, &max_offset);
2501 	ent_offset += 4;
2502 
2503 	/* Read Base MSBs (if 64-bit entry) */
2504 	if (base & PCI_EA_IS_64) {
2505 		u32 base_upper;
2506 
2507 		pci_read_config_dword(dev, ent_offset, &base_upper);
2508 		ent_offset += 4;
2509 
2510 		flags |= IORESOURCE_MEM_64;
2511 
2512 		/* entry starts above 32-bit boundary, can't use */
2513 		if (!support_64 && base_upper)
2514 			goto out;
2515 
2516 		if (support_64)
2517 			start |= ((u64)base_upper << 32);
2518 	}
2519 
2520 	end = start + (max_offset | 0x03);
2521 
2522 	/* Read MaxOffset MSBs (if 64-bit entry) */
2523 	if (max_offset & PCI_EA_IS_64) {
2524 		u32 max_offset_upper;
2525 
2526 		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
2527 		ent_offset += 4;
2528 
2529 		flags |= IORESOURCE_MEM_64;
2530 
2531 		/* entry too big, can't use */
2532 		if (!support_64 && max_offset_upper)
2533 			goto out;
2534 
2535 		if (support_64)
2536 			end += ((u64)max_offset_upper << 32);
2537 	}
2538 
2539 	if (end < start) {
2540 		dev_err(&dev->dev, "EA Entry crosses address boundary\n");
2541 		goto out;
2542 	}
2543 
2544 	if (ent_size != ent_offset - offset) {
2545 		dev_err(&dev->dev,
2546 			"EA Entry Size (%d) does not match length read (%d)\n",
2547 			ent_size, ent_offset - offset);
2548 		goto out;
2549 	}
2550 
2551 	res->name = pci_name(dev);
2552 	res->start = start;
2553 	res->end = end;
2554 	res->flags = flags;
2555 
2556 	if (bei <= PCI_EA_BEI_BAR5)
2557 		dev_printk(KERN_DEBUG, &dev->dev, "BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2558 			   bei, res, prop);
2559 	else if (bei == PCI_EA_BEI_ROM)
2560 		dev_printk(KERN_DEBUG, &dev->dev, "ROM: %pR (from Enhanced Allocation, properties %#02x)\n",
2561 			   res, prop);
2562 	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
2563 		dev_printk(KERN_DEBUG, &dev->dev, "VF BAR %d: %pR (from Enhanced Allocation, properties %#02x)\n",
2564 			   bei - PCI_EA_BEI_VF_BAR0, res, prop);
2565 	else
2566 		dev_printk(KERN_DEBUG, &dev->dev, "BEI %d res: %pR (from Enhanced Allocation, properties %#02x)\n",
2567 			   bei, res, prop);
2568 
2569 out:
2570 	return offset + ent_size;
2571 }
2572 
2573 /* Enhanced Allocation Initialization */
2574 void pci_ea_init(struct pci_dev *dev)
2575 {
2576 	int ea;
2577 	u8 num_ent;
2578 	int offset;
2579 	int i;
2580 
2581 	/* find PCI EA capability in list */
2582 	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
2583 	if (!ea)
2584 		return;
2585 
2586 	/* determine the number of entries */
2587 	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
2588 					&num_ent);
2589 	num_ent &= PCI_EA_NUM_ENT_MASK;
2590 
2591 	offset = ea + PCI_EA_FIRST_ENT;
2592 
2593 	/* Skip DWORD 2 for type 1 functions */
2594 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
2595 		offset += 4;
2596 
2597 	/* parse each EA entry */
2598 	for (i = 0; i < num_ent; ++i)
2599 		offset = pci_ea_read(dev, offset);
2600 }
2601 
2602 static void pci_add_saved_cap(struct pci_dev *pci_dev,
2603 	struct pci_cap_saved_state *new_cap)
2604 {
2605 	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
2606 }
2607 
2608 /**
2609  * _pci_add_cap_save_buffer - allocate buffer for saving given
2610  *                            capability registers
2611  * @dev: the PCI device
2612  * @cap: the capability to allocate the buffer for
2613  * @extended: Standard or Extended capability ID
2614  * @size: requested size of the buffer
2615  */
2616 static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
2617 				    bool extended, unsigned int size)
2618 {
2619 	int pos;
2620 	struct pci_cap_saved_state *save_state;
2621 
2622 	if (extended)
2623 		pos = pci_find_ext_capability(dev, cap);
2624 	else
2625 		pos = pci_find_capability(dev, cap);
2626 
2627 	if (!pos)
2628 		return 0;
2629 
2630 	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
2631 	if (!save_state)
2632 		return -ENOMEM;
2633 
2634 	save_state->cap.cap_nr = cap;
2635 	save_state->cap.cap_extended = extended;
2636 	save_state->cap.size = size;
2637 	pci_add_saved_cap(dev, save_state);
2638 
2639 	return 0;
2640 }
2641 
2642 int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
2643 {
2644 	return _pci_add_cap_save_buffer(dev, cap, false, size);
2645 }
2646 
2647 int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
2648 {
2649 	return _pci_add_cap_save_buffer(dev, cap, true, size);
2650 }
2651 
2652 /**
2653  * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
2654  * @dev: the PCI device
2655  */
2656 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
2657 {
2658 	int error;
2659 
2660 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
2661 					PCI_EXP_SAVE_REGS * sizeof(u16));
2662 	if (error)
2663 		dev_err(&dev->dev,
2664 			"unable to preallocate PCI Express save buffer\n");
2665 
2666 	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
2667 	if (error)
2668 		dev_err(&dev->dev,
2669 			"unable to preallocate PCI-X save buffer\n");
2670 
2671 	pci_allocate_vc_save_buffers(dev);
2672 }
2673 
2674 void pci_free_cap_save_buffers(struct pci_dev *dev)
2675 {
2676 	struct pci_cap_saved_state *tmp;
2677 	struct hlist_node *n;
2678 
2679 	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
2680 		kfree(tmp);
2681 }
2682 
2683 /**
2684  * pci_configure_ari - enable or disable ARI forwarding
2685  * @dev: the PCI device
2686  *
2687  * If @dev and its upstream bridge both support ARI, enable ARI in the
2688  * bridge.  Otherwise, disable ARI in the bridge.
2689  */
2690 void pci_configure_ari(struct pci_dev *dev)
2691 {
2692 	u32 cap;
2693 	struct pci_dev *bridge;
2694 
2695 	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
2696 		return;
2697 
2698 	bridge = dev->bus->self;
2699 	if (!bridge)
2700 		return;
2701 
2702 	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
2703 	if (!(cap & PCI_EXP_DEVCAP2_ARI))
2704 		return;
2705 
2706 	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
2707 		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
2708 					 PCI_EXP_DEVCTL2_ARI);
2709 		bridge->ari_enabled = 1;
2710 	} else {
2711 		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
2712 					   PCI_EXP_DEVCTL2_ARI);
2713 		bridge->ari_enabled = 0;
2714 	}
2715 }
2716 
2717 static int pci_acs_enable;
2718 
2719 /**
2720  * pci_request_acs - ask for ACS to be enabled if supported
2721  */
2722 void pci_request_acs(void)
2723 {
2724 	pci_acs_enable = 1;
2725 }
2726 
2727 /**
2728  * pci_std_enable_acs - enable ACS on devices using standard ACS capabilites
2729  * @dev: the PCI device
2730  */
2731 static void pci_std_enable_acs(struct pci_dev *dev)
2732 {
2733 	int pos;
2734 	u16 cap;
2735 	u16 ctrl;
2736 
2737 	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2738 	if (!pos)
2739 		return;
2740 
2741 	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2742 	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2743 
2744 	/* Source Validation */
2745 	ctrl |= (cap & PCI_ACS_SV);
2746 
2747 	/* P2P Request Redirect */
2748 	ctrl |= (cap & PCI_ACS_RR);
2749 
2750 	/* P2P Completion Redirect */
2751 	ctrl |= (cap & PCI_ACS_CR);
2752 
2753 	/* Upstream Forwarding */
2754 	ctrl |= (cap & PCI_ACS_UF);
2755 
2756 	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2757 }
2758 
2759 /**
2760  * pci_enable_acs - enable ACS if hardware support it
2761  * @dev: the PCI device
2762  */
2763 void pci_enable_acs(struct pci_dev *dev)
2764 {
2765 	if (!pci_acs_enable)
2766 		return;
2767 
2768 	if (!pci_dev_specific_enable_acs(dev))
2769 		return;
2770 
2771 	pci_std_enable_acs(dev);
2772 }
2773 
2774 static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
2775 {
2776 	int pos;
2777 	u16 cap, ctrl;
2778 
2779 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
2780 	if (!pos)
2781 		return false;
2782 
2783 	/*
2784 	 * Except for egress control, capabilities are either required
2785 	 * or only required if controllable.  Features missing from the
2786 	 * capability field can therefore be assumed as hard-wired enabled.
2787 	 */
2788 	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
2789 	acs_flags &= (cap | PCI_ACS_EC);
2790 
2791 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
2792 	return (ctrl & acs_flags) == acs_flags;
2793 }
2794 
2795 /**
2796  * pci_acs_enabled - test ACS against required flags for a given device
2797  * @pdev: device to test
2798  * @acs_flags: required PCI ACS flags
2799  *
2800  * Return true if the device supports the provided flags.  Automatically
2801  * filters out flags that are not implemented on multifunction devices.
2802  *
2803  * Note that this interface checks the effective ACS capabilities of the
2804  * device rather than the actual capabilities.  For instance, most single
2805  * function endpoints are not required to support ACS because they have no
2806  * opportunity for peer-to-peer access.  We therefore return 'true'
2807  * regardless of whether the device exposes an ACS capability.  This makes
2808  * it much easier for callers of this function to ignore the actual type
2809  * or topology of the device when testing ACS support.
2810  */
2811 bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
2812 {
2813 	int ret;
2814 
2815 	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
2816 	if (ret >= 0)
2817 		return ret > 0;
2818 
2819 	/*
2820 	 * Conventional PCI and PCI-X devices never support ACS, either
2821 	 * effectively or actually.  The shared bus topology implies that
2822 	 * any device on the bus can receive or snoop DMA.
2823 	 */
2824 	if (!pci_is_pcie(pdev))
2825 		return false;
2826 
2827 	switch (pci_pcie_type(pdev)) {
2828 	/*
2829 	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
2830 	 * but since their primary interface is PCI/X, we conservatively
2831 	 * handle them as we would a non-PCIe device.
2832 	 */
2833 	case PCI_EXP_TYPE_PCIE_BRIDGE:
2834 	/*
2835 	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
2836 	 * applicable... must never implement an ACS Extended Capability...".
2837 	 * This seems arbitrary, but we take a conservative interpretation
2838 	 * of this statement.
2839 	 */
2840 	case PCI_EXP_TYPE_PCI_BRIDGE:
2841 	case PCI_EXP_TYPE_RC_EC:
2842 		return false;
2843 	/*
2844 	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
2845 	 * implement ACS in order to indicate their peer-to-peer capabilities,
2846 	 * regardless of whether they are single- or multi-function devices.
2847 	 */
2848 	case PCI_EXP_TYPE_DOWNSTREAM:
2849 	case PCI_EXP_TYPE_ROOT_PORT:
2850 		return pci_acs_flags_enabled(pdev, acs_flags);
2851 	/*
2852 	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
2853 	 * implemented by the remaining PCIe types to indicate peer-to-peer
2854 	 * capabilities, but only when they are part of a multifunction
2855 	 * device.  The footnote for section 6.12 indicates the specific
2856 	 * PCIe types included here.
2857 	 */
2858 	case PCI_EXP_TYPE_ENDPOINT:
2859 	case PCI_EXP_TYPE_UPSTREAM:
2860 	case PCI_EXP_TYPE_LEG_END:
2861 	case PCI_EXP_TYPE_RC_END:
2862 		if (!pdev->multifunction)
2863 			break;
2864 
2865 		return pci_acs_flags_enabled(pdev, acs_flags);
2866 	}
2867 
2868 	/*
2869 	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
2870 	 * to single function devices with the exception of downstream ports.
2871 	 */
2872 	return true;
2873 }
2874 
2875 /**
2876  * pci_acs_path_enable - test ACS flags from start to end in a hierarchy
2877  * @start: starting downstream device
2878  * @end: ending upstream device or NULL to search to the root bus
2879  * @acs_flags: required flags
2880  *
2881  * Walk up a device tree from start to end testing PCI ACS support.  If
2882  * any step along the way does not support the required flags, return false.
2883  */
2884 bool pci_acs_path_enabled(struct pci_dev *start,
2885 			  struct pci_dev *end, u16 acs_flags)
2886 {
2887 	struct pci_dev *pdev, *parent = start;
2888 
2889 	do {
2890 		pdev = parent;
2891 
2892 		if (!pci_acs_enabled(pdev, acs_flags))
2893 			return false;
2894 
2895 		if (pci_is_root_bus(pdev->bus))
2896 			return (end == NULL);
2897 
2898 		parent = pdev->bus->self;
2899 	} while (pdev != end);
2900 
2901 	return true;
2902 }
2903 
2904 /**
2905  * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2906  * @dev: the PCI device
2907  * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
2908  *
2909  * Perform INTx swizzling for a device behind one level of bridge.  This is
2910  * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2911  * behind bridges on add-in cards.  For devices with ARI enabled, the slot
2912  * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2913  * the PCI Express Base Specification, Revision 2.1)
2914  */
2915 u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
2916 {
2917 	int slot;
2918 
2919 	if (pci_ari_enabled(dev->bus))
2920 		slot = 0;
2921 	else
2922 		slot = PCI_SLOT(dev->devfn);
2923 
2924 	return (((pin - 1) + slot) % 4) + 1;
2925 }
2926 
2927 int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2928 {
2929 	u8 pin;
2930 
2931 	pin = dev->pin;
2932 	if (!pin)
2933 		return -1;
2934 
2935 	while (!pci_is_root_bus(dev->bus)) {
2936 		pin = pci_swizzle_interrupt_pin(dev, pin);
2937 		dev = dev->bus->self;
2938 	}
2939 	*bridge = dev;
2940 	return pin;
2941 }
2942 
2943 /**
2944  * pci_common_swizzle - swizzle INTx all the way to root bridge
2945  * @dev: the PCI device
2946  * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2947  *
2948  * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
2949  * bridges all the way up to a PCI root bus.
2950  */
2951 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2952 {
2953 	u8 pin = *pinp;
2954 
2955 	while (!pci_is_root_bus(dev->bus)) {
2956 		pin = pci_swizzle_interrupt_pin(dev, pin);
2957 		dev = dev->bus->self;
2958 	}
2959 	*pinp = pin;
2960 	return PCI_SLOT(dev->devfn);
2961 }
2962 EXPORT_SYMBOL_GPL(pci_common_swizzle);
2963 
2964 /**
2965  *	pci_release_region - Release a PCI bar
2966  *	@pdev: PCI device whose resources were previously reserved by pci_request_region
2967  *	@bar: BAR to release
2968  *
2969  *	Releases the PCI I/O and memory resources previously reserved by a
2970  *	successful call to pci_request_region.  Call this function only
2971  *	after all use of the PCI regions has ceased.
2972  */
2973 void pci_release_region(struct pci_dev *pdev, int bar)
2974 {
2975 	struct pci_devres *dr;
2976 
2977 	if (pci_resource_len(pdev, bar) == 0)
2978 		return;
2979 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2980 		release_region(pci_resource_start(pdev, bar),
2981 				pci_resource_len(pdev, bar));
2982 	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2983 		release_mem_region(pci_resource_start(pdev, bar),
2984 				pci_resource_len(pdev, bar));
2985 
2986 	dr = find_pci_dr(pdev);
2987 	if (dr)
2988 		dr->region_mask &= ~(1 << bar);
2989 }
2990 EXPORT_SYMBOL(pci_release_region);
2991 
2992 /**
2993  *	__pci_request_region - Reserved PCI I/O and memory resource
2994  *	@pdev: PCI device whose resources are to be reserved
2995  *	@bar: BAR to be reserved
2996  *	@res_name: Name to be associated with resource.
2997  *	@exclusive: whether the region access is exclusive or not
2998  *
2999  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3000  *	being reserved by owner @res_name.  Do not access any
3001  *	address inside the PCI regions unless this call returns
3002  *	successfully.
3003  *
3004  *	If @exclusive is set, then the region is marked so that userspace
3005  *	is explicitly not allowed to map the resource via /dev/mem or
3006  *	sysfs MMIO access.
3007  *
3008  *	Returns 0 on success, or %EBUSY on error.  A warning
3009  *	message is also printed on failure.
3010  */
3011 static int __pci_request_region(struct pci_dev *pdev, int bar,
3012 				const char *res_name, int exclusive)
3013 {
3014 	struct pci_devres *dr;
3015 
3016 	if (pci_resource_len(pdev, bar) == 0)
3017 		return 0;
3018 
3019 	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
3020 		if (!request_region(pci_resource_start(pdev, bar),
3021 			    pci_resource_len(pdev, bar), res_name))
3022 			goto err_out;
3023 	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
3024 		if (!__request_mem_region(pci_resource_start(pdev, bar),
3025 					pci_resource_len(pdev, bar), res_name,
3026 					exclusive))
3027 			goto err_out;
3028 	}
3029 
3030 	dr = find_pci_dr(pdev);
3031 	if (dr)
3032 		dr->region_mask |= 1 << bar;
3033 
3034 	return 0;
3035 
3036 err_out:
3037 	dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
3038 		 &pdev->resource[bar]);
3039 	return -EBUSY;
3040 }
3041 
3042 /**
3043  *	pci_request_region - Reserve PCI I/O and memory resource
3044  *	@pdev: PCI device whose resources are to be reserved
3045  *	@bar: BAR to be reserved
3046  *	@res_name: Name to be associated with resource
3047  *
3048  *	Mark the PCI region associated with PCI device @pdev BAR @bar as
3049  *	being reserved by owner @res_name.  Do not access any
3050  *	address inside the PCI regions unless this call returns
3051  *	successfully.
3052  *
3053  *	Returns 0 on success, or %EBUSY on error.  A warning
3054  *	message is also printed on failure.
3055  */
3056 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
3057 {
3058 	return __pci_request_region(pdev, bar, res_name, 0);
3059 }
3060 EXPORT_SYMBOL(pci_request_region);
3061 
3062 /**
3063  *	pci_request_region_exclusive - Reserved PCI I/O and memory resource
3064  *	@pdev: PCI device whose resources are to be reserved
3065  *	@bar: BAR to be reserved
3066  *	@res_name: Name to be associated with resource.
3067  *
3068  *	Mark the PCI region associated with PCI device @pdev BR @bar as
3069  *	being reserved by owner @res_name.  Do not access any
3070  *	address inside the PCI regions unless this call returns
3071  *	successfully.
3072  *
3073  *	Returns 0 on success, or %EBUSY on error.  A warning
3074  *	message is also printed on failure.
3075  *
3076  *	The key difference that _exclusive makes it that userspace is
3077  *	explicitly not allowed to map the resource via /dev/mem or
3078  *	sysfs.
3079  */
3080 int pci_request_region_exclusive(struct pci_dev *pdev, int bar,
3081 				 const char *res_name)
3082 {
3083 	return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
3084 }
3085 EXPORT_SYMBOL(pci_request_region_exclusive);
3086 
3087 /**
3088  * pci_release_selected_regions - Release selected PCI I/O and memory resources
3089  * @pdev: PCI device whose resources were previously reserved
3090  * @bars: Bitmask of BARs to be released
3091  *
3092  * Release selected PCI I/O and memory resources previously reserved.
3093  * Call this function only after all use of the PCI regions has ceased.
3094  */
3095 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
3096 {
3097 	int i;
3098 
3099 	for (i = 0; i < 6; i++)
3100 		if (bars & (1 << i))
3101 			pci_release_region(pdev, i);
3102 }
3103 EXPORT_SYMBOL(pci_release_selected_regions);
3104 
3105 static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
3106 					  const char *res_name, int excl)
3107 {
3108 	int i;
3109 
3110 	for (i = 0; i < 6; i++)
3111 		if (bars & (1 << i))
3112 			if (__pci_request_region(pdev, i, res_name, excl))
3113 				goto err_out;
3114 	return 0;
3115 
3116 err_out:
3117 	while (--i >= 0)
3118 		if (bars & (1 << i))
3119 			pci_release_region(pdev, i);
3120 
3121 	return -EBUSY;
3122 }
3123 
3124 
3125 /**
3126  * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
3127  * @pdev: PCI device whose resources are to be reserved
3128  * @bars: Bitmask of BARs to be requested
3129  * @res_name: Name to be associated with resource
3130  */
3131 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
3132 				 const char *res_name)
3133 {
3134 	return __pci_request_selected_regions(pdev, bars, res_name, 0);
3135 }
3136 EXPORT_SYMBOL(pci_request_selected_regions);
3137 
3138 int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
3139 					   const char *res_name)
3140 {
3141 	return __pci_request_selected_regions(pdev, bars, res_name,
3142 			IORESOURCE_EXCLUSIVE);
3143 }
3144 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3145 
3146 /**
3147  *	pci_release_regions - Release reserved PCI I/O and memory resources
3148  *	@pdev: PCI device whose resources were previously reserved by pci_request_regions
3149  *
3150  *	Releases all PCI I/O and memory resources previously reserved by a
3151  *	successful call to pci_request_regions.  Call this function only
3152  *	after all use of the PCI regions has ceased.
3153  */
3154 
3155 void pci_release_regions(struct pci_dev *pdev)
3156 {
3157 	pci_release_selected_regions(pdev, (1 << 6) - 1);
3158 }
3159 EXPORT_SYMBOL(pci_release_regions);
3160 
3161 /**
3162  *	pci_request_regions - Reserved PCI I/O and memory resources
3163  *	@pdev: PCI device whose resources are to be reserved
3164  *	@res_name: Name to be associated with resource.
3165  *
3166  *	Mark all PCI regions associated with PCI device @pdev as
3167  *	being reserved by owner @res_name.  Do not access any
3168  *	address inside the PCI regions unless this call returns
3169  *	successfully.
3170  *
3171  *	Returns 0 on success, or %EBUSY on error.  A warning
3172  *	message is also printed on failure.
3173  */
3174 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
3175 {
3176 	return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
3177 }
3178 EXPORT_SYMBOL(pci_request_regions);
3179 
3180 /**
3181  *	pci_request_regions_exclusive - Reserved PCI I/O and memory resources
3182  *	@pdev: PCI device whose resources are to be reserved
3183  *	@res_name: Name to be associated with resource.
3184  *
3185  *	Mark all PCI regions associated with PCI device @pdev as
3186  *	being reserved by owner @res_name.  Do not access any
3187  *	address inside the PCI regions unless this call returns
3188  *	successfully.
3189  *
3190  *	pci_request_regions_exclusive() will mark the region so that
3191  *	/dev/mem and the sysfs MMIO access will not be allowed.
3192  *
3193  *	Returns 0 on success, or %EBUSY on error.  A warning
3194  *	message is also printed on failure.
3195  */
3196 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
3197 {
3198 	return pci_request_selected_regions_exclusive(pdev,
3199 					((1 << 6) - 1), res_name);
3200 }
3201 EXPORT_SYMBOL(pci_request_regions_exclusive);
3202 
3203 #ifdef PCI_IOBASE
3204 struct io_range {
3205 	struct list_head list;
3206 	phys_addr_t start;
3207 	resource_size_t size;
3208 };
3209 
3210 static LIST_HEAD(io_range_list);
3211 static DEFINE_SPINLOCK(io_range_lock);
3212 #endif
3213 
3214 /*
3215  * Record the PCI IO range (expressed as CPU physical address + size).
3216  * Return a negative value if an error has occured, zero otherwise
3217  */
3218 int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
3219 {
3220 	int err = 0;
3221 
3222 #ifdef PCI_IOBASE
3223 	struct io_range *range;
3224 	resource_size_t allocated_size = 0;
3225 
3226 	/* check if the range hasn't been previously recorded */
3227 	spin_lock(&io_range_lock);
3228 	list_for_each_entry(range, &io_range_list, list) {
3229 		if (addr >= range->start && addr + size <= range->start + size) {
3230 			/* range already registered, bail out */
3231 			goto end_register;
3232 		}
3233 		allocated_size += range->size;
3234 	}
3235 
3236 	/* range not registed yet, check for available space */
3237 	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
3238 		/* if it's too big check if 64K space can be reserved */
3239 		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
3240 			err = -E2BIG;
3241 			goto end_register;
3242 		}
3243 
3244 		size = SZ_64K;
3245 		pr_warn("Requested IO range too big, new size set to 64K\n");
3246 	}
3247 
3248 	/* add the range to the list */
3249 	range = kzalloc(sizeof(*range), GFP_ATOMIC);
3250 	if (!range) {
3251 		err = -ENOMEM;
3252 		goto end_register;
3253 	}
3254 
3255 	range->start = addr;
3256 	range->size = size;
3257 
3258 	list_add_tail(&range->list, &io_range_list);
3259 
3260 end_register:
3261 	spin_unlock(&io_range_lock);
3262 #endif
3263 
3264 	return err;
3265 }
3266 
3267 phys_addr_t pci_pio_to_address(unsigned long pio)
3268 {
3269 	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
3270 
3271 #ifdef PCI_IOBASE
3272 	struct io_range *range;
3273 	resource_size_t allocated_size = 0;
3274 
3275 	if (pio > IO_SPACE_LIMIT)
3276 		return address;
3277 
3278 	spin_lock(&io_range_lock);
3279 	list_for_each_entry(range, &io_range_list, list) {
3280 		if (pio >= allocated_size && pio < allocated_size + range->size) {
3281 			address = range->start + pio - allocated_size;
3282 			break;
3283 		}
3284 		allocated_size += range->size;
3285 	}
3286 	spin_unlock(&io_range_lock);
3287 #endif
3288 
3289 	return address;
3290 }
3291 
3292 unsigned long __weak pci_address_to_pio(phys_addr_t address)
3293 {
3294 #ifdef PCI_IOBASE
3295 	struct io_range *res;
3296 	resource_size_t offset = 0;
3297 	unsigned long addr = -1;
3298 
3299 	spin_lock(&io_range_lock);
3300 	list_for_each_entry(res, &io_range_list, list) {
3301 		if (address >= res->start && address < res->start + res->size) {
3302 			addr = address - res->start + offset;
3303 			break;
3304 		}
3305 		offset += res->size;
3306 	}
3307 	spin_unlock(&io_range_lock);
3308 
3309 	return addr;
3310 #else
3311 	if (address > IO_SPACE_LIMIT)
3312 		return (unsigned long)-1;
3313 
3314 	return (unsigned long) address;
3315 #endif
3316 }
3317 
3318 /**
3319  *	pci_remap_iospace - Remap the memory mapped I/O space
3320  *	@res: Resource describing the I/O space
3321  *	@phys_addr: physical address of range to be mapped
3322  *
3323  *	Remap the memory mapped I/O space described by the @res
3324  *	and the CPU physical address @phys_addr into virtual address space.
3325  *	Only architectures that have memory mapped IO functions defined
3326  *	(and the PCI_IOBASE value defined) should call this function.
3327  */
3328 int __weak pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
3329 {
3330 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3331 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3332 
3333 	if (!(res->flags & IORESOURCE_IO))
3334 		return -EINVAL;
3335 
3336 	if (res->end > IO_SPACE_LIMIT)
3337 		return -EINVAL;
3338 
3339 	return ioremap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
3340 				  pgprot_device(PAGE_KERNEL));
3341 #else
3342 	/* this architecture does not have memory mapped I/O space,
3343 	   so this function should never be called */
3344 	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
3345 	return -ENODEV;
3346 #endif
3347 }
3348 
3349 /**
3350  *	pci_unmap_iospace - Unmap the memory mapped I/O space
3351  *	@res: resource to be unmapped
3352  *
3353  *	Unmap the CPU virtual address @res from virtual address space.
3354  *	Only architectures that have memory mapped IO functions defined
3355  *	(and the PCI_IOBASE value defined) should call this function.
3356  */
3357 void pci_unmap_iospace(struct resource *res)
3358 {
3359 #if defined(PCI_IOBASE) && defined(CONFIG_MMU)
3360 	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;
3361 
3362 	unmap_kernel_range(vaddr, resource_size(res));
3363 #endif
3364 }
3365 
3366 static void __pci_set_master(struct pci_dev *dev, bool enable)
3367 {
3368 	u16 old_cmd, cmd;
3369 
3370 	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
3371 	if (enable)
3372 		cmd = old_cmd | PCI_COMMAND_MASTER;
3373 	else
3374 		cmd = old_cmd & ~PCI_COMMAND_MASTER;
3375 	if (cmd != old_cmd) {
3376 		dev_dbg(&dev->dev, "%s bus mastering\n",
3377 			enable ? "enabling" : "disabling");
3378 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3379 	}
3380 	dev->is_busmaster = enable;
3381 }
3382 
3383 /**
3384  * pcibios_setup - process "pci=" kernel boot arguments
3385  * @str: string used to pass in "pci=" kernel boot arguments
3386  *
3387  * Process kernel boot arguments.  This is the default implementation.
3388  * Architecture specific implementations can override this as necessary.
3389  */
3390 char * __weak __init pcibios_setup(char *str)
3391 {
3392 	return str;
3393 }
3394 
3395 /**
3396  * pcibios_set_master - enable PCI bus-mastering for device dev
3397  * @dev: the PCI device to enable
3398  *
3399  * Enables PCI bus-mastering for the device.  This is the default
3400  * implementation.  Architecture specific implementations can override
3401  * this if necessary.
3402  */
3403 void __weak pcibios_set_master(struct pci_dev *dev)
3404 {
3405 	u8 lat;
3406 
3407 	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
3408 	if (pci_is_pcie(dev))
3409 		return;
3410 
3411 	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
3412 	if (lat < 16)
3413 		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
3414 	else if (lat > pcibios_max_latency)
3415 		lat = pcibios_max_latency;
3416 	else
3417 		return;
3418 
3419 	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
3420 }
3421 
3422 /**
3423  * pci_set_master - enables bus-mastering for device dev
3424  * @dev: the PCI device to enable
3425  *
3426  * Enables bus-mastering on the device and calls pcibios_set_master()
3427  * to do the needed arch specific settings.
3428  */
3429 void pci_set_master(struct pci_dev *dev)
3430 {
3431 	__pci_set_master(dev, true);
3432 	pcibios_set_master(dev);
3433 }
3434 EXPORT_SYMBOL(pci_set_master);
3435 
3436 /**
3437  * pci_clear_master - disables bus-mastering for device dev
3438  * @dev: the PCI device to disable
3439  */
3440 void pci_clear_master(struct pci_dev *dev)
3441 {
3442 	__pci_set_master(dev, false);
3443 }
3444 EXPORT_SYMBOL(pci_clear_master);
3445 
3446 /**
3447  * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
3448  * @dev: the PCI device for which MWI is to be enabled
3449  *
3450  * Helper function for pci_set_mwi.
3451  * Originally copied from drivers/net/acenic.c.
3452  * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
3453  *
3454  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3455  */
3456 int pci_set_cacheline_size(struct pci_dev *dev)
3457 {
3458 	u8 cacheline_size;
3459 
3460 	if (!pci_cache_line_size)
3461 		return -EINVAL;
3462 
3463 	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
3464 	   equal to or multiple of the right value. */
3465 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3466 	if (cacheline_size >= pci_cache_line_size &&
3467 	    (cacheline_size % pci_cache_line_size) == 0)
3468 		return 0;
3469 
3470 	/* Write the correct value. */
3471 	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
3472 	/* Read it back. */
3473 	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
3474 	if (cacheline_size == pci_cache_line_size)
3475 		return 0;
3476 
3477 	dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not supported\n",
3478 		   pci_cache_line_size << 2);
3479 
3480 	return -EINVAL;
3481 }
3482 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
3483 
3484 /**
3485  * pci_set_mwi - enables memory-write-invalidate PCI transaction
3486  * @dev: the PCI device for which MWI is enabled
3487  *
3488  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3489  *
3490  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3491  */
3492 int pci_set_mwi(struct pci_dev *dev)
3493 {
3494 #ifdef PCI_DISABLE_MWI
3495 	return 0;
3496 #else
3497 	int rc;
3498 	u16 cmd;
3499 
3500 	rc = pci_set_cacheline_size(dev);
3501 	if (rc)
3502 		return rc;
3503 
3504 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3505 	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
3506 		dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
3507 		cmd |= PCI_COMMAND_INVALIDATE;
3508 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3509 	}
3510 	return 0;
3511 #endif
3512 }
3513 EXPORT_SYMBOL(pci_set_mwi);
3514 
3515 /**
3516  * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
3517  * @dev: the PCI device for which MWI is enabled
3518  *
3519  * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
3520  * Callers are not required to check the return value.
3521  *
3522  * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
3523  */
3524 int pci_try_set_mwi(struct pci_dev *dev)
3525 {
3526 #ifdef PCI_DISABLE_MWI
3527 	return 0;
3528 #else
3529 	return pci_set_mwi(dev);
3530 #endif
3531 }
3532 EXPORT_SYMBOL(pci_try_set_mwi);
3533 
3534 /**
3535  * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
3536  * @dev: the PCI device to disable
3537  *
3538  * Disables PCI Memory-Write-Invalidate transaction on the device
3539  */
3540 void pci_clear_mwi(struct pci_dev *dev)
3541 {
3542 #ifndef PCI_DISABLE_MWI
3543 	u16 cmd;
3544 
3545 	pci_read_config_word(dev, PCI_COMMAND, &cmd);
3546 	if (cmd & PCI_COMMAND_INVALIDATE) {
3547 		cmd &= ~PCI_COMMAND_INVALIDATE;
3548 		pci_write_config_word(dev, PCI_COMMAND, cmd);
3549 	}
3550 #endif
3551 }
3552 EXPORT_SYMBOL(pci_clear_mwi);
3553 
3554 /**
3555  * pci_intx - enables/disables PCI INTx for device dev
3556  * @pdev: the PCI device to operate on
3557  * @enable: boolean: whether to enable or disable PCI INTx
3558  *
3559  * Enables/disables PCI INTx for device dev
3560  */
3561 void pci_intx(struct pci_dev *pdev, int enable)
3562 {
3563 	u16 pci_command, new;
3564 
3565 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
3566 
3567 	if (enable)
3568 		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
3569 	else
3570 		new = pci_command | PCI_COMMAND_INTX_DISABLE;
3571 
3572 	if (new != pci_command) {
3573 		struct pci_devres *dr;
3574 
3575 		pci_write_config_word(pdev, PCI_COMMAND, new);
3576 
3577 		dr = find_pci_dr(pdev);
3578 		if (dr && !dr->restore_intx) {
3579 			dr->restore_intx = 1;
3580 			dr->orig_intx = !enable;
3581 		}
3582 	}
3583 }
3584 EXPORT_SYMBOL_GPL(pci_intx);
3585 
3586 /**
3587  * pci_intx_mask_supported - probe for INTx masking support
3588  * @dev: the PCI device to operate on
3589  *
3590  * Check if the device dev support INTx masking via the config space
3591  * command word.
3592  */
3593 bool pci_intx_mask_supported(struct pci_dev *dev)
3594 {
3595 	bool mask_supported = false;
3596 	u16 orig, new;
3597 
3598 	if (dev->broken_intx_masking)
3599 		return false;
3600 
3601 	pci_cfg_access_lock(dev);
3602 
3603 	pci_read_config_word(dev, PCI_COMMAND, &orig);
3604 	pci_write_config_word(dev, PCI_COMMAND,
3605 			      orig ^ PCI_COMMAND_INTX_DISABLE);
3606 	pci_read_config_word(dev, PCI_COMMAND, &new);
3607 
3608 	/*
3609 	 * There's no way to protect against hardware bugs or detect them
3610 	 * reliably, but as long as we know what the value should be, let's
3611 	 * go ahead and check it.
3612 	 */
3613 	if ((new ^ orig) & ~PCI_COMMAND_INTX_DISABLE) {
3614 		dev_err(&dev->dev, "Command register changed from 0x%x to 0x%x: driver or hardware bug?\n",
3615 			orig, new);
3616 	} else if ((new ^ orig) & PCI_COMMAND_INTX_DISABLE) {
3617 		mask_supported = true;
3618 		pci_write_config_word(dev, PCI_COMMAND, orig);
3619 	}
3620 
3621 	pci_cfg_access_unlock(dev);
3622 	return mask_supported;
3623 }
3624 EXPORT_SYMBOL_GPL(pci_intx_mask_supported);
3625 
3626 static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
3627 {
3628 	struct pci_bus *bus = dev->bus;
3629 	bool mask_updated = true;
3630 	u32 cmd_status_dword;
3631 	u16 origcmd, newcmd;
3632 	unsigned long flags;
3633 	bool irq_pending;
3634 
3635 	/*
3636 	 * We do a single dword read to retrieve both command and status.
3637 	 * Document assumptions that make this possible.
3638 	 */
3639 	BUILD_BUG_ON(PCI_COMMAND % 4);
3640 	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);
3641 
3642 	raw_spin_lock_irqsave(&pci_lock, flags);
3643 
3644 	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);
3645 
3646 	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;
3647 
3648 	/*
3649 	 * Check interrupt status register to see whether our device
3650 	 * triggered the interrupt (when masking) or the next IRQ is
3651 	 * already pending (when unmasking).
3652 	 */
3653 	if (mask != irq_pending) {
3654 		mask_updated = false;
3655 		goto done;
3656 	}
3657 
3658 	origcmd = cmd_status_dword;
3659 	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
3660 	if (mask)
3661 		newcmd |= PCI_COMMAND_INTX_DISABLE;
3662 	if (newcmd != origcmd)
3663 		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);
3664 
3665 done:
3666 	raw_spin_unlock_irqrestore(&pci_lock, flags);
3667 
3668 	return mask_updated;
3669 }
3670 
3671 /**
3672  * pci_check_and_mask_intx - mask INTx on pending interrupt
3673  * @dev: the PCI device to operate on
3674  *
3675  * Check if the device dev has its INTx line asserted, mask it and
3676  * return true in that case. False is returned if not interrupt was
3677  * pending.
3678  */
3679 bool pci_check_and_mask_intx(struct pci_dev *dev)
3680 {
3681 	return pci_check_and_set_intx_mask(dev, true);
3682 }
3683 EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);
3684 
3685 /**
3686  * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
3687  * @dev: the PCI device to operate on
3688  *
3689  * Check if the device dev has its INTx line asserted, unmask it if not
3690  * and return true. False is returned and the mask remains active if
3691  * there was still an interrupt pending.
3692  */
3693 bool pci_check_and_unmask_intx(struct pci_dev *dev)
3694 {
3695 	return pci_check_and_set_intx_mask(dev, false);
3696 }
3697 EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);
3698 
3699 /**
3700  * pci_wait_for_pending_transaction - waits for pending transaction
3701  * @dev: the PCI device to operate on
3702  *
3703  * Return 0 if transaction is pending 1 otherwise.
3704  */
3705 int pci_wait_for_pending_transaction(struct pci_dev *dev)
3706 {
3707 	if (!pci_is_pcie(dev))
3708 		return 1;
3709 
3710 	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
3711 				    PCI_EXP_DEVSTA_TRPND);
3712 }
3713 EXPORT_SYMBOL(pci_wait_for_pending_transaction);
3714 
3715 /*
3716  * We should only need to wait 100ms after FLR, but some devices take longer.
3717  * Wait for up to 1000ms for config space to return something other than -1.
3718  * Intel IGD requires this when an LCD panel is attached.  We read the 2nd
3719  * dword because VFs don't implement the 1st dword.
3720  */
3721 static void pci_flr_wait(struct pci_dev *dev)
3722 {
3723 	int i = 0;
3724 	u32 id;
3725 
3726 	do {
3727 		msleep(100);
3728 		pci_read_config_dword(dev, PCI_COMMAND, &id);
3729 	} while (i++ < 10 && id == ~0);
3730 
3731 	if (id == ~0)
3732 		dev_warn(&dev->dev, "Failed to return from FLR\n");
3733 	else if (i > 1)
3734 		dev_info(&dev->dev, "Required additional %dms to return from FLR\n",
3735 			 (i - 1) * 100);
3736 }
3737 
3738 static int pcie_flr(struct pci_dev *dev, int probe)
3739 {
3740 	u32 cap;
3741 
3742 	pcie_capability_read_dword(dev, PCI_EXP_DEVCAP, &cap);
3743 	if (!(cap & PCI_EXP_DEVCAP_FLR))
3744 		return -ENOTTY;
3745 
3746 	if (probe)
3747 		return 0;
3748 
3749 	if (!pci_wait_for_pending_transaction(dev))
3750 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
3751 
3752 	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
3753 	pci_flr_wait(dev);
3754 	return 0;
3755 }
3756 
3757 static int pci_af_flr(struct pci_dev *dev, int probe)
3758 {
3759 	int pos;
3760 	u8 cap;
3761 
3762 	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
3763 	if (!pos)
3764 		return -ENOTTY;
3765 
3766 	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
3767 	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
3768 		return -ENOTTY;
3769 
3770 	if (probe)
3771 		return 0;
3772 
3773 	/*
3774 	 * Wait for Transaction Pending bit to clear.  A word-aligned test
3775 	 * is used, so we use the conrol offset rather than status and shift
3776 	 * the test bit to match.
3777 	 */
3778 	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
3779 				 PCI_AF_STATUS_TP << 8))
3780 		dev_err(&dev->dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
3781 
3782 	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
3783 	pci_flr_wait(dev);
3784 	return 0;
3785 }
3786 
3787 /**
3788  * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
3789  * @dev: Device to reset.
3790  * @probe: If set, only check if the device can be reset this way.
3791  *
3792  * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
3793  * unset, it will be reinitialized internally when going from PCI_D3hot to
3794  * PCI_D0.  If that's the case and the device is not in a low-power state
3795  * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
3796  *
3797  * NOTE: This causes the caller to sleep for twice the device power transition
3798  * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
3799  * by default (i.e. unless the @dev's d3_delay field has a different value).
3800  * Moreover, only devices in D0 can be reset by this function.
3801  */
3802 static int pci_pm_reset(struct pci_dev *dev, int probe)
3803 {
3804 	u16 csr;
3805 
3806 	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
3807 		return -ENOTTY;
3808 
3809 	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
3810 	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
3811 		return -ENOTTY;
3812 
3813 	if (probe)
3814 		return 0;
3815 
3816 	if (dev->current_state != PCI_D0)
3817 		return -EINVAL;
3818 
3819 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3820 	csr |= PCI_D3hot;
3821 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3822 	pci_dev_d3_sleep(dev);
3823 
3824 	csr &= ~PCI_PM_CTRL_STATE_MASK;
3825 	csr |= PCI_D0;
3826 	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
3827 	pci_dev_d3_sleep(dev);
3828 
3829 	return 0;
3830 }
3831 
3832 void pci_reset_secondary_bus(struct pci_dev *dev)
3833 {
3834 	u16 ctrl;
3835 
3836 	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
3837 	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
3838 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3839 	/*
3840 	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
3841 	 * this to 2ms to ensure that we meet the minimum requirement.
3842 	 */
3843 	msleep(2);
3844 
3845 	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
3846 	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
3847 
3848 	/*
3849 	 * Trhfa for conventional PCI is 2^25 clock cycles.
3850 	 * Assuming a minimum 33MHz clock this results in a 1s
3851 	 * delay before we can consider subordinate devices to
3852 	 * be re-initialized.  PCIe has some ways to shorten this,
3853 	 * but we don't make use of them yet.
3854 	 */
3855 	ssleep(1);
3856 }
3857 
3858 void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
3859 {
3860 	pci_reset_secondary_bus(dev);
3861 }
3862 
3863 /**
3864  * pci_reset_bridge_secondary_bus - Reset the secondary bus on a PCI bridge.
3865  * @dev: Bridge device
3866  *
3867  * Use the bridge control register to assert reset on the secondary bus.
3868  * Devices on the secondary bus are left in power-on state.
3869  */
3870 void pci_reset_bridge_secondary_bus(struct pci_dev *dev)
3871 {
3872 	pcibios_reset_secondary_bus(dev);
3873 }
3874 EXPORT_SYMBOL_GPL(pci_reset_bridge_secondary_bus);
3875 
3876 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
3877 {
3878 	struct pci_dev *pdev;
3879 
3880 	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
3881 	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3882 		return -ENOTTY;
3883 
3884 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3885 		if (pdev != dev)
3886 			return -ENOTTY;
3887 
3888 	if (probe)
3889 		return 0;
3890 
3891 	pci_reset_bridge_secondary_bus(dev->bus->self);
3892 
3893 	return 0;
3894 }
3895 
3896 static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, int probe)
3897 {
3898 	int rc = -ENOTTY;
3899 
3900 	if (!hotplug || !try_module_get(hotplug->ops->owner))
3901 		return rc;
3902 
3903 	if (hotplug->ops->reset_slot)
3904 		rc = hotplug->ops->reset_slot(hotplug, probe);
3905 
3906 	module_put(hotplug->ops->owner);
3907 
3908 	return rc;
3909 }
3910 
3911 static int pci_dev_reset_slot_function(struct pci_dev *dev, int probe)
3912 {
3913 	struct pci_dev *pdev;
3914 
3915 	if (dev->subordinate || !dev->slot ||
3916 	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
3917 		return -ENOTTY;
3918 
3919 	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
3920 		if (pdev != dev && pdev->slot == dev->slot)
3921 			return -ENOTTY;
3922 
3923 	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
3924 }
3925 
3926 static int __pci_dev_reset(struct pci_dev *dev, int probe)
3927 {
3928 	int rc;
3929 
3930 	might_sleep();
3931 
3932 	rc = pci_dev_specific_reset(dev, probe);
3933 	if (rc != -ENOTTY)
3934 		goto done;
3935 
3936 	rc = pcie_flr(dev, probe);
3937 	if (rc != -ENOTTY)
3938 		goto done;
3939 
3940 	rc = pci_af_flr(dev, probe);
3941 	if (rc != -ENOTTY)
3942 		goto done;
3943 
3944 	rc = pci_pm_reset(dev, probe);
3945 	if (rc != -ENOTTY)
3946 		goto done;
3947 
3948 	rc = pci_dev_reset_slot_function(dev, probe);
3949 	if (rc != -ENOTTY)
3950 		goto done;
3951 
3952 	rc = pci_parent_bus_reset(dev, probe);
3953 done:
3954 	return rc;
3955 }
3956 
3957 static void pci_dev_lock(struct pci_dev *dev)
3958 {
3959 	pci_cfg_access_lock(dev);
3960 	/* block PM suspend, driver probe, etc. */
3961 	device_lock(&dev->dev);
3962 }
3963 
3964 /* Return 1 on successful lock, 0 on contention */
3965 static int pci_dev_trylock(struct pci_dev *dev)
3966 {
3967 	if (pci_cfg_access_trylock(dev)) {
3968 		if (device_trylock(&dev->dev))
3969 			return 1;
3970 		pci_cfg_access_unlock(dev);
3971 	}
3972 
3973 	return 0;
3974 }
3975 
3976 static void pci_dev_unlock(struct pci_dev *dev)
3977 {
3978 	device_unlock(&dev->dev);
3979 	pci_cfg_access_unlock(dev);
3980 }
3981 
3982 /**
3983  * pci_reset_notify - notify device driver of reset
3984  * @dev: device to be notified of reset
3985  * @prepare: 'true' if device is about to be reset; 'false' if reset attempt
3986  *           completed
3987  *
3988  * Must be called prior to device access being disabled and after device
3989  * access is restored.
3990  */
3991 static void pci_reset_notify(struct pci_dev *dev, bool prepare)
3992 {
3993 	const struct pci_error_handlers *err_handler =
3994 			dev->driver ? dev->driver->err_handler : NULL;
3995 	if (err_handler && err_handler->reset_notify)
3996 		err_handler->reset_notify(dev, prepare);
3997 }
3998 
3999 static void pci_dev_save_and_disable(struct pci_dev *dev)
4000 {
4001 	pci_reset_notify(dev, true);
4002 
4003 	/*
4004 	 * Wake-up device prior to save.  PM registers default to D0 after
4005 	 * reset and a simple register restore doesn't reliably return
4006 	 * to a non-D0 state anyway.
4007 	 */
4008 	pci_set_power_state(dev, PCI_D0);
4009 
4010 	pci_save_state(dev);
4011 	/*
4012 	 * Disable the device by clearing the Command register, except for
4013 	 * INTx-disable which is set.  This not only disables MMIO and I/O port
4014 	 * BARs, but also prevents the device from being Bus Master, preventing
4015 	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
4016 	 * compliant devices, INTx-disable prevents legacy interrupts.
4017 	 */
4018 	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
4019 }
4020 
4021 static void pci_dev_restore(struct pci_dev *dev)
4022 {
4023 	pci_restore_state(dev);
4024 	pci_reset_notify(dev, false);
4025 }
4026 
4027 static int pci_dev_reset(struct pci_dev *dev, int probe)
4028 {
4029 	int rc;
4030 
4031 	if (!probe)
4032 		pci_dev_lock(dev);
4033 
4034 	rc = __pci_dev_reset(dev, probe);
4035 
4036 	if (!probe)
4037 		pci_dev_unlock(dev);
4038 
4039 	return rc;
4040 }
4041 
4042 /**
4043  * __pci_reset_function - reset a PCI device function
4044  * @dev: PCI device to reset
4045  *
4046  * Some devices allow an individual function to be reset without affecting
4047  * other functions in the same device.  The PCI device must be responsive
4048  * to PCI config space in order to use this function.
4049  *
4050  * The device function is presumed to be unused when this function is called.
4051  * Resetting the device will make the contents of PCI configuration space
4052  * random, so any caller of this must be prepared to reinitialise the
4053  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4054  * etc.
4055  *
4056  * Returns 0 if the device function was successfully reset or negative if the
4057  * device doesn't support resetting a single function.
4058  */
4059 int __pci_reset_function(struct pci_dev *dev)
4060 {
4061 	return pci_dev_reset(dev, 0);
4062 }
4063 EXPORT_SYMBOL_GPL(__pci_reset_function);
4064 
4065 /**
4066  * __pci_reset_function_locked - reset a PCI device function while holding
4067  * the @dev mutex lock.
4068  * @dev: PCI device to reset
4069  *
4070  * Some devices allow an individual function to be reset without affecting
4071  * other functions in the same device.  The PCI device must be responsive
4072  * to PCI config space in order to use this function.
4073  *
4074  * The device function is presumed to be unused and the caller is holding
4075  * the device mutex lock when this function is called.
4076  * Resetting the device will make the contents of PCI configuration space
4077  * random, so any caller of this must be prepared to reinitialise the
4078  * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
4079  * etc.
4080  *
4081  * Returns 0 if the device function was successfully reset or negative if the
4082  * device doesn't support resetting a single function.
4083  */
4084 int __pci_reset_function_locked(struct pci_dev *dev)
4085 {
4086 	return __pci_dev_reset(dev, 0);
4087 }
4088 EXPORT_SYMBOL_GPL(__pci_reset_function_locked);
4089 
4090 /**
4091  * pci_probe_reset_function - check whether the device can be safely reset
4092  * @dev: PCI device to reset
4093  *
4094  * Some devices allow an individual function to be reset without affecting
4095  * other functions in the same device.  The PCI device must be responsive
4096  * to PCI config space in order to use this function.
4097  *
4098  * Returns 0 if the device function can be reset or negative if the
4099  * device doesn't support resetting a single function.
4100  */
4101 int pci_probe_reset_function(struct pci_dev *dev)
4102 {
4103 	return pci_dev_reset(dev, 1);
4104 }
4105 
4106 /**
4107  * pci_reset_function - quiesce and reset a PCI device function
4108  * @dev: PCI device to reset
4109  *
4110  * Some devices allow an individual function to be reset without affecting
4111  * other functions in the same device.  The PCI device must be responsive
4112  * to PCI config space in order to use this function.
4113  *
4114  * This function does not just reset the PCI portion of a device, but
4115  * clears all the state associated with the device.  This function differs
4116  * from __pci_reset_function in that it saves and restores device state
4117  * over the reset.
4118  *
4119  * Returns 0 if the device function was successfully reset or negative if the
4120  * device doesn't support resetting a single function.
4121  */
4122 int pci_reset_function(struct pci_dev *dev)
4123 {
4124 	int rc;
4125 
4126 	rc = pci_dev_reset(dev, 1);
4127 	if (rc)
4128 		return rc;
4129 
4130 	pci_dev_save_and_disable(dev);
4131 
4132 	rc = pci_dev_reset(dev, 0);
4133 
4134 	pci_dev_restore(dev);
4135 
4136 	return rc;
4137 }
4138 EXPORT_SYMBOL_GPL(pci_reset_function);
4139 
4140 /**
4141  * pci_try_reset_function - quiesce and reset a PCI device function
4142  * @dev: PCI device to reset
4143  *
4144  * Same as above, except return -EAGAIN if unable to lock device.
4145  */
4146 int pci_try_reset_function(struct pci_dev *dev)
4147 {
4148 	int rc;
4149 
4150 	rc = pci_dev_reset(dev, 1);
4151 	if (rc)
4152 		return rc;
4153 
4154 	pci_dev_save_and_disable(dev);
4155 
4156 	if (pci_dev_trylock(dev)) {
4157 		rc = __pci_dev_reset(dev, 0);
4158 		pci_dev_unlock(dev);
4159 	} else
4160 		rc = -EAGAIN;
4161 
4162 	pci_dev_restore(dev);
4163 
4164 	return rc;
4165 }
4166 EXPORT_SYMBOL_GPL(pci_try_reset_function);
4167 
4168 /* Do any devices on or below this bus prevent a bus reset? */
4169 static bool pci_bus_resetable(struct pci_bus *bus)
4170 {
4171 	struct pci_dev *dev;
4172 
4173 	list_for_each_entry(dev, &bus->devices, bus_list) {
4174 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4175 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4176 			return false;
4177 	}
4178 
4179 	return true;
4180 }
4181 
4182 /* Lock devices from the top of the tree down */
4183 static void pci_bus_lock(struct pci_bus *bus)
4184 {
4185 	struct pci_dev *dev;
4186 
4187 	list_for_each_entry(dev, &bus->devices, bus_list) {
4188 		pci_dev_lock(dev);
4189 		if (dev->subordinate)
4190 			pci_bus_lock(dev->subordinate);
4191 	}
4192 }
4193 
4194 /* Unlock devices from the bottom of the tree up */
4195 static void pci_bus_unlock(struct pci_bus *bus)
4196 {
4197 	struct pci_dev *dev;
4198 
4199 	list_for_each_entry(dev, &bus->devices, bus_list) {
4200 		if (dev->subordinate)
4201 			pci_bus_unlock(dev->subordinate);
4202 		pci_dev_unlock(dev);
4203 	}
4204 }
4205 
4206 /* Return 1 on successful lock, 0 on contention */
4207 static int pci_bus_trylock(struct pci_bus *bus)
4208 {
4209 	struct pci_dev *dev;
4210 
4211 	list_for_each_entry(dev, &bus->devices, bus_list) {
4212 		if (!pci_dev_trylock(dev))
4213 			goto unlock;
4214 		if (dev->subordinate) {
4215 			if (!pci_bus_trylock(dev->subordinate)) {
4216 				pci_dev_unlock(dev);
4217 				goto unlock;
4218 			}
4219 		}
4220 	}
4221 	return 1;
4222 
4223 unlock:
4224 	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
4225 		if (dev->subordinate)
4226 			pci_bus_unlock(dev->subordinate);
4227 		pci_dev_unlock(dev);
4228 	}
4229 	return 0;
4230 }
4231 
4232 /* Do any devices on or below this slot prevent a bus reset? */
4233 static bool pci_slot_resetable(struct pci_slot *slot)
4234 {
4235 	struct pci_dev *dev;
4236 
4237 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4238 		if (!dev->slot || dev->slot != slot)
4239 			continue;
4240 		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
4241 		    (dev->subordinate && !pci_bus_resetable(dev->subordinate)))
4242 			return false;
4243 	}
4244 
4245 	return true;
4246 }
4247 
4248 /* Lock devices from the top of the tree down */
4249 static void pci_slot_lock(struct pci_slot *slot)
4250 {
4251 	struct pci_dev *dev;
4252 
4253 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4254 		if (!dev->slot || dev->slot != slot)
4255 			continue;
4256 		pci_dev_lock(dev);
4257 		if (dev->subordinate)
4258 			pci_bus_lock(dev->subordinate);
4259 	}
4260 }
4261 
4262 /* Unlock devices from the bottom of the tree up */
4263 static void pci_slot_unlock(struct pci_slot *slot)
4264 {
4265 	struct pci_dev *dev;
4266 
4267 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4268 		if (!dev->slot || dev->slot != slot)
4269 			continue;
4270 		if (dev->subordinate)
4271 			pci_bus_unlock(dev->subordinate);
4272 		pci_dev_unlock(dev);
4273 	}
4274 }
4275 
4276 /* Return 1 on successful lock, 0 on contention */
4277 static int pci_slot_trylock(struct pci_slot *slot)
4278 {
4279 	struct pci_dev *dev;
4280 
4281 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4282 		if (!dev->slot || dev->slot != slot)
4283 			continue;
4284 		if (!pci_dev_trylock(dev))
4285 			goto unlock;
4286 		if (dev->subordinate) {
4287 			if (!pci_bus_trylock(dev->subordinate)) {
4288 				pci_dev_unlock(dev);
4289 				goto unlock;
4290 			}
4291 		}
4292 	}
4293 	return 1;
4294 
4295 unlock:
4296 	list_for_each_entry_continue_reverse(dev,
4297 					     &slot->bus->devices, bus_list) {
4298 		if (!dev->slot || dev->slot != slot)
4299 			continue;
4300 		if (dev->subordinate)
4301 			pci_bus_unlock(dev->subordinate);
4302 		pci_dev_unlock(dev);
4303 	}
4304 	return 0;
4305 }
4306 
4307 /* Save and disable devices from the top of the tree down */
4308 static void pci_bus_save_and_disable(struct pci_bus *bus)
4309 {
4310 	struct pci_dev *dev;
4311 
4312 	list_for_each_entry(dev, &bus->devices, bus_list) {
4313 		pci_dev_save_and_disable(dev);
4314 		if (dev->subordinate)
4315 			pci_bus_save_and_disable(dev->subordinate);
4316 	}
4317 }
4318 
4319 /*
4320  * Restore devices from top of the tree down - parent bridges need to be
4321  * restored before we can get to subordinate devices.
4322  */
4323 static void pci_bus_restore(struct pci_bus *bus)
4324 {
4325 	struct pci_dev *dev;
4326 
4327 	list_for_each_entry(dev, &bus->devices, bus_list) {
4328 		pci_dev_restore(dev);
4329 		if (dev->subordinate)
4330 			pci_bus_restore(dev->subordinate);
4331 	}
4332 }
4333 
4334 /* Save and disable devices from the top of the tree down */
4335 static void pci_slot_save_and_disable(struct pci_slot *slot)
4336 {
4337 	struct pci_dev *dev;
4338 
4339 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4340 		if (!dev->slot || dev->slot != slot)
4341 			continue;
4342 		pci_dev_save_and_disable(dev);
4343 		if (dev->subordinate)
4344 			pci_bus_save_and_disable(dev->subordinate);
4345 	}
4346 }
4347 
4348 /*
4349  * Restore devices from top of the tree down - parent bridges need to be
4350  * restored before we can get to subordinate devices.
4351  */
4352 static void pci_slot_restore(struct pci_slot *slot)
4353 {
4354 	struct pci_dev *dev;
4355 
4356 	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
4357 		if (!dev->slot || dev->slot != slot)
4358 			continue;
4359 		pci_dev_restore(dev);
4360 		if (dev->subordinate)
4361 			pci_bus_restore(dev->subordinate);
4362 	}
4363 }
4364 
4365 static int pci_slot_reset(struct pci_slot *slot, int probe)
4366 {
4367 	int rc;
4368 
4369 	if (!slot || !pci_slot_resetable(slot))
4370 		return -ENOTTY;
4371 
4372 	if (!probe)
4373 		pci_slot_lock(slot);
4374 
4375 	might_sleep();
4376 
4377 	rc = pci_reset_hotplug_slot(slot->hotplug, probe);
4378 
4379 	if (!probe)
4380 		pci_slot_unlock(slot);
4381 
4382 	return rc;
4383 }
4384 
4385 /**
4386  * pci_probe_reset_slot - probe whether a PCI slot can be reset
4387  * @slot: PCI slot to probe
4388  *
4389  * Return 0 if slot can be reset, negative if a slot reset is not supported.
4390  */
4391 int pci_probe_reset_slot(struct pci_slot *slot)
4392 {
4393 	return pci_slot_reset(slot, 1);
4394 }
4395 EXPORT_SYMBOL_GPL(pci_probe_reset_slot);
4396 
4397 /**
4398  * pci_reset_slot - reset a PCI slot
4399  * @slot: PCI slot to reset
4400  *
4401  * A PCI bus may host multiple slots, each slot may support a reset mechanism
4402  * independent of other slots.  For instance, some slots may support slot power
4403  * control.  In the case of a 1:1 bus to slot architecture, this function may
4404  * wrap the bus reset to avoid spurious slot related events such as hotplug.
4405  * Generally a slot reset should be attempted before a bus reset.  All of the
4406  * function of the slot and any subordinate buses behind the slot are reset
4407  * through this function.  PCI config space of all devices in the slot and
4408  * behind the slot is saved before and restored after reset.
4409  *
4410  * Return 0 on success, non-zero on error.
4411  */
4412 int pci_reset_slot(struct pci_slot *slot)
4413 {
4414 	int rc;
4415 
4416 	rc = pci_slot_reset(slot, 1);
4417 	if (rc)
4418 		return rc;
4419 
4420 	pci_slot_save_and_disable(slot);
4421 
4422 	rc = pci_slot_reset(slot, 0);
4423 
4424 	pci_slot_restore(slot);
4425 
4426 	return rc;
4427 }
4428 EXPORT_SYMBOL_GPL(pci_reset_slot);
4429 
4430 /**
4431  * pci_try_reset_slot - Try to reset a PCI slot
4432  * @slot: PCI slot to reset
4433  *
4434  * Same as above except return -EAGAIN if the slot cannot be locked
4435  */
4436 int pci_try_reset_slot(struct pci_slot *slot)
4437 {
4438 	int rc;
4439 
4440 	rc = pci_slot_reset(slot, 1);
4441 	if (rc)
4442 		return rc;
4443 
4444 	pci_slot_save_and_disable(slot);
4445 
4446 	if (pci_slot_trylock(slot)) {
4447 		might_sleep();
4448 		rc = pci_reset_hotplug_slot(slot->hotplug, 0);
4449 		pci_slot_unlock(slot);
4450 	} else
4451 		rc = -EAGAIN;
4452 
4453 	pci_slot_restore(slot);
4454 
4455 	return rc;
4456 }
4457 EXPORT_SYMBOL_GPL(pci_try_reset_slot);
4458 
4459 static int pci_bus_reset(struct pci_bus *bus, int probe)
4460 {
4461 	if (!bus->self || !pci_bus_resetable(bus))
4462 		return -ENOTTY;
4463 
4464 	if (probe)
4465 		return 0;
4466 
4467 	pci_bus_lock(bus);
4468 
4469 	might_sleep();
4470 
4471 	pci_reset_bridge_secondary_bus(bus->self);
4472 
4473 	pci_bus_unlock(bus);
4474 
4475 	return 0;
4476 }
4477 
4478 /**
4479  * pci_probe_reset_bus - probe whether a PCI bus can be reset
4480  * @bus: PCI bus to probe
4481  *
4482  * Return 0 if bus can be reset, negative if a bus reset is not supported.
4483  */
4484 int pci_probe_reset_bus(struct pci_bus *bus)
4485 {
4486 	return pci_bus_reset(bus, 1);
4487 }
4488 EXPORT_SYMBOL_GPL(pci_probe_reset_bus);
4489 
4490 /**
4491  * pci_reset_bus - reset a PCI bus
4492  * @bus: top level PCI bus to reset
4493  *
4494  * Do a bus reset on the given bus and any subordinate buses, saving
4495  * and restoring state of all devices.
4496  *
4497  * Return 0 on success, non-zero on error.
4498  */
4499 int pci_reset_bus(struct pci_bus *bus)
4500 {
4501 	int rc;
4502 
4503 	rc = pci_bus_reset(bus, 1);
4504 	if (rc)
4505 		return rc;
4506 
4507 	pci_bus_save_and_disable(bus);
4508 
4509 	rc = pci_bus_reset(bus, 0);
4510 
4511 	pci_bus_restore(bus);
4512 
4513 	return rc;
4514 }
4515 EXPORT_SYMBOL_GPL(pci_reset_bus);
4516 
4517 /**
4518  * pci_try_reset_bus - Try to reset a PCI bus
4519  * @bus: top level PCI bus to reset
4520  *
4521  * Same as above except return -EAGAIN if the bus cannot be locked
4522  */
4523 int pci_try_reset_bus(struct pci_bus *bus)
4524 {
4525 	int rc;
4526 
4527 	rc = pci_bus_reset(bus, 1);
4528 	if (rc)
4529 		return rc;
4530 
4531 	pci_bus_save_and_disable(bus);
4532 
4533 	if (pci_bus_trylock(bus)) {
4534 		might_sleep();
4535 		pci_reset_bridge_secondary_bus(bus->self);
4536 		pci_bus_unlock(bus);
4537 	} else
4538 		rc = -EAGAIN;
4539 
4540 	pci_bus_restore(bus);
4541 
4542 	return rc;
4543 }
4544 EXPORT_SYMBOL_GPL(pci_try_reset_bus);
4545 
4546 /**
4547  * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
4548  * @dev: PCI device to query
4549  *
4550  * Returns mmrbc: maximum designed memory read count in bytes
4551  *    or appropriate error value.
4552  */
4553 int pcix_get_max_mmrbc(struct pci_dev *dev)
4554 {
4555 	int cap;
4556 	u32 stat;
4557 
4558 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4559 	if (!cap)
4560 		return -EINVAL;
4561 
4562 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4563 		return -EINVAL;
4564 
4565 	return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
4566 }
4567 EXPORT_SYMBOL(pcix_get_max_mmrbc);
4568 
4569 /**
4570  * pcix_get_mmrbc - get PCI-X maximum memory read byte count
4571  * @dev: PCI device to query
4572  *
4573  * Returns mmrbc: maximum memory read count in bytes
4574  *    or appropriate error value.
4575  */
4576 int pcix_get_mmrbc(struct pci_dev *dev)
4577 {
4578 	int cap;
4579 	u16 cmd;
4580 
4581 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4582 	if (!cap)
4583 		return -EINVAL;
4584 
4585 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4586 		return -EINVAL;
4587 
4588 	return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
4589 }
4590 EXPORT_SYMBOL(pcix_get_mmrbc);
4591 
4592 /**
4593  * pcix_set_mmrbc - set PCI-X maximum memory read byte count
4594  * @dev: PCI device to query
4595  * @mmrbc: maximum memory read count in bytes
4596  *    valid values are 512, 1024, 2048, 4096
4597  *
4598  * If possible sets maximum memory read byte count, some bridges have erratas
4599  * that prevent this.
4600  */
4601 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
4602 {
4603 	int cap;
4604 	u32 stat, v, o;
4605 	u16 cmd;
4606 
4607 	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
4608 		return -EINVAL;
4609 
4610 	v = ffs(mmrbc) - 10;
4611 
4612 	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
4613 	if (!cap)
4614 		return -EINVAL;
4615 
4616 	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
4617 		return -EINVAL;
4618 
4619 	if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
4620 		return -E2BIG;
4621 
4622 	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
4623 		return -EINVAL;
4624 
4625 	o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
4626 	if (o != v) {
4627 		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
4628 			return -EIO;
4629 
4630 		cmd &= ~PCI_X_CMD_MAX_READ;
4631 		cmd |= v << 2;
4632 		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
4633 			return -EIO;
4634 	}
4635 	return 0;
4636 }
4637 EXPORT_SYMBOL(pcix_set_mmrbc);
4638 
4639 /**
4640  * pcie_get_readrq - get PCI Express read request size
4641  * @dev: PCI device to query
4642  *
4643  * Returns maximum memory read request in bytes
4644  *    or appropriate error value.
4645  */
4646 int pcie_get_readrq(struct pci_dev *dev)
4647 {
4648 	u16 ctl;
4649 
4650 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4651 
4652 	return 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
4653 }
4654 EXPORT_SYMBOL(pcie_get_readrq);
4655 
4656 /**
4657  * pcie_set_readrq - set PCI Express maximum memory read request
4658  * @dev: PCI device to query
4659  * @rq: maximum memory read count in bytes
4660  *    valid values are 128, 256, 512, 1024, 2048, 4096
4661  *
4662  * If possible sets maximum memory read request in bytes
4663  */
4664 int pcie_set_readrq(struct pci_dev *dev, int rq)
4665 {
4666 	u16 v;
4667 
4668 	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
4669 		return -EINVAL;
4670 
4671 	/*
4672 	 * If using the "performance" PCIe config, we clamp the
4673 	 * read rq size to the max packet size to prevent the
4674 	 * host bridge generating requests larger than we can
4675 	 * cope with
4676 	 */
4677 	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
4678 		int mps = pcie_get_mps(dev);
4679 
4680 		if (mps < rq)
4681 			rq = mps;
4682 	}
4683 
4684 	v = (ffs(rq) - 8) << 12;
4685 
4686 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4687 						  PCI_EXP_DEVCTL_READRQ, v);
4688 }
4689 EXPORT_SYMBOL(pcie_set_readrq);
4690 
4691 /**
4692  * pcie_get_mps - get PCI Express maximum payload size
4693  * @dev: PCI device to query
4694  *
4695  * Returns maximum payload size in bytes
4696  */
4697 int pcie_get_mps(struct pci_dev *dev)
4698 {
4699 	u16 ctl;
4700 
4701 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
4702 
4703 	return 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
4704 }
4705 EXPORT_SYMBOL(pcie_get_mps);
4706 
4707 /**
4708  * pcie_set_mps - set PCI Express maximum payload size
4709  * @dev: PCI device to query
4710  * @mps: maximum payload size in bytes
4711  *    valid values are 128, 256, 512, 1024, 2048, 4096
4712  *
4713  * If possible sets maximum payload size
4714  */
4715 int pcie_set_mps(struct pci_dev *dev, int mps)
4716 {
4717 	u16 v;
4718 
4719 	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
4720 		return -EINVAL;
4721 
4722 	v = ffs(mps) - 8;
4723 	if (v > dev->pcie_mpss)
4724 		return -EINVAL;
4725 	v <<= 5;
4726 
4727 	return pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
4728 						  PCI_EXP_DEVCTL_PAYLOAD, v);
4729 }
4730 EXPORT_SYMBOL(pcie_set_mps);
4731 
4732 /**
4733  * pcie_get_minimum_link - determine minimum link settings of a PCI device
4734  * @dev: PCI device to query
4735  * @speed: storage for minimum speed
4736  * @width: storage for minimum width
4737  *
4738  * This function will walk up the PCI device chain and determine the minimum
4739  * link width and speed of the device.
4740  */
4741 int pcie_get_minimum_link(struct pci_dev *dev, enum pci_bus_speed *speed,
4742 			  enum pcie_link_width *width)
4743 {
4744 	int ret;
4745 
4746 	*speed = PCI_SPEED_UNKNOWN;
4747 	*width = PCIE_LNK_WIDTH_UNKNOWN;
4748 
4749 	while (dev) {
4750 		u16 lnksta;
4751 		enum pci_bus_speed next_speed;
4752 		enum pcie_link_width next_width;
4753 
4754 		ret = pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);
4755 		if (ret)
4756 			return ret;
4757 
4758 		next_speed = pcie_link_speed[lnksta & PCI_EXP_LNKSTA_CLS];
4759 		next_width = (lnksta & PCI_EXP_LNKSTA_NLW) >>
4760 			PCI_EXP_LNKSTA_NLW_SHIFT;
4761 
4762 		if (next_speed < *speed)
4763 			*speed = next_speed;
4764 
4765 		if (next_width < *width)
4766 			*width = next_width;
4767 
4768 		dev = dev->bus->self;
4769 	}
4770 
4771 	return 0;
4772 }
4773 EXPORT_SYMBOL(pcie_get_minimum_link);
4774 
4775 /**
4776  * pci_select_bars - Make BAR mask from the type of resource
4777  * @dev: the PCI device for which BAR mask is made
4778  * @flags: resource type mask to be selected
4779  *
4780  * This helper routine makes bar mask from the type of resource.
4781  */
4782 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
4783 {
4784 	int i, bars = 0;
4785 	for (i = 0; i < PCI_NUM_RESOURCES; i++)
4786 		if (pci_resource_flags(dev, i) & flags)
4787 			bars |= (1 << i);
4788 	return bars;
4789 }
4790 EXPORT_SYMBOL(pci_select_bars);
4791 
4792 /**
4793  * pci_resource_bar - get position of the BAR associated with a resource
4794  * @dev: the PCI device
4795  * @resno: the resource number
4796  * @type: the BAR type to be filled in
4797  *
4798  * Returns BAR position in config space, or 0 if the BAR is invalid.
4799  */
4800 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
4801 {
4802 	int reg;
4803 
4804 	if (resno < PCI_ROM_RESOURCE) {
4805 		*type = pci_bar_unknown;
4806 		return PCI_BASE_ADDRESS_0 + 4 * resno;
4807 	} else if (resno == PCI_ROM_RESOURCE) {
4808 		*type = pci_bar_mem32;
4809 		return dev->rom_base_reg;
4810 	} else if (resno < PCI_BRIDGE_RESOURCES) {
4811 		/* device specific resource */
4812 		*type = pci_bar_unknown;
4813 		reg = pci_iov_resource_bar(dev, resno);
4814 		if (reg)
4815 			return reg;
4816 	}
4817 
4818 	dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
4819 	return 0;
4820 }
4821 
4822 /* Some architectures require additional programming to enable VGA */
4823 static arch_set_vga_state_t arch_set_vga_state;
4824 
4825 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
4826 {
4827 	arch_set_vga_state = func;	/* NULL disables */
4828 }
4829 
4830 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
4831 				  unsigned int command_bits, u32 flags)
4832 {
4833 	if (arch_set_vga_state)
4834 		return arch_set_vga_state(dev, decode, command_bits,
4835 						flags);
4836 	return 0;
4837 }
4838 
4839 /**
4840  * pci_set_vga_state - set VGA decode state on device and parents if requested
4841  * @dev: the PCI device
4842  * @decode: true = enable decoding, false = disable decoding
4843  * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
4844  * @flags: traverse ancestors and change bridges
4845  * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
4846  */
4847 int pci_set_vga_state(struct pci_dev *dev, bool decode,
4848 		      unsigned int command_bits, u32 flags)
4849 {
4850 	struct pci_bus *bus;
4851 	struct pci_dev *bridge;
4852 	u16 cmd;
4853 	int rc;
4854 
4855 	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
4856 
4857 	/* ARCH specific VGA enables */
4858 	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
4859 	if (rc)
4860 		return rc;
4861 
4862 	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
4863 		pci_read_config_word(dev, PCI_COMMAND, &cmd);
4864 		if (decode == true)
4865 			cmd |= command_bits;
4866 		else
4867 			cmd &= ~command_bits;
4868 		pci_write_config_word(dev, PCI_COMMAND, cmd);
4869 	}
4870 
4871 	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
4872 		return 0;
4873 
4874 	bus = dev->bus;
4875 	while (bus) {
4876 		bridge = bus->self;
4877 		if (bridge) {
4878 			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
4879 					     &cmd);
4880 			if (decode == true)
4881 				cmd |= PCI_BRIDGE_CTL_VGA;
4882 			else
4883 				cmd &= ~PCI_BRIDGE_CTL_VGA;
4884 			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
4885 					      cmd);
4886 		}
4887 		bus = bus->parent;
4888 	}
4889 	return 0;
4890 }
4891 
4892 /**
4893  * pci_add_dma_alias - Add a DMA devfn alias for a device
4894  * @dev: the PCI device for which alias is added
4895  * @devfn: alias slot and function
4896  *
4897  * This helper encodes 8-bit devfn as bit number in dma_alias_mask.
4898  * It should be called early, preferably as PCI fixup header quirk.
4899  */
4900 void pci_add_dma_alias(struct pci_dev *dev, u8 devfn)
4901 {
4902 	if (!dev->dma_alias_mask)
4903 		dev->dma_alias_mask = kcalloc(BITS_TO_LONGS(U8_MAX),
4904 					      sizeof(long), GFP_KERNEL);
4905 	if (!dev->dma_alias_mask) {
4906 		dev_warn(&dev->dev, "Unable to allocate DMA alias mask\n");
4907 		return;
4908 	}
4909 
4910 	set_bit(devfn, dev->dma_alias_mask);
4911 	dev_info(&dev->dev, "Enabling fixed DMA alias to %02x.%d\n",
4912 		 PCI_SLOT(devfn), PCI_FUNC(devfn));
4913 }
4914 
4915 bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
4916 {
4917 	return (dev1->dma_alias_mask &&
4918 		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
4919 	       (dev2->dma_alias_mask &&
4920 		test_bit(dev1->devfn, dev2->dma_alias_mask));
4921 }
4922 
4923 bool pci_device_is_present(struct pci_dev *pdev)
4924 {
4925 	u32 v;
4926 
4927 	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
4928 }
4929 EXPORT_SYMBOL_GPL(pci_device_is_present);
4930 
4931 void pci_ignore_hotplug(struct pci_dev *dev)
4932 {
4933 	struct pci_dev *bridge = dev->bus->self;
4934 
4935 	dev->ignore_hotplug = 1;
4936 	/* Propagate the "ignore hotplug" setting to the parent bridge. */
4937 	if (bridge)
4938 		bridge->ignore_hotplug = 1;
4939 }
4940 EXPORT_SYMBOL_GPL(pci_ignore_hotplug);
4941 
4942 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
4943 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
4944 static DEFINE_SPINLOCK(resource_alignment_lock);
4945 
4946 /**
4947  * pci_specified_resource_alignment - get resource alignment specified by user.
4948  * @dev: the PCI device to get
4949  *
4950  * RETURNS: Resource alignment if it is specified.
4951  *          Zero if it is not specified.
4952  */
4953 static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
4954 {
4955 	int seg, bus, slot, func, align_order, count;
4956 	unsigned short vendor, device, subsystem_vendor, subsystem_device;
4957 	resource_size_t align = 0;
4958 	char *p;
4959 
4960 	spin_lock(&resource_alignment_lock);
4961 	p = resource_alignment_param;
4962 	while (*p) {
4963 		count = 0;
4964 		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
4965 							p[count] == '@') {
4966 			p += count + 1;
4967 		} else {
4968 			align_order = -1;
4969 		}
4970 		if (strncmp(p, "pci:", 4) == 0) {
4971 			/* PCI vendor/device (subvendor/subdevice) ids are specified */
4972 			p += 4;
4973 			if (sscanf(p, "%hx:%hx:%hx:%hx%n",
4974 				&vendor, &device, &subsystem_vendor, &subsystem_device, &count) != 4) {
4975 				if (sscanf(p, "%hx:%hx%n", &vendor, &device, &count) != 2) {
4976 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: pci:%s\n",
4977 						p);
4978 					break;
4979 				}
4980 				subsystem_vendor = subsystem_device = 0;
4981 			}
4982 			p += count;
4983 			if ((!vendor || (vendor == dev->vendor)) &&
4984 				(!device || (device == dev->device)) &&
4985 				(!subsystem_vendor || (subsystem_vendor == dev->subsystem_vendor)) &&
4986 				(!subsystem_device || (subsystem_device == dev->subsystem_device))) {
4987 				if (align_order == -1)
4988 					align = PAGE_SIZE;
4989 				else
4990 					align = 1 << align_order;
4991 				/* Found */
4992 				break;
4993 			}
4994 		}
4995 		else {
4996 			if (sscanf(p, "%x:%x:%x.%x%n",
4997 				&seg, &bus, &slot, &func, &count) != 4) {
4998 				seg = 0;
4999 				if (sscanf(p, "%x:%x.%x%n",
5000 						&bus, &slot, &func, &count) != 3) {
5001 					/* Invalid format */
5002 					printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
5003 						p);
5004 					break;
5005 				}
5006 			}
5007 			p += count;
5008 			if (seg == pci_domain_nr(dev->bus) &&
5009 				bus == dev->bus->number &&
5010 				slot == PCI_SLOT(dev->devfn) &&
5011 				func == PCI_FUNC(dev->devfn)) {
5012 				if (align_order == -1)
5013 					align = PAGE_SIZE;
5014 				else
5015 					align = 1 << align_order;
5016 				/* Found */
5017 				break;
5018 			}
5019 		}
5020 		if (*p != ';' && *p != ',') {
5021 			/* End of param or invalid format */
5022 			break;
5023 		}
5024 		p++;
5025 	}
5026 	spin_unlock(&resource_alignment_lock);
5027 	return align;
5028 }
5029 
5030 /*
5031  * This function disables memory decoding and releases memory resources
5032  * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
5033  * It also rounds up size to specified alignment.
5034  * Later on, the kernel will assign page-aligned memory resource back
5035  * to the device.
5036  */
5037 void pci_reassigndev_resource_alignment(struct pci_dev *dev)
5038 {
5039 	int i;
5040 	struct resource *r;
5041 	resource_size_t align, size;
5042 	u16 command;
5043 
5044 	/* check if specified PCI is target device to reassign */
5045 	align = pci_specified_resource_alignment(dev);
5046 	if (!align)
5047 		return;
5048 
5049 	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
5050 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
5051 		dev_warn(&dev->dev,
5052 			"Can't reassign resources to host bridge.\n");
5053 		return;
5054 	}
5055 
5056 	dev_info(&dev->dev,
5057 		"Disabling memory decoding and releasing memory resources.\n");
5058 	pci_read_config_word(dev, PCI_COMMAND, &command);
5059 	command &= ~PCI_COMMAND_MEMORY;
5060 	pci_write_config_word(dev, PCI_COMMAND, command);
5061 
5062 	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++) {
5063 		r = &dev->resource[i];
5064 		if (!(r->flags & IORESOURCE_MEM))
5065 			continue;
5066 		size = resource_size(r);
5067 		if (size < align) {
5068 			size = align;
5069 			dev_info(&dev->dev,
5070 				"Rounding up size of resource #%d to %#llx.\n",
5071 				i, (unsigned long long)size);
5072 		}
5073 		r->flags |= IORESOURCE_UNSET;
5074 		r->end = size - 1;
5075 		r->start = 0;
5076 	}
5077 	/* Need to disable bridge's resource window,
5078 	 * to enable the kernel to reassign new resource
5079 	 * window later on.
5080 	 */
5081 	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE &&
5082 	    (dev->class >> 8) == PCI_CLASS_BRIDGE_PCI) {
5083 		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
5084 			r = &dev->resource[i];
5085 			if (!(r->flags & IORESOURCE_MEM))
5086 				continue;
5087 			r->flags |= IORESOURCE_UNSET;
5088 			r->end = resource_size(r) - 1;
5089 			r->start = 0;
5090 		}
5091 		pci_disable_bridge_window(dev);
5092 	}
5093 }
5094 
5095 static ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
5096 {
5097 	if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
5098 		count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
5099 	spin_lock(&resource_alignment_lock);
5100 	strncpy(resource_alignment_param, buf, count);
5101 	resource_alignment_param[count] = '\0';
5102 	spin_unlock(&resource_alignment_lock);
5103 	return count;
5104 }
5105 
5106 static ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
5107 {
5108 	size_t count;
5109 	spin_lock(&resource_alignment_lock);
5110 	count = snprintf(buf, size, "%s", resource_alignment_param);
5111 	spin_unlock(&resource_alignment_lock);
5112 	return count;
5113 }
5114 
5115 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
5116 {
5117 	return pci_get_resource_alignment_param(buf, PAGE_SIZE);
5118 }
5119 
5120 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
5121 					const char *buf, size_t count)
5122 {
5123 	return pci_set_resource_alignment_param(buf, count);
5124 }
5125 
5126 static BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
5127 					pci_resource_alignment_store);
5128 
5129 static int __init pci_resource_alignment_sysfs_init(void)
5130 {
5131 	return bus_create_file(&pci_bus_type,
5132 					&bus_attr_resource_alignment);
5133 }
5134 late_initcall(pci_resource_alignment_sysfs_init);
5135 
5136 static void pci_no_domains(void)
5137 {
5138 #ifdef CONFIG_PCI_DOMAINS
5139 	pci_domains_supported = 0;
5140 #endif
5141 }
5142 
5143 #ifdef CONFIG_PCI_DOMAINS
5144 static atomic_t __domain_nr = ATOMIC_INIT(-1);
5145 
5146 int pci_get_new_domain_nr(void)
5147 {
5148 	return atomic_inc_return(&__domain_nr);
5149 }
5150 
5151 #ifdef CONFIG_PCI_DOMAINS_GENERIC
5152 static int of_pci_bus_find_domain_nr(struct device *parent)
5153 {
5154 	static int use_dt_domains = -1;
5155 	int domain = -1;
5156 
5157 	if (parent)
5158 		domain = of_get_pci_domain_nr(parent->of_node);
5159 	/*
5160 	 * Check DT domain and use_dt_domains values.
5161 	 *
5162 	 * If DT domain property is valid (domain >= 0) and
5163 	 * use_dt_domains != 0, the DT assignment is valid since this means
5164 	 * we have not previously allocated a domain number by using
5165 	 * pci_get_new_domain_nr(); we should also update use_dt_domains to
5166 	 * 1, to indicate that we have just assigned a domain number from
5167 	 * DT.
5168 	 *
5169 	 * If DT domain property value is not valid (ie domain < 0), and we
5170 	 * have not previously assigned a domain number from DT
5171 	 * (use_dt_domains != 1) we should assign a domain number by
5172 	 * using the:
5173 	 *
5174 	 * pci_get_new_domain_nr()
5175 	 *
5176 	 * API and update the use_dt_domains value to keep track of method we
5177 	 * are using to assign domain numbers (use_dt_domains = 0).
5178 	 *
5179 	 * All other combinations imply we have a platform that is trying
5180 	 * to mix domain numbers obtained from DT and pci_get_new_domain_nr(),
5181 	 * which is a recipe for domain mishandling and it is prevented by
5182 	 * invalidating the domain value (domain = -1) and printing a
5183 	 * corresponding error.
5184 	 */
5185 	if (domain >= 0 && use_dt_domains) {
5186 		use_dt_domains = 1;
5187 	} else if (domain < 0 && use_dt_domains != 1) {
5188 		use_dt_domains = 0;
5189 		domain = pci_get_new_domain_nr();
5190 	} else {
5191 		dev_err(parent, "Node %s has inconsistent \"linux,pci-domain\" property in DT\n",
5192 			parent->of_node->full_name);
5193 		domain = -1;
5194 	}
5195 
5196 	return domain;
5197 }
5198 
5199 int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
5200 {
5201 	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
5202 			       acpi_pci_bus_find_domain_nr(bus);
5203 }
5204 #endif
5205 #endif
5206 
5207 /**
5208  * pci_ext_cfg_avail - can we access extended PCI config space?
5209  *
5210  * Returns 1 if we can access PCI extended config space (offsets
5211  * greater than 0xff). This is the default implementation. Architecture
5212  * implementations can override this.
5213  */
5214 int __weak pci_ext_cfg_avail(void)
5215 {
5216 	return 1;
5217 }
5218 
5219 void __weak pci_fixup_cardbus(struct pci_bus *bus)
5220 {
5221 }
5222 EXPORT_SYMBOL(pci_fixup_cardbus);
5223 
5224 static int __init pci_setup(char *str)
5225 {
5226 	while (str) {
5227 		char *k = strchr(str, ',');
5228 		if (k)
5229 			*k++ = 0;
5230 		if (*str && (str = pcibios_setup(str)) && *str) {
5231 			if (!strcmp(str, "nomsi")) {
5232 				pci_no_msi();
5233 			} else if (!strcmp(str, "noaer")) {
5234 				pci_no_aer();
5235 			} else if (!strncmp(str, "realloc=", 8)) {
5236 				pci_realloc_get_opt(str + 8);
5237 			} else if (!strncmp(str, "realloc", 7)) {
5238 				pci_realloc_get_opt("on");
5239 			} else if (!strcmp(str, "nodomains")) {
5240 				pci_no_domains();
5241 			} else if (!strncmp(str, "noari", 5)) {
5242 				pcie_ari_disabled = true;
5243 			} else if (!strncmp(str, "cbiosize=", 9)) {
5244 				pci_cardbus_io_size = memparse(str + 9, &str);
5245 			} else if (!strncmp(str, "cbmemsize=", 10)) {
5246 				pci_cardbus_mem_size = memparse(str + 10, &str);
5247 			} else if (!strncmp(str, "resource_alignment=", 19)) {
5248 				pci_set_resource_alignment_param(str + 19,
5249 							strlen(str + 19));
5250 			} else if (!strncmp(str, "ecrc=", 5)) {
5251 				pcie_ecrc_get_policy(str + 5);
5252 			} else if (!strncmp(str, "hpiosize=", 9)) {
5253 				pci_hotplug_io_size = memparse(str + 9, &str);
5254 			} else if (!strncmp(str, "hpmemsize=", 10)) {
5255 				pci_hotplug_mem_size = memparse(str + 10, &str);
5256 			} else if (!strncmp(str, "hpbussize=", 10)) {
5257 				pci_hotplug_bus_size =
5258 					simple_strtoul(str + 10, &str, 0);
5259 				if (pci_hotplug_bus_size > 0xff)
5260 					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
5261 			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
5262 				pcie_bus_config = PCIE_BUS_TUNE_OFF;
5263 			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
5264 				pcie_bus_config = PCIE_BUS_SAFE;
5265 			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
5266 				pcie_bus_config = PCIE_BUS_PERFORMANCE;
5267 			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
5268 				pcie_bus_config = PCIE_BUS_PEER2PEER;
5269 			} else if (!strncmp(str, "pcie_scan_all", 13)) {
5270 				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
5271 			} else {
5272 				printk(KERN_ERR "PCI: Unknown option `%s'\n",
5273 						str);
5274 			}
5275 		}
5276 		str = k;
5277 	}
5278 	return 0;
5279 }
5280 early_param("pci", pci_setup);
5281