xref: /openbmc/linux/drivers/pci/pci-driver.c (revision 84d517f3)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 	int retval;
59 
60 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
61 	if (!dynid)
62 		return -ENOMEM;
63 
64 	dynid->id.vendor = vendor;
65 	dynid->id.device = device;
66 	dynid->id.subvendor = subvendor;
67 	dynid->id.subdevice = subdevice;
68 	dynid->id.class = class;
69 	dynid->id.class_mask = class_mask;
70 	dynid->id.driver_data = driver_data;
71 
72 	spin_lock(&drv->dynids.lock);
73 	list_add_tail(&dynid->node, &drv->dynids.list);
74 	spin_unlock(&drv->dynids.lock);
75 
76 	retval = driver_attach(&drv->driver);
77 
78 	return retval;
79 }
80 
81 static void pci_free_dynids(struct pci_driver *drv)
82 {
83 	struct pci_dynid *dynid, *n;
84 
85 	spin_lock(&drv->dynids.lock);
86 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
87 		list_del(&dynid->node);
88 		kfree(dynid);
89 	}
90 	spin_unlock(&drv->dynids.lock);
91 }
92 
93 /**
94  * store_new_id - sysfs frontend to pci_add_dynid()
95  * @driver: target device driver
96  * @buf: buffer for scanning device ID data
97  * @count: input size
98  *
99  * Allow PCI IDs to be added to an existing driver via sysfs.
100  */
101 static ssize_t
102 store_new_id(struct device_driver *driver, const char *buf, size_t count)
103 {
104 	struct pci_driver *pdrv = to_pci_driver(driver);
105 	const struct pci_device_id *ids = pdrv->id_table;
106 	__u32 vendor, device, subvendor=PCI_ANY_ID,
107 		subdevice=PCI_ANY_ID, class=0, class_mask=0;
108 	unsigned long driver_data=0;
109 	int fields=0;
110 	int retval = 0;
111 
112 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
113 			&vendor, &device, &subvendor, &subdevice,
114 			&class, &class_mask, &driver_data);
115 	if (fields < 2)
116 		return -EINVAL;
117 
118 	if (fields != 7) {
119 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
120 		if (!pdev)
121 			return -ENOMEM;
122 
123 		pdev->vendor = vendor;
124 		pdev->device = device;
125 		pdev->subsystem_vendor = subvendor;
126 		pdev->subsystem_device = subdevice;
127 		pdev->class = class;
128 
129 		if (pci_match_id(pdrv->id_table, pdev))
130 			retval = -EEXIST;
131 
132 		kfree(pdev);
133 
134 		if (retval)
135 			return retval;
136 	}
137 
138 	/* Only accept driver_data values that match an existing id_table
139 	   entry */
140 	if (ids) {
141 		retval = -EINVAL;
142 		while (ids->vendor || ids->subvendor || ids->class_mask) {
143 			if (driver_data == ids->driver_data) {
144 				retval = 0;
145 				break;
146 			}
147 			ids++;
148 		}
149 		if (retval)	/* No match */
150 			return retval;
151 	}
152 
153 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
154 			       class, class_mask, driver_data);
155 	if (retval)
156 		return retval;
157 	return count;
158 }
159 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
160 
161 /**
162  * store_remove_id - remove a PCI device ID from this driver
163  * @driver: target device driver
164  * @buf: buffer for scanning device ID data
165  * @count: input size
166  *
167  * Removes a dynamic pci device ID to this driver.
168  */
169 static ssize_t
170 store_remove_id(struct device_driver *driver, const char *buf, size_t count)
171 {
172 	struct pci_dynid *dynid, *n;
173 	struct pci_driver *pdrv = to_pci_driver(driver);
174 	__u32 vendor, device, subvendor = PCI_ANY_ID,
175 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
176 	int fields = 0;
177 	int retval = -ENODEV;
178 
179 	fields = sscanf(buf, "%x %x %x %x %x %x",
180 			&vendor, &device, &subvendor, &subdevice,
181 			&class, &class_mask);
182 	if (fields < 2)
183 		return -EINVAL;
184 
185 	spin_lock(&pdrv->dynids.lock);
186 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
187 		struct pci_device_id *id = &dynid->id;
188 		if ((id->vendor == vendor) &&
189 		    (id->device == device) &&
190 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
191 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
192 		    !((id->class ^ class) & class_mask)) {
193 			list_del(&dynid->node);
194 			kfree(dynid);
195 			retval = 0;
196 			break;
197 		}
198 	}
199 	spin_unlock(&pdrv->dynids.lock);
200 
201 	if (retval)
202 		return retval;
203 	return count;
204 }
205 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
206 
207 static struct attribute *pci_drv_attrs[] = {
208 	&driver_attr_new_id.attr,
209 	&driver_attr_remove_id.attr,
210 	NULL,
211 };
212 ATTRIBUTE_GROUPS(pci_drv);
213 
214 /**
215  * pci_match_id - See if a pci device matches a given pci_id table
216  * @ids: array of PCI device id structures to search in
217  * @dev: the PCI device structure to match against.
218  *
219  * Used by a driver to check whether a PCI device present in the
220  * system is in its list of supported devices.  Returns the matching
221  * pci_device_id structure or %NULL if there is no match.
222  *
223  * Deprecated, don't use this as it will not catch any dynamic ids
224  * that a driver might want to check for.
225  */
226 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
227 					 struct pci_dev *dev)
228 {
229 	if (ids) {
230 		while (ids->vendor || ids->subvendor || ids->class_mask) {
231 			if (pci_match_one_device(ids, dev))
232 				return ids;
233 			ids++;
234 		}
235 	}
236 	return NULL;
237 }
238 
239 static const struct pci_device_id pci_device_id_any = {
240 	.vendor = PCI_ANY_ID,
241 	.device = PCI_ANY_ID,
242 	.subvendor = PCI_ANY_ID,
243 	.subdevice = PCI_ANY_ID,
244 };
245 
246 /**
247  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
248  * @drv: the PCI driver to match against
249  * @dev: the PCI device structure to match against
250  *
251  * Used by a driver to check whether a PCI device present in the
252  * system is in its list of supported devices.  Returns the matching
253  * pci_device_id structure or %NULL if there is no match.
254  */
255 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
256 						    struct pci_dev *dev)
257 {
258 	struct pci_dynid *dynid;
259 	const struct pci_device_id *found_id = NULL;
260 
261 	/* When driver_override is set, only bind to the matching driver */
262 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
263 		return NULL;
264 
265 	/* Look at the dynamic ids first, before the static ones */
266 	spin_lock(&drv->dynids.lock);
267 	list_for_each_entry(dynid, &drv->dynids.list, node) {
268 		if (pci_match_one_device(&dynid->id, dev)) {
269 			found_id = &dynid->id;
270 			break;
271 		}
272 	}
273 	spin_unlock(&drv->dynids.lock);
274 
275 	if (!found_id)
276 		found_id = pci_match_id(drv->id_table, dev);
277 
278 	/* driver_override will always match, send a dummy id */
279 	if (!found_id && dev->driver_override)
280 		found_id = &pci_device_id_any;
281 
282 	return found_id;
283 }
284 
285 struct drv_dev_and_id {
286 	struct pci_driver *drv;
287 	struct pci_dev *dev;
288 	const struct pci_device_id *id;
289 };
290 
291 static long local_pci_probe(void *_ddi)
292 {
293 	struct drv_dev_and_id *ddi = _ddi;
294 	struct pci_dev *pci_dev = ddi->dev;
295 	struct pci_driver *pci_drv = ddi->drv;
296 	struct device *dev = &pci_dev->dev;
297 	int rc;
298 
299 	/*
300 	 * Unbound PCI devices are always put in D0, regardless of
301 	 * runtime PM status.  During probe, the device is set to
302 	 * active and the usage count is incremented.  If the driver
303 	 * supports runtime PM, it should call pm_runtime_put_noidle()
304 	 * in its probe routine and pm_runtime_get_noresume() in its
305 	 * remove routine.
306 	 */
307 	pm_runtime_get_sync(dev);
308 	pci_dev->driver = pci_drv;
309 	rc = pci_drv->probe(pci_dev, ddi->id);
310 	if (!rc)
311 		return rc;
312 	if (rc < 0) {
313 		pci_dev->driver = NULL;
314 		pm_runtime_put_sync(dev);
315 		return rc;
316 	}
317 	/*
318 	 * Probe function should return < 0 for failure, 0 for success
319 	 * Treat values > 0 as success, but warn.
320 	 */
321 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
322 	return 0;
323 }
324 
325 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
326 			  const struct pci_device_id *id)
327 {
328 	int error, node;
329 	struct drv_dev_and_id ddi = { drv, dev, id };
330 
331 	/*
332 	 * Execute driver initialization on node where the device is
333 	 * attached.  This way the driver likely allocates its local memory
334 	 * on the right node.
335 	 */
336 	node = dev_to_node(&dev->dev);
337 
338 	/*
339 	 * On NUMA systems, we are likely to call a PF probe function using
340 	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
341 	 * adds the VF devices via pci_bus_add_device()), we may re-enter
342 	 * this function to call the VF probe function.  Calling
343 	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
344 	 * always on the same node as the PF, we can work around this by
345 	 * avoiding work_on_cpu() when we're already on the correct node.
346 	 *
347 	 * Preemption is enabled, so it's theoretically unsafe to use
348 	 * numa_node_id(), but even if we run the probe function on the
349 	 * wrong node, it should be functionally correct.
350 	 */
351 	if (node >= 0 && node != numa_node_id()) {
352 		int cpu;
353 
354 		get_online_cpus();
355 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
356 		if (cpu < nr_cpu_ids)
357 			error = work_on_cpu(cpu, local_pci_probe, &ddi);
358 		else
359 			error = local_pci_probe(&ddi);
360 		put_online_cpus();
361 	} else
362 		error = local_pci_probe(&ddi);
363 
364 	return error;
365 }
366 
367 /**
368  * __pci_device_probe - check if a driver wants to claim a specific PCI device
369  * @drv: driver to call to check if it wants the PCI device
370  * @pci_dev: PCI device being probed
371  *
372  * returns 0 on success, else error.
373  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
374  */
375 static int
376 __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
377 {
378 	const struct pci_device_id *id;
379 	int error = 0;
380 
381 	if (!pci_dev->driver && drv->probe) {
382 		error = -ENODEV;
383 
384 		id = pci_match_device(drv, pci_dev);
385 		if (id)
386 			error = pci_call_probe(drv, pci_dev, id);
387 		if (error >= 0)
388 			error = 0;
389 	}
390 	return error;
391 }
392 
393 static int pci_device_probe(struct device * dev)
394 {
395 	int error = 0;
396 	struct pci_driver *drv;
397 	struct pci_dev *pci_dev;
398 
399 	drv = to_pci_driver(dev->driver);
400 	pci_dev = to_pci_dev(dev);
401 	pci_dev_get(pci_dev);
402 	error = __pci_device_probe(drv, pci_dev);
403 	if (error)
404 		pci_dev_put(pci_dev);
405 
406 	return error;
407 }
408 
409 static int pci_device_remove(struct device * dev)
410 {
411 	struct pci_dev * pci_dev = to_pci_dev(dev);
412 	struct pci_driver * drv = pci_dev->driver;
413 
414 	if (drv) {
415 		if (drv->remove) {
416 			pm_runtime_get_sync(dev);
417 			drv->remove(pci_dev);
418 			pm_runtime_put_noidle(dev);
419 		}
420 		pci_dev->driver = NULL;
421 	}
422 
423 	/* Undo the runtime PM settings in local_pci_probe() */
424 	pm_runtime_put_sync(dev);
425 
426 	/*
427 	 * If the device is still on, set the power state as "unknown",
428 	 * since it might change by the next time we load the driver.
429 	 */
430 	if (pci_dev->current_state == PCI_D0)
431 		pci_dev->current_state = PCI_UNKNOWN;
432 
433 	/*
434 	 * We would love to complain here if pci_dev->is_enabled is set, that
435 	 * the driver should have called pci_disable_device(), but the
436 	 * unfortunate fact is there are too many odd BIOS and bridge setups
437 	 * that don't like drivers doing that all of the time.
438 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
439 	 * horrible the crap we have to deal with is when we are awake...
440 	 */
441 
442 	pci_dev_put(pci_dev);
443 	return 0;
444 }
445 
446 static void pci_device_shutdown(struct device *dev)
447 {
448 	struct pci_dev *pci_dev = to_pci_dev(dev);
449 	struct pci_driver *drv = pci_dev->driver;
450 
451 	pm_runtime_resume(dev);
452 
453 	if (drv && drv->shutdown)
454 		drv->shutdown(pci_dev);
455 	pci_msi_shutdown(pci_dev);
456 	pci_msix_shutdown(pci_dev);
457 
458 #ifdef CONFIG_KEXEC
459 	/*
460 	 * If this is a kexec reboot, turn off Bus Master bit on the
461 	 * device to tell it to not continue to do DMA. Don't touch
462 	 * devices in D3cold or unknown states.
463 	 * If it is not a kexec reboot, firmware will hit the PCI
464 	 * devices with big hammer and stop their DMA any way.
465 	 */
466 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
467 		pci_clear_master(pci_dev);
468 #endif
469 }
470 
471 #ifdef CONFIG_PM
472 
473 /* Auxiliary functions used for system resume and run-time resume. */
474 
475 /**
476  * pci_restore_standard_config - restore standard config registers of PCI device
477  * @pci_dev: PCI device to handle
478  */
479 static int pci_restore_standard_config(struct pci_dev *pci_dev)
480 {
481 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
482 
483 	if (pci_dev->current_state != PCI_D0) {
484 		int error = pci_set_power_state(pci_dev, PCI_D0);
485 		if (error)
486 			return error;
487 	}
488 
489 	pci_restore_state(pci_dev);
490 	return 0;
491 }
492 
493 #endif
494 
495 #ifdef CONFIG_PM_SLEEP
496 
497 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
498 {
499 	pci_power_up(pci_dev);
500 	pci_restore_state(pci_dev);
501 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
502 }
503 
504 /*
505  * Default "suspend" method for devices that have no driver provided suspend,
506  * or not even a driver at all (second part).
507  */
508 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
509 {
510 	/*
511 	 * mark its power state as "unknown", since we don't know if
512 	 * e.g. the BIOS will change its device state when we suspend.
513 	 */
514 	if (pci_dev->current_state == PCI_D0)
515 		pci_dev->current_state = PCI_UNKNOWN;
516 }
517 
518 /*
519  * Default "resume" method for devices that have no driver provided resume,
520  * or not even a driver at all (second part).
521  */
522 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
523 {
524 	int retval;
525 
526 	/* if the device was enabled before suspend, reenable */
527 	retval = pci_reenable_device(pci_dev);
528 	/*
529 	 * if the device was busmaster before the suspend, make it busmaster
530 	 * again
531 	 */
532 	if (pci_dev->is_busmaster)
533 		pci_set_master(pci_dev);
534 
535 	return retval;
536 }
537 
538 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
539 {
540 	struct pci_dev * pci_dev = to_pci_dev(dev);
541 	struct pci_driver * drv = pci_dev->driver;
542 
543 	if (drv && drv->suspend) {
544 		pci_power_t prev = pci_dev->current_state;
545 		int error;
546 
547 		error = drv->suspend(pci_dev, state);
548 		suspend_report_result(drv->suspend, error);
549 		if (error)
550 			return error;
551 
552 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
553 		    && pci_dev->current_state != PCI_UNKNOWN) {
554 			WARN_ONCE(pci_dev->current_state != prev,
555 				"PCI PM: Device state not saved by %pF\n",
556 				drv->suspend);
557 		}
558 	}
559 
560 	pci_fixup_device(pci_fixup_suspend, pci_dev);
561 
562 	return 0;
563 }
564 
565 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
566 {
567 	struct pci_dev * pci_dev = to_pci_dev(dev);
568 	struct pci_driver * drv = pci_dev->driver;
569 
570 	if (drv && drv->suspend_late) {
571 		pci_power_t prev = pci_dev->current_state;
572 		int error;
573 
574 		error = drv->suspend_late(pci_dev, state);
575 		suspend_report_result(drv->suspend_late, error);
576 		if (error)
577 			return error;
578 
579 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
580 		    && pci_dev->current_state != PCI_UNKNOWN) {
581 			WARN_ONCE(pci_dev->current_state != prev,
582 				"PCI PM: Device state not saved by %pF\n",
583 				drv->suspend_late);
584 			return 0;
585 		}
586 	}
587 
588 	if (!pci_dev->state_saved)
589 		pci_save_state(pci_dev);
590 
591 	pci_pm_set_unknown_state(pci_dev);
592 
593 	return 0;
594 }
595 
596 static int pci_legacy_resume_early(struct device *dev)
597 {
598 	struct pci_dev * pci_dev = to_pci_dev(dev);
599 	struct pci_driver * drv = pci_dev->driver;
600 
601 	return drv && drv->resume_early ?
602 			drv->resume_early(pci_dev) : 0;
603 }
604 
605 static int pci_legacy_resume(struct device *dev)
606 {
607 	struct pci_dev * pci_dev = to_pci_dev(dev);
608 	struct pci_driver * drv = pci_dev->driver;
609 
610 	pci_fixup_device(pci_fixup_resume, pci_dev);
611 
612 	return drv && drv->resume ?
613 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
614 }
615 
616 /* Auxiliary functions used by the new power management framework */
617 
618 static void pci_pm_default_resume(struct pci_dev *pci_dev)
619 {
620 	pci_fixup_device(pci_fixup_resume, pci_dev);
621 
622 	if (!pci_has_subordinate(pci_dev))
623 		pci_enable_wake(pci_dev, PCI_D0, false);
624 }
625 
626 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
627 {
628 	/* Disable non-bridge devices without PM support */
629 	if (!pci_has_subordinate(pci_dev))
630 		pci_disable_enabled_device(pci_dev);
631 }
632 
633 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
634 {
635 	struct pci_driver *drv = pci_dev->driver;
636 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
637 		|| drv->resume_early);
638 
639 	/*
640 	 * Legacy PM support is used by default, so warn if the new framework is
641 	 * supported as well.  Drivers are supposed to support either the
642 	 * former, or the latter, but not both at the same time.
643 	 */
644 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
645 		drv->name, pci_dev->vendor, pci_dev->device);
646 
647 	return ret;
648 }
649 
650 /* New power management framework */
651 
652 static int pci_pm_prepare(struct device *dev)
653 {
654 	struct device_driver *drv = dev->driver;
655 	int error = 0;
656 
657 	/*
658 	 * Devices having power.ignore_children set may still be necessary for
659 	 * suspending their children in the next phase of device suspend.
660 	 */
661 	if (dev->power.ignore_children)
662 		pm_runtime_resume(dev);
663 
664 	if (drv && drv->pm && drv->pm->prepare)
665 		error = drv->pm->prepare(dev);
666 
667 	return error;
668 }
669 
670 
671 #else /* !CONFIG_PM_SLEEP */
672 
673 #define pci_pm_prepare	NULL
674 
675 #endif /* !CONFIG_PM_SLEEP */
676 
677 #ifdef CONFIG_SUSPEND
678 
679 static int pci_pm_suspend(struct device *dev)
680 {
681 	struct pci_dev *pci_dev = to_pci_dev(dev);
682 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
683 
684 	if (pci_has_legacy_pm_support(pci_dev))
685 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
686 
687 	if (!pm) {
688 		pci_pm_default_suspend(pci_dev);
689 		goto Fixup;
690 	}
691 
692 	/*
693 	 * PCI devices suspended at run time need to be resumed at this point,
694 	 * because in general it is necessary to reconfigure them for system
695 	 * suspend.  Namely, if the device is supposed to wake up the system
696 	 * from the sleep state, we may need to reconfigure it for this purpose.
697 	 * In turn, if the device is not supposed to wake up the system from the
698 	 * sleep state, we'll have to prevent it from signaling wake-up.
699 	 */
700 	pm_runtime_resume(dev);
701 
702 	pci_dev->state_saved = false;
703 	if (pm->suspend) {
704 		pci_power_t prev = pci_dev->current_state;
705 		int error;
706 
707 		error = pm->suspend(dev);
708 		suspend_report_result(pm->suspend, error);
709 		if (error)
710 			return error;
711 
712 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
713 		    && pci_dev->current_state != PCI_UNKNOWN) {
714 			WARN_ONCE(pci_dev->current_state != prev,
715 				"PCI PM: State of device not saved by %pF\n",
716 				pm->suspend);
717 		}
718 	}
719 
720  Fixup:
721 	pci_fixup_device(pci_fixup_suspend, pci_dev);
722 
723 	return 0;
724 }
725 
726 static int pci_pm_suspend_noirq(struct device *dev)
727 {
728 	struct pci_dev *pci_dev = to_pci_dev(dev);
729 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
730 
731 	if (pci_has_legacy_pm_support(pci_dev))
732 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
733 
734 	if (!pm) {
735 		pci_save_state(pci_dev);
736 		return 0;
737 	}
738 
739 	if (pm->suspend_noirq) {
740 		pci_power_t prev = pci_dev->current_state;
741 		int error;
742 
743 		error = pm->suspend_noirq(dev);
744 		suspend_report_result(pm->suspend_noirq, error);
745 		if (error)
746 			return error;
747 
748 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
749 		    && pci_dev->current_state != PCI_UNKNOWN) {
750 			WARN_ONCE(pci_dev->current_state != prev,
751 				"PCI PM: State of device not saved by %pF\n",
752 				pm->suspend_noirq);
753 			return 0;
754 		}
755 	}
756 
757 	if (!pci_dev->state_saved) {
758 		pci_save_state(pci_dev);
759 		if (!pci_has_subordinate(pci_dev))
760 			pci_prepare_to_sleep(pci_dev);
761 	}
762 
763 	pci_pm_set_unknown_state(pci_dev);
764 
765 	/*
766 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
767 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
768 	 * hasn't been quiesced and tries to turn it off.  If the controller
769 	 * is already in D3, this can hang or cause memory corruption.
770 	 *
771 	 * Since the value of the COMMAND register doesn't matter once the
772 	 * device has been suspended, we can safely set it to 0 here.
773 	 */
774 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
775 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
776 
777 	return 0;
778 }
779 
780 static int pci_pm_resume_noirq(struct device *dev)
781 {
782 	struct pci_dev *pci_dev = to_pci_dev(dev);
783 	struct device_driver *drv = dev->driver;
784 	int error = 0;
785 
786 	pci_pm_default_resume_early(pci_dev);
787 
788 	if (pci_has_legacy_pm_support(pci_dev))
789 		return pci_legacy_resume_early(dev);
790 
791 	if (drv && drv->pm && drv->pm->resume_noirq)
792 		error = drv->pm->resume_noirq(dev);
793 
794 	return error;
795 }
796 
797 static int pci_pm_resume(struct device *dev)
798 {
799 	struct pci_dev *pci_dev = to_pci_dev(dev);
800 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
801 	int error = 0;
802 
803 	/*
804 	 * This is necessary for the suspend error path in which resume is
805 	 * called without restoring the standard config registers of the device.
806 	 */
807 	if (pci_dev->state_saved)
808 		pci_restore_standard_config(pci_dev);
809 
810 	if (pci_has_legacy_pm_support(pci_dev))
811 		return pci_legacy_resume(dev);
812 
813 	pci_pm_default_resume(pci_dev);
814 
815 	if (pm) {
816 		if (pm->resume)
817 			error = pm->resume(dev);
818 	} else {
819 		pci_pm_reenable_device(pci_dev);
820 	}
821 
822 	return error;
823 }
824 
825 #else /* !CONFIG_SUSPEND */
826 
827 #define pci_pm_suspend		NULL
828 #define pci_pm_suspend_noirq	NULL
829 #define pci_pm_resume		NULL
830 #define pci_pm_resume_noirq	NULL
831 
832 #endif /* !CONFIG_SUSPEND */
833 
834 #ifdef CONFIG_HIBERNATE_CALLBACKS
835 
836 
837 /*
838  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
839  * a hibernate transition
840  */
841 struct dev_pm_ops __weak pcibios_pm_ops;
842 
843 static int pci_pm_freeze(struct device *dev)
844 {
845 	struct pci_dev *pci_dev = to_pci_dev(dev);
846 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
847 
848 	if (pci_has_legacy_pm_support(pci_dev))
849 		return pci_legacy_suspend(dev, PMSG_FREEZE);
850 
851 	if (!pm) {
852 		pci_pm_default_suspend(pci_dev);
853 		return 0;
854 	}
855 
856 	/*
857 	 * This used to be done in pci_pm_prepare() for all devices and some
858 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
859 	 * devices should not be touched during freeze/thaw transitions,
860 	 * however.
861 	 */
862 	pm_runtime_resume(dev);
863 
864 	pci_dev->state_saved = false;
865 	if (pm->freeze) {
866 		int error;
867 
868 		error = pm->freeze(dev);
869 		suspend_report_result(pm->freeze, error);
870 		if (error)
871 			return error;
872 	}
873 
874 	if (pcibios_pm_ops.freeze)
875 		return pcibios_pm_ops.freeze(dev);
876 
877 	return 0;
878 }
879 
880 static int pci_pm_freeze_noirq(struct device *dev)
881 {
882 	struct pci_dev *pci_dev = to_pci_dev(dev);
883 	struct device_driver *drv = dev->driver;
884 
885 	if (pci_has_legacy_pm_support(pci_dev))
886 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
887 
888 	if (drv && drv->pm && drv->pm->freeze_noirq) {
889 		int error;
890 
891 		error = drv->pm->freeze_noirq(dev);
892 		suspend_report_result(drv->pm->freeze_noirq, error);
893 		if (error)
894 			return error;
895 	}
896 
897 	if (!pci_dev->state_saved)
898 		pci_save_state(pci_dev);
899 
900 	pci_pm_set_unknown_state(pci_dev);
901 
902 	if (pcibios_pm_ops.freeze_noirq)
903 		return pcibios_pm_ops.freeze_noirq(dev);
904 
905 	return 0;
906 }
907 
908 static int pci_pm_thaw_noirq(struct device *dev)
909 {
910 	struct pci_dev *pci_dev = to_pci_dev(dev);
911 	struct device_driver *drv = dev->driver;
912 	int error = 0;
913 
914 	if (pcibios_pm_ops.thaw_noirq) {
915 		error = pcibios_pm_ops.thaw_noirq(dev);
916 		if (error)
917 			return error;
918 	}
919 
920 	if (pci_has_legacy_pm_support(pci_dev))
921 		return pci_legacy_resume_early(dev);
922 
923 	pci_update_current_state(pci_dev, PCI_D0);
924 
925 	if (drv && drv->pm && drv->pm->thaw_noirq)
926 		error = drv->pm->thaw_noirq(dev);
927 
928 	return error;
929 }
930 
931 static int pci_pm_thaw(struct device *dev)
932 {
933 	struct pci_dev *pci_dev = to_pci_dev(dev);
934 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
935 	int error = 0;
936 
937 	if (pcibios_pm_ops.thaw) {
938 		error = pcibios_pm_ops.thaw(dev);
939 		if (error)
940 			return error;
941 	}
942 
943 	if (pci_has_legacy_pm_support(pci_dev))
944 		return pci_legacy_resume(dev);
945 
946 	if (pm) {
947 		if (pm->thaw)
948 			error = pm->thaw(dev);
949 	} else {
950 		pci_pm_reenable_device(pci_dev);
951 	}
952 
953 	pci_dev->state_saved = false;
954 
955 	return error;
956 }
957 
958 static int pci_pm_poweroff(struct device *dev)
959 {
960 	struct pci_dev *pci_dev = to_pci_dev(dev);
961 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
962 
963 	if (pci_has_legacy_pm_support(pci_dev))
964 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
965 
966 	if (!pm) {
967 		pci_pm_default_suspend(pci_dev);
968 		goto Fixup;
969 	}
970 
971 	/* The reason to do that is the same as in pci_pm_suspend(). */
972 	pm_runtime_resume(dev);
973 
974 	pci_dev->state_saved = false;
975 	if (pm->poweroff) {
976 		int error;
977 
978 		error = pm->poweroff(dev);
979 		suspend_report_result(pm->poweroff, error);
980 		if (error)
981 			return error;
982 	}
983 
984  Fixup:
985 	pci_fixup_device(pci_fixup_suspend, pci_dev);
986 
987 	if (pcibios_pm_ops.poweroff)
988 		return pcibios_pm_ops.poweroff(dev);
989 
990 	return 0;
991 }
992 
993 static int pci_pm_poweroff_noirq(struct device *dev)
994 {
995 	struct pci_dev *pci_dev = to_pci_dev(dev);
996 	struct device_driver *drv = dev->driver;
997 
998 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
999 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1000 
1001 	if (!drv || !drv->pm)
1002 		return 0;
1003 
1004 	if (drv->pm->poweroff_noirq) {
1005 		int error;
1006 
1007 		error = drv->pm->poweroff_noirq(dev);
1008 		suspend_report_result(drv->pm->poweroff_noirq, error);
1009 		if (error)
1010 			return error;
1011 	}
1012 
1013 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1014 		pci_prepare_to_sleep(pci_dev);
1015 
1016 	/*
1017 	 * The reason for doing this here is the same as for the analogous code
1018 	 * in pci_pm_suspend_noirq().
1019 	 */
1020 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1021 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1022 
1023 	if (pcibios_pm_ops.poweroff_noirq)
1024 		return pcibios_pm_ops.poweroff_noirq(dev);
1025 
1026 	return 0;
1027 }
1028 
1029 static int pci_pm_restore_noirq(struct device *dev)
1030 {
1031 	struct pci_dev *pci_dev = to_pci_dev(dev);
1032 	struct device_driver *drv = dev->driver;
1033 	int error = 0;
1034 
1035 	if (pcibios_pm_ops.restore_noirq) {
1036 		error = pcibios_pm_ops.restore_noirq(dev);
1037 		if (error)
1038 			return error;
1039 	}
1040 
1041 	pci_pm_default_resume_early(pci_dev);
1042 
1043 	if (pci_has_legacy_pm_support(pci_dev))
1044 		return pci_legacy_resume_early(dev);
1045 
1046 	if (drv && drv->pm && drv->pm->restore_noirq)
1047 		error = drv->pm->restore_noirq(dev);
1048 
1049 	return error;
1050 }
1051 
1052 static int pci_pm_restore(struct device *dev)
1053 {
1054 	struct pci_dev *pci_dev = to_pci_dev(dev);
1055 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1056 	int error = 0;
1057 
1058 	if (pcibios_pm_ops.restore) {
1059 		error = pcibios_pm_ops.restore(dev);
1060 		if (error)
1061 			return error;
1062 	}
1063 
1064 	/*
1065 	 * This is necessary for the hibernation error path in which restore is
1066 	 * called without restoring the standard config registers of the device.
1067 	 */
1068 	if (pci_dev->state_saved)
1069 		pci_restore_standard_config(pci_dev);
1070 
1071 	if (pci_has_legacy_pm_support(pci_dev))
1072 		return pci_legacy_resume(dev);
1073 
1074 	pci_pm_default_resume(pci_dev);
1075 
1076 	if (pm) {
1077 		if (pm->restore)
1078 			error = pm->restore(dev);
1079 	} else {
1080 		pci_pm_reenable_device(pci_dev);
1081 	}
1082 
1083 	return error;
1084 }
1085 
1086 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1087 
1088 #define pci_pm_freeze		NULL
1089 #define pci_pm_freeze_noirq	NULL
1090 #define pci_pm_thaw		NULL
1091 #define pci_pm_thaw_noirq	NULL
1092 #define pci_pm_poweroff		NULL
1093 #define pci_pm_poweroff_noirq	NULL
1094 #define pci_pm_restore		NULL
1095 #define pci_pm_restore_noirq	NULL
1096 
1097 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1098 
1099 #ifdef CONFIG_PM_RUNTIME
1100 
1101 static int pci_pm_runtime_suspend(struct device *dev)
1102 {
1103 	struct pci_dev *pci_dev = to_pci_dev(dev);
1104 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1105 	pci_power_t prev = pci_dev->current_state;
1106 	int error;
1107 
1108 	/*
1109 	 * If pci_dev->driver is not set (unbound), the device should
1110 	 * always remain in D0 regardless of the runtime PM status
1111 	 */
1112 	if (!pci_dev->driver)
1113 		return 0;
1114 
1115 	if (!pm || !pm->runtime_suspend)
1116 		return -ENOSYS;
1117 
1118 	pci_dev->state_saved = false;
1119 	pci_dev->no_d3cold = false;
1120 	error = pm->runtime_suspend(dev);
1121 	suspend_report_result(pm->runtime_suspend, error);
1122 	if (error)
1123 		return error;
1124 	if (!pci_dev->d3cold_allowed)
1125 		pci_dev->no_d3cold = true;
1126 
1127 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1128 
1129 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1130 	    && pci_dev->current_state != PCI_UNKNOWN) {
1131 		WARN_ONCE(pci_dev->current_state != prev,
1132 			"PCI PM: State of device not saved by %pF\n",
1133 			pm->runtime_suspend);
1134 		return 0;
1135 	}
1136 
1137 	if (!pci_dev->state_saved) {
1138 		pci_save_state(pci_dev);
1139 		pci_finish_runtime_suspend(pci_dev);
1140 	}
1141 
1142 	return 0;
1143 }
1144 
1145 static int pci_pm_runtime_resume(struct device *dev)
1146 {
1147 	int rc;
1148 	struct pci_dev *pci_dev = to_pci_dev(dev);
1149 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1150 
1151 	/*
1152 	 * If pci_dev->driver is not set (unbound), the device should
1153 	 * always remain in D0 regardless of the runtime PM status
1154 	 */
1155 	if (!pci_dev->driver)
1156 		return 0;
1157 
1158 	if (!pm || !pm->runtime_resume)
1159 		return -ENOSYS;
1160 
1161 	pci_restore_standard_config(pci_dev);
1162 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1163 	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1164 	pci_fixup_device(pci_fixup_resume, pci_dev);
1165 
1166 	rc = pm->runtime_resume(dev);
1167 
1168 	pci_dev->runtime_d3cold = false;
1169 
1170 	return rc;
1171 }
1172 
1173 static int pci_pm_runtime_idle(struct device *dev)
1174 {
1175 	struct pci_dev *pci_dev = to_pci_dev(dev);
1176 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1177 	int ret = 0;
1178 
1179 	/*
1180 	 * If pci_dev->driver is not set (unbound), the device should
1181 	 * always remain in D0 regardless of the runtime PM status
1182 	 */
1183 	if (!pci_dev->driver)
1184 		return 0;
1185 
1186 	if (!pm)
1187 		return -ENOSYS;
1188 
1189 	if (pm->runtime_idle)
1190 		ret = pm->runtime_idle(dev);
1191 
1192 	return ret;
1193 }
1194 
1195 #else /* !CONFIG_PM_RUNTIME */
1196 
1197 #define pci_pm_runtime_suspend	NULL
1198 #define pci_pm_runtime_resume	NULL
1199 #define pci_pm_runtime_idle	NULL
1200 
1201 #endif /* !CONFIG_PM_RUNTIME */
1202 
1203 #ifdef CONFIG_PM
1204 
1205 static const struct dev_pm_ops pci_dev_pm_ops = {
1206 	.prepare = pci_pm_prepare,
1207 	.suspend = pci_pm_suspend,
1208 	.resume = pci_pm_resume,
1209 	.freeze = pci_pm_freeze,
1210 	.thaw = pci_pm_thaw,
1211 	.poweroff = pci_pm_poweroff,
1212 	.restore = pci_pm_restore,
1213 	.suspend_noirq = pci_pm_suspend_noirq,
1214 	.resume_noirq = pci_pm_resume_noirq,
1215 	.freeze_noirq = pci_pm_freeze_noirq,
1216 	.thaw_noirq = pci_pm_thaw_noirq,
1217 	.poweroff_noirq = pci_pm_poweroff_noirq,
1218 	.restore_noirq = pci_pm_restore_noirq,
1219 	.runtime_suspend = pci_pm_runtime_suspend,
1220 	.runtime_resume = pci_pm_runtime_resume,
1221 	.runtime_idle = pci_pm_runtime_idle,
1222 };
1223 
1224 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1225 
1226 #else /* !COMFIG_PM_OPS */
1227 
1228 #define PCI_PM_OPS_PTR	NULL
1229 
1230 #endif /* !COMFIG_PM_OPS */
1231 
1232 /**
1233  * __pci_register_driver - register a new pci driver
1234  * @drv: the driver structure to register
1235  * @owner: owner module of drv
1236  * @mod_name: module name string
1237  *
1238  * Adds the driver structure to the list of registered drivers.
1239  * Returns a negative value on error, otherwise 0.
1240  * If no error occurred, the driver remains registered even if
1241  * no device was claimed during registration.
1242  */
1243 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1244 			  const char *mod_name)
1245 {
1246 	/* initialize common driver fields */
1247 	drv->driver.name = drv->name;
1248 	drv->driver.bus = &pci_bus_type;
1249 	drv->driver.owner = owner;
1250 	drv->driver.mod_name = mod_name;
1251 
1252 	spin_lock_init(&drv->dynids.lock);
1253 	INIT_LIST_HEAD(&drv->dynids.list);
1254 
1255 	/* register with core */
1256 	return driver_register(&drv->driver);
1257 }
1258 
1259 /**
1260  * pci_unregister_driver - unregister a pci driver
1261  * @drv: the driver structure to unregister
1262  *
1263  * Deletes the driver structure from the list of registered PCI drivers,
1264  * gives it a chance to clean up by calling its remove() function for
1265  * each device it was responsible for, and marks those devices as
1266  * driverless.
1267  */
1268 
1269 void
1270 pci_unregister_driver(struct pci_driver *drv)
1271 {
1272 	driver_unregister(&drv->driver);
1273 	pci_free_dynids(drv);
1274 }
1275 
1276 static struct pci_driver pci_compat_driver = {
1277 	.name = "compat"
1278 };
1279 
1280 /**
1281  * pci_dev_driver - get the pci_driver of a device
1282  * @dev: the device to query
1283  *
1284  * Returns the appropriate pci_driver structure or %NULL if there is no
1285  * registered driver for the device.
1286  */
1287 struct pci_driver *
1288 pci_dev_driver(const struct pci_dev *dev)
1289 {
1290 	if (dev->driver)
1291 		return dev->driver;
1292 	else {
1293 		int i;
1294 		for(i=0; i<=PCI_ROM_RESOURCE; i++)
1295 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1296 				return &pci_compat_driver;
1297 	}
1298 	return NULL;
1299 }
1300 
1301 /**
1302  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1303  * @dev: the PCI device structure to match against
1304  * @drv: the device driver to search for matching PCI device id structures
1305  *
1306  * Used by a driver to check whether a PCI device present in the
1307  * system is in its list of supported devices. Returns the matching
1308  * pci_device_id structure or %NULL if there is no match.
1309  */
1310 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1311 {
1312 	struct pci_dev *pci_dev = to_pci_dev(dev);
1313 	struct pci_driver *pci_drv;
1314 	const struct pci_device_id *found_id;
1315 
1316 	if (!pci_dev->match_driver)
1317 		return 0;
1318 
1319 	pci_drv = to_pci_driver(drv);
1320 	found_id = pci_match_device(pci_drv, pci_dev);
1321 	if (found_id)
1322 		return 1;
1323 
1324 	return 0;
1325 }
1326 
1327 /**
1328  * pci_dev_get - increments the reference count of the pci device structure
1329  * @dev: the device being referenced
1330  *
1331  * Each live reference to a device should be refcounted.
1332  *
1333  * Drivers for PCI devices should normally record such references in
1334  * their probe() methods, when they bind to a device, and release
1335  * them by calling pci_dev_put(), in their disconnect() methods.
1336  *
1337  * A pointer to the device with the incremented reference counter is returned.
1338  */
1339 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1340 {
1341 	if (dev)
1342 		get_device(&dev->dev);
1343 	return dev;
1344 }
1345 
1346 /**
1347  * pci_dev_put - release a use of the pci device structure
1348  * @dev: device that's been disconnected
1349  *
1350  * Must be called when a user of a device is finished with it.  When the last
1351  * user of the device calls this function, the memory of the device is freed.
1352  */
1353 void pci_dev_put(struct pci_dev *dev)
1354 {
1355 	if (dev)
1356 		put_device(&dev->dev);
1357 }
1358 
1359 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1360 {
1361 	struct pci_dev *pdev;
1362 
1363 	if (!dev)
1364 		return -ENODEV;
1365 
1366 	pdev = to_pci_dev(dev);
1367 
1368 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1369 		return -ENOMEM;
1370 
1371 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1372 		return -ENOMEM;
1373 
1374 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1375 			   pdev->subsystem_device))
1376 		return -ENOMEM;
1377 
1378 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1379 		return -ENOMEM;
1380 
1381 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x",
1382 			   pdev->vendor, pdev->device,
1383 			   pdev->subsystem_vendor, pdev->subsystem_device,
1384 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1385 			   (u8)(pdev->class)))
1386 		return -ENOMEM;
1387 
1388 	return 0;
1389 }
1390 
1391 struct bus_type pci_bus_type = {
1392 	.name		= "pci",
1393 	.match		= pci_bus_match,
1394 	.uevent		= pci_uevent,
1395 	.probe		= pci_device_probe,
1396 	.remove		= pci_device_remove,
1397 	.shutdown	= pci_device_shutdown,
1398 	.dev_groups	= pci_dev_groups,
1399 	.bus_groups	= pci_bus_groups,
1400 	.drv_groups	= pci_drv_groups,
1401 	.pm		= PCI_PM_OPS_PTR,
1402 };
1403 
1404 static int __init pci_driver_init(void)
1405 {
1406 	return bus_register(&pci_bus_type);
1407 }
1408 
1409 postcore_initcall(pci_driver_init);
1410 
1411 EXPORT_SYMBOL_GPL(pci_add_dynid);
1412 EXPORT_SYMBOL(pci_match_id);
1413 EXPORT_SYMBOL(__pci_register_driver);
1414 EXPORT_SYMBOL(pci_unregister_driver);
1415 EXPORT_SYMBOL(pci_dev_driver);
1416 EXPORT_SYMBOL(pci_bus_type);
1417 EXPORT_SYMBOL(pci_dev_get);
1418 EXPORT_SYMBOL(pci_dev_put);
1419