1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 int retval; 59 60 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 61 if (!dynid) 62 return -ENOMEM; 63 64 dynid->id.vendor = vendor; 65 dynid->id.device = device; 66 dynid->id.subvendor = subvendor; 67 dynid->id.subdevice = subdevice; 68 dynid->id.class = class; 69 dynid->id.class_mask = class_mask; 70 dynid->id.driver_data = driver_data; 71 72 spin_lock(&drv->dynids.lock); 73 list_add_tail(&dynid->node, &drv->dynids.list); 74 spin_unlock(&drv->dynids.lock); 75 76 retval = driver_attach(&drv->driver); 77 78 return retval; 79 } 80 81 static void pci_free_dynids(struct pci_driver *drv) 82 { 83 struct pci_dynid *dynid, *n; 84 85 spin_lock(&drv->dynids.lock); 86 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 87 list_del(&dynid->node); 88 kfree(dynid); 89 } 90 spin_unlock(&drv->dynids.lock); 91 } 92 93 /** 94 * store_new_id - sysfs frontend to pci_add_dynid() 95 * @driver: target device driver 96 * @buf: buffer for scanning device ID data 97 * @count: input size 98 * 99 * Allow PCI IDs to be added to an existing driver via sysfs. 100 */ 101 static ssize_t 102 store_new_id(struct device_driver *driver, const char *buf, size_t count) 103 { 104 struct pci_driver *pdrv = to_pci_driver(driver); 105 const struct pci_device_id *ids = pdrv->id_table; 106 __u32 vendor, device, subvendor=PCI_ANY_ID, 107 subdevice=PCI_ANY_ID, class=0, class_mask=0; 108 unsigned long driver_data=0; 109 int fields=0; 110 int retval; 111 112 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 113 &vendor, &device, &subvendor, &subdevice, 114 &class, &class_mask, &driver_data); 115 if (fields < 2) 116 return -EINVAL; 117 118 /* Only accept driver_data values that match an existing id_table 119 entry */ 120 if (ids) { 121 retval = -EINVAL; 122 while (ids->vendor || ids->subvendor || ids->class_mask) { 123 if (driver_data == ids->driver_data) { 124 retval = 0; 125 break; 126 } 127 ids++; 128 } 129 if (retval) /* No match */ 130 return retval; 131 } 132 133 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 134 class, class_mask, driver_data); 135 if (retval) 136 return retval; 137 return count; 138 } 139 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 140 141 /** 142 * store_remove_id - remove a PCI device ID from this driver 143 * @driver: target device driver 144 * @buf: buffer for scanning device ID data 145 * @count: input size 146 * 147 * Removes a dynamic pci device ID to this driver. 148 */ 149 static ssize_t 150 store_remove_id(struct device_driver *driver, const char *buf, size_t count) 151 { 152 struct pci_dynid *dynid, *n; 153 struct pci_driver *pdrv = to_pci_driver(driver); 154 __u32 vendor, device, subvendor = PCI_ANY_ID, 155 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 156 int fields = 0; 157 int retval = -ENODEV; 158 159 fields = sscanf(buf, "%x %x %x %x %x %x", 160 &vendor, &device, &subvendor, &subdevice, 161 &class, &class_mask); 162 if (fields < 2) 163 return -EINVAL; 164 165 spin_lock(&pdrv->dynids.lock); 166 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 167 struct pci_device_id *id = &dynid->id; 168 if ((id->vendor == vendor) && 169 (id->device == device) && 170 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 171 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 172 !((id->class ^ class) & class_mask)) { 173 list_del(&dynid->node); 174 kfree(dynid); 175 retval = 0; 176 break; 177 } 178 } 179 spin_unlock(&pdrv->dynids.lock); 180 181 if (retval) 182 return retval; 183 return count; 184 } 185 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 186 187 static struct attribute *pci_drv_attrs[] = { 188 &driver_attr_new_id.attr, 189 &driver_attr_remove_id.attr, 190 NULL, 191 }; 192 ATTRIBUTE_GROUPS(pci_drv); 193 194 /** 195 * pci_match_id - See if a pci device matches a given pci_id table 196 * @ids: array of PCI device id structures to search in 197 * @dev: the PCI device structure to match against. 198 * 199 * Used by a driver to check whether a PCI device present in the 200 * system is in its list of supported devices. Returns the matching 201 * pci_device_id structure or %NULL if there is no match. 202 * 203 * Deprecated, don't use this as it will not catch any dynamic ids 204 * that a driver might want to check for. 205 */ 206 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 207 struct pci_dev *dev) 208 { 209 if (ids) { 210 while (ids->vendor || ids->subvendor || ids->class_mask) { 211 if (pci_match_one_device(ids, dev)) 212 return ids; 213 ids++; 214 } 215 } 216 return NULL; 217 } 218 219 /** 220 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 221 * @drv: the PCI driver to match against 222 * @dev: the PCI device structure to match against 223 * 224 * Used by a driver to check whether a PCI device present in the 225 * system is in its list of supported devices. Returns the matching 226 * pci_device_id structure or %NULL if there is no match. 227 */ 228 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 229 struct pci_dev *dev) 230 { 231 struct pci_dynid *dynid; 232 233 /* Look at the dynamic ids first, before the static ones */ 234 spin_lock(&drv->dynids.lock); 235 list_for_each_entry(dynid, &drv->dynids.list, node) { 236 if (pci_match_one_device(&dynid->id, dev)) { 237 spin_unlock(&drv->dynids.lock); 238 return &dynid->id; 239 } 240 } 241 spin_unlock(&drv->dynids.lock); 242 243 return pci_match_id(drv->id_table, dev); 244 } 245 246 struct drv_dev_and_id { 247 struct pci_driver *drv; 248 struct pci_dev *dev; 249 const struct pci_device_id *id; 250 }; 251 252 static long local_pci_probe(void *_ddi) 253 { 254 struct drv_dev_and_id *ddi = _ddi; 255 struct pci_dev *pci_dev = ddi->dev; 256 struct pci_driver *pci_drv = ddi->drv; 257 struct device *dev = &pci_dev->dev; 258 int rc; 259 260 /* 261 * Unbound PCI devices are always put in D0, regardless of 262 * runtime PM status. During probe, the device is set to 263 * active and the usage count is incremented. If the driver 264 * supports runtime PM, it should call pm_runtime_put_noidle() 265 * in its probe routine and pm_runtime_get_noresume() in its 266 * remove routine. 267 */ 268 pm_runtime_get_sync(dev); 269 pci_dev->driver = pci_drv; 270 rc = pci_drv->probe(pci_dev, ddi->id); 271 if (!rc) 272 return rc; 273 if (rc < 0) { 274 pci_dev->driver = NULL; 275 pm_runtime_put_sync(dev); 276 return rc; 277 } 278 /* 279 * Probe function should return < 0 for failure, 0 for success 280 * Treat values > 0 as success, but warn. 281 */ 282 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 283 return 0; 284 } 285 286 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 287 const struct pci_device_id *id) 288 { 289 int error, node; 290 struct drv_dev_and_id ddi = { drv, dev, id }; 291 292 /* 293 * Execute driver initialization on node where the device is 294 * attached. This way the driver likely allocates its local memory 295 * on the right node. 296 */ 297 node = dev_to_node(&dev->dev); 298 299 /* 300 * On NUMA systems, we are likely to call a PF probe function using 301 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 302 * adds the VF devices via pci_bus_add_device()), we may re-enter 303 * this function to call the VF probe function. Calling 304 * work_on_cpu() again will cause a lockdep warning. Since VFs are 305 * always on the same node as the PF, we can work around this by 306 * avoiding work_on_cpu() when we're already on the correct node. 307 * 308 * Preemption is enabled, so it's theoretically unsafe to use 309 * numa_node_id(), but even if we run the probe function on the 310 * wrong node, it should be functionally correct. 311 */ 312 if (node >= 0 && node != numa_node_id()) { 313 int cpu; 314 315 get_online_cpus(); 316 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 317 if (cpu < nr_cpu_ids) 318 error = work_on_cpu(cpu, local_pci_probe, &ddi); 319 else 320 error = local_pci_probe(&ddi); 321 put_online_cpus(); 322 } else 323 error = local_pci_probe(&ddi); 324 325 return error; 326 } 327 328 /** 329 * __pci_device_probe - check if a driver wants to claim a specific PCI device 330 * @drv: driver to call to check if it wants the PCI device 331 * @pci_dev: PCI device being probed 332 * 333 * returns 0 on success, else error. 334 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 335 */ 336 static int 337 __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 338 { 339 const struct pci_device_id *id; 340 int error = 0; 341 342 if (!pci_dev->driver && drv->probe) { 343 error = -ENODEV; 344 345 id = pci_match_device(drv, pci_dev); 346 if (id) 347 error = pci_call_probe(drv, pci_dev, id); 348 if (error >= 0) 349 error = 0; 350 } 351 return error; 352 } 353 354 static int pci_device_probe(struct device * dev) 355 { 356 int error = 0; 357 struct pci_driver *drv; 358 struct pci_dev *pci_dev; 359 360 drv = to_pci_driver(dev->driver); 361 pci_dev = to_pci_dev(dev); 362 pci_dev_get(pci_dev); 363 error = __pci_device_probe(drv, pci_dev); 364 if (error) 365 pci_dev_put(pci_dev); 366 367 return error; 368 } 369 370 static int pci_device_remove(struct device * dev) 371 { 372 struct pci_dev * pci_dev = to_pci_dev(dev); 373 struct pci_driver * drv = pci_dev->driver; 374 375 if (drv) { 376 if (drv->remove) { 377 pm_runtime_get_sync(dev); 378 drv->remove(pci_dev); 379 pm_runtime_put_noidle(dev); 380 } 381 pci_dev->driver = NULL; 382 } 383 384 /* Undo the runtime PM settings in local_pci_probe() */ 385 pm_runtime_put_sync(dev); 386 387 /* 388 * If the device is still on, set the power state as "unknown", 389 * since it might change by the next time we load the driver. 390 */ 391 if (pci_dev->current_state == PCI_D0) 392 pci_dev->current_state = PCI_UNKNOWN; 393 394 /* 395 * We would love to complain here if pci_dev->is_enabled is set, that 396 * the driver should have called pci_disable_device(), but the 397 * unfortunate fact is there are too many odd BIOS and bridge setups 398 * that don't like drivers doing that all of the time. 399 * Oh well, we can dream of sane hardware when we sleep, no matter how 400 * horrible the crap we have to deal with is when we are awake... 401 */ 402 403 pci_dev_put(pci_dev); 404 return 0; 405 } 406 407 static void pci_device_shutdown(struct device *dev) 408 { 409 struct pci_dev *pci_dev = to_pci_dev(dev); 410 struct pci_driver *drv = pci_dev->driver; 411 412 pm_runtime_resume(dev); 413 414 if (drv && drv->shutdown) 415 drv->shutdown(pci_dev); 416 pci_msi_shutdown(pci_dev); 417 pci_msix_shutdown(pci_dev); 418 419 #ifdef CONFIG_KEXEC 420 /* 421 * If this is a kexec reboot, turn off Bus Master bit on the 422 * device to tell it to not continue to do DMA. Don't touch 423 * devices in D3cold or unknown states. 424 * If it is not a kexec reboot, firmware will hit the PCI 425 * devices with big hammer and stop their DMA any way. 426 */ 427 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 428 pci_clear_master(pci_dev); 429 #endif 430 } 431 432 #ifdef CONFIG_PM 433 434 /* Auxiliary functions used for system resume and run-time resume. */ 435 436 /** 437 * pci_restore_standard_config - restore standard config registers of PCI device 438 * @pci_dev: PCI device to handle 439 */ 440 static int pci_restore_standard_config(struct pci_dev *pci_dev) 441 { 442 pci_update_current_state(pci_dev, PCI_UNKNOWN); 443 444 if (pci_dev->current_state != PCI_D0) { 445 int error = pci_set_power_state(pci_dev, PCI_D0); 446 if (error) 447 return error; 448 } 449 450 pci_restore_state(pci_dev); 451 return 0; 452 } 453 454 #endif 455 456 #ifdef CONFIG_PM_SLEEP 457 458 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 459 { 460 pci_power_up(pci_dev); 461 pci_restore_state(pci_dev); 462 pci_fixup_device(pci_fixup_resume_early, pci_dev); 463 } 464 465 /* 466 * Default "suspend" method for devices that have no driver provided suspend, 467 * or not even a driver at all (second part). 468 */ 469 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 470 { 471 /* 472 * mark its power state as "unknown", since we don't know if 473 * e.g. the BIOS will change its device state when we suspend. 474 */ 475 if (pci_dev->current_state == PCI_D0) 476 pci_dev->current_state = PCI_UNKNOWN; 477 } 478 479 /* 480 * Default "resume" method for devices that have no driver provided resume, 481 * or not even a driver at all (second part). 482 */ 483 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 484 { 485 int retval; 486 487 /* if the device was enabled before suspend, reenable */ 488 retval = pci_reenable_device(pci_dev); 489 /* 490 * if the device was busmaster before the suspend, make it busmaster 491 * again 492 */ 493 if (pci_dev->is_busmaster) 494 pci_set_master(pci_dev); 495 496 return retval; 497 } 498 499 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 500 { 501 struct pci_dev * pci_dev = to_pci_dev(dev); 502 struct pci_driver * drv = pci_dev->driver; 503 504 if (drv && drv->suspend) { 505 pci_power_t prev = pci_dev->current_state; 506 int error; 507 508 error = drv->suspend(pci_dev, state); 509 suspend_report_result(drv->suspend, error); 510 if (error) 511 return error; 512 513 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 514 && pci_dev->current_state != PCI_UNKNOWN) { 515 WARN_ONCE(pci_dev->current_state != prev, 516 "PCI PM: Device state not saved by %pF\n", 517 drv->suspend); 518 } 519 } 520 521 pci_fixup_device(pci_fixup_suspend, pci_dev); 522 523 return 0; 524 } 525 526 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 527 { 528 struct pci_dev * pci_dev = to_pci_dev(dev); 529 struct pci_driver * drv = pci_dev->driver; 530 531 if (drv && drv->suspend_late) { 532 pci_power_t prev = pci_dev->current_state; 533 int error; 534 535 error = drv->suspend_late(pci_dev, state); 536 suspend_report_result(drv->suspend_late, error); 537 if (error) 538 return error; 539 540 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 541 && pci_dev->current_state != PCI_UNKNOWN) { 542 WARN_ONCE(pci_dev->current_state != prev, 543 "PCI PM: Device state not saved by %pF\n", 544 drv->suspend_late); 545 return 0; 546 } 547 } 548 549 if (!pci_dev->state_saved) 550 pci_save_state(pci_dev); 551 552 pci_pm_set_unknown_state(pci_dev); 553 554 return 0; 555 } 556 557 static int pci_legacy_resume_early(struct device *dev) 558 { 559 struct pci_dev * pci_dev = to_pci_dev(dev); 560 struct pci_driver * drv = pci_dev->driver; 561 562 return drv && drv->resume_early ? 563 drv->resume_early(pci_dev) : 0; 564 } 565 566 static int pci_legacy_resume(struct device *dev) 567 { 568 struct pci_dev * pci_dev = to_pci_dev(dev); 569 struct pci_driver * drv = pci_dev->driver; 570 571 pci_fixup_device(pci_fixup_resume, pci_dev); 572 573 return drv && drv->resume ? 574 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 575 } 576 577 /* Auxiliary functions used by the new power management framework */ 578 579 static void pci_pm_default_resume(struct pci_dev *pci_dev) 580 { 581 pci_fixup_device(pci_fixup_resume, pci_dev); 582 583 if (!pci_is_bridge(pci_dev)) 584 pci_enable_wake(pci_dev, PCI_D0, false); 585 } 586 587 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 588 { 589 /* Disable non-bridge devices without PM support */ 590 if (!pci_is_bridge(pci_dev)) 591 pci_disable_enabled_device(pci_dev); 592 } 593 594 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 595 { 596 struct pci_driver *drv = pci_dev->driver; 597 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 598 || drv->resume_early); 599 600 /* 601 * Legacy PM support is used by default, so warn if the new framework is 602 * supported as well. Drivers are supposed to support either the 603 * former, or the latter, but not both at the same time. 604 */ 605 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 606 drv->name, pci_dev->vendor, pci_dev->device); 607 608 return ret; 609 } 610 611 /* New power management framework */ 612 613 static int pci_pm_prepare(struct device *dev) 614 { 615 struct device_driver *drv = dev->driver; 616 int error = 0; 617 618 /* 619 * Devices having power.ignore_children set may still be necessary for 620 * suspending their children in the next phase of device suspend. 621 */ 622 if (dev->power.ignore_children) 623 pm_runtime_resume(dev); 624 625 if (drv && drv->pm && drv->pm->prepare) 626 error = drv->pm->prepare(dev); 627 628 return error; 629 } 630 631 632 #else /* !CONFIG_PM_SLEEP */ 633 634 #define pci_pm_prepare NULL 635 636 #endif /* !CONFIG_PM_SLEEP */ 637 638 #ifdef CONFIG_SUSPEND 639 640 static int pci_pm_suspend(struct device *dev) 641 { 642 struct pci_dev *pci_dev = to_pci_dev(dev); 643 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 644 645 if (pci_has_legacy_pm_support(pci_dev)) 646 return pci_legacy_suspend(dev, PMSG_SUSPEND); 647 648 if (!pm) { 649 pci_pm_default_suspend(pci_dev); 650 goto Fixup; 651 } 652 653 /* 654 * PCI devices suspended at run time need to be resumed at this point, 655 * because in general it is necessary to reconfigure them for system 656 * suspend. Namely, if the device is supposed to wake up the system 657 * from the sleep state, we may need to reconfigure it for this purpose. 658 * In turn, if the device is not supposed to wake up the system from the 659 * sleep state, we'll have to prevent it from signaling wake-up. 660 */ 661 pm_runtime_resume(dev); 662 663 pci_dev->state_saved = false; 664 if (pm->suspend) { 665 pci_power_t prev = pci_dev->current_state; 666 int error; 667 668 error = pm->suspend(dev); 669 suspend_report_result(pm->suspend, error); 670 if (error) 671 return error; 672 673 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 674 && pci_dev->current_state != PCI_UNKNOWN) { 675 WARN_ONCE(pci_dev->current_state != prev, 676 "PCI PM: State of device not saved by %pF\n", 677 pm->suspend); 678 } 679 } 680 681 Fixup: 682 pci_fixup_device(pci_fixup_suspend, pci_dev); 683 684 return 0; 685 } 686 687 static int pci_pm_suspend_noirq(struct device *dev) 688 { 689 struct pci_dev *pci_dev = to_pci_dev(dev); 690 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 691 692 if (pci_has_legacy_pm_support(pci_dev)) 693 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 694 695 if (!pm) { 696 pci_save_state(pci_dev); 697 return 0; 698 } 699 700 if (pm->suspend_noirq) { 701 pci_power_t prev = pci_dev->current_state; 702 int error; 703 704 error = pm->suspend_noirq(dev); 705 suspend_report_result(pm->suspend_noirq, error); 706 if (error) 707 return error; 708 709 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 710 && pci_dev->current_state != PCI_UNKNOWN) { 711 WARN_ONCE(pci_dev->current_state != prev, 712 "PCI PM: State of device not saved by %pF\n", 713 pm->suspend_noirq); 714 return 0; 715 } 716 } 717 718 if (!pci_dev->state_saved) { 719 pci_save_state(pci_dev); 720 if (!pci_is_bridge(pci_dev)) 721 pci_prepare_to_sleep(pci_dev); 722 } 723 724 pci_pm_set_unknown_state(pci_dev); 725 726 /* 727 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 728 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 729 * hasn't been quiesced and tries to turn it off. If the controller 730 * is already in D3, this can hang or cause memory corruption. 731 * 732 * Since the value of the COMMAND register doesn't matter once the 733 * device has been suspended, we can safely set it to 0 here. 734 */ 735 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 736 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 737 738 return 0; 739 } 740 741 static int pci_pm_resume_noirq(struct device *dev) 742 { 743 struct pci_dev *pci_dev = to_pci_dev(dev); 744 struct device_driver *drv = dev->driver; 745 int error = 0; 746 747 pci_pm_default_resume_early(pci_dev); 748 749 if (pci_has_legacy_pm_support(pci_dev)) 750 return pci_legacy_resume_early(dev); 751 752 if (drv && drv->pm && drv->pm->resume_noirq) 753 error = drv->pm->resume_noirq(dev); 754 755 return error; 756 } 757 758 static int pci_pm_resume(struct device *dev) 759 { 760 struct pci_dev *pci_dev = to_pci_dev(dev); 761 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 762 int error = 0; 763 764 /* 765 * This is necessary for the suspend error path in which resume is 766 * called without restoring the standard config registers of the device. 767 */ 768 if (pci_dev->state_saved) 769 pci_restore_standard_config(pci_dev); 770 771 if (pci_has_legacy_pm_support(pci_dev)) 772 return pci_legacy_resume(dev); 773 774 pci_pm_default_resume(pci_dev); 775 776 if (pm) { 777 if (pm->resume) 778 error = pm->resume(dev); 779 } else { 780 pci_pm_reenable_device(pci_dev); 781 } 782 783 return error; 784 } 785 786 #else /* !CONFIG_SUSPEND */ 787 788 #define pci_pm_suspend NULL 789 #define pci_pm_suspend_noirq NULL 790 #define pci_pm_resume NULL 791 #define pci_pm_resume_noirq NULL 792 793 #endif /* !CONFIG_SUSPEND */ 794 795 #ifdef CONFIG_HIBERNATE_CALLBACKS 796 797 798 /* 799 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 800 * a hibernate transition 801 */ 802 struct dev_pm_ops __weak pcibios_pm_ops; 803 804 static int pci_pm_freeze(struct device *dev) 805 { 806 struct pci_dev *pci_dev = to_pci_dev(dev); 807 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 808 809 if (pci_has_legacy_pm_support(pci_dev)) 810 return pci_legacy_suspend(dev, PMSG_FREEZE); 811 812 if (!pm) { 813 pci_pm_default_suspend(pci_dev); 814 return 0; 815 } 816 817 /* 818 * This used to be done in pci_pm_prepare() for all devices and some 819 * drivers may depend on it, so do it here. Ideally, runtime-suspended 820 * devices should not be touched during freeze/thaw transitions, 821 * however. 822 */ 823 pm_runtime_resume(dev); 824 825 pci_dev->state_saved = false; 826 if (pm->freeze) { 827 int error; 828 829 error = pm->freeze(dev); 830 suspend_report_result(pm->freeze, error); 831 if (error) 832 return error; 833 } 834 835 if (pcibios_pm_ops.freeze) 836 return pcibios_pm_ops.freeze(dev); 837 838 return 0; 839 } 840 841 static int pci_pm_freeze_noirq(struct device *dev) 842 { 843 struct pci_dev *pci_dev = to_pci_dev(dev); 844 struct device_driver *drv = dev->driver; 845 846 if (pci_has_legacy_pm_support(pci_dev)) 847 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 848 849 if (drv && drv->pm && drv->pm->freeze_noirq) { 850 int error; 851 852 error = drv->pm->freeze_noirq(dev); 853 suspend_report_result(drv->pm->freeze_noirq, error); 854 if (error) 855 return error; 856 } 857 858 if (!pci_dev->state_saved) 859 pci_save_state(pci_dev); 860 861 pci_pm_set_unknown_state(pci_dev); 862 863 if (pcibios_pm_ops.freeze_noirq) 864 return pcibios_pm_ops.freeze_noirq(dev); 865 866 return 0; 867 } 868 869 static int pci_pm_thaw_noirq(struct device *dev) 870 { 871 struct pci_dev *pci_dev = to_pci_dev(dev); 872 struct device_driver *drv = dev->driver; 873 int error = 0; 874 875 if (pcibios_pm_ops.thaw_noirq) { 876 error = pcibios_pm_ops.thaw_noirq(dev); 877 if (error) 878 return error; 879 } 880 881 if (pci_has_legacy_pm_support(pci_dev)) 882 return pci_legacy_resume_early(dev); 883 884 pci_update_current_state(pci_dev, PCI_D0); 885 886 if (drv && drv->pm && drv->pm->thaw_noirq) 887 error = drv->pm->thaw_noirq(dev); 888 889 return error; 890 } 891 892 static int pci_pm_thaw(struct device *dev) 893 { 894 struct pci_dev *pci_dev = to_pci_dev(dev); 895 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 896 int error = 0; 897 898 if (pcibios_pm_ops.thaw) { 899 error = pcibios_pm_ops.thaw(dev); 900 if (error) 901 return error; 902 } 903 904 if (pci_has_legacy_pm_support(pci_dev)) 905 return pci_legacy_resume(dev); 906 907 if (pm) { 908 if (pm->thaw) 909 error = pm->thaw(dev); 910 } else { 911 pci_pm_reenable_device(pci_dev); 912 } 913 914 pci_dev->state_saved = false; 915 916 return error; 917 } 918 919 static int pci_pm_poweroff(struct device *dev) 920 { 921 struct pci_dev *pci_dev = to_pci_dev(dev); 922 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 923 924 if (pci_has_legacy_pm_support(pci_dev)) 925 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 926 927 if (!pm) { 928 pci_pm_default_suspend(pci_dev); 929 goto Fixup; 930 } 931 932 /* The reason to do that is the same as in pci_pm_suspend(). */ 933 pm_runtime_resume(dev); 934 935 pci_dev->state_saved = false; 936 if (pm->poweroff) { 937 int error; 938 939 error = pm->poweroff(dev); 940 suspend_report_result(pm->poweroff, error); 941 if (error) 942 return error; 943 } 944 945 Fixup: 946 pci_fixup_device(pci_fixup_suspend, pci_dev); 947 948 if (pcibios_pm_ops.poweroff) 949 return pcibios_pm_ops.poweroff(dev); 950 951 return 0; 952 } 953 954 static int pci_pm_poweroff_noirq(struct device *dev) 955 { 956 struct pci_dev *pci_dev = to_pci_dev(dev); 957 struct device_driver *drv = dev->driver; 958 959 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 960 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 961 962 if (!drv || !drv->pm) 963 return 0; 964 965 if (drv->pm->poweroff_noirq) { 966 int error; 967 968 error = drv->pm->poweroff_noirq(dev); 969 suspend_report_result(drv->pm->poweroff_noirq, error); 970 if (error) 971 return error; 972 } 973 974 if (!pci_dev->state_saved && !pci_is_bridge(pci_dev)) 975 pci_prepare_to_sleep(pci_dev); 976 977 /* 978 * The reason for doing this here is the same as for the analogous code 979 * in pci_pm_suspend_noirq(). 980 */ 981 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 982 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 983 984 if (pcibios_pm_ops.poweroff_noirq) 985 return pcibios_pm_ops.poweroff_noirq(dev); 986 987 return 0; 988 } 989 990 static int pci_pm_restore_noirq(struct device *dev) 991 { 992 struct pci_dev *pci_dev = to_pci_dev(dev); 993 struct device_driver *drv = dev->driver; 994 int error = 0; 995 996 if (pcibios_pm_ops.restore_noirq) { 997 error = pcibios_pm_ops.restore_noirq(dev); 998 if (error) 999 return error; 1000 } 1001 1002 pci_pm_default_resume_early(pci_dev); 1003 1004 if (pci_has_legacy_pm_support(pci_dev)) 1005 return pci_legacy_resume_early(dev); 1006 1007 if (drv && drv->pm && drv->pm->restore_noirq) 1008 error = drv->pm->restore_noirq(dev); 1009 1010 return error; 1011 } 1012 1013 static int pci_pm_restore(struct device *dev) 1014 { 1015 struct pci_dev *pci_dev = to_pci_dev(dev); 1016 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1017 int error = 0; 1018 1019 if (pcibios_pm_ops.restore) { 1020 error = pcibios_pm_ops.restore(dev); 1021 if (error) 1022 return error; 1023 } 1024 1025 /* 1026 * This is necessary for the hibernation error path in which restore is 1027 * called without restoring the standard config registers of the device. 1028 */ 1029 if (pci_dev->state_saved) 1030 pci_restore_standard_config(pci_dev); 1031 1032 if (pci_has_legacy_pm_support(pci_dev)) 1033 return pci_legacy_resume(dev); 1034 1035 pci_pm_default_resume(pci_dev); 1036 1037 if (pm) { 1038 if (pm->restore) 1039 error = pm->restore(dev); 1040 } else { 1041 pci_pm_reenable_device(pci_dev); 1042 } 1043 1044 return error; 1045 } 1046 1047 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1048 1049 #define pci_pm_freeze NULL 1050 #define pci_pm_freeze_noirq NULL 1051 #define pci_pm_thaw NULL 1052 #define pci_pm_thaw_noirq NULL 1053 #define pci_pm_poweroff NULL 1054 #define pci_pm_poweroff_noirq NULL 1055 #define pci_pm_restore NULL 1056 #define pci_pm_restore_noirq NULL 1057 1058 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1059 1060 #ifdef CONFIG_PM_RUNTIME 1061 1062 static int pci_pm_runtime_suspend(struct device *dev) 1063 { 1064 struct pci_dev *pci_dev = to_pci_dev(dev); 1065 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1066 pci_power_t prev = pci_dev->current_state; 1067 int error; 1068 1069 /* 1070 * If pci_dev->driver is not set (unbound), the device should 1071 * always remain in D0 regardless of the runtime PM status 1072 */ 1073 if (!pci_dev->driver) 1074 return 0; 1075 1076 if (!pm || !pm->runtime_suspend) 1077 return -ENOSYS; 1078 1079 pci_dev->state_saved = false; 1080 pci_dev->no_d3cold = false; 1081 error = pm->runtime_suspend(dev); 1082 suspend_report_result(pm->runtime_suspend, error); 1083 if (error) 1084 return error; 1085 if (!pci_dev->d3cold_allowed) 1086 pci_dev->no_d3cold = true; 1087 1088 pci_fixup_device(pci_fixup_suspend, pci_dev); 1089 1090 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1091 && pci_dev->current_state != PCI_UNKNOWN) { 1092 WARN_ONCE(pci_dev->current_state != prev, 1093 "PCI PM: State of device not saved by %pF\n", 1094 pm->runtime_suspend); 1095 return 0; 1096 } 1097 1098 if (!pci_dev->state_saved) { 1099 pci_save_state(pci_dev); 1100 pci_finish_runtime_suspend(pci_dev); 1101 } 1102 1103 return 0; 1104 } 1105 1106 static int pci_pm_runtime_resume(struct device *dev) 1107 { 1108 int rc; 1109 struct pci_dev *pci_dev = to_pci_dev(dev); 1110 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1111 1112 /* 1113 * If pci_dev->driver is not set (unbound), the device should 1114 * always remain in D0 regardless of the runtime PM status 1115 */ 1116 if (!pci_dev->driver) 1117 return 0; 1118 1119 if (!pm || !pm->runtime_resume) 1120 return -ENOSYS; 1121 1122 pci_restore_standard_config(pci_dev); 1123 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1124 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1125 pci_fixup_device(pci_fixup_resume, pci_dev); 1126 1127 rc = pm->runtime_resume(dev); 1128 1129 pci_dev->runtime_d3cold = false; 1130 1131 return rc; 1132 } 1133 1134 static int pci_pm_runtime_idle(struct device *dev) 1135 { 1136 struct pci_dev *pci_dev = to_pci_dev(dev); 1137 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1138 int ret = 0; 1139 1140 /* 1141 * If pci_dev->driver is not set (unbound), the device should 1142 * always remain in D0 regardless of the runtime PM status 1143 */ 1144 if (!pci_dev->driver) 1145 return 0; 1146 1147 if (!pm) 1148 return -ENOSYS; 1149 1150 if (pm->runtime_idle) 1151 ret = pm->runtime_idle(dev); 1152 1153 return ret; 1154 } 1155 1156 #else /* !CONFIG_PM_RUNTIME */ 1157 1158 #define pci_pm_runtime_suspend NULL 1159 #define pci_pm_runtime_resume NULL 1160 #define pci_pm_runtime_idle NULL 1161 1162 #endif /* !CONFIG_PM_RUNTIME */ 1163 1164 #ifdef CONFIG_PM 1165 1166 static const struct dev_pm_ops pci_dev_pm_ops = { 1167 .prepare = pci_pm_prepare, 1168 .suspend = pci_pm_suspend, 1169 .resume = pci_pm_resume, 1170 .freeze = pci_pm_freeze, 1171 .thaw = pci_pm_thaw, 1172 .poweroff = pci_pm_poweroff, 1173 .restore = pci_pm_restore, 1174 .suspend_noirq = pci_pm_suspend_noirq, 1175 .resume_noirq = pci_pm_resume_noirq, 1176 .freeze_noirq = pci_pm_freeze_noirq, 1177 .thaw_noirq = pci_pm_thaw_noirq, 1178 .poweroff_noirq = pci_pm_poweroff_noirq, 1179 .restore_noirq = pci_pm_restore_noirq, 1180 .runtime_suspend = pci_pm_runtime_suspend, 1181 .runtime_resume = pci_pm_runtime_resume, 1182 .runtime_idle = pci_pm_runtime_idle, 1183 }; 1184 1185 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1186 1187 #else /* !COMFIG_PM_OPS */ 1188 1189 #define PCI_PM_OPS_PTR NULL 1190 1191 #endif /* !COMFIG_PM_OPS */ 1192 1193 /** 1194 * __pci_register_driver - register a new pci driver 1195 * @drv: the driver structure to register 1196 * @owner: owner module of drv 1197 * @mod_name: module name string 1198 * 1199 * Adds the driver structure to the list of registered drivers. 1200 * Returns a negative value on error, otherwise 0. 1201 * If no error occurred, the driver remains registered even if 1202 * no device was claimed during registration. 1203 */ 1204 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1205 const char *mod_name) 1206 { 1207 /* initialize common driver fields */ 1208 drv->driver.name = drv->name; 1209 drv->driver.bus = &pci_bus_type; 1210 drv->driver.owner = owner; 1211 drv->driver.mod_name = mod_name; 1212 1213 spin_lock_init(&drv->dynids.lock); 1214 INIT_LIST_HEAD(&drv->dynids.list); 1215 1216 /* register with core */ 1217 return driver_register(&drv->driver); 1218 } 1219 1220 /** 1221 * pci_unregister_driver - unregister a pci driver 1222 * @drv: the driver structure to unregister 1223 * 1224 * Deletes the driver structure from the list of registered PCI drivers, 1225 * gives it a chance to clean up by calling its remove() function for 1226 * each device it was responsible for, and marks those devices as 1227 * driverless. 1228 */ 1229 1230 void 1231 pci_unregister_driver(struct pci_driver *drv) 1232 { 1233 driver_unregister(&drv->driver); 1234 pci_free_dynids(drv); 1235 } 1236 1237 static struct pci_driver pci_compat_driver = { 1238 .name = "compat" 1239 }; 1240 1241 /** 1242 * pci_dev_driver - get the pci_driver of a device 1243 * @dev: the device to query 1244 * 1245 * Returns the appropriate pci_driver structure or %NULL if there is no 1246 * registered driver for the device. 1247 */ 1248 struct pci_driver * 1249 pci_dev_driver(const struct pci_dev *dev) 1250 { 1251 if (dev->driver) 1252 return dev->driver; 1253 else { 1254 int i; 1255 for(i=0; i<=PCI_ROM_RESOURCE; i++) 1256 if (dev->resource[i].flags & IORESOURCE_BUSY) 1257 return &pci_compat_driver; 1258 } 1259 return NULL; 1260 } 1261 1262 /** 1263 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1264 * @dev: the PCI device structure to match against 1265 * @drv: the device driver to search for matching PCI device id structures 1266 * 1267 * Used by a driver to check whether a PCI device present in the 1268 * system is in its list of supported devices. Returns the matching 1269 * pci_device_id structure or %NULL if there is no match. 1270 */ 1271 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1272 { 1273 struct pci_dev *pci_dev = to_pci_dev(dev); 1274 struct pci_driver *pci_drv; 1275 const struct pci_device_id *found_id; 1276 1277 if (!pci_dev->match_driver) 1278 return 0; 1279 1280 pci_drv = to_pci_driver(drv); 1281 found_id = pci_match_device(pci_drv, pci_dev); 1282 if (found_id) 1283 return 1; 1284 1285 return 0; 1286 } 1287 1288 /** 1289 * pci_dev_get - increments the reference count of the pci device structure 1290 * @dev: the device being referenced 1291 * 1292 * Each live reference to a device should be refcounted. 1293 * 1294 * Drivers for PCI devices should normally record such references in 1295 * their probe() methods, when they bind to a device, and release 1296 * them by calling pci_dev_put(), in their disconnect() methods. 1297 * 1298 * A pointer to the device with the incremented reference counter is returned. 1299 */ 1300 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1301 { 1302 if (dev) 1303 get_device(&dev->dev); 1304 return dev; 1305 } 1306 1307 /** 1308 * pci_dev_put - release a use of the pci device structure 1309 * @dev: device that's been disconnected 1310 * 1311 * Must be called when a user of a device is finished with it. When the last 1312 * user of the device calls this function, the memory of the device is freed. 1313 */ 1314 void pci_dev_put(struct pci_dev *dev) 1315 { 1316 if (dev) 1317 put_device(&dev->dev); 1318 } 1319 1320 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1321 { 1322 struct pci_dev *pdev; 1323 1324 if (!dev) 1325 return -ENODEV; 1326 1327 pdev = to_pci_dev(dev); 1328 if (!pdev) 1329 return -ENODEV; 1330 1331 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1332 return -ENOMEM; 1333 1334 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1335 return -ENOMEM; 1336 1337 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1338 pdev->subsystem_device)) 1339 return -ENOMEM; 1340 1341 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1342 return -ENOMEM; 1343 1344 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x", 1345 pdev->vendor, pdev->device, 1346 pdev->subsystem_vendor, pdev->subsystem_device, 1347 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1348 (u8)(pdev->class))) 1349 return -ENOMEM; 1350 return 0; 1351 } 1352 1353 struct bus_type pci_bus_type = { 1354 .name = "pci", 1355 .match = pci_bus_match, 1356 .uevent = pci_uevent, 1357 .probe = pci_device_probe, 1358 .remove = pci_device_remove, 1359 .shutdown = pci_device_shutdown, 1360 .dev_groups = pci_dev_groups, 1361 .bus_groups = pci_bus_groups, 1362 .drv_groups = pci_drv_groups, 1363 .pm = PCI_PM_OPS_PTR, 1364 }; 1365 1366 static int __init pci_driver_init(void) 1367 { 1368 return bus_register(&pci_bus_type); 1369 } 1370 1371 postcore_initcall(pci_driver_init); 1372 1373 EXPORT_SYMBOL_GPL(pci_add_dynid); 1374 EXPORT_SYMBOL(pci_match_id); 1375 EXPORT_SYMBOL(__pci_register_driver); 1376 EXPORT_SYMBOL(pci_unregister_driver); 1377 EXPORT_SYMBOL(pci_dev_driver); 1378 EXPORT_SYMBOL(pci_bus_type); 1379 EXPORT_SYMBOL(pci_dev_get); 1380 EXPORT_SYMBOL(pci_dev_put); 1381