1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR_WO(new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 size_t retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = count; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 return retval; 200 } 201 static DRIVER_ATTR_WO(remove_id); 202 203 static struct attribute *pci_drv_attrs[] = { 204 &driver_attr_new_id.attr, 205 &driver_attr_remove_id.attr, 206 NULL, 207 }; 208 ATTRIBUTE_GROUPS(pci_drv); 209 210 /** 211 * pci_match_id - See if a pci device matches a given pci_id table 212 * @ids: array of PCI device id structures to search in 213 * @dev: the PCI device structure to match against. 214 * 215 * Used by a driver to check whether a PCI device present in the 216 * system is in its list of supported devices. Returns the matching 217 * pci_device_id structure or %NULL if there is no match. 218 * 219 * Deprecated, don't use this as it will not catch any dynamic ids 220 * that a driver might want to check for. 221 */ 222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 223 struct pci_dev *dev) 224 { 225 if (ids) { 226 while (ids->vendor || ids->subvendor || ids->class_mask) { 227 if (pci_match_one_device(ids, dev)) 228 return ids; 229 ids++; 230 } 231 } 232 return NULL; 233 } 234 EXPORT_SYMBOL(pci_match_id); 235 236 static const struct pci_device_id pci_device_id_any = { 237 .vendor = PCI_ANY_ID, 238 .device = PCI_ANY_ID, 239 .subvendor = PCI_ANY_ID, 240 .subdevice = PCI_ANY_ID, 241 }; 242 243 /** 244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 245 * @drv: the PCI driver to match against 246 * @dev: the PCI device structure to match against 247 * 248 * Used by a driver to check whether a PCI device present in the 249 * system is in its list of supported devices. Returns the matching 250 * pci_device_id structure or %NULL if there is no match. 251 */ 252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 253 struct pci_dev *dev) 254 { 255 struct pci_dynid *dynid; 256 const struct pci_device_id *found_id = NULL; 257 258 /* When driver_override is set, only bind to the matching driver */ 259 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 260 return NULL; 261 262 /* Look at the dynamic ids first, before the static ones */ 263 spin_lock(&drv->dynids.lock); 264 list_for_each_entry(dynid, &drv->dynids.list, node) { 265 if (pci_match_one_device(&dynid->id, dev)) { 266 found_id = &dynid->id; 267 break; 268 } 269 } 270 spin_unlock(&drv->dynids.lock); 271 272 if (!found_id) 273 found_id = pci_match_id(drv->id_table, dev); 274 275 /* driver_override will always match, send a dummy id */ 276 if (!found_id && dev->driver_override) 277 found_id = &pci_device_id_any; 278 279 return found_id; 280 } 281 282 struct drv_dev_and_id { 283 struct pci_driver *drv; 284 struct pci_dev *dev; 285 const struct pci_device_id *id; 286 }; 287 288 static long local_pci_probe(void *_ddi) 289 { 290 struct drv_dev_and_id *ddi = _ddi; 291 struct pci_dev *pci_dev = ddi->dev; 292 struct pci_driver *pci_drv = ddi->drv; 293 struct device *dev = &pci_dev->dev; 294 int rc; 295 296 /* 297 * Unbound PCI devices are always put in D0, regardless of 298 * runtime PM status. During probe, the device is set to 299 * active and the usage count is incremented. If the driver 300 * supports runtime PM, it should call pm_runtime_put_noidle(), 301 * or any other runtime PM helper function decrementing the usage 302 * count, in its probe routine and pm_runtime_get_noresume() in 303 * its remove routine. 304 */ 305 pm_runtime_get_sync(dev); 306 pci_dev->driver = pci_drv; 307 rc = pci_drv->probe(pci_dev, ddi->id); 308 if (!rc) 309 return rc; 310 if (rc < 0) { 311 pci_dev->driver = NULL; 312 pm_runtime_put_sync(dev); 313 return rc; 314 } 315 /* 316 * Probe function should return < 0 for failure, 0 for success 317 * Treat values > 0 as success, but warn. 318 */ 319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 320 return 0; 321 } 322 323 static bool pci_physfn_is_probed(struct pci_dev *dev) 324 { 325 #ifdef CONFIG_PCI_IOV 326 return dev->is_virtfn && dev->physfn->is_probed; 327 #else 328 return false; 329 #endif 330 } 331 332 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 333 const struct pci_device_id *id) 334 { 335 int error, node, cpu; 336 struct drv_dev_and_id ddi = { drv, dev, id }; 337 338 /* 339 * Execute driver initialization on node where the device is 340 * attached. This way the driver likely allocates its local memory 341 * on the right node. 342 */ 343 node = dev_to_node(&dev->dev); 344 dev->is_probed = 1; 345 346 cpu_hotplug_disable(); 347 348 /* 349 * Prevent nesting work_on_cpu() for the case where a Virtual Function 350 * device is probed from work_on_cpu() of the Physical device. 351 */ 352 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) || 353 pci_physfn_is_probed(dev)) 354 cpu = nr_cpu_ids; 355 else 356 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 357 358 if (cpu < nr_cpu_ids) 359 error = work_on_cpu(cpu, local_pci_probe, &ddi); 360 else 361 error = local_pci_probe(&ddi); 362 363 dev->is_probed = 0; 364 cpu_hotplug_enable(); 365 return error; 366 } 367 368 /** 369 * __pci_device_probe - check if a driver wants to claim a specific PCI device 370 * @drv: driver to call to check if it wants the PCI device 371 * @pci_dev: PCI device being probed 372 * 373 * returns 0 on success, else error. 374 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 375 */ 376 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 377 { 378 const struct pci_device_id *id; 379 int error = 0; 380 381 if (!pci_dev->driver && drv->probe) { 382 error = -ENODEV; 383 384 id = pci_match_device(drv, pci_dev); 385 if (id) 386 error = pci_call_probe(drv, pci_dev, id); 387 } 388 return error; 389 } 390 391 int __weak pcibios_alloc_irq(struct pci_dev *dev) 392 { 393 return 0; 394 } 395 396 void __weak pcibios_free_irq(struct pci_dev *dev) 397 { 398 } 399 400 #ifdef CONFIG_PCI_IOV 401 static inline bool pci_device_can_probe(struct pci_dev *pdev) 402 { 403 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe); 404 } 405 #else 406 static inline bool pci_device_can_probe(struct pci_dev *pdev) 407 { 408 return true; 409 } 410 #endif 411 412 static int pci_device_probe(struct device *dev) 413 { 414 int error; 415 struct pci_dev *pci_dev = to_pci_dev(dev); 416 struct pci_driver *drv = to_pci_driver(dev->driver); 417 418 pci_assign_irq(pci_dev); 419 420 error = pcibios_alloc_irq(pci_dev); 421 if (error < 0) 422 return error; 423 424 pci_dev_get(pci_dev); 425 if (pci_device_can_probe(pci_dev)) { 426 error = __pci_device_probe(drv, pci_dev); 427 if (error) { 428 pcibios_free_irq(pci_dev); 429 pci_dev_put(pci_dev); 430 } 431 } 432 433 return error; 434 } 435 436 static int pci_device_remove(struct device *dev) 437 { 438 struct pci_dev *pci_dev = to_pci_dev(dev); 439 struct pci_driver *drv = pci_dev->driver; 440 441 if (drv) { 442 if (drv->remove) { 443 pm_runtime_get_sync(dev); 444 drv->remove(pci_dev); 445 pm_runtime_put_noidle(dev); 446 } 447 pcibios_free_irq(pci_dev); 448 pci_dev->driver = NULL; 449 } 450 451 /* Undo the runtime PM settings in local_pci_probe() */ 452 pm_runtime_put_sync(dev); 453 454 /* 455 * If the device is still on, set the power state as "unknown", 456 * since it might change by the next time we load the driver. 457 */ 458 if (pci_dev->current_state == PCI_D0) 459 pci_dev->current_state = PCI_UNKNOWN; 460 461 /* 462 * We would love to complain here if pci_dev->is_enabled is set, that 463 * the driver should have called pci_disable_device(), but the 464 * unfortunate fact is there are too many odd BIOS and bridge setups 465 * that don't like drivers doing that all of the time. 466 * Oh well, we can dream of sane hardware when we sleep, no matter how 467 * horrible the crap we have to deal with is when we are awake... 468 */ 469 470 pci_dev_put(pci_dev); 471 return 0; 472 } 473 474 static void pci_device_shutdown(struct device *dev) 475 { 476 struct pci_dev *pci_dev = to_pci_dev(dev); 477 struct pci_driver *drv = pci_dev->driver; 478 479 pm_runtime_resume(dev); 480 481 if (drv && drv->shutdown) 482 drv->shutdown(pci_dev); 483 484 /* 485 * If this is a kexec reboot, turn off Bus Master bit on the 486 * device to tell it to not continue to do DMA. Don't touch 487 * devices in D3cold or unknown states. 488 * If it is not a kexec reboot, firmware will hit the PCI 489 * devices with big hammer and stop their DMA any way. 490 */ 491 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 492 pci_clear_master(pci_dev); 493 } 494 495 #ifdef CONFIG_PM 496 497 /* Auxiliary functions used for system resume and run-time resume. */ 498 499 /** 500 * pci_restore_standard_config - restore standard config registers of PCI device 501 * @pci_dev: PCI device to handle 502 */ 503 static int pci_restore_standard_config(struct pci_dev *pci_dev) 504 { 505 pci_update_current_state(pci_dev, PCI_UNKNOWN); 506 507 if (pci_dev->current_state != PCI_D0) { 508 int error = pci_set_power_state(pci_dev, PCI_D0); 509 if (error) 510 return error; 511 } 512 513 pci_restore_state(pci_dev); 514 pci_pme_restore(pci_dev); 515 return 0; 516 } 517 518 #endif 519 520 #ifdef CONFIG_PM_SLEEP 521 522 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 523 { 524 pci_power_up(pci_dev); 525 pci_restore_state(pci_dev); 526 pci_pme_restore(pci_dev); 527 pci_fixup_device(pci_fixup_resume_early, pci_dev); 528 } 529 530 /* 531 * Default "suspend" method for devices that have no driver provided suspend, 532 * or not even a driver at all (second part). 533 */ 534 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 535 { 536 /* 537 * mark its power state as "unknown", since we don't know if 538 * e.g. the BIOS will change its device state when we suspend. 539 */ 540 if (pci_dev->current_state == PCI_D0) 541 pci_dev->current_state = PCI_UNKNOWN; 542 } 543 544 /* 545 * Default "resume" method for devices that have no driver provided resume, 546 * or not even a driver at all (second part). 547 */ 548 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 549 { 550 int retval; 551 552 /* if the device was enabled before suspend, reenable */ 553 retval = pci_reenable_device(pci_dev); 554 /* 555 * if the device was busmaster before the suspend, make it busmaster 556 * again 557 */ 558 if (pci_dev->is_busmaster) 559 pci_set_master(pci_dev); 560 561 return retval; 562 } 563 564 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 565 { 566 struct pci_dev *pci_dev = to_pci_dev(dev); 567 struct pci_driver *drv = pci_dev->driver; 568 569 if (drv && drv->suspend) { 570 pci_power_t prev = pci_dev->current_state; 571 int error; 572 573 error = drv->suspend(pci_dev, state); 574 suspend_report_result(drv->suspend, error); 575 if (error) 576 return error; 577 578 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 579 && pci_dev->current_state != PCI_UNKNOWN) { 580 WARN_ONCE(pci_dev->current_state != prev, 581 "PCI PM: Device state not saved by %pF\n", 582 drv->suspend); 583 } 584 } 585 586 pci_fixup_device(pci_fixup_suspend, pci_dev); 587 588 return 0; 589 } 590 591 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 592 { 593 struct pci_dev *pci_dev = to_pci_dev(dev); 594 struct pci_driver *drv = pci_dev->driver; 595 596 if (drv && drv->suspend_late) { 597 pci_power_t prev = pci_dev->current_state; 598 int error; 599 600 error = drv->suspend_late(pci_dev, state); 601 suspend_report_result(drv->suspend_late, error); 602 if (error) 603 return error; 604 605 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 606 && pci_dev->current_state != PCI_UNKNOWN) { 607 WARN_ONCE(pci_dev->current_state != prev, 608 "PCI PM: Device state not saved by %pF\n", 609 drv->suspend_late); 610 goto Fixup; 611 } 612 } 613 614 if (!pci_dev->state_saved) 615 pci_save_state(pci_dev); 616 617 pci_pm_set_unknown_state(pci_dev); 618 619 Fixup: 620 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 621 622 return 0; 623 } 624 625 static int pci_legacy_resume_early(struct device *dev) 626 { 627 struct pci_dev *pci_dev = to_pci_dev(dev); 628 struct pci_driver *drv = pci_dev->driver; 629 630 return drv && drv->resume_early ? 631 drv->resume_early(pci_dev) : 0; 632 } 633 634 static int pci_legacy_resume(struct device *dev) 635 { 636 struct pci_dev *pci_dev = to_pci_dev(dev); 637 struct pci_driver *drv = pci_dev->driver; 638 639 pci_fixup_device(pci_fixup_resume, pci_dev); 640 641 return drv && drv->resume ? 642 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 643 } 644 645 /* Auxiliary functions used by the new power management framework */ 646 647 static void pci_pm_default_resume(struct pci_dev *pci_dev) 648 { 649 pci_fixup_device(pci_fixup_resume, pci_dev); 650 pci_enable_wake(pci_dev, PCI_D0, false); 651 } 652 653 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 654 { 655 /* Disable non-bridge devices without PM support */ 656 if (!pci_has_subordinate(pci_dev)) 657 pci_disable_enabled_device(pci_dev); 658 } 659 660 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 661 { 662 struct pci_driver *drv = pci_dev->driver; 663 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 664 || drv->resume_early); 665 666 /* 667 * Legacy PM support is used by default, so warn if the new framework is 668 * supported as well. Drivers are supposed to support either the 669 * former, or the latter, but not both at the same time. 670 */ 671 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 672 drv->name, pci_dev->vendor, pci_dev->device); 673 674 return ret; 675 } 676 677 /* New power management framework */ 678 679 static int pci_pm_prepare(struct device *dev) 680 { 681 struct device_driver *drv = dev->driver; 682 683 if (drv && drv->pm && drv->pm->prepare) { 684 int error = drv->pm->prepare(dev); 685 if (error < 0) 686 return error; 687 688 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 689 return 0; 690 } 691 return pci_dev_keep_suspended(to_pci_dev(dev)); 692 } 693 694 static void pci_pm_complete(struct device *dev) 695 { 696 struct pci_dev *pci_dev = to_pci_dev(dev); 697 698 pci_dev_complete_resume(pci_dev); 699 pm_generic_complete(dev); 700 701 /* Resume device if platform firmware has put it in reset-power-on */ 702 if (dev->power.direct_complete && pm_resume_via_firmware()) { 703 pci_power_t pre_sleep_state = pci_dev->current_state; 704 705 pci_update_current_state(pci_dev, pci_dev->current_state); 706 if (pci_dev->current_state < pre_sleep_state) 707 pm_request_resume(dev); 708 } 709 } 710 711 #else /* !CONFIG_PM_SLEEP */ 712 713 #define pci_pm_prepare NULL 714 #define pci_pm_complete NULL 715 716 #endif /* !CONFIG_PM_SLEEP */ 717 718 #ifdef CONFIG_SUSPEND 719 720 static int pci_pm_suspend(struct device *dev) 721 { 722 struct pci_dev *pci_dev = to_pci_dev(dev); 723 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 724 725 if (pci_has_legacy_pm_support(pci_dev)) 726 return pci_legacy_suspend(dev, PMSG_SUSPEND); 727 728 if (!pm) { 729 pci_pm_default_suspend(pci_dev); 730 return 0; 731 } 732 733 /* 734 * PCI devices suspended at run time may need to be resumed at this 735 * point, because in general it may be necessary to reconfigure them for 736 * system suspend. Namely, if the device is expected to wake up the 737 * system from the sleep state, it may have to be reconfigured for this 738 * purpose, or if the device is not expected to wake up the system from 739 * the sleep state, it should be prevented from signaling wakeup events 740 * going forward. 741 * 742 * Also if the driver of the device does not indicate that its system 743 * suspend callbacks can cope with runtime-suspended devices, it is 744 * better to resume the device from runtime suspend here. 745 */ 746 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 747 !pci_dev_keep_suspended(pci_dev)) 748 pm_runtime_resume(dev); 749 750 pci_dev->state_saved = false; 751 if (pm->suspend) { 752 pci_power_t prev = pci_dev->current_state; 753 int error; 754 755 error = pm->suspend(dev); 756 suspend_report_result(pm->suspend, error); 757 if (error) 758 return error; 759 760 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 761 && pci_dev->current_state != PCI_UNKNOWN) { 762 WARN_ONCE(pci_dev->current_state != prev, 763 "PCI PM: State of device not saved by %pF\n", 764 pm->suspend); 765 } 766 } 767 768 return 0; 769 } 770 771 static int pci_pm_suspend_late(struct device *dev) 772 { 773 if (dev_pm_smart_suspend_and_suspended(dev)) 774 return 0; 775 776 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 777 778 return pm_generic_suspend_late(dev); 779 } 780 781 static int pci_pm_suspend_noirq(struct device *dev) 782 { 783 struct pci_dev *pci_dev = to_pci_dev(dev); 784 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 785 786 if (dev_pm_smart_suspend_and_suspended(dev)) 787 return 0; 788 789 if (pci_has_legacy_pm_support(pci_dev)) 790 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 791 792 if (!pm) { 793 pci_save_state(pci_dev); 794 goto Fixup; 795 } 796 797 if (pm->suspend_noirq) { 798 pci_power_t prev = pci_dev->current_state; 799 int error; 800 801 error = pm->suspend_noirq(dev); 802 suspend_report_result(pm->suspend_noirq, error); 803 if (error) 804 return error; 805 806 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 807 && pci_dev->current_state != PCI_UNKNOWN) { 808 WARN_ONCE(pci_dev->current_state != prev, 809 "PCI PM: State of device not saved by %pF\n", 810 pm->suspend_noirq); 811 goto Fixup; 812 } 813 } 814 815 if (!pci_dev->state_saved) { 816 pci_save_state(pci_dev); 817 if (pci_power_manageable(pci_dev)) 818 pci_prepare_to_sleep(pci_dev); 819 } 820 821 dev_dbg(dev, "PCI PM: Suspend power state: %s\n", 822 pci_power_name(pci_dev->current_state)); 823 824 pci_pm_set_unknown_state(pci_dev); 825 826 /* 827 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 828 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 829 * hasn't been quiesced and tries to turn it off. If the controller 830 * is already in D3, this can hang or cause memory corruption. 831 * 832 * Since the value of the COMMAND register doesn't matter once the 833 * device has been suspended, we can safely set it to 0 here. 834 */ 835 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 836 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 837 838 Fixup: 839 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 840 841 return 0; 842 } 843 844 static int pci_pm_resume_noirq(struct device *dev) 845 { 846 struct pci_dev *pci_dev = to_pci_dev(dev); 847 struct device_driver *drv = dev->driver; 848 int error = 0; 849 850 /* 851 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend 852 * during system suspend, so update their runtime PM status to "active" 853 * as they are going to be put into D0 shortly. 854 */ 855 if (dev_pm_smart_suspend_and_suspended(dev)) 856 pm_runtime_set_active(dev); 857 858 pci_pm_default_resume_early(pci_dev); 859 860 if (pci_has_legacy_pm_support(pci_dev)) 861 return pci_legacy_resume_early(dev); 862 863 if (drv && drv->pm && drv->pm->resume_noirq) 864 error = drv->pm->resume_noirq(dev); 865 866 return error; 867 } 868 869 static int pci_pm_resume(struct device *dev) 870 { 871 struct pci_dev *pci_dev = to_pci_dev(dev); 872 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 873 int error = 0; 874 875 /* 876 * This is necessary for the suspend error path in which resume is 877 * called without restoring the standard config registers of the device. 878 */ 879 if (pci_dev->state_saved) 880 pci_restore_standard_config(pci_dev); 881 882 if (pci_has_legacy_pm_support(pci_dev)) 883 return pci_legacy_resume(dev); 884 885 pci_pm_default_resume(pci_dev); 886 887 if (pm) { 888 if (pm->resume) 889 error = pm->resume(dev); 890 } else { 891 pci_pm_reenable_device(pci_dev); 892 } 893 894 return error; 895 } 896 897 #else /* !CONFIG_SUSPEND */ 898 899 #define pci_pm_suspend NULL 900 #define pci_pm_suspend_late NULL 901 #define pci_pm_suspend_noirq NULL 902 #define pci_pm_resume NULL 903 #define pci_pm_resume_noirq NULL 904 905 #endif /* !CONFIG_SUSPEND */ 906 907 #ifdef CONFIG_HIBERNATE_CALLBACKS 908 909 910 /* 911 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 912 * a hibernate transition 913 */ 914 struct dev_pm_ops __weak pcibios_pm_ops; 915 916 static int pci_pm_freeze(struct device *dev) 917 { 918 struct pci_dev *pci_dev = to_pci_dev(dev); 919 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 920 921 if (pci_has_legacy_pm_support(pci_dev)) 922 return pci_legacy_suspend(dev, PMSG_FREEZE); 923 924 if (!pm) { 925 pci_pm_default_suspend(pci_dev); 926 return 0; 927 } 928 929 /* 930 * This used to be done in pci_pm_prepare() for all devices and some 931 * drivers may depend on it, so do it here. Ideally, runtime-suspended 932 * devices should not be touched during freeze/thaw transitions, 933 * however. 934 */ 935 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND)) 936 pm_runtime_resume(dev); 937 938 pci_dev->state_saved = false; 939 if (pm->freeze) { 940 int error; 941 942 error = pm->freeze(dev); 943 suspend_report_result(pm->freeze, error); 944 if (error) 945 return error; 946 } 947 948 return 0; 949 } 950 951 static int pci_pm_freeze_late(struct device *dev) 952 { 953 if (dev_pm_smart_suspend_and_suspended(dev)) 954 return 0; 955 956 return pm_generic_freeze_late(dev);; 957 } 958 959 static int pci_pm_freeze_noirq(struct device *dev) 960 { 961 struct pci_dev *pci_dev = to_pci_dev(dev); 962 struct device_driver *drv = dev->driver; 963 964 if (dev_pm_smart_suspend_and_suspended(dev)) 965 return 0; 966 967 if (pci_has_legacy_pm_support(pci_dev)) 968 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 969 970 if (drv && drv->pm && drv->pm->freeze_noirq) { 971 int error; 972 973 error = drv->pm->freeze_noirq(dev); 974 suspend_report_result(drv->pm->freeze_noirq, error); 975 if (error) 976 return error; 977 } 978 979 if (!pci_dev->state_saved) 980 pci_save_state(pci_dev); 981 982 pci_pm_set_unknown_state(pci_dev); 983 984 if (pcibios_pm_ops.freeze_noirq) 985 return pcibios_pm_ops.freeze_noirq(dev); 986 987 return 0; 988 } 989 990 static int pci_pm_thaw_noirq(struct device *dev) 991 { 992 struct pci_dev *pci_dev = to_pci_dev(dev); 993 struct device_driver *drv = dev->driver; 994 int error = 0; 995 996 /* 997 * If the device is in runtime suspend, the code below may not work 998 * correctly with it, so skip that code and make the PM core skip all of 999 * the subsequent "thaw" callbacks for the device. 1000 */ 1001 if (dev_pm_smart_suspend_and_suspended(dev)) { 1002 dev_pm_skip_next_resume_phases(dev); 1003 return 0; 1004 } 1005 1006 if (pcibios_pm_ops.thaw_noirq) { 1007 error = pcibios_pm_ops.thaw_noirq(dev); 1008 if (error) 1009 return error; 1010 } 1011 1012 if (pci_has_legacy_pm_support(pci_dev)) 1013 return pci_legacy_resume_early(dev); 1014 1015 /* 1016 * pci_restore_state() requires the device to be in D0 (because of MSI 1017 * restoration among other things), so force it into D0 in case the 1018 * driver's "freeze" callbacks put it into a low-power state directly. 1019 */ 1020 pci_set_power_state(pci_dev, PCI_D0); 1021 pci_restore_state(pci_dev); 1022 1023 if (drv && drv->pm && drv->pm->thaw_noirq) 1024 error = drv->pm->thaw_noirq(dev); 1025 1026 return error; 1027 } 1028 1029 static int pci_pm_thaw(struct device *dev) 1030 { 1031 struct pci_dev *pci_dev = to_pci_dev(dev); 1032 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1033 int error = 0; 1034 1035 if (pci_has_legacy_pm_support(pci_dev)) 1036 return pci_legacy_resume(dev); 1037 1038 if (pm) { 1039 if (pm->thaw) 1040 error = pm->thaw(dev); 1041 } else { 1042 pci_pm_reenable_device(pci_dev); 1043 } 1044 1045 pci_dev->state_saved = false; 1046 1047 return error; 1048 } 1049 1050 static int pci_pm_poweroff(struct device *dev) 1051 { 1052 struct pci_dev *pci_dev = to_pci_dev(dev); 1053 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1054 1055 if (pci_has_legacy_pm_support(pci_dev)) 1056 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 1057 1058 if (!pm) { 1059 pci_pm_default_suspend(pci_dev); 1060 return 0; 1061 } 1062 1063 /* The reason to do that is the same as in pci_pm_suspend(). */ 1064 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1065 !pci_dev_keep_suspended(pci_dev)) 1066 pm_runtime_resume(dev); 1067 1068 pci_dev->state_saved = false; 1069 if (pm->poweroff) { 1070 int error; 1071 1072 error = pm->poweroff(dev); 1073 suspend_report_result(pm->poweroff, error); 1074 if (error) 1075 return error; 1076 } 1077 1078 return 0; 1079 } 1080 1081 static int pci_pm_poweroff_late(struct device *dev) 1082 { 1083 if (dev_pm_smart_suspend_and_suspended(dev)) 1084 return 0; 1085 1086 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 1087 1088 return pm_generic_poweroff_late(dev); 1089 } 1090 1091 static int pci_pm_poweroff_noirq(struct device *dev) 1092 { 1093 struct pci_dev *pci_dev = to_pci_dev(dev); 1094 struct device_driver *drv = dev->driver; 1095 1096 if (dev_pm_smart_suspend_and_suspended(dev)) 1097 return 0; 1098 1099 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1100 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1101 1102 if (!drv || !drv->pm) { 1103 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1104 return 0; 1105 } 1106 1107 if (drv->pm->poweroff_noirq) { 1108 int error; 1109 1110 error = drv->pm->poweroff_noirq(dev); 1111 suspend_report_result(drv->pm->poweroff_noirq, error); 1112 if (error) 1113 return error; 1114 } 1115 1116 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1117 pci_prepare_to_sleep(pci_dev); 1118 1119 /* 1120 * The reason for doing this here is the same as for the analogous code 1121 * in pci_pm_suspend_noirq(). 1122 */ 1123 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1124 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1125 1126 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1127 1128 if (pcibios_pm_ops.poweroff_noirq) 1129 return pcibios_pm_ops.poweroff_noirq(dev); 1130 1131 return 0; 1132 } 1133 1134 static int pci_pm_restore_noirq(struct device *dev) 1135 { 1136 struct pci_dev *pci_dev = to_pci_dev(dev); 1137 struct device_driver *drv = dev->driver; 1138 int error = 0; 1139 1140 /* This is analogous to the pci_pm_resume_noirq() case. */ 1141 if (dev_pm_smart_suspend_and_suspended(dev)) 1142 pm_runtime_set_active(dev); 1143 1144 if (pcibios_pm_ops.restore_noirq) { 1145 error = pcibios_pm_ops.restore_noirq(dev); 1146 if (error) 1147 return error; 1148 } 1149 1150 pci_pm_default_resume_early(pci_dev); 1151 1152 if (pci_has_legacy_pm_support(pci_dev)) 1153 return pci_legacy_resume_early(dev); 1154 1155 if (drv && drv->pm && drv->pm->restore_noirq) 1156 error = drv->pm->restore_noirq(dev); 1157 1158 return error; 1159 } 1160 1161 static int pci_pm_restore(struct device *dev) 1162 { 1163 struct pci_dev *pci_dev = to_pci_dev(dev); 1164 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1165 int error = 0; 1166 1167 /* 1168 * This is necessary for the hibernation error path in which restore is 1169 * called without restoring the standard config registers of the device. 1170 */ 1171 if (pci_dev->state_saved) 1172 pci_restore_standard_config(pci_dev); 1173 1174 if (pci_has_legacy_pm_support(pci_dev)) 1175 return pci_legacy_resume(dev); 1176 1177 pci_pm_default_resume(pci_dev); 1178 1179 if (pm) { 1180 if (pm->restore) 1181 error = pm->restore(dev); 1182 } else { 1183 pci_pm_reenable_device(pci_dev); 1184 } 1185 1186 return error; 1187 } 1188 1189 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1190 1191 #define pci_pm_freeze NULL 1192 #define pci_pm_freeze_late NULL 1193 #define pci_pm_freeze_noirq NULL 1194 #define pci_pm_thaw NULL 1195 #define pci_pm_thaw_noirq NULL 1196 #define pci_pm_poweroff NULL 1197 #define pci_pm_poweroff_late NULL 1198 #define pci_pm_poweroff_noirq NULL 1199 #define pci_pm_restore NULL 1200 #define pci_pm_restore_noirq NULL 1201 1202 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1203 1204 #ifdef CONFIG_PM 1205 1206 static int pci_pm_runtime_suspend(struct device *dev) 1207 { 1208 struct pci_dev *pci_dev = to_pci_dev(dev); 1209 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1210 pci_power_t prev = pci_dev->current_state; 1211 int error; 1212 1213 /* 1214 * If pci_dev->driver is not set (unbound), the device should 1215 * always remain in D0 regardless of the runtime PM status 1216 */ 1217 if (!pci_dev->driver) 1218 return 0; 1219 1220 if (!pm || !pm->runtime_suspend) 1221 return -ENOSYS; 1222 1223 pci_dev->state_saved = false; 1224 error = pm->runtime_suspend(dev); 1225 if (error) { 1226 /* 1227 * -EBUSY and -EAGAIN is used to request the runtime PM core 1228 * to schedule a new suspend, so log the event only with debug 1229 * log level. 1230 */ 1231 if (error == -EBUSY || error == -EAGAIN) 1232 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1233 pm->runtime_suspend, error); 1234 else 1235 dev_err(dev, "can't suspend (%pf returned %d)\n", 1236 pm->runtime_suspend, error); 1237 1238 return error; 1239 } 1240 1241 pci_fixup_device(pci_fixup_suspend, pci_dev); 1242 1243 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1244 && pci_dev->current_state != PCI_UNKNOWN) { 1245 WARN_ONCE(pci_dev->current_state != prev, 1246 "PCI PM: State of device not saved by %pF\n", 1247 pm->runtime_suspend); 1248 return 0; 1249 } 1250 1251 if (!pci_dev->state_saved) { 1252 pci_save_state(pci_dev); 1253 pci_finish_runtime_suspend(pci_dev); 1254 } 1255 1256 return 0; 1257 } 1258 1259 static int pci_pm_runtime_resume(struct device *dev) 1260 { 1261 int rc; 1262 struct pci_dev *pci_dev = to_pci_dev(dev); 1263 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1264 1265 /* 1266 * If pci_dev->driver is not set (unbound), the device should 1267 * always remain in D0 regardless of the runtime PM status 1268 */ 1269 if (!pci_dev->driver) 1270 return 0; 1271 1272 if (!pm || !pm->runtime_resume) 1273 return -ENOSYS; 1274 1275 pci_restore_standard_config(pci_dev); 1276 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1277 pci_enable_wake(pci_dev, PCI_D0, false); 1278 pci_fixup_device(pci_fixup_resume, pci_dev); 1279 1280 rc = pm->runtime_resume(dev); 1281 1282 pci_dev->runtime_d3cold = false; 1283 1284 return rc; 1285 } 1286 1287 static int pci_pm_runtime_idle(struct device *dev) 1288 { 1289 struct pci_dev *pci_dev = to_pci_dev(dev); 1290 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1291 int ret = 0; 1292 1293 /* 1294 * If pci_dev->driver is not set (unbound), the device should 1295 * always remain in D0 regardless of the runtime PM status 1296 */ 1297 if (!pci_dev->driver) 1298 return 0; 1299 1300 if (!pm) 1301 return -ENOSYS; 1302 1303 if (pm->runtime_idle) 1304 ret = pm->runtime_idle(dev); 1305 1306 return ret; 1307 } 1308 1309 static const struct dev_pm_ops pci_dev_pm_ops = { 1310 .prepare = pci_pm_prepare, 1311 .complete = pci_pm_complete, 1312 .suspend = pci_pm_suspend, 1313 .suspend_late = pci_pm_suspend_late, 1314 .resume = pci_pm_resume, 1315 .freeze = pci_pm_freeze, 1316 .freeze_late = pci_pm_freeze_late, 1317 .thaw = pci_pm_thaw, 1318 .poweroff = pci_pm_poweroff, 1319 .poweroff_late = pci_pm_poweroff_late, 1320 .restore = pci_pm_restore, 1321 .suspend_noirq = pci_pm_suspend_noirq, 1322 .resume_noirq = pci_pm_resume_noirq, 1323 .freeze_noirq = pci_pm_freeze_noirq, 1324 .thaw_noirq = pci_pm_thaw_noirq, 1325 .poweroff_noirq = pci_pm_poweroff_noirq, 1326 .restore_noirq = pci_pm_restore_noirq, 1327 .runtime_suspend = pci_pm_runtime_suspend, 1328 .runtime_resume = pci_pm_runtime_resume, 1329 .runtime_idle = pci_pm_runtime_idle, 1330 }; 1331 1332 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1333 1334 #else /* !CONFIG_PM */ 1335 1336 #define pci_pm_runtime_suspend NULL 1337 #define pci_pm_runtime_resume NULL 1338 #define pci_pm_runtime_idle NULL 1339 1340 #define PCI_PM_OPS_PTR NULL 1341 1342 #endif /* !CONFIG_PM */ 1343 1344 /** 1345 * __pci_register_driver - register a new pci driver 1346 * @drv: the driver structure to register 1347 * @owner: owner module of drv 1348 * @mod_name: module name string 1349 * 1350 * Adds the driver structure to the list of registered drivers. 1351 * Returns a negative value on error, otherwise 0. 1352 * If no error occurred, the driver remains registered even if 1353 * no device was claimed during registration. 1354 */ 1355 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1356 const char *mod_name) 1357 { 1358 /* initialize common driver fields */ 1359 drv->driver.name = drv->name; 1360 drv->driver.bus = &pci_bus_type; 1361 drv->driver.owner = owner; 1362 drv->driver.mod_name = mod_name; 1363 drv->driver.groups = drv->groups; 1364 1365 spin_lock_init(&drv->dynids.lock); 1366 INIT_LIST_HEAD(&drv->dynids.list); 1367 1368 /* register with core */ 1369 return driver_register(&drv->driver); 1370 } 1371 EXPORT_SYMBOL(__pci_register_driver); 1372 1373 /** 1374 * pci_unregister_driver - unregister a pci driver 1375 * @drv: the driver structure to unregister 1376 * 1377 * Deletes the driver structure from the list of registered PCI drivers, 1378 * gives it a chance to clean up by calling its remove() function for 1379 * each device it was responsible for, and marks those devices as 1380 * driverless. 1381 */ 1382 1383 void pci_unregister_driver(struct pci_driver *drv) 1384 { 1385 driver_unregister(&drv->driver); 1386 pci_free_dynids(drv); 1387 } 1388 EXPORT_SYMBOL(pci_unregister_driver); 1389 1390 static struct pci_driver pci_compat_driver = { 1391 .name = "compat" 1392 }; 1393 1394 /** 1395 * pci_dev_driver - get the pci_driver of a device 1396 * @dev: the device to query 1397 * 1398 * Returns the appropriate pci_driver structure or %NULL if there is no 1399 * registered driver for the device. 1400 */ 1401 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1402 { 1403 if (dev->driver) 1404 return dev->driver; 1405 else { 1406 int i; 1407 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1408 if (dev->resource[i].flags & IORESOURCE_BUSY) 1409 return &pci_compat_driver; 1410 } 1411 return NULL; 1412 } 1413 EXPORT_SYMBOL(pci_dev_driver); 1414 1415 /** 1416 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1417 * @dev: the PCI device structure to match against 1418 * @drv: the device driver to search for matching PCI device id structures 1419 * 1420 * Used by a driver to check whether a PCI device present in the 1421 * system is in its list of supported devices. Returns the matching 1422 * pci_device_id structure or %NULL if there is no match. 1423 */ 1424 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1425 { 1426 struct pci_dev *pci_dev = to_pci_dev(dev); 1427 struct pci_driver *pci_drv; 1428 const struct pci_device_id *found_id; 1429 1430 if (!pci_dev->match_driver) 1431 return 0; 1432 1433 pci_drv = to_pci_driver(drv); 1434 found_id = pci_match_device(pci_drv, pci_dev); 1435 if (found_id) 1436 return 1; 1437 1438 return 0; 1439 } 1440 1441 /** 1442 * pci_dev_get - increments the reference count of the pci device structure 1443 * @dev: the device being referenced 1444 * 1445 * Each live reference to a device should be refcounted. 1446 * 1447 * Drivers for PCI devices should normally record such references in 1448 * their probe() methods, when they bind to a device, and release 1449 * them by calling pci_dev_put(), in their disconnect() methods. 1450 * 1451 * A pointer to the device with the incremented reference counter is returned. 1452 */ 1453 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1454 { 1455 if (dev) 1456 get_device(&dev->dev); 1457 return dev; 1458 } 1459 EXPORT_SYMBOL(pci_dev_get); 1460 1461 /** 1462 * pci_dev_put - release a use of the pci device structure 1463 * @dev: device that's been disconnected 1464 * 1465 * Must be called when a user of a device is finished with it. When the last 1466 * user of the device calls this function, the memory of the device is freed. 1467 */ 1468 void pci_dev_put(struct pci_dev *dev) 1469 { 1470 if (dev) 1471 put_device(&dev->dev); 1472 } 1473 EXPORT_SYMBOL(pci_dev_put); 1474 1475 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1476 { 1477 struct pci_dev *pdev; 1478 1479 if (!dev) 1480 return -ENODEV; 1481 1482 pdev = to_pci_dev(dev); 1483 1484 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1485 return -ENOMEM; 1486 1487 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1488 return -ENOMEM; 1489 1490 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1491 pdev->subsystem_device)) 1492 return -ENOMEM; 1493 1494 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1495 return -ENOMEM; 1496 1497 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1498 pdev->vendor, pdev->device, 1499 pdev->subsystem_vendor, pdev->subsystem_device, 1500 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1501 (u8)(pdev->class))) 1502 return -ENOMEM; 1503 1504 return 0; 1505 } 1506 1507 static int pci_bus_num_vf(struct device *dev) 1508 { 1509 return pci_num_vf(to_pci_dev(dev)); 1510 } 1511 1512 struct bus_type pci_bus_type = { 1513 .name = "pci", 1514 .match = pci_bus_match, 1515 .uevent = pci_uevent, 1516 .probe = pci_device_probe, 1517 .remove = pci_device_remove, 1518 .shutdown = pci_device_shutdown, 1519 .dev_groups = pci_dev_groups, 1520 .bus_groups = pci_bus_groups, 1521 .drv_groups = pci_drv_groups, 1522 .pm = PCI_PM_OPS_PTR, 1523 .num_vf = pci_bus_num_vf, 1524 .force_dma = true, 1525 }; 1526 EXPORT_SYMBOL(pci_bus_type); 1527 1528 static int __init pci_driver_init(void) 1529 { 1530 return bus_register(&pci_bus_type); 1531 } 1532 postcore_initcall(pci_driver_init); 1533