xref: /openbmc/linux/drivers/pci/pci-driver.c (revision 680ef72a)
1 /*
2  * drivers/pci/pci-driver.c
3  *
4  * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5  * (C) Copyright 2007 Novell Inc.
6  *
7  * Released under the GPL v2 only.
8  *
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/device.h>
15 #include <linux/mempolicy.h>
16 #include <linux/string.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/cpu.h>
20 #include <linux/pm_runtime.h>
21 #include <linux/suspend.h>
22 #include <linux/kexec.h>
23 #include "pci.h"
24 
25 struct pci_dynid {
26 	struct list_head node;
27 	struct pci_device_id id;
28 };
29 
30 /**
31  * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32  * @drv: target pci driver
33  * @vendor: PCI vendor ID
34  * @device: PCI device ID
35  * @subvendor: PCI subvendor ID
36  * @subdevice: PCI subdevice ID
37  * @class: PCI class
38  * @class_mask: PCI class mask
39  * @driver_data: private driver data
40  *
41  * Adds a new dynamic pci device ID to this driver and causes the
42  * driver to probe for all devices again.  @drv must have been
43  * registered prior to calling this function.
44  *
45  * CONTEXT:
46  * Does GFP_KERNEL allocation.
47  *
48  * RETURNS:
49  * 0 on success, -errno on failure.
50  */
51 int pci_add_dynid(struct pci_driver *drv,
52 		  unsigned int vendor, unsigned int device,
53 		  unsigned int subvendor, unsigned int subdevice,
54 		  unsigned int class, unsigned int class_mask,
55 		  unsigned long driver_data)
56 {
57 	struct pci_dynid *dynid;
58 
59 	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60 	if (!dynid)
61 		return -ENOMEM;
62 
63 	dynid->id.vendor = vendor;
64 	dynid->id.device = device;
65 	dynid->id.subvendor = subvendor;
66 	dynid->id.subdevice = subdevice;
67 	dynid->id.class = class;
68 	dynid->id.class_mask = class_mask;
69 	dynid->id.driver_data = driver_data;
70 
71 	spin_lock(&drv->dynids.lock);
72 	list_add_tail(&dynid->node, &drv->dynids.list);
73 	spin_unlock(&drv->dynids.lock);
74 
75 	return driver_attach(&drv->driver);
76 }
77 EXPORT_SYMBOL_GPL(pci_add_dynid);
78 
79 static void pci_free_dynids(struct pci_driver *drv)
80 {
81 	struct pci_dynid *dynid, *n;
82 
83 	spin_lock(&drv->dynids.lock);
84 	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85 		list_del(&dynid->node);
86 		kfree(dynid);
87 	}
88 	spin_unlock(&drv->dynids.lock);
89 }
90 
91 /**
92  * store_new_id - sysfs frontend to pci_add_dynid()
93  * @driver: target device driver
94  * @buf: buffer for scanning device ID data
95  * @count: input size
96  *
97  * Allow PCI IDs to be added to an existing driver via sysfs.
98  */
99 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
100 			    size_t count)
101 {
102 	struct pci_driver *pdrv = to_pci_driver(driver);
103 	const struct pci_device_id *ids = pdrv->id_table;
104 	__u32 vendor, device, subvendor = PCI_ANY_ID,
105 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106 	unsigned long driver_data = 0;
107 	int fields = 0;
108 	int retval = 0;
109 
110 	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111 			&vendor, &device, &subvendor, &subdevice,
112 			&class, &class_mask, &driver_data);
113 	if (fields < 2)
114 		return -EINVAL;
115 
116 	if (fields != 7) {
117 		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118 		if (!pdev)
119 			return -ENOMEM;
120 
121 		pdev->vendor = vendor;
122 		pdev->device = device;
123 		pdev->subsystem_vendor = subvendor;
124 		pdev->subsystem_device = subdevice;
125 		pdev->class = class;
126 
127 		if (pci_match_id(pdrv->id_table, pdev))
128 			retval = -EEXIST;
129 
130 		kfree(pdev);
131 
132 		if (retval)
133 			return retval;
134 	}
135 
136 	/* Only accept driver_data values that match an existing id_table
137 	   entry */
138 	if (ids) {
139 		retval = -EINVAL;
140 		while (ids->vendor || ids->subvendor || ids->class_mask) {
141 			if (driver_data == ids->driver_data) {
142 				retval = 0;
143 				break;
144 			}
145 			ids++;
146 		}
147 		if (retval)	/* No match */
148 			return retval;
149 	}
150 
151 	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152 			       class, class_mask, driver_data);
153 	if (retval)
154 		return retval;
155 	return count;
156 }
157 static DRIVER_ATTR_WO(new_id);
158 
159 /**
160  * store_remove_id - remove a PCI device ID from this driver
161  * @driver: target device driver
162  * @buf: buffer for scanning device ID data
163  * @count: input size
164  *
165  * Removes a dynamic pci device ID to this driver.
166  */
167 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
168 			       size_t count)
169 {
170 	struct pci_dynid *dynid, *n;
171 	struct pci_driver *pdrv = to_pci_driver(driver);
172 	__u32 vendor, device, subvendor = PCI_ANY_ID,
173 		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174 	int fields = 0;
175 	size_t retval = -ENODEV;
176 
177 	fields = sscanf(buf, "%x %x %x %x %x %x",
178 			&vendor, &device, &subvendor, &subdevice,
179 			&class, &class_mask);
180 	if (fields < 2)
181 		return -EINVAL;
182 
183 	spin_lock(&pdrv->dynids.lock);
184 	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185 		struct pci_device_id *id = &dynid->id;
186 		if ((id->vendor == vendor) &&
187 		    (id->device == device) &&
188 		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189 		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190 		    !((id->class ^ class) & class_mask)) {
191 			list_del(&dynid->node);
192 			kfree(dynid);
193 			retval = count;
194 			break;
195 		}
196 	}
197 	spin_unlock(&pdrv->dynids.lock);
198 
199 	return retval;
200 }
201 static DRIVER_ATTR_WO(remove_id);
202 
203 static struct attribute *pci_drv_attrs[] = {
204 	&driver_attr_new_id.attr,
205 	&driver_attr_remove_id.attr,
206 	NULL,
207 };
208 ATTRIBUTE_GROUPS(pci_drv);
209 
210 /**
211  * pci_match_id - See if a pci device matches a given pci_id table
212  * @ids: array of PCI device id structures to search in
213  * @dev: the PCI device structure to match against.
214  *
215  * Used by a driver to check whether a PCI device present in the
216  * system is in its list of supported devices.  Returns the matching
217  * pci_device_id structure or %NULL if there is no match.
218  *
219  * Deprecated, don't use this as it will not catch any dynamic ids
220  * that a driver might want to check for.
221  */
222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
223 					 struct pci_dev *dev)
224 {
225 	if (ids) {
226 		while (ids->vendor || ids->subvendor || ids->class_mask) {
227 			if (pci_match_one_device(ids, dev))
228 				return ids;
229 			ids++;
230 		}
231 	}
232 	return NULL;
233 }
234 EXPORT_SYMBOL(pci_match_id);
235 
236 static const struct pci_device_id pci_device_id_any = {
237 	.vendor = PCI_ANY_ID,
238 	.device = PCI_ANY_ID,
239 	.subvendor = PCI_ANY_ID,
240 	.subdevice = PCI_ANY_ID,
241 };
242 
243 /**
244  * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
245  * @drv: the PCI driver to match against
246  * @dev: the PCI device structure to match against
247  *
248  * Used by a driver to check whether a PCI device present in the
249  * system is in its list of supported devices.  Returns the matching
250  * pci_device_id structure or %NULL if there is no match.
251  */
252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
253 						    struct pci_dev *dev)
254 {
255 	struct pci_dynid *dynid;
256 	const struct pci_device_id *found_id = NULL;
257 
258 	/* When driver_override is set, only bind to the matching driver */
259 	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
260 		return NULL;
261 
262 	/* Look at the dynamic ids first, before the static ones */
263 	spin_lock(&drv->dynids.lock);
264 	list_for_each_entry(dynid, &drv->dynids.list, node) {
265 		if (pci_match_one_device(&dynid->id, dev)) {
266 			found_id = &dynid->id;
267 			break;
268 		}
269 	}
270 	spin_unlock(&drv->dynids.lock);
271 
272 	if (!found_id)
273 		found_id = pci_match_id(drv->id_table, dev);
274 
275 	/* driver_override will always match, send a dummy id */
276 	if (!found_id && dev->driver_override)
277 		found_id = &pci_device_id_any;
278 
279 	return found_id;
280 }
281 
282 struct drv_dev_and_id {
283 	struct pci_driver *drv;
284 	struct pci_dev *dev;
285 	const struct pci_device_id *id;
286 };
287 
288 static long local_pci_probe(void *_ddi)
289 {
290 	struct drv_dev_and_id *ddi = _ddi;
291 	struct pci_dev *pci_dev = ddi->dev;
292 	struct pci_driver *pci_drv = ddi->drv;
293 	struct device *dev = &pci_dev->dev;
294 	int rc;
295 
296 	/*
297 	 * Unbound PCI devices are always put in D0, regardless of
298 	 * runtime PM status.  During probe, the device is set to
299 	 * active and the usage count is incremented.  If the driver
300 	 * supports runtime PM, it should call pm_runtime_put_noidle(),
301 	 * or any other runtime PM helper function decrementing the usage
302 	 * count, in its probe routine and pm_runtime_get_noresume() in
303 	 * its remove routine.
304 	 */
305 	pm_runtime_get_sync(dev);
306 	pci_dev->driver = pci_drv;
307 	rc = pci_drv->probe(pci_dev, ddi->id);
308 	if (!rc)
309 		return rc;
310 	if (rc < 0) {
311 		pci_dev->driver = NULL;
312 		pm_runtime_put_sync(dev);
313 		return rc;
314 	}
315 	/*
316 	 * Probe function should return < 0 for failure, 0 for success
317 	 * Treat values > 0 as success, but warn.
318 	 */
319 	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
320 	return 0;
321 }
322 
323 static bool pci_physfn_is_probed(struct pci_dev *dev)
324 {
325 #ifdef CONFIG_PCI_IOV
326 	return dev->is_virtfn && dev->physfn->is_probed;
327 #else
328 	return false;
329 #endif
330 }
331 
332 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
333 			  const struct pci_device_id *id)
334 {
335 	int error, node, cpu;
336 	struct drv_dev_and_id ddi = { drv, dev, id };
337 
338 	/*
339 	 * Execute driver initialization on node where the device is
340 	 * attached.  This way the driver likely allocates its local memory
341 	 * on the right node.
342 	 */
343 	node = dev_to_node(&dev->dev);
344 	dev->is_probed = 1;
345 
346 	cpu_hotplug_disable();
347 
348 	/*
349 	 * Prevent nesting work_on_cpu() for the case where a Virtual Function
350 	 * device is probed from work_on_cpu() of the Physical device.
351 	 */
352 	if (node < 0 || node >= MAX_NUMNODES || !node_online(node) ||
353 	    pci_physfn_is_probed(dev))
354 		cpu = nr_cpu_ids;
355 	else
356 		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
357 
358 	if (cpu < nr_cpu_ids)
359 		error = work_on_cpu(cpu, local_pci_probe, &ddi);
360 	else
361 		error = local_pci_probe(&ddi);
362 
363 	dev->is_probed = 0;
364 	cpu_hotplug_enable();
365 	return error;
366 }
367 
368 /**
369  * __pci_device_probe - check if a driver wants to claim a specific PCI device
370  * @drv: driver to call to check if it wants the PCI device
371  * @pci_dev: PCI device being probed
372  *
373  * returns 0 on success, else error.
374  * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
375  */
376 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
377 {
378 	const struct pci_device_id *id;
379 	int error = 0;
380 
381 	if (!pci_dev->driver && drv->probe) {
382 		error = -ENODEV;
383 
384 		id = pci_match_device(drv, pci_dev);
385 		if (id)
386 			error = pci_call_probe(drv, pci_dev, id);
387 	}
388 	return error;
389 }
390 
391 int __weak pcibios_alloc_irq(struct pci_dev *dev)
392 {
393 	return 0;
394 }
395 
396 void __weak pcibios_free_irq(struct pci_dev *dev)
397 {
398 }
399 
400 #ifdef CONFIG_PCI_IOV
401 static inline bool pci_device_can_probe(struct pci_dev *pdev)
402 {
403 	return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe);
404 }
405 #else
406 static inline bool pci_device_can_probe(struct pci_dev *pdev)
407 {
408 	return true;
409 }
410 #endif
411 
412 static int pci_device_probe(struct device *dev)
413 {
414 	int error;
415 	struct pci_dev *pci_dev = to_pci_dev(dev);
416 	struct pci_driver *drv = to_pci_driver(dev->driver);
417 
418 	pci_assign_irq(pci_dev);
419 
420 	error = pcibios_alloc_irq(pci_dev);
421 	if (error < 0)
422 		return error;
423 
424 	pci_dev_get(pci_dev);
425 	if (pci_device_can_probe(pci_dev)) {
426 		error = __pci_device_probe(drv, pci_dev);
427 		if (error) {
428 			pcibios_free_irq(pci_dev);
429 			pci_dev_put(pci_dev);
430 		}
431 	}
432 
433 	return error;
434 }
435 
436 static int pci_device_remove(struct device *dev)
437 {
438 	struct pci_dev *pci_dev = to_pci_dev(dev);
439 	struct pci_driver *drv = pci_dev->driver;
440 
441 	if (drv) {
442 		if (drv->remove) {
443 			pm_runtime_get_sync(dev);
444 			drv->remove(pci_dev);
445 			pm_runtime_put_noidle(dev);
446 		}
447 		pcibios_free_irq(pci_dev);
448 		pci_dev->driver = NULL;
449 	}
450 
451 	/* Undo the runtime PM settings in local_pci_probe() */
452 	pm_runtime_put_sync(dev);
453 
454 	/*
455 	 * If the device is still on, set the power state as "unknown",
456 	 * since it might change by the next time we load the driver.
457 	 */
458 	if (pci_dev->current_state == PCI_D0)
459 		pci_dev->current_state = PCI_UNKNOWN;
460 
461 	/*
462 	 * We would love to complain here if pci_dev->is_enabled is set, that
463 	 * the driver should have called pci_disable_device(), but the
464 	 * unfortunate fact is there are too many odd BIOS and bridge setups
465 	 * that don't like drivers doing that all of the time.
466 	 * Oh well, we can dream of sane hardware when we sleep, no matter how
467 	 * horrible the crap we have to deal with is when we are awake...
468 	 */
469 
470 	pci_dev_put(pci_dev);
471 	return 0;
472 }
473 
474 static void pci_device_shutdown(struct device *dev)
475 {
476 	struct pci_dev *pci_dev = to_pci_dev(dev);
477 	struct pci_driver *drv = pci_dev->driver;
478 
479 	pm_runtime_resume(dev);
480 
481 	if (drv && drv->shutdown)
482 		drv->shutdown(pci_dev);
483 
484 	/*
485 	 * If this is a kexec reboot, turn off Bus Master bit on the
486 	 * device to tell it to not continue to do DMA. Don't touch
487 	 * devices in D3cold or unknown states.
488 	 * If it is not a kexec reboot, firmware will hit the PCI
489 	 * devices with big hammer and stop their DMA any way.
490 	 */
491 	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
492 		pci_clear_master(pci_dev);
493 }
494 
495 #ifdef CONFIG_PM
496 
497 /* Auxiliary functions used for system resume and run-time resume. */
498 
499 /**
500  * pci_restore_standard_config - restore standard config registers of PCI device
501  * @pci_dev: PCI device to handle
502  */
503 static int pci_restore_standard_config(struct pci_dev *pci_dev)
504 {
505 	pci_update_current_state(pci_dev, PCI_UNKNOWN);
506 
507 	if (pci_dev->current_state != PCI_D0) {
508 		int error = pci_set_power_state(pci_dev, PCI_D0);
509 		if (error)
510 			return error;
511 	}
512 
513 	pci_restore_state(pci_dev);
514 	pci_pme_restore(pci_dev);
515 	return 0;
516 }
517 
518 #endif
519 
520 #ifdef CONFIG_PM_SLEEP
521 
522 static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
523 {
524 	pci_power_up(pci_dev);
525 	pci_restore_state(pci_dev);
526 	pci_pme_restore(pci_dev);
527 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
528 }
529 
530 /*
531  * Default "suspend" method for devices that have no driver provided suspend,
532  * or not even a driver at all (second part).
533  */
534 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
535 {
536 	/*
537 	 * mark its power state as "unknown", since we don't know if
538 	 * e.g. the BIOS will change its device state when we suspend.
539 	 */
540 	if (pci_dev->current_state == PCI_D0)
541 		pci_dev->current_state = PCI_UNKNOWN;
542 }
543 
544 /*
545  * Default "resume" method for devices that have no driver provided resume,
546  * or not even a driver at all (second part).
547  */
548 static int pci_pm_reenable_device(struct pci_dev *pci_dev)
549 {
550 	int retval;
551 
552 	/* if the device was enabled before suspend, reenable */
553 	retval = pci_reenable_device(pci_dev);
554 	/*
555 	 * if the device was busmaster before the suspend, make it busmaster
556 	 * again
557 	 */
558 	if (pci_dev->is_busmaster)
559 		pci_set_master(pci_dev);
560 
561 	return retval;
562 }
563 
564 static int pci_legacy_suspend(struct device *dev, pm_message_t state)
565 {
566 	struct pci_dev *pci_dev = to_pci_dev(dev);
567 	struct pci_driver *drv = pci_dev->driver;
568 
569 	if (drv && drv->suspend) {
570 		pci_power_t prev = pci_dev->current_state;
571 		int error;
572 
573 		error = drv->suspend(pci_dev, state);
574 		suspend_report_result(drv->suspend, error);
575 		if (error)
576 			return error;
577 
578 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
579 		    && pci_dev->current_state != PCI_UNKNOWN) {
580 			WARN_ONCE(pci_dev->current_state != prev,
581 				"PCI PM: Device state not saved by %pF\n",
582 				drv->suspend);
583 		}
584 	}
585 
586 	pci_fixup_device(pci_fixup_suspend, pci_dev);
587 
588 	return 0;
589 }
590 
591 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
592 {
593 	struct pci_dev *pci_dev = to_pci_dev(dev);
594 	struct pci_driver *drv = pci_dev->driver;
595 
596 	if (drv && drv->suspend_late) {
597 		pci_power_t prev = pci_dev->current_state;
598 		int error;
599 
600 		error = drv->suspend_late(pci_dev, state);
601 		suspend_report_result(drv->suspend_late, error);
602 		if (error)
603 			return error;
604 
605 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
606 		    && pci_dev->current_state != PCI_UNKNOWN) {
607 			WARN_ONCE(pci_dev->current_state != prev,
608 				"PCI PM: Device state not saved by %pF\n",
609 				drv->suspend_late);
610 			goto Fixup;
611 		}
612 	}
613 
614 	if (!pci_dev->state_saved)
615 		pci_save_state(pci_dev);
616 
617 	pci_pm_set_unknown_state(pci_dev);
618 
619 Fixup:
620 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
621 
622 	return 0;
623 }
624 
625 static int pci_legacy_resume_early(struct device *dev)
626 {
627 	struct pci_dev *pci_dev = to_pci_dev(dev);
628 	struct pci_driver *drv = pci_dev->driver;
629 
630 	return drv && drv->resume_early ?
631 			drv->resume_early(pci_dev) : 0;
632 }
633 
634 static int pci_legacy_resume(struct device *dev)
635 {
636 	struct pci_dev *pci_dev = to_pci_dev(dev);
637 	struct pci_driver *drv = pci_dev->driver;
638 
639 	pci_fixup_device(pci_fixup_resume, pci_dev);
640 
641 	return drv && drv->resume ?
642 			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
643 }
644 
645 /* Auxiliary functions used by the new power management framework */
646 
647 static void pci_pm_default_resume(struct pci_dev *pci_dev)
648 {
649 	pci_fixup_device(pci_fixup_resume, pci_dev);
650 	pci_enable_wake(pci_dev, PCI_D0, false);
651 }
652 
653 static void pci_pm_default_suspend(struct pci_dev *pci_dev)
654 {
655 	/* Disable non-bridge devices without PM support */
656 	if (!pci_has_subordinate(pci_dev))
657 		pci_disable_enabled_device(pci_dev);
658 }
659 
660 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
661 {
662 	struct pci_driver *drv = pci_dev->driver;
663 	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
664 		|| drv->resume_early);
665 
666 	/*
667 	 * Legacy PM support is used by default, so warn if the new framework is
668 	 * supported as well.  Drivers are supposed to support either the
669 	 * former, or the latter, but not both at the same time.
670 	 */
671 	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
672 		drv->name, pci_dev->vendor, pci_dev->device);
673 
674 	return ret;
675 }
676 
677 /* New power management framework */
678 
679 static int pci_pm_prepare(struct device *dev)
680 {
681 	struct device_driver *drv = dev->driver;
682 
683 	if (drv && drv->pm && drv->pm->prepare) {
684 		int error = drv->pm->prepare(dev);
685 		if (error < 0)
686 			return error;
687 
688 		if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE))
689 			return 0;
690 	}
691 	return pci_dev_keep_suspended(to_pci_dev(dev));
692 }
693 
694 static void pci_pm_complete(struct device *dev)
695 {
696 	struct pci_dev *pci_dev = to_pci_dev(dev);
697 
698 	pci_dev_complete_resume(pci_dev);
699 	pm_generic_complete(dev);
700 
701 	/* Resume device if platform firmware has put it in reset-power-on */
702 	if (dev->power.direct_complete && pm_resume_via_firmware()) {
703 		pci_power_t pre_sleep_state = pci_dev->current_state;
704 
705 		pci_update_current_state(pci_dev, pci_dev->current_state);
706 		if (pci_dev->current_state < pre_sleep_state)
707 			pm_request_resume(dev);
708 	}
709 }
710 
711 #else /* !CONFIG_PM_SLEEP */
712 
713 #define pci_pm_prepare	NULL
714 #define pci_pm_complete	NULL
715 
716 #endif /* !CONFIG_PM_SLEEP */
717 
718 #ifdef CONFIG_SUSPEND
719 
720 static int pci_pm_suspend(struct device *dev)
721 {
722 	struct pci_dev *pci_dev = to_pci_dev(dev);
723 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
724 
725 	if (pci_has_legacy_pm_support(pci_dev))
726 		return pci_legacy_suspend(dev, PMSG_SUSPEND);
727 
728 	if (!pm) {
729 		pci_pm_default_suspend(pci_dev);
730 		return 0;
731 	}
732 
733 	/*
734 	 * PCI devices suspended at run time may need to be resumed at this
735 	 * point, because in general it may be necessary to reconfigure them for
736 	 * system suspend.  Namely, if the device is expected to wake up the
737 	 * system from the sleep state, it may have to be reconfigured for this
738 	 * purpose, or if the device is not expected to wake up the system from
739 	 * the sleep state, it should be prevented from signaling wakeup events
740 	 * going forward.
741 	 *
742 	 * Also if the driver of the device does not indicate that its system
743 	 * suspend callbacks can cope with runtime-suspended devices, it is
744 	 * better to resume the device from runtime suspend here.
745 	 */
746 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
747 	    !pci_dev_keep_suspended(pci_dev))
748 		pm_runtime_resume(dev);
749 
750 	pci_dev->state_saved = false;
751 	if (pm->suspend) {
752 		pci_power_t prev = pci_dev->current_state;
753 		int error;
754 
755 		error = pm->suspend(dev);
756 		suspend_report_result(pm->suspend, error);
757 		if (error)
758 			return error;
759 
760 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
761 		    && pci_dev->current_state != PCI_UNKNOWN) {
762 			WARN_ONCE(pci_dev->current_state != prev,
763 				"PCI PM: State of device not saved by %pF\n",
764 				pm->suspend);
765 		}
766 	}
767 
768 	return 0;
769 }
770 
771 static int pci_pm_suspend_late(struct device *dev)
772 {
773 	if (dev_pm_smart_suspend_and_suspended(dev))
774 		return 0;
775 
776 	pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
777 
778 	return pm_generic_suspend_late(dev);
779 }
780 
781 static int pci_pm_suspend_noirq(struct device *dev)
782 {
783 	struct pci_dev *pci_dev = to_pci_dev(dev);
784 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
785 
786 	if (dev_pm_smart_suspend_and_suspended(dev))
787 		return 0;
788 
789 	if (pci_has_legacy_pm_support(pci_dev))
790 		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
791 
792 	if (!pm) {
793 		pci_save_state(pci_dev);
794 		goto Fixup;
795 	}
796 
797 	if (pm->suspend_noirq) {
798 		pci_power_t prev = pci_dev->current_state;
799 		int error;
800 
801 		error = pm->suspend_noirq(dev);
802 		suspend_report_result(pm->suspend_noirq, error);
803 		if (error)
804 			return error;
805 
806 		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
807 		    && pci_dev->current_state != PCI_UNKNOWN) {
808 			WARN_ONCE(pci_dev->current_state != prev,
809 				"PCI PM: State of device not saved by %pF\n",
810 				pm->suspend_noirq);
811 			goto Fixup;
812 		}
813 	}
814 
815 	if (!pci_dev->state_saved) {
816 		pci_save_state(pci_dev);
817 		if (pci_power_manageable(pci_dev))
818 			pci_prepare_to_sleep(pci_dev);
819 	}
820 
821 	dev_dbg(dev, "PCI PM: Suspend power state: %s\n",
822 		pci_power_name(pci_dev->current_state));
823 
824 	pci_pm_set_unknown_state(pci_dev);
825 
826 	/*
827 	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
828 	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
829 	 * hasn't been quiesced and tries to turn it off.  If the controller
830 	 * is already in D3, this can hang or cause memory corruption.
831 	 *
832 	 * Since the value of the COMMAND register doesn't matter once the
833 	 * device has been suspended, we can safely set it to 0 here.
834 	 */
835 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
836 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
837 
838 Fixup:
839 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
840 
841 	return 0;
842 }
843 
844 static int pci_pm_resume_noirq(struct device *dev)
845 {
846 	struct pci_dev *pci_dev = to_pci_dev(dev);
847 	struct device_driver *drv = dev->driver;
848 	int error = 0;
849 
850 	/*
851 	 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend
852 	 * during system suspend, so update their runtime PM status to "active"
853 	 * as they are going to be put into D0 shortly.
854 	 */
855 	if (dev_pm_smart_suspend_and_suspended(dev))
856 		pm_runtime_set_active(dev);
857 
858 	pci_pm_default_resume_early(pci_dev);
859 
860 	if (pci_has_legacy_pm_support(pci_dev))
861 		return pci_legacy_resume_early(dev);
862 
863 	if (drv && drv->pm && drv->pm->resume_noirq)
864 		error = drv->pm->resume_noirq(dev);
865 
866 	return error;
867 }
868 
869 static int pci_pm_resume(struct device *dev)
870 {
871 	struct pci_dev *pci_dev = to_pci_dev(dev);
872 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
873 	int error = 0;
874 
875 	/*
876 	 * This is necessary for the suspend error path in which resume is
877 	 * called without restoring the standard config registers of the device.
878 	 */
879 	if (pci_dev->state_saved)
880 		pci_restore_standard_config(pci_dev);
881 
882 	if (pci_has_legacy_pm_support(pci_dev))
883 		return pci_legacy_resume(dev);
884 
885 	pci_pm_default_resume(pci_dev);
886 
887 	if (pm) {
888 		if (pm->resume)
889 			error = pm->resume(dev);
890 	} else {
891 		pci_pm_reenable_device(pci_dev);
892 	}
893 
894 	return error;
895 }
896 
897 #else /* !CONFIG_SUSPEND */
898 
899 #define pci_pm_suspend		NULL
900 #define pci_pm_suspend_late	NULL
901 #define pci_pm_suspend_noirq	NULL
902 #define pci_pm_resume		NULL
903 #define pci_pm_resume_noirq	NULL
904 
905 #endif /* !CONFIG_SUSPEND */
906 
907 #ifdef CONFIG_HIBERNATE_CALLBACKS
908 
909 
910 /*
911  * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
912  * a hibernate transition
913  */
914 struct dev_pm_ops __weak pcibios_pm_ops;
915 
916 static int pci_pm_freeze(struct device *dev)
917 {
918 	struct pci_dev *pci_dev = to_pci_dev(dev);
919 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
920 
921 	if (pci_has_legacy_pm_support(pci_dev))
922 		return pci_legacy_suspend(dev, PMSG_FREEZE);
923 
924 	if (!pm) {
925 		pci_pm_default_suspend(pci_dev);
926 		return 0;
927 	}
928 
929 	/*
930 	 * This used to be done in pci_pm_prepare() for all devices and some
931 	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
932 	 * devices should not be touched during freeze/thaw transitions,
933 	 * however.
934 	 */
935 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND))
936 		pm_runtime_resume(dev);
937 
938 	pci_dev->state_saved = false;
939 	if (pm->freeze) {
940 		int error;
941 
942 		error = pm->freeze(dev);
943 		suspend_report_result(pm->freeze, error);
944 		if (error)
945 			return error;
946 	}
947 
948 	return 0;
949 }
950 
951 static int pci_pm_freeze_late(struct device *dev)
952 {
953 	if (dev_pm_smart_suspend_and_suspended(dev))
954 		return 0;
955 
956 	return pm_generic_freeze_late(dev);;
957 }
958 
959 static int pci_pm_freeze_noirq(struct device *dev)
960 {
961 	struct pci_dev *pci_dev = to_pci_dev(dev);
962 	struct device_driver *drv = dev->driver;
963 
964 	if (dev_pm_smart_suspend_and_suspended(dev))
965 		return 0;
966 
967 	if (pci_has_legacy_pm_support(pci_dev))
968 		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
969 
970 	if (drv && drv->pm && drv->pm->freeze_noirq) {
971 		int error;
972 
973 		error = drv->pm->freeze_noirq(dev);
974 		suspend_report_result(drv->pm->freeze_noirq, error);
975 		if (error)
976 			return error;
977 	}
978 
979 	if (!pci_dev->state_saved)
980 		pci_save_state(pci_dev);
981 
982 	pci_pm_set_unknown_state(pci_dev);
983 
984 	if (pcibios_pm_ops.freeze_noirq)
985 		return pcibios_pm_ops.freeze_noirq(dev);
986 
987 	return 0;
988 }
989 
990 static int pci_pm_thaw_noirq(struct device *dev)
991 {
992 	struct pci_dev *pci_dev = to_pci_dev(dev);
993 	struct device_driver *drv = dev->driver;
994 	int error = 0;
995 
996 	/*
997 	 * If the device is in runtime suspend, the code below may not work
998 	 * correctly with it, so skip that code and make the PM core skip all of
999 	 * the subsequent "thaw" callbacks for the device.
1000 	 */
1001 	if (dev_pm_smart_suspend_and_suspended(dev)) {
1002 		dev->power.direct_complete = true;
1003 		return 0;
1004 	}
1005 
1006 	if (pcibios_pm_ops.thaw_noirq) {
1007 		error = pcibios_pm_ops.thaw_noirq(dev);
1008 		if (error)
1009 			return error;
1010 	}
1011 
1012 	if (pci_has_legacy_pm_support(pci_dev))
1013 		return pci_legacy_resume_early(dev);
1014 
1015 	pci_update_current_state(pci_dev, PCI_D0);
1016 	pci_restore_state(pci_dev);
1017 
1018 	if (drv && drv->pm && drv->pm->thaw_noirq)
1019 		error = drv->pm->thaw_noirq(dev);
1020 
1021 	return error;
1022 }
1023 
1024 static int pci_pm_thaw(struct device *dev)
1025 {
1026 	struct pci_dev *pci_dev = to_pci_dev(dev);
1027 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1028 	int error = 0;
1029 
1030 	if (pci_has_legacy_pm_support(pci_dev))
1031 		return pci_legacy_resume(dev);
1032 
1033 	if (pm) {
1034 		if (pm->thaw)
1035 			error = pm->thaw(dev);
1036 	} else {
1037 		pci_pm_reenable_device(pci_dev);
1038 	}
1039 
1040 	pci_dev->state_saved = false;
1041 
1042 	return error;
1043 }
1044 
1045 static int pci_pm_poweroff(struct device *dev)
1046 {
1047 	struct pci_dev *pci_dev = to_pci_dev(dev);
1048 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1049 
1050 	if (pci_has_legacy_pm_support(pci_dev))
1051 		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
1052 
1053 	if (!pm) {
1054 		pci_pm_default_suspend(pci_dev);
1055 		return 0;
1056 	}
1057 
1058 	/* The reason to do that is the same as in pci_pm_suspend(). */
1059 	if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) ||
1060 	    !pci_dev_keep_suspended(pci_dev))
1061 		pm_runtime_resume(dev);
1062 
1063 	pci_dev->state_saved = false;
1064 	if (pm->poweroff) {
1065 		int error;
1066 
1067 		error = pm->poweroff(dev);
1068 		suspend_report_result(pm->poweroff, error);
1069 		if (error)
1070 			return error;
1071 	}
1072 
1073 	return 0;
1074 }
1075 
1076 static int pci_pm_poweroff_late(struct device *dev)
1077 {
1078 	if (dev_pm_smart_suspend_and_suspended(dev))
1079 		return 0;
1080 
1081 	pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev));
1082 
1083 	return pm_generic_poweroff_late(dev);
1084 }
1085 
1086 static int pci_pm_poweroff_noirq(struct device *dev)
1087 {
1088 	struct pci_dev *pci_dev = to_pci_dev(dev);
1089 	struct device_driver *drv = dev->driver;
1090 
1091 	if (dev_pm_smart_suspend_and_suspended(dev))
1092 		return 0;
1093 
1094 	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1095 		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1096 
1097 	if (!drv || !drv->pm) {
1098 		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1099 		return 0;
1100 	}
1101 
1102 	if (drv->pm->poweroff_noirq) {
1103 		int error;
1104 
1105 		error = drv->pm->poweroff_noirq(dev);
1106 		suspend_report_result(drv->pm->poweroff_noirq, error);
1107 		if (error)
1108 			return error;
1109 	}
1110 
1111 	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1112 		pci_prepare_to_sleep(pci_dev);
1113 
1114 	/*
1115 	 * The reason for doing this here is the same as for the analogous code
1116 	 * in pci_pm_suspend_noirq().
1117 	 */
1118 	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1119 		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1120 
1121 	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1122 
1123 	if (pcibios_pm_ops.poweroff_noirq)
1124 		return pcibios_pm_ops.poweroff_noirq(dev);
1125 
1126 	return 0;
1127 }
1128 
1129 static int pci_pm_restore_noirq(struct device *dev)
1130 {
1131 	struct pci_dev *pci_dev = to_pci_dev(dev);
1132 	struct device_driver *drv = dev->driver;
1133 	int error = 0;
1134 
1135 	/* This is analogous to the pci_pm_resume_noirq() case. */
1136 	if (dev_pm_smart_suspend_and_suspended(dev))
1137 		pm_runtime_set_active(dev);
1138 
1139 	if (pcibios_pm_ops.restore_noirq) {
1140 		error = pcibios_pm_ops.restore_noirq(dev);
1141 		if (error)
1142 			return error;
1143 	}
1144 
1145 	pci_pm_default_resume_early(pci_dev);
1146 
1147 	if (pci_has_legacy_pm_support(pci_dev))
1148 		return pci_legacy_resume_early(dev);
1149 
1150 	if (drv && drv->pm && drv->pm->restore_noirq)
1151 		error = drv->pm->restore_noirq(dev);
1152 
1153 	return error;
1154 }
1155 
1156 static int pci_pm_restore(struct device *dev)
1157 {
1158 	struct pci_dev *pci_dev = to_pci_dev(dev);
1159 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1160 	int error = 0;
1161 
1162 	/*
1163 	 * This is necessary for the hibernation error path in which restore is
1164 	 * called without restoring the standard config registers of the device.
1165 	 */
1166 	if (pci_dev->state_saved)
1167 		pci_restore_standard_config(pci_dev);
1168 
1169 	if (pci_has_legacy_pm_support(pci_dev))
1170 		return pci_legacy_resume(dev);
1171 
1172 	pci_pm_default_resume(pci_dev);
1173 
1174 	if (pm) {
1175 		if (pm->restore)
1176 			error = pm->restore(dev);
1177 	} else {
1178 		pci_pm_reenable_device(pci_dev);
1179 	}
1180 
1181 	return error;
1182 }
1183 
1184 #else /* !CONFIG_HIBERNATE_CALLBACKS */
1185 
1186 #define pci_pm_freeze		NULL
1187 #define pci_pm_freeze_late	NULL
1188 #define pci_pm_freeze_noirq	NULL
1189 #define pci_pm_thaw		NULL
1190 #define pci_pm_thaw_noirq	NULL
1191 #define pci_pm_poweroff		NULL
1192 #define pci_pm_poweroff_late	NULL
1193 #define pci_pm_poweroff_noirq	NULL
1194 #define pci_pm_restore		NULL
1195 #define pci_pm_restore_noirq	NULL
1196 
1197 #endif /* !CONFIG_HIBERNATE_CALLBACKS */
1198 
1199 #ifdef CONFIG_PM
1200 
1201 static int pci_pm_runtime_suspend(struct device *dev)
1202 {
1203 	struct pci_dev *pci_dev = to_pci_dev(dev);
1204 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1205 	pci_power_t prev = pci_dev->current_state;
1206 	int error;
1207 
1208 	/*
1209 	 * If pci_dev->driver is not set (unbound), the device should
1210 	 * always remain in D0 regardless of the runtime PM status
1211 	 */
1212 	if (!pci_dev->driver)
1213 		return 0;
1214 
1215 	if (!pm || !pm->runtime_suspend)
1216 		return -ENOSYS;
1217 
1218 	pci_dev->state_saved = false;
1219 	error = pm->runtime_suspend(dev);
1220 	if (error) {
1221 		/*
1222 		 * -EBUSY and -EAGAIN is used to request the runtime PM core
1223 		 * to schedule a new suspend, so log the event only with debug
1224 		 * log level.
1225 		 */
1226 		if (error == -EBUSY || error == -EAGAIN)
1227 			dev_dbg(dev, "can't suspend now (%pf returned %d)\n",
1228 				pm->runtime_suspend, error);
1229 		else
1230 			dev_err(dev, "can't suspend (%pf returned %d)\n",
1231 				pm->runtime_suspend, error);
1232 
1233 		return error;
1234 	}
1235 
1236 	pci_fixup_device(pci_fixup_suspend, pci_dev);
1237 
1238 	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1239 	    && pci_dev->current_state != PCI_UNKNOWN) {
1240 		WARN_ONCE(pci_dev->current_state != prev,
1241 			"PCI PM: State of device not saved by %pF\n",
1242 			pm->runtime_suspend);
1243 		return 0;
1244 	}
1245 
1246 	if (!pci_dev->state_saved) {
1247 		pci_save_state(pci_dev);
1248 		pci_finish_runtime_suspend(pci_dev);
1249 	}
1250 
1251 	return 0;
1252 }
1253 
1254 static int pci_pm_runtime_resume(struct device *dev)
1255 {
1256 	int rc;
1257 	struct pci_dev *pci_dev = to_pci_dev(dev);
1258 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1259 
1260 	/*
1261 	 * If pci_dev->driver is not set (unbound), the device should
1262 	 * always remain in D0 regardless of the runtime PM status
1263 	 */
1264 	if (!pci_dev->driver)
1265 		return 0;
1266 
1267 	if (!pm || !pm->runtime_resume)
1268 		return -ENOSYS;
1269 
1270 	pci_restore_standard_config(pci_dev);
1271 	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1272 	pci_enable_wake(pci_dev, PCI_D0, false);
1273 	pci_fixup_device(pci_fixup_resume, pci_dev);
1274 
1275 	rc = pm->runtime_resume(dev);
1276 
1277 	pci_dev->runtime_d3cold = false;
1278 
1279 	return rc;
1280 }
1281 
1282 static int pci_pm_runtime_idle(struct device *dev)
1283 {
1284 	struct pci_dev *pci_dev = to_pci_dev(dev);
1285 	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1286 	int ret = 0;
1287 
1288 	/*
1289 	 * If pci_dev->driver is not set (unbound), the device should
1290 	 * always remain in D0 regardless of the runtime PM status
1291 	 */
1292 	if (!pci_dev->driver)
1293 		return 0;
1294 
1295 	if (!pm)
1296 		return -ENOSYS;
1297 
1298 	if (pm->runtime_idle)
1299 		ret = pm->runtime_idle(dev);
1300 
1301 	return ret;
1302 }
1303 
1304 static const struct dev_pm_ops pci_dev_pm_ops = {
1305 	.prepare = pci_pm_prepare,
1306 	.complete = pci_pm_complete,
1307 	.suspend = pci_pm_suspend,
1308 	.suspend_late = pci_pm_suspend_late,
1309 	.resume = pci_pm_resume,
1310 	.freeze = pci_pm_freeze,
1311 	.freeze_late = pci_pm_freeze_late,
1312 	.thaw = pci_pm_thaw,
1313 	.poweroff = pci_pm_poweroff,
1314 	.poweroff_late = pci_pm_poweroff_late,
1315 	.restore = pci_pm_restore,
1316 	.suspend_noirq = pci_pm_suspend_noirq,
1317 	.resume_noirq = pci_pm_resume_noirq,
1318 	.freeze_noirq = pci_pm_freeze_noirq,
1319 	.thaw_noirq = pci_pm_thaw_noirq,
1320 	.poweroff_noirq = pci_pm_poweroff_noirq,
1321 	.restore_noirq = pci_pm_restore_noirq,
1322 	.runtime_suspend = pci_pm_runtime_suspend,
1323 	.runtime_resume = pci_pm_runtime_resume,
1324 	.runtime_idle = pci_pm_runtime_idle,
1325 };
1326 
1327 #define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1328 
1329 #else /* !CONFIG_PM */
1330 
1331 #define pci_pm_runtime_suspend	NULL
1332 #define pci_pm_runtime_resume	NULL
1333 #define pci_pm_runtime_idle	NULL
1334 
1335 #define PCI_PM_OPS_PTR	NULL
1336 
1337 #endif /* !CONFIG_PM */
1338 
1339 /**
1340  * __pci_register_driver - register a new pci driver
1341  * @drv: the driver structure to register
1342  * @owner: owner module of drv
1343  * @mod_name: module name string
1344  *
1345  * Adds the driver structure to the list of registered drivers.
1346  * Returns a negative value on error, otherwise 0.
1347  * If no error occurred, the driver remains registered even if
1348  * no device was claimed during registration.
1349  */
1350 int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1351 			  const char *mod_name)
1352 {
1353 	/* initialize common driver fields */
1354 	drv->driver.name = drv->name;
1355 	drv->driver.bus = &pci_bus_type;
1356 	drv->driver.owner = owner;
1357 	drv->driver.mod_name = mod_name;
1358 	drv->driver.groups = drv->groups;
1359 
1360 	spin_lock_init(&drv->dynids.lock);
1361 	INIT_LIST_HEAD(&drv->dynids.list);
1362 
1363 	/* register with core */
1364 	return driver_register(&drv->driver);
1365 }
1366 EXPORT_SYMBOL(__pci_register_driver);
1367 
1368 /**
1369  * pci_unregister_driver - unregister a pci driver
1370  * @drv: the driver structure to unregister
1371  *
1372  * Deletes the driver structure from the list of registered PCI drivers,
1373  * gives it a chance to clean up by calling its remove() function for
1374  * each device it was responsible for, and marks those devices as
1375  * driverless.
1376  */
1377 
1378 void pci_unregister_driver(struct pci_driver *drv)
1379 {
1380 	driver_unregister(&drv->driver);
1381 	pci_free_dynids(drv);
1382 }
1383 EXPORT_SYMBOL(pci_unregister_driver);
1384 
1385 static struct pci_driver pci_compat_driver = {
1386 	.name = "compat"
1387 };
1388 
1389 /**
1390  * pci_dev_driver - get the pci_driver of a device
1391  * @dev: the device to query
1392  *
1393  * Returns the appropriate pci_driver structure or %NULL if there is no
1394  * registered driver for the device.
1395  */
1396 struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1397 {
1398 	if (dev->driver)
1399 		return dev->driver;
1400 	else {
1401 		int i;
1402 		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1403 			if (dev->resource[i].flags & IORESOURCE_BUSY)
1404 				return &pci_compat_driver;
1405 	}
1406 	return NULL;
1407 }
1408 EXPORT_SYMBOL(pci_dev_driver);
1409 
1410 /**
1411  * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1412  * @dev: the PCI device structure to match against
1413  * @drv: the device driver to search for matching PCI device id structures
1414  *
1415  * Used by a driver to check whether a PCI device present in the
1416  * system is in its list of supported devices. Returns the matching
1417  * pci_device_id structure or %NULL if there is no match.
1418  */
1419 static int pci_bus_match(struct device *dev, struct device_driver *drv)
1420 {
1421 	struct pci_dev *pci_dev = to_pci_dev(dev);
1422 	struct pci_driver *pci_drv;
1423 	const struct pci_device_id *found_id;
1424 
1425 	if (!pci_dev->match_driver)
1426 		return 0;
1427 
1428 	pci_drv = to_pci_driver(drv);
1429 	found_id = pci_match_device(pci_drv, pci_dev);
1430 	if (found_id)
1431 		return 1;
1432 
1433 	return 0;
1434 }
1435 
1436 /**
1437  * pci_dev_get - increments the reference count of the pci device structure
1438  * @dev: the device being referenced
1439  *
1440  * Each live reference to a device should be refcounted.
1441  *
1442  * Drivers for PCI devices should normally record such references in
1443  * their probe() methods, when they bind to a device, and release
1444  * them by calling pci_dev_put(), in their disconnect() methods.
1445  *
1446  * A pointer to the device with the incremented reference counter is returned.
1447  */
1448 struct pci_dev *pci_dev_get(struct pci_dev *dev)
1449 {
1450 	if (dev)
1451 		get_device(&dev->dev);
1452 	return dev;
1453 }
1454 EXPORT_SYMBOL(pci_dev_get);
1455 
1456 /**
1457  * pci_dev_put - release a use of the pci device structure
1458  * @dev: device that's been disconnected
1459  *
1460  * Must be called when a user of a device is finished with it.  When the last
1461  * user of the device calls this function, the memory of the device is freed.
1462  */
1463 void pci_dev_put(struct pci_dev *dev)
1464 {
1465 	if (dev)
1466 		put_device(&dev->dev);
1467 }
1468 EXPORT_SYMBOL(pci_dev_put);
1469 
1470 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1471 {
1472 	struct pci_dev *pdev;
1473 
1474 	if (!dev)
1475 		return -ENODEV;
1476 
1477 	pdev = to_pci_dev(dev);
1478 
1479 	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1480 		return -ENOMEM;
1481 
1482 	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1483 		return -ENOMEM;
1484 
1485 	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1486 			   pdev->subsystem_device))
1487 		return -ENOMEM;
1488 
1489 	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1490 		return -ENOMEM;
1491 
1492 	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X",
1493 			   pdev->vendor, pdev->device,
1494 			   pdev->subsystem_vendor, pdev->subsystem_device,
1495 			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1496 			   (u8)(pdev->class)))
1497 		return -ENOMEM;
1498 
1499 	return 0;
1500 }
1501 
1502 static int pci_bus_num_vf(struct device *dev)
1503 {
1504 	return pci_num_vf(to_pci_dev(dev));
1505 }
1506 
1507 struct bus_type pci_bus_type = {
1508 	.name		= "pci",
1509 	.match		= pci_bus_match,
1510 	.uevent		= pci_uevent,
1511 	.probe		= pci_device_probe,
1512 	.remove		= pci_device_remove,
1513 	.shutdown	= pci_device_shutdown,
1514 	.dev_groups	= pci_dev_groups,
1515 	.bus_groups	= pci_bus_groups,
1516 	.drv_groups	= pci_drv_groups,
1517 	.pm		= PCI_PM_OPS_PTR,
1518 	.num_vf		= pci_bus_num_vf,
1519 	.force_dma	= true,
1520 };
1521 EXPORT_SYMBOL(pci_bus_type);
1522 
1523 static int __init pci_driver_init(void)
1524 {
1525 	return bus_register(&pci_bus_type);
1526 }
1527 postcore_initcall(pci_driver_init);
1528