1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR_WO(new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 size_t retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = count; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 return retval; 200 } 201 static DRIVER_ATTR_WO(remove_id); 202 203 static struct attribute *pci_drv_attrs[] = { 204 &driver_attr_new_id.attr, 205 &driver_attr_remove_id.attr, 206 NULL, 207 }; 208 ATTRIBUTE_GROUPS(pci_drv); 209 210 /** 211 * pci_match_id - See if a pci device matches a given pci_id table 212 * @ids: array of PCI device id structures to search in 213 * @dev: the PCI device structure to match against. 214 * 215 * Used by a driver to check whether a PCI device present in the 216 * system is in its list of supported devices. Returns the matching 217 * pci_device_id structure or %NULL if there is no match. 218 * 219 * Deprecated, don't use this as it will not catch any dynamic ids 220 * that a driver might want to check for. 221 */ 222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 223 struct pci_dev *dev) 224 { 225 if (ids) { 226 while (ids->vendor || ids->subvendor || ids->class_mask) { 227 if (pci_match_one_device(ids, dev)) 228 return ids; 229 ids++; 230 } 231 } 232 return NULL; 233 } 234 EXPORT_SYMBOL(pci_match_id); 235 236 static const struct pci_device_id pci_device_id_any = { 237 .vendor = PCI_ANY_ID, 238 .device = PCI_ANY_ID, 239 .subvendor = PCI_ANY_ID, 240 .subdevice = PCI_ANY_ID, 241 }; 242 243 /** 244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 245 * @drv: the PCI driver to match against 246 * @dev: the PCI device structure to match against 247 * 248 * Used by a driver to check whether a PCI device present in the 249 * system is in its list of supported devices. Returns the matching 250 * pci_device_id structure or %NULL if there is no match. 251 */ 252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 253 struct pci_dev *dev) 254 { 255 struct pci_dynid *dynid; 256 const struct pci_device_id *found_id = NULL; 257 258 /* When driver_override is set, only bind to the matching driver */ 259 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 260 return NULL; 261 262 /* Look at the dynamic ids first, before the static ones */ 263 spin_lock(&drv->dynids.lock); 264 list_for_each_entry(dynid, &drv->dynids.list, node) { 265 if (pci_match_one_device(&dynid->id, dev)) { 266 found_id = &dynid->id; 267 break; 268 } 269 } 270 spin_unlock(&drv->dynids.lock); 271 272 if (!found_id) 273 found_id = pci_match_id(drv->id_table, dev); 274 275 /* driver_override will always match, send a dummy id */ 276 if (!found_id && dev->driver_override) 277 found_id = &pci_device_id_any; 278 279 return found_id; 280 } 281 282 struct drv_dev_and_id { 283 struct pci_driver *drv; 284 struct pci_dev *dev; 285 const struct pci_device_id *id; 286 }; 287 288 static long local_pci_probe(void *_ddi) 289 { 290 struct drv_dev_and_id *ddi = _ddi; 291 struct pci_dev *pci_dev = ddi->dev; 292 struct pci_driver *pci_drv = ddi->drv; 293 struct device *dev = &pci_dev->dev; 294 int rc; 295 296 /* 297 * Unbound PCI devices are always put in D0, regardless of 298 * runtime PM status. During probe, the device is set to 299 * active and the usage count is incremented. If the driver 300 * supports runtime PM, it should call pm_runtime_put_noidle(), 301 * or any other runtime PM helper function decrementing the usage 302 * count, in its probe routine and pm_runtime_get_noresume() in 303 * its remove routine. 304 */ 305 pm_runtime_get_sync(dev); 306 pci_dev->driver = pci_drv; 307 rc = pci_drv->probe(pci_dev, ddi->id); 308 if (!rc) 309 return rc; 310 if (rc < 0) { 311 pci_dev->driver = NULL; 312 pm_runtime_put_sync(dev); 313 return rc; 314 } 315 /* 316 * Probe function should return < 0 for failure, 0 for success 317 * Treat values > 0 as success, but warn. 318 */ 319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 320 return 0; 321 } 322 323 static bool pci_physfn_is_probed(struct pci_dev *dev) 324 { 325 #ifdef CONFIG_PCI_IOV 326 return dev->is_virtfn && dev->physfn->is_probed; 327 #else 328 return false; 329 #endif 330 } 331 332 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 333 const struct pci_device_id *id) 334 { 335 int error, node, cpu; 336 struct drv_dev_and_id ddi = { drv, dev, id }; 337 338 /* 339 * Execute driver initialization on node where the device is 340 * attached. This way the driver likely allocates its local memory 341 * on the right node. 342 */ 343 node = dev_to_node(&dev->dev); 344 dev->is_probed = 1; 345 346 cpu_hotplug_disable(); 347 348 /* 349 * Prevent nesting work_on_cpu() for the case where a Virtual Function 350 * device is probed from work_on_cpu() of the Physical device. 351 */ 352 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) || 353 pci_physfn_is_probed(dev)) 354 cpu = nr_cpu_ids; 355 else 356 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 357 358 if (cpu < nr_cpu_ids) 359 error = work_on_cpu(cpu, local_pci_probe, &ddi); 360 else 361 error = local_pci_probe(&ddi); 362 363 dev->is_probed = 0; 364 cpu_hotplug_enable(); 365 return error; 366 } 367 368 /** 369 * __pci_device_probe - check if a driver wants to claim a specific PCI device 370 * @drv: driver to call to check if it wants the PCI device 371 * @pci_dev: PCI device being probed 372 * 373 * returns 0 on success, else error. 374 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 375 */ 376 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 377 { 378 const struct pci_device_id *id; 379 int error = 0; 380 381 if (!pci_dev->driver && drv->probe) { 382 error = -ENODEV; 383 384 id = pci_match_device(drv, pci_dev); 385 if (id) 386 error = pci_call_probe(drv, pci_dev, id); 387 } 388 return error; 389 } 390 391 int __weak pcibios_alloc_irq(struct pci_dev *dev) 392 { 393 return 0; 394 } 395 396 void __weak pcibios_free_irq(struct pci_dev *dev) 397 { 398 } 399 400 #ifdef CONFIG_PCI_IOV 401 static inline bool pci_device_can_probe(struct pci_dev *pdev) 402 { 403 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe); 404 } 405 #else 406 static inline bool pci_device_can_probe(struct pci_dev *pdev) 407 { 408 return true; 409 } 410 #endif 411 412 static int pci_device_probe(struct device *dev) 413 { 414 int error; 415 struct pci_dev *pci_dev = to_pci_dev(dev); 416 struct pci_driver *drv = to_pci_driver(dev->driver); 417 418 pci_assign_irq(pci_dev); 419 420 error = pcibios_alloc_irq(pci_dev); 421 if (error < 0) 422 return error; 423 424 pci_dev_get(pci_dev); 425 if (pci_device_can_probe(pci_dev)) { 426 error = __pci_device_probe(drv, pci_dev); 427 if (error) { 428 pcibios_free_irq(pci_dev); 429 pci_dev_put(pci_dev); 430 } 431 } 432 433 return error; 434 } 435 436 static int pci_device_remove(struct device *dev) 437 { 438 struct pci_dev *pci_dev = to_pci_dev(dev); 439 struct pci_driver *drv = pci_dev->driver; 440 441 if (drv) { 442 if (drv->remove) { 443 pm_runtime_get_sync(dev); 444 drv->remove(pci_dev); 445 pm_runtime_put_noidle(dev); 446 } 447 pcibios_free_irq(pci_dev); 448 pci_dev->driver = NULL; 449 } 450 451 /* Undo the runtime PM settings in local_pci_probe() */ 452 pm_runtime_put_sync(dev); 453 454 /* 455 * If the device is still on, set the power state as "unknown", 456 * since it might change by the next time we load the driver. 457 */ 458 if (pci_dev->current_state == PCI_D0) 459 pci_dev->current_state = PCI_UNKNOWN; 460 461 /* 462 * We would love to complain here if pci_dev->is_enabled is set, that 463 * the driver should have called pci_disable_device(), but the 464 * unfortunate fact is there are too many odd BIOS and bridge setups 465 * that don't like drivers doing that all of the time. 466 * Oh well, we can dream of sane hardware when we sleep, no matter how 467 * horrible the crap we have to deal with is when we are awake... 468 */ 469 470 pci_dev_put(pci_dev); 471 return 0; 472 } 473 474 static void pci_device_shutdown(struct device *dev) 475 { 476 struct pci_dev *pci_dev = to_pci_dev(dev); 477 struct pci_driver *drv = pci_dev->driver; 478 479 pm_runtime_resume(dev); 480 481 if (drv && drv->shutdown) 482 drv->shutdown(pci_dev); 483 484 /* 485 * If this is a kexec reboot, turn off Bus Master bit on the 486 * device to tell it to not continue to do DMA. Don't touch 487 * devices in D3cold or unknown states. 488 * If it is not a kexec reboot, firmware will hit the PCI 489 * devices with big hammer and stop their DMA any way. 490 */ 491 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 492 pci_clear_master(pci_dev); 493 } 494 495 #ifdef CONFIG_PM 496 497 /* Auxiliary functions used for system resume and run-time resume. */ 498 499 /** 500 * pci_restore_standard_config - restore standard config registers of PCI device 501 * @pci_dev: PCI device to handle 502 */ 503 static int pci_restore_standard_config(struct pci_dev *pci_dev) 504 { 505 pci_update_current_state(pci_dev, PCI_UNKNOWN); 506 507 if (pci_dev->current_state != PCI_D0) { 508 int error = pci_set_power_state(pci_dev, PCI_D0); 509 if (error) 510 return error; 511 } 512 513 pci_restore_state(pci_dev); 514 pci_pme_restore(pci_dev); 515 return 0; 516 } 517 518 #endif 519 520 #ifdef CONFIG_PM_SLEEP 521 522 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 523 { 524 pci_power_up(pci_dev); 525 pci_restore_state(pci_dev); 526 pci_pme_restore(pci_dev); 527 pci_fixup_device(pci_fixup_resume_early, pci_dev); 528 } 529 530 /* 531 * Default "suspend" method for devices that have no driver provided suspend, 532 * or not even a driver at all (second part). 533 */ 534 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 535 { 536 /* 537 * mark its power state as "unknown", since we don't know if 538 * e.g. the BIOS will change its device state when we suspend. 539 */ 540 if (pci_dev->current_state == PCI_D0) 541 pci_dev->current_state = PCI_UNKNOWN; 542 } 543 544 /* 545 * Default "resume" method for devices that have no driver provided resume, 546 * or not even a driver at all (second part). 547 */ 548 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 549 { 550 int retval; 551 552 /* if the device was enabled before suspend, reenable */ 553 retval = pci_reenable_device(pci_dev); 554 /* 555 * if the device was busmaster before the suspend, make it busmaster 556 * again 557 */ 558 if (pci_dev->is_busmaster) 559 pci_set_master(pci_dev); 560 561 return retval; 562 } 563 564 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 565 { 566 struct pci_dev *pci_dev = to_pci_dev(dev); 567 struct pci_driver *drv = pci_dev->driver; 568 569 if (drv && drv->suspend) { 570 pci_power_t prev = pci_dev->current_state; 571 int error; 572 573 error = drv->suspend(pci_dev, state); 574 suspend_report_result(drv->suspend, error); 575 if (error) 576 return error; 577 578 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 579 && pci_dev->current_state != PCI_UNKNOWN) { 580 WARN_ONCE(pci_dev->current_state != prev, 581 "PCI PM: Device state not saved by %pF\n", 582 drv->suspend); 583 } 584 } 585 586 pci_fixup_device(pci_fixup_suspend, pci_dev); 587 588 return 0; 589 } 590 591 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 592 { 593 struct pci_dev *pci_dev = to_pci_dev(dev); 594 struct pci_driver *drv = pci_dev->driver; 595 596 if (drv && drv->suspend_late) { 597 pci_power_t prev = pci_dev->current_state; 598 int error; 599 600 error = drv->suspend_late(pci_dev, state); 601 suspend_report_result(drv->suspend_late, error); 602 if (error) 603 return error; 604 605 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 606 && pci_dev->current_state != PCI_UNKNOWN) { 607 WARN_ONCE(pci_dev->current_state != prev, 608 "PCI PM: Device state not saved by %pF\n", 609 drv->suspend_late); 610 goto Fixup; 611 } 612 } 613 614 if (!pci_dev->state_saved) 615 pci_save_state(pci_dev); 616 617 pci_pm_set_unknown_state(pci_dev); 618 619 Fixup: 620 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 621 622 return 0; 623 } 624 625 static int pci_legacy_resume_early(struct device *dev) 626 { 627 struct pci_dev *pci_dev = to_pci_dev(dev); 628 struct pci_driver *drv = pci_dev->driver; 629 630 return drv && drv->resume_early ? 631 drv->resume_early(pci_dev) : 0; 632 } 633 634 static int pci_legacy_resume(struct device *dev) 635 { 636 struct pci_dev *pci_dev = to_pci_dev(dev); 637 struct pci_driver *drv = pci_dev->driver; 638 639 pci_fixup_device(pci_fixup_resume, pci_dev); 640 641 return drv && drv->resume ? 642 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 643 } 644 645 /* Auxiliary functions used by the new power management framework */ 646 647 static void pci_pm_default_resume(struct pci_dev *pci_dev) 648 { 649 pci_fixup_device(pci_fixup_resume, pci_dev); 650 pci_enable_wake(pci_dev, PCI_D0, false); 651 } 652 653 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 654 { 655 /* Disable non-bridge devices without PM support */ 656 if (!pci_has_subordinate(pci_dev)) 657 pci_disable_enabled_device(pci_dev); 658 } 659 660 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 661 { 662 struct pci_driver *drv = pci_dev->driver; 663 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 664 || drv->resume_early); 665 666 /* 667 * Legacy PM support is used by default, so warn if the new framework is 668 * supported as well. Drivers are supposed to support either the 669 * former, or the latter, but not both at the same time. 670 */ 671 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 672 drv->name, pci_dev->vendor, pci_dev->device); 673 674 return ret; 675 } 676 677 /* New power management framework */ 678 679 static int pci_pm_prepare(struct device *dev) 680 { 681 struct device_driver *drv = dev->driver; 682 683 if (drv && drv->pm && drv->pm->prepare) { 684 int error = drv->pm->prepare(dev); 685 if (error < 0) 686 return error; 687 688 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 689 return 0; 690 } 691 return pci_dev_keep_suspended(to_pci_dev(dev)); 692 } 693 694 static void pci_pm_complete(struct device *dev) 695 { 696 struct pci_dev *pci_dev = to_pci_dev(dev); 697 698 pci_dev_complete_resume(pci_dev); 699 pm_generic_complete(dev); 700 701 /* Resume device if platform firmware has put it in reset-power-on */ 702 if (dev->power.direct_complete && pm_resume_via_firmware()) { 703 pci_power_t pre_sleep_state = pci_dev->current_state; 704 705 pci_update_current_state(pci_dev, pci_dev->current_state); 706 if (pci_dev->current_state < pre_sleep_state) 707 pm_request_resume(dev); 708 } 709 } 710 711 #else /* !CONFIG_PM_SLEEP */ 712 713 #define pci_pm_prepare NULL 714 #define pci_pm_complete NULL 715 716 #endif /* !CONFIG_PM_SLEEP */ 717 718 #ifdef CONFIG_SUSPEND 719 720 static int pci_pm_suspend(struct device *dev) 721 { 722 struct pci_dev *pci_dev = to_pci_dev(dev); 723 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 724 725 if (pci_has_legacy_pm_support(pci_dev)) 726 return pci_legacy_suspend(dev, PMSG_SUSPEND); 727 728 if (!pm) { 729 pci_pm_default_suspend(pci_dev); 730 return 0; 731 } 732 733 /* 734 * PCI devices suspended at run time may need to be resumed at this 735 * point, because in general it may be necessary to reconfigure them for 736 * system suspend. Namely, if the device is expected to wake up the 737 * system from the sleep state, it may have to be reconfigured for this 738 * purpose, or if the device is not expected to wake up the system from 739 * the sleep state, it should be prevented from signaling wakeup events 740 * going forward. 741 * 742 * Also if the driver of the device does not indicate that its system 743 * suspend callbacks can cope with runtime-suspended devices, it is 744 * better to resume the device from runtime suspend here. 745 */ 746 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 747 !pci_dev_keep_suspended(pci_dev)) 748 pm_runtime_resume(dev); 749 750 pci_dev->state_saved = false; 751 if (pm->suspend) { 752 pci_power_t prev = pci_dev->current_state; 753 int error; 754 755 error = pm->suspend(dev); 756 suspend_report_result(pm->suspend, error); 757 if (error) 758 return error; 759 760 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 761 && pci_dev->current_state != PCI_UNKNOWN) { 762 WARN_ONCE(pci_dev->current_state != prev, 763 "PCI PM: State of device not saved by %pF\n", 764 pm->suspend); 765 } 766 } 767 768 return 0; 769 } 770 771 static int pci_pm_suspend_late(struct device *dev) 772 { 773 if (dev_pm_smart_suspend_and_suspended(dev)) 774 return 0; 775 776 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 777 778 return pm_generic_suspend_late(dev); 779 } 780 781 static int pci_pm_suspend_noirq(struct device *dev) 782 { 783 struct pci_dev *pci_dev = to_pci_dev(dev); 784 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 785 786 if (dev_pm_smart_suspend_and_suspended(dev)) 787 return 0; 788 789 if (pci_has_legacy_pm_support(pci_dev)) 790 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 791 792 if (!pm) { 793 pci_save_state(pci_dev); 794 goto Fixup; 795 } 796 797 if (pm->suspend_noirq) { 798 pci_power_t prev = pci_dev->current_state; 799 int error; 800 801 error = pm->suspend_noirq(dev); 802 suspend_report_result(pm->suspend_noirq, error); 803 if (error) 804 return error; 805 806 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 807 && pci_dev->current_state != PCI_UNKNOWN) { 808 WARN_ONCE(pci_dev->current_state != prev, 809 "PCI PM: State of device not saved by %pF\n", 810 pm->suspend_noirq); 811 goto Fixup; 812 } 813 } 814 815 if (!pci_dev->state_saved) { 816 pci_save_state(pci_dev); 817 if (pci_power_manageable(pci_dev)) 818 pci_prepare_to_sleep(pci_dev); 819 } 820 821 dev_dbg(dev, "PCI PM: Suspend power state: %s\n", 822 pci_power_name(pci_dev->current_state)); 823 824 pci_pm_set_unknown_state(pci_dev); 825 826 /* 827 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 828 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 829 * hasn't been quiesced and tries to turn it off. If the controller 830 * is already in D3, this can hang or cause memory corruption. 831 * 832 * Since the value of the COMMAND register doesn't matter once the 833 * device has been suspended, we can safely set it to 0 here. 834 */ 835 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 836 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 837 838 Fixup: 839 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 840 841 return 0; 842 } 843 844 static int pci_pm_resume_noirq(struct device *dev) 845 { 846 struct pci_dev *pci_dev = to_pci_dev(dev); 847 struct device_driver *drv = dev->driver; 848 int error = 0; 849 850 /* 851 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend 852 * during system suspend, so update their runtime PM status to "active" 853 * as they are going to be put into D0 shortly. 854 */ 855 if (dev_pm_smart_suspend_and_suspended(dev)) 856 pm_runtime_set_active(dev); 857 858 pci_pm_default_resume_early(pci_dev); 859 860 if (pci_has_legacy_pm_support(pci_dev)) 861 return pci_legacy_resume_early(dev); 862 863 if (drv && drv->pm && drv->pm->resume_noirq) 864 error = drv->pm->resume_noirq(dev); 865 866 return error; 867 } 868 869 static int pci_pm_resume(struct device *dev) 870 { 871 struct pci_dev *pci_dev = to_pci_dev(dev); 872 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 873 int error = 0; 874 875 /* 876 * This is necessary for the suspend error path in which resume is 877 * called without restoring the standard config registers of the device. 878 */ 879 if (pci_dev->state_saved) 880 pci_restore_standard_config(pci_dev); 881 882 if (pci_has_legacy_pm_support(pci_dev)) 883 return pci_legacy_resume(dev); 884 885 pci_pm_default_resume(pci_dev); 886 887 if (pm) { 888 if (pm->resume) 889 error = pm->resume(dev); 890 } else { 891 pci_pm_reenable_device(pci_dev); 892 } 893 894 return error; 895 } 896 897 #else /* !CONFIG_SUSPEND */ 898 899 #define pci_pm_suspend NULL 900 #define pci_pm_suspend_late NULL 901 #define pci_pm_suspend_noirq NULL 902 #define pci_pm_resume NULL 903 #define pci_pm_resume_noirq NULL 904 905 #endif /* !CONFIG_SUSPEND */ 906 907 #ifdef CONFIG_HIBERNATE_CALLBACKS 908 909 910 /* 911 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 912 * a hibernate transition 913 */ 914 struct dev_pm_ops __weak pcibios_pm_ops; 915 916 static int pci_pm_freeze(struct device *dev) 917 { 918 struct pci_dev *pci_dev = to_pci_dev(dev); 919 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 920 921 if (pci_has_legacy_pm_support(pci_dev)) 922 return pci_legacy_suspend(dev, PMSG_FREEZE); 923 924 if (!pm) { 925 pci_pm_default_suspend(pci_dev); 926 return 0; 927 } 928 929 /* 930 * This used to be done in pci_pm_prepare() for all devices and some 931 * drivers may depend on it, so do it here. Ideally, runtime-suspended 932 * devices should not be touched during freeze/thaw transitions, 933 * however. 934 */ 935 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND)) 936 pm_runtime_resume(dev); 937 938 pci_dev->state_saved = false; 939 if (pm->freeze) { 940 int error; 941 942 error = pm->freeze(dev); 943 suspend_report_result(pm->freeze, error); 944 if (error) 945 return error; 946 } 947 948 return 0; 949 } 950 951 static int pci_pm_freeze_late(struct device *dev) 952 { 953 if (dev_pm_smart_suspend_and_suspended(dev)) 954 return 0; 955 956 return pm_generic_freeze_late(dev);; 957 } 958 959 static int pci_pm_freeze_noirq(struct device *dev) 960 { 961 struct pci_dev *pci_dev = to_pci_dev(dev); 962 struct device_driver *drv = dev->driver; 963 964 if (dev_pm_smart_suspend_and_suspended(dev)) 965 return 0; 966 967 if (pci_has_legacy_pm_support(pci_dev)) 968 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 969 970 if (drv && drv->pm && drv->pm->freeze_noirq) { 971 int error; 972 973 error = drv->pm->freeze_noirq(dev); 974 suspend_report_result(drv->pm->freeze_noirq, error); 975 if (error) 976 return error; 977 } 978 979 if (!pci_dev->state_saved) 980 pci_save_state(pci_dev); 981 982 pci_pm_set_unknown_state(pci_dev); 983 984 if (pcibios_pm_ops.freeze_noirq) 985 return pcibios_pm_ops.freeze_noirq(dev); 986 987 return 0; 988 } 989 990 static int pci_pm_thaw_noirq(struct device *dev) 991 { 992 struct pci_dev *pci_dev = to_pci_dev(dev); 993 struct device_driver *drv = dev->driver; 994 int error = 0; 995 996 /* 997 * If the device is in runtime suspend, the code below may not work 998 * correctly with it, so skip that code and make the PM core skip all of 999 * the subsequent "thaw" callbacks for the device. 1000 */ 1001 if (dev_pm_smart_suspend_and_suspended(dev)) { 1002 dev->power.direct_complete = true; 1003 return 0; 1004 } 1005 1006 if (pcibios_pm_ops.thaw_noirq) { 1007 error = pcibios_pm_ops.thaw_noirq(dev); 1008 if (error) 1009 return error; 1010 } 1011 1012 if (pci_has_legacy_pm_support(pci_dev)) 1013 return pci_legacy_resume_early(dev); 1014 1015 pci_update_current_state(pci_dev, PCI_D0); 1016 pci_restore_state(pci_dev); 1017 1018 if (drv && drv->pm && drv->pm->thaw_noirq) 1019 error = drv->pm->thaw_noirq(dev); 1020 1021 return error; 1022 } 1023 1024 static int pci_pm_thaw(struct device *dev) 1025 { 1026 struct pci_dev *pci_dev = to_pci_dev(dev); 1027 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1028 int error = 0; 1029 1030 if (pci_has_legacy_pm_support(pci_dev)) 1031 return pci_legacy_resume(dev); 1032 1033 if (pm) { 1034 if (pm->thaw) 1035 error = pm->thaw(dev); 1036 } else { 1037 pci_pm_reenable_device(pci_dev); 1038 } 1039 1040 pci_dev->state_saved = false; 1041 1042 return error; 1043 } 1044 1045 static int pci_pm_poweroff(struct device *dev) 1046 { 1047 struct pci_dev *pci_dev = to_pci_dev(dev); 1048 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1049 1050 if (pci_has_legacy_pm_support(pci_dev)) 1051 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 1052 1053 if (!pm) { 1054 pci_pm_default_suspend(pci_dev); 1055 return 0; 1056 } 1057 1058 /* The reason to do that is the same as in pci_pm_suspend(). */ 1059 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1060 !pci_dev_keep_suspended(pci_dev)) 1061 pm_runtime_resume(dev); 1062 1063 pci_dev->state_saved = false; 1064 if (pm->poweroff) { 1065 int error; 1066 1067 error = pm->poweroff(dev); 1068 suspend_report_result(pm->poweroff, error); 1069 if (error) 1070 return error; 1071 } 1072 1073 return 0; 1074 } 1075 1076 static int pci_pm_poweroff_late(struct device *dev) 1077 { 1078 if (dev_pm_smart_suspend_and_suspended(dev)) 1079 return 0; 1080 1081 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 1082 1083 return pm_generic_poweroff_late(dev); 1084 } 1085 1086 static int pci_pm_poweroff_noirq(struct device *dev) 1087 { 1088 struct pci_dev *pci_dev = to_pci_dev(dev); 1089 struct device_driver *drv = dev->driver; 1090 1091 if (dev_pm_smart_suspend_and_suspended(dev)) 1092 return 0; 1093 1094 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1095 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1096 1097 if (!drv || !drv->pm) { 1098 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1099 return 0; 1100 } 1101 1102 if (drv->pm->poweroff_noirq) { 1103 int error; 1104 1105 error = drv->pm->poweroff_noirq(dev); 1106 suspend_report_result(drv->pm->poweroff_noirq, error); 1107 if (error) 1108 return error; 1109 } 1110 1111 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1112 pci_prepare_to_sleep(pci_dev); 1113 1114 /* 1115 * The reason for doing this here is the same as for the analogous code 1116 * in pci_pm_suspend_noirq(). 1117 */ 1118 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1119 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1120 1121 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1122 1123 if (pcibios_pm_ops.poweroff_noirq) 1124 return pcibios_pm_ops.poweroff_noirq(dev); 1125 1126 return 0; 1127 } 1128 1129 static int pci_pm_restore_noirq(struct device *dev) 1130 { 1131 struct pci_dev *pci_dev = to_pci_dev(dev); 1132 struct device_driver *drv = dev->driver; 1133 int error = 0; 1134 1135 /* This is analogous to the pci_pm_resume_noirq() case. */ 1136 if (dev_pm_smart_suspend_and_suspended(dev)) 1137 pm_runtime_set_active(dev); 1138 1139 if (pcibios_pm_ops.restore_noirq) { 1140 error = pcibios_pm_ops.restore_noirq(dev); 1141 if (error) 1142 return error; 1143 } 1144 1145 pci_pm_default_resume_early(pci_dev); 1146 1147 if (pci_has_legacy_pm_support(pci_dev)) 1148 return pci_legacy_resume_early(dev); 1149 1150 if (drv && drv->pm && drv->pm->restore_noirq) 1151 error = drv->pm->restore_noirq(dev); 1152 1153 return error; 1154 } 1155 1156 static int pci_pm_restore(struct device *dev) 1157 { 1158 struct pci_dev *pci_dev = to_pci_dev(dev); 1159 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1160 int error = 0; 1161 1162 /* 1163 * This is necessary for the hibernation error path in which restore is 1164 * called without restoring the standard config registers of the device. 1165 */ 1166 if (pci_dev->state_saved) 1167 pci_restore_standard_config(pci_dev); 1168 1169 if (pci_has_legacy_pm_support(pci_dev)) 1170 return pci_legacy_resume(dev); 1171 1172 pci_pm_default_resume(pci_dev); 1173 1174 if (pm) { 1175 if (pm->restore) 1176 error = pm->restore(dev); 1177 } else { 1178 pci_pm_reenable_device(pci_dev); 1179 } 1180 1181 return error; 1182 } 1183 1184 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1185 1186 #define pci_pm_freeze NULL 1187 #define pci_pm_freeze_late NULL 1188 #define pci_pm_freeze_noirq NULL 1189 #define pci_pm_thaw NULL 1190 #define pci_pm_thaw_noirq NULL 1191 #define pci_pm_poweroff NULL 1192 #define pci_pm_poweroff_late NULL 1193 #define pci_pm_poweroff_noirq NULL 1194 #define pci_pm_restore NULL 1195 #define pci_pm_restore_noirq NULL 1196 1197 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1198 1199 #ifdef CONFIG_PM 1200 1201 static int pci_pm_runtime_suspend(struct device *dev) 1202 { 1203 struct pci_dev *pci_dev = to_pci_dev(dev); 1204 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1205 pci_power_t prev = pci_dev->current_state; 1206 int error; 1207 1208 /* 1209 * If pci_dev->driver is not set (unbound), the device should 1210 * always remain in D0 regardless of the runtime PM status 1211 */ 1212 if (!pci_dev->driver) 1213 return 0; 1214 1215 if (!pm || !pm->runtime_suspend) 1216 return -ENOSYS; 1217 1218 pci_dev->state_saved = false; 1219 error = pm->runtime_suspend(dev); 1220 if (error) { 1221 /* 1222 * -EBUSY and -EAGAIN is used to request the runtime PM core 1223 * to schedule a new suspend, so log the event only with debug 1224 * log level. 1225 */ 1226 if (error == -EBUSY || error == -EAGAIN) 1227 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1228 pm->runtime_suspend, error); 1229 else 1230 dev_err(dev, "can't suspend (%pf returned %d)\n", 1231 pm->runtime_suspend, error); 1232 1233 return error; 1234 } 1235 1236 pci_fixup_device(pci_fixup_suspend, pci_dev); 1237 1238 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1239 && pci_dev->current_state != PCI_UNKNOWN) { 1240 WARN_ONCE(pci_dev->current_state != prev, 1241 "PCI PM: State of device not saved by %pF\n", 1242 pm->runtime_suspend); 1243 return 0; 1244 } 1245 1246 if (!pci_dev->state_saved) { 1247 pci_save_state(pci_dev); 1248 pci_finish_runtime_suspend(pci_dev); 1249 } 1250 1251 return 0; 1252 } 1253 1254 static int pci_pm_runtime_resume(struct device *dev) 1255 { 1256 int rc; 1257 struct pci_dev *pci_dev = to_pci_dev(dev); 1258 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1259 1260 /* 1261 * If pci_dev->driver is not set (unbound), the device should 1262 * always remain in D0 regardless of the runtime PM status 1263 */ 1264 if (!pci_dev->driver) 1265 return 0; 1266 1267 if (!pm || !pm->runtime_resume) 1268 return -ENOSYS; 1269 1270 pci_restore_standard_config(pci_dev); 1271 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1272 pci_enable_wake(pci_dev, PCI_D0, false); 1273 pci_fixup_device(pci_fixup_resume, pci_dev); 1274 1275 rc = pm->runtime_resume(dev); 1276 1277 pci_dev->runtime_d3cold = false; 1278 1279 return rc; 1280 } 1281 1282 static int pci_pm_runtime_idle(struct device *dev) 1283 { 1284 struct pci_dev *pci_dev = to_pci_dev(dev); 1285 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1286 int ret = 0; 1287 1288 /* 1289 * If pci_dev->driver is not set (unbound), the device should 1290 * always remain in D0 regardless of the runtime PM status 1291 */ 1292 if (!pci_dev->driver) 1293 return 0; 1294 1295 if (!pm) 1296 return -ENOSYS; 1297 1298 if (pm->runtime_idle) 1299 ret = pm->runtime_idle(dev); 1300 1301 return ret; 1302 } 1303 1304 static const struct dev_pm_ops pci_dev_pm_ops = { 1305 .prepare = pci_pm_prepare, 1306 .complete = pci_pm_complete, 1307 .suspend = pci_pm_suspend, 1308 .suspend_late = pci_pm_suspend_late, 1309 .resume = pci_pm_resume, 1310 .freeze = pci_pm_freeze, 1311 .freeze_late = pci_pm_freeze_late, 1312 .thaw = pci_pm_thaw, 1313 .poweroff = pci_pm_poweroff, 1314 .poweroff_late = pci_pm_poweroff_late, 1315 .restore = pci_pm_restore, 1316 .suspend_noirq = pci_pm_suspend_noirq, 1317 .resume_noirq = pci_pm_resume_noirq, 1318 .freeze_noirq = pci_pm_freeze_noirq, 1319 .thaw_noirq = pci_pm_thaw_noirq, 1320 .poweroff_noirq = pci_pm_poweroff_noirq, 1321 .restore_noirq = pci_pm_restore_noirq, 1322 .runtime_suspend = pci_pm_runtime_suspend, 1323 .runtime_resume = pci_pm_runtime_resume, 1324 .runtime_idle = pci_pm_runtime_idle, 1325 }; 1326 1327 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1328 1329 #else /* !CONFIG_PM */ 1330 1331 #define pci_pm_runtime_suspend NULL 1332 #define pci_pm_runtime_resume NULL 1333 #define pci_pm_runtime_idle NULL 1334 1335 #define PCI_PM_OPS_PTR NULL 1336 1337 #endif /* !CONFIG_PM */ 1338 1339 /** 1340 * __pci_register_driver - register a new pci driver 1341 * @drv: the driver structure to register 1342 * @owner: owner module of drv 1343 * @mod_name: module name string 1344 * 1345 * Adds the driver structure to the list of registered drivers. 1346 * Returns a negative value on error, otherwise 0. 1347 * If no error occurred, the driver remains registered even if 1348 * no device was claimed during registration. 1349 */ 1350 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1351 const char *mod_name) 1352 { 1353 /* initialize common driver fields */ 1354 drv->driver.name = drv->name; 1355 drv->driver.bus = &pci_bus_type; 1356 drv->driver.owner = owner; 1357 drv->driver.mod_name = mod_name; 1358 drv->driver.groups = drv->groups; 1359 1360 spin_lock_init(&drv->dynids.lock); 1361 INIT_LIST_HEAD(&drv->dynids.list); 1362 1363 /* register with core */ 1364 return driver_register(&drv->driver); 1365 } 1366 EXPORT_SYMBOL(__pci_register_driver); 1367 1368 /** 1369 * pci_unregister_driver - unregister a pci driver 1370 * @drv: the driver structure to unregister 1371 * 1372 * Deletes the driver structure from the list of registered PCI drivers, 1373 * gives it a chance to clean up by calling its remove() function for 1374 * each device it was responsible for, and marks those devices as 1375 * driverless. 1376 */ 1377 1378 void pci_unregister_driver(struct pci_driver *drv) 1379 { 1380 driver_unregister(&drv->driver); 1381 pci_free_dynids(drv); 1382 } 1383 EXPORT_SYMBOL(pci_unregister_driver); 1384 1385 static struct pci_driver pci_compat_driver = { 1386 .name = "compat" 1387 }; 1388 1389 /** 1390 * pci_dev_driver - get the pci_driver of a device 1391 * @dev: the device to query 1392 * 1393 * Returns the appropriate pci_driver structure or %NULL if there is no 1394 * registered driver for the device. 1395 */ 1396 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1397 { 1398 if (dev->driver) 1399 return dev->driver; 1400 else { 1401 int i; 1402 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1403 if (dev->resource[i].flags & IORESOURCE_BUSY) 1404 return &pci_compat_driver; 1405 } 1406 return NULL; 1407 } 1408 EXPORT_SYMBOL(pci_dev_driver); 1409 1410 /** 1411 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1412 * @dev: the PCI device structure to match against 1413 * @drv: the device driver to search for matching PCI device id structures 1414 * 1415 * Used by a driver to check whether a PCI device present in the 1416 * system is in its list of supported devices. Returns the matching 1417 * pci_device_id structure or %NULL if there is no match. 1418 */ 1419 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1420 { 1421 struct pci_dev *pci_dev = to_pci_dev(dev); 1422 struct pci_driver *pci_drv; 1423 const struct pci_device_id *found_id; 1424 1425 if (!pci_dev->match_driver) 1426 return 0; 1427 1428 pci_drv = to_pci_driver(drv); 1429 found_id = pci_match_device(pci_drv, pci_dev); 1430 if (found_id) 1431 return 1; 1432 1433 return 0; 1434 } 1435 1436 /** 1437 * pci_dev_get - increments the reference count of the pci device structure 1438 * @dev: the device being referenced 1439 * 1440 * Each live reference to a device should be refcounted. 1441 * 1442 * Drivers for PCI devices should normally record such references in 1443 * their probe() methods, when they bind to a device, and release 1444 * them by calling pci_dev_put(), in their disconnect() methods. 1445 * 1446 * A pointer to the device with the incremented reference counter is returned. 1447 */ 1448 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1449 { 1450 if (dev) 1451 get_device(&dev->dev); 1452 return dev; 1453 } 1454 EXPORT_SYMBOL(pci_dev_get); 1455 1456 /** 1457 * pci_dev_put - release a use of the pci device structure 1458 * @dev: device that's been disconnected 1459 * 1460 * Must be called when a user of a device is finished with it. When the last 1461 * user of the device calls this function, the memory of the device is freed. 1462 */ 1463 void pci_dev_put(struct pci_dev *dev) 1464 { 1465 if (dev) 1466 put_device(&dev->dev); 1467 } 1468 EXPORT_SYMBOL(pci_dev_put); 1469 1470 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1471 { 1472 struct pci_dev *pdev; 1473 1474 if (!dev) 1475 return -ENODEV; 1476 1477 pdev = to_pci_dev(dev); 1478 1479 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1480 return -ENOMEM; 1481 1482 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1483 return -ENOMEM; 1484 1485 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1486 pdev->subsystem_device)) 1487 return -ENOMEM; 1488 1489 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1490 return -ENOMEM; 1491 1492 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1493 pdev->vendor, pdev->device, 1494 pdev->subsystem_vendor, pdev->subsystem_device, 1495 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1496 (u8)(pdev->class))) 1497 return -ENOMEM; 1498 1499 return 0; 1500 } 1501 1502 static int pci_bus_num_vf(struct device *dev) 1503 { 1504 return pci_num_vf(to_pci_dev(dev)); 1505 } 1506 1507 struct bus_type pci_bus_type = { 1508 .name = "pci", 1509 .match = pci_bus_match, 1510 .uevent = pci_uevent, 1511 .probe = pci_device_probe, 1512 .remove = pci_device_remove, 1513 .shutdown = pci_device_shutdown, 1514 .dev_groups = pci_dev_groups, 1515 .bus_groups = pci_bus_groups, 1516 .drv_groups = pci_drv_groups, 1517 .pm = PCI_PM_OPS_PTR, 1518 .num_vf = pci_bus_num_vf, 1519 .force_dma = true, 1520 }; 1521 EXPORT_SYMBOL(pci_bus_type); 1522 1523 static int __init pci_driver_init(void) 1524 { 1525 return bus_register(&pci_bus_type); 1526 } 1527 postcore_initcall(pci_driver_init); 1528