1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 int retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = 0; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 if (retval) 200 return retval; 201 return count; 202 } 203 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 204 205 static struct attribute *pci_drv_attrs[] = { 206 &driver_attr_new_id.attr, 207 &driver_attr_remove_id.attr, 208 NULL, 209 }; 210 ATTRIBUTE_GROUPS(pci_drv); 211 212 /** 213 * pci_match_id - See if a pci device matches a given pci_id table 214 * @ids: array of PCI device id structures to search in 215 * @dev: the PCI device structure to match against. 216 * 217 * Used by a driver to check whether a PCI device present in the 218 * system is in its list of supported devices. Returns the matching 219 * pci_device_id structure or %NULL if there is no match. 220 * 221 * Deprecated, don't use this as it will not catch any dynamic ids 222 * that a driver might want to check for. 223 */ 224 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 225 struct pci_dev *dev) 226 { 227 if (ids) { 228 while (ids->vendor || ids->subvendor || ids->class_mask) { 229 if (pci_match_one_device(ids, dev)) 230 return ids; 231 ids++; 232 } 233 } 234 return NULL; 235 } 236 EXPORT_SYMBOL(pci_match_id); 237 238 static const struct pci_device_id pci_device_id_any = { 239 .vendor = PCI_ANY_ID, 240 .device = PCI_ANY_ID, 241 .subvendor = PCI_ANY_ID, 242 .subdevice = PCI_ANY_ID, 243 }; 244 245 /** 246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 247 * @drv: the PCI driver to match against 248 * @dev: the PCI device structure to match against 249 * 250 * Used by a driver to check whether a PCI device present in the 251 * system is in its list of supported devices. Returns the matching 252 * pci_device_id structure or %NULL if there is no match. 253 */ 254 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 255 struct pci_dev *dev) 256 { 257 struct pci_dynid *dynid; 258 const struct pci_device_id *found_id = NULL; 259 260 /* When driver_override is set, only bind to the matching driver */ 261 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 262 return NULL; 263 264 /* Look at the dynamic ids first, before the static ones */ 265 spin_lock(&drv->dynids.lock); 266 list_for_each_entry(dynid, &drv->dynids.list, node) { 267 if (pci_match_one_device(&dynid->id, dev)) { 268 found_id = &dynid->id; 269 break; 270 } 271 } 272 spin_unlock(&drv->dynids.lock); 273 274 if (!found_id) 275 found_id = pci_match_id(drv->id_table, dev); 276 277 /* driver_override will always match, send a dummy id */ 278 if (!found_id && dev->driver_override) 279 found_id = &pci_device_id_any; 280 281 return found_id; 282 } 283 284 struct drv_dev_and_id { 285 struct pci_driver *drv; 286 struct pci_dev *dev; 287 const struct pci_device_id *id; 288 }; 289 290 static long local_pci_probe(void *_ddi) 291 { 292 struct drv_dev_and_id *ddi = _ddi; 293 struct pci_dev *pci_dev = ddi->dev; 294 struct pci_driver *pci_drv = ddi->drv; 295 struct device *dev = &pci_dev->dev; 296 int rc; 297 298 /* 299 * Unbound PCI devices are always put in D0, regardless of 300 * runtime PM status. During probe, the device is set to 301 * active and the usage count is incremented. If the driver 302 * supports runtime PM, it should call pm_runtime_put_noidle() 303 * in its probe routine and pm_runtime_get_noresume() in its 304 * remove routine. 305 */ 306 pm_runtime_get_sync(dev); 307 pci_dev->driver = pci_drv; 308 rc = pci_drv->probe(pci_dev, ddi->id); 309 if (!rc) 310 return rc; 311 if (rc < 0) { 312 pci_dev->driver = NULL; 313 pm_runtime_put_sync(dev); 314 return rc; 315 } 316 /* 317 * Probe function should return < 0 for failure, 0 for success 318 * Treat values > 0 as success, but warn. 319 */ 320 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 321 return 0; 322 } 323 324 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 325 const struct pci_device_id *id) 326 { 327 int error, node; 328 struct drv_dev_and_id ddi = { drv, dev, id }; 329 330 /* 331 * Execute driver initialization on node where the device is 332 * attached. This way the driver likely allocates its local memory 333 * on the right node. 334 */ 335 node = dev_to_node(&dev->dev); 336 337 /* 338 * On NUMA systems, we are likely to call a PF probe function using 339 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 340 * adds the VF devices via pci_bus_add_device()), we may re-enter 341 * this function to call the VF probe function. Calling 342 * work_on_cpu() again will cause a lockdep warning. Since VFs are 343 * always on the same node as the PF, we can work around this by 344 * avoiding work_on_cpu() when we're already on the correct node. 345 * 346 * Preemption is enabled, so it's theoretically unsafe to use 347 * numa_node_id(), but even if we run the probe function on the 348 * wrong node, it should be functionally correct. 349 */ 350 if (node >= 0 && node != numa_node_id()) { 351 int cpu; 352 353 get_online_cpus(); 354 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 355 if (cpu < nr_cpu_ids) 356 error = work_on_cpu(cpu, local_pci_probe, &ddi); 357 else 358 error = local_pci_probe(&ddi); 359 put_online_cpus(); 360 } else 361 error = local_pci_probe(&ddi); 362 363 return error; 364 } 365 366 /** 367 * __pci_device_probe - check if a driver wants to claim a specific PCI device 368 * @drv: driver to call to check if it wants the PCI device 369 * @pci_dev: PCI device being probed 370 * 371 * returns 0 on success, else error. 372 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 373 */ 374 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 375 { 376 const struct pci_device_id *id; 377 int error = 0; 378 379 if (!pci_dev->driver && drv->probe) { 380 error = -ENODEV; 381 382 id = pci_match_device(drv, pci_dev); 383 if (id) 384 error = pci_call_probe(drv, pci_dev, id); 385 if (error >= 0) 386 error = 0; 387 } 388 return error; 389 } 390 391 int __weak pcibios_alloc_irq(struct pci_dev *dev) 392 { 393 return 0; 394 } 395 396 void __weak pcibios_free_irq(struct pci_dev *dev) 397 { 398 } 399 400 static int pci_device_probe(struct device *dev) 401 { 402 int error; 403 struct pci_dev *pci_dev = to_pci_dev(dev); 404 struct pci_driver *drv = to_pci_driver(dev->driver); 405 406 error = pcibios_alloc_irq(pci_dev); 407 if (error < 0) 408 return error; 409 410 pci_dev_get(pci_dev); 411 error = __pci_device_probe(drv, pci_dev); 412 if (error) { 413 pcibios_free_irq(pci_dev); 414 pci_dev_put(pci_dev); 415 } 416 417 return error; 418 } 419 420 static int pci_device_remove(struct device *dev) 421 { 422 struct pci_dev *pci_dev = to_pci_dev(dev); 423 struct pci_driver *drv = pci_dev->driver; 424 425 if (drv) { 426 if (drv->remove) { 427 pm_runtime_get_sync(dev); 428 drv->remove(pci_dev); 429 pm_runtime_put_noidle(dev); 430 } 431 pcibios_free_irq(pci_dev); 432 pci_dev->driver = NULL; 433 } 434 435 /* Undo the runtime PM settings in local_pci_probe() */ 436 pm_runtime_put_sync(dev); 437 438 /* 439 * If the device is still on, set the power state as "unknown", 440 * since it might change by the next time we load the driver. 441 */ 442 if (pci_dev->current_state == PCI_D0) 443 pci_dev->current_state = PCI_UNKNOWN; 444 445 /* 446 * We would love to complain here if pci_dev->is_enabled is set, that 447 * the driver should have called pci_disable_device(), but the 448 * unfortunate fact is there are too many odd BIOS and bridge setups 449 * that don't like drivers doing that all of the time. 450 * Oh well, we can dream of sane hardware when we sleep, no matter how 451 * horrible the crap we have to deal with is when we are awake... 452 */ 453 454 pci_dev_put(pci_dev); 455 return 0; 456 } 457 458 static void pci_device_shutdown(struct device *dev) 459 { 460 struct pci_dev *pci_dev = to_pci_dev(dev); 461 struct pci_driver *drv = pci_dev->driver; 462 463 pm_runtime_resume(dev); 464 465 if (drv && drv->shutdown) 466 drv->shutdown(pci_dev); 467 pci_msi_shutdown(pci_dev); 468 pci_msix_shutdown(pci_dev); 469 470 #ifdef CONFIG_KEXEC_CORE 471 /* 472 * If this is a kexec reboot, turn off Bus Master bit on the 473 * device to tell it to not continue to do DMA. Don't touch 474 * devices in D3cold or unknown states. 475 * If it is not a kexec reboot, firmware will hit the PCI 476 * devices with big hammer and stop their DMA any way. 477 */ 478 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 479 pci_clear_master(pci_dev); 480 #endif 481 } 482 483 #ifdef CONFIG_PM 484 485 /* Auxiliary functions used for system resume and run-time resume. */ 486 487 /** 488 * pci_restore_standard_config - restore standard config registers of PCI device 489 * @pci_dev: PCI device to handle 490 */ 491 static int pci_restore_standard_config(struct pci_dev *pci_dev) 492 { 493 pci_update_current_state(pci_dev, PCI_UNKNOWN); 494 495 if (pci_dev->current_state != PCI_D0) { 496 int error = pci_set_power_state(pci_dev, PCI_D0); 497 if (error) 498 return error; 499 } 500 501 pci_restore_state(pci_dev); 502 return 0; 503 } 504 505 #endif 506 507 #ifdef CONFIG_PM_SLEEP 508 509 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 510 { 511 pci_power_up(pci_dev); 512 pci_restore_state(pci_dev); 513 pci_fixup_device(pci_fixup_resume_early, pci_dev); 514 } 515 516 /* 517 * Default "suspend" method for devices that have no driver provided suspend, 518 * or not even a driver at all (second part). 519 */ 520 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 521 { 522 /* 523 * mark its power state as "unknown", since we don't know if 524 * e.g. the BIOS will change its device state when we suspend. 525 */ 526 if (pci_dev->current_state == PCI_D0) 527 pci_dev->current_state = PCI_UNKNOWN; 528 } 529 530 /* 531 * Default "resume" method for devices that have no driver provided resume, 532 * or not even a driver at all (second part). 533 */ 534 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 535 { 536 int retval; 537 538 /* if the device was enabled before suspend, reenable */ 539 retval = pci_reenable_device(pci_dev); 540 /* 541 * if the device was busmaster before the suspend, make it busmaster 542 * again 543 */ 544 if (pci_dev->is_busmaster) 545 pci_set_master(pci_dev); 546 547 return retval; 548 } 549 550 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 551 { 552 struct pci_dev *pci_dev = to_pci_dev(dev); 553 struct pci_driver *drv = pci_dev->driver; 554 555 if (drv && drv->suspend) { 556 pci_power_t prev = pci_dev->current_state; 557 int error; 558 559 error = drv->suspend(pci_dev, state); 560 suspend_report_result(drv->suspend, error); 561 if (error) 562 return error; 563 564 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 565 && pci_dev->current_state != PCI_UNKNOWN) { 566 WARN_ONCE(pci_dev->current_state != prev, 567 "PCI PM: Device state not saved by %pF\n", 568 drv->suspend); 569 } 570 } 571 572 pci_fixup_device(pci_fixup_suspend, pci_dev); 573 574 return 0; 575 } 576 577 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 578 { 579 struct pci_dev *pci_dev = to_pci_dev(dev); 580 struct pci_driver *drv = pci_dev->driver; 581 582 if (drv && drv->suspend_late) { 583 pci_power_t prev = pci_dev->current_state; 584 int error; 585 586 error = drv->suspend_late(pci_dev, state); 587 suspend_report_result(drv->suspend_late, error); 588 if (error) 589 return error; 590 591 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 592 && pci_dev->current_state != PCI_UNKNOWN) { 593 WARN_ONCE(pci_dev->current_state != prev, 594 "PCI PM: Device state not saved by %pF\n", 595 drv->suspend_late); 596 goto Fixup; 597 } 598 } 599 600 if (!pci_dev->state_saved) 601 pci_save_state(pci_dev); 602 603 pci_pm_set_unknown_state(pci_dev); 604 605 Fixup: 606 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 607 608 return 0; 609 } 610 611 static int pci_legacy_resume_early(struct device *dev) 612 { 613 struct pci_dev *pci_dev = to_pci_dev(dev); 614 struct pci_driver *drv = pci_dev->driver; 615 616 return drv && drv->resume_early ? 617 drv->resume_early(pci_dev) : 0; 618 } 619 620 static int pci_legacy_resume(struct device *dev) 621 { 622 struct pci_dev *pci_dev = to_pci_dev(dev); 623 struct pci_driver *drv = pci_dev->driver; 624 625 pci_fixup_device(pci_fixup_resume, pci_dev); 626 627 return drv && drv->resume ? 628 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 629 } 630 631 /* Auxiliary functions used by the new power management framework */ 632 633 static void pci_pm_default_resume(struct pci_dev *pci_dev) 634 { 635 pci_fixup_device(pci_fixup_resume, pci_dev); 636 637 if (!pci_has_subordinate(pci_dev)) 638 pci_enable_wake(pci_dev, PCI_D0, false); 639 } 640 641 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 642 { 643 /* Disable non-bridge devices without PM support */ 644 if (!pci_has_subordinate(pci_dev)) 645 pci_disable_enabled_device(pci_dev); 646 } 647 648 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 649 { 650 struct pci_driver *drv = pci_dev->driver; 651 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 652 || drv->resume_early); 653 654 /* 655 * Legacy PM support is used by default, so warn if the new framework is 656 * supported as well. Drivers are supposed to support either the 657 * former, or the latter, but not both at the same time. 658 */ 659 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 660 drv->name, pci_dev->vendor, pci_dev->device); 661 662 return ret; 663 } 664 665 /* New power management framework */ 666 667 static int pci_pm_prepare(struct device *dev) 668 { 669 struct device_driver *drv = dev->driver; 670 671 /* 672 * Devices having power.ignore_children set may still be necessary for 673 * suspending their children in the next phase of device suspend. 674 */ 675 if (dev->power.ignore_children) 676 pm_runtime_resume(dev); 677 678 if (drv && drv->pm && drv->pm->prepare) { 679 int error = drv->pm->prepare(dev); 680 if (error) 681 return error; 682 } 683 return pci_dev_keep_suspended(to_pci_dev(dev)); 684 } 685 686 687 #else /* !CONFIG_PM_SLEEP */ 688 689 #define pci_pm_prepare NULL 690 691 #endif /* !CONFIG_PM_SLEEP */ 692 693 #ifdef CONFIG_SUSPEND 694 695 static int pci_pm_suspend(struct device *dev) 696 { 697 struct pci_dev *pci_dev = to_pci_dev(dev); 698 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 699 700 if (pci_has_legacy_pm_support(pci_dev)) 701 return pci_legacy_suspend(dev, PMSG_SUSPEND); 702 703 if (!pm) { 704 pci_pm_default_suspend(pci_dev); 705 goto Fixup; 706 } 707 708 /* 709 * PCI devices suspended at run time need to be resumed at this point, 710 * because in general it is necessary to reconfigure them for system 711 * suspend. Namely, if the device is supposed to wake up the system 712 * from the sleep state, we may need to reconfigure it for this purpose. 713 * In turn, if the device is not supposed to wake up the system from the 714 * sleep state, we'll have to prevent it from signaling wake-up. 715 */ 716 pm_runtime_resume(dev); 717 718 pci_dev->state_saved = false; 719 if (pm->suspend) { 720 pci_power_t prev = pci_dev->current_state; 721 int error; 722 723 error = pm->suspend(dev); 724 suspend_report_result(pm->suspend, error); 725 if (error) 726 return error; 727 728 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 729 && pci_dev->current_state != PCI_UNKNOWN) { 730 WARN_ONCE(pci_dev->current_state != prev, 731 "PCI PM: State of device not saved by %pF\n", 732 pm->suspend); 733 } 734 } 735 736 Fixup: 737 pci_fixup_device(pci_fixup_suspend, pci_dev); 738 739 return 0; 740 } 741 742 static int pci_pm_suspend_noirq(struct device *dev) 743 { 744 struct pci_dev *pci_dev = to_pci_dev(dev); 745 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 746 747 if (pci_has_legacy_pm_support(pci_dev)) 748 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 749 750 if (!pm) { 751 pci_save_state(pci_dev); 752 goto Fixup; 753 } 754 755 if (pm->suspend_noirq) { 756 pci_power_t prev = pci_dev->current_state; 757 int error; 758 759 error = pm->suspend_noirq(dev); 760 suspend_report_result(pm->suspend_noirq, error); 761 if (error) 762 return error; 763 764 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 765 && pci_dev->current_state != PCI_UNKNOWN) { 766 WARN_ONCE(pci_dev->current_state != prev, 767 "PCI PM: State of device not saved by %pF\n", 768 pm->suspend_noirq); 769 goto Fixup; 770 } 771 } 772 773 if (!pci_dev->state_saved) { 774 pci_save_state(pci_dev); 775 if (!pci_has_subordinate(pci_dev)) 776 pci_prepare_to_sleep(pci_dev); 777 } 778 779 pci_pm_set_unknown_state(pci_dev); 780 781 /* 782 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 783 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 784 * hasn't been quiesced and tries to turn it off. If the controller 785 * is already in D3, this can hang or cause memory corruption. 786 * 787 * Since the value of the COMMAND register doesn't matter once the 788 * device has been suspended, we can safely set it to 0 here. 789 */ 790 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 791 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 792 793 Fixup: 794 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 795 796 return 0; 797 } 798 799 static int pci_pm_resume_noirq(struct device *dev) 800 { 801 struct pci_dev *pci_dev = to_pci_dev(dev); 802 struct device_driver *drv = dev->driver; 803 int error = 0; 804 805 pci_pm_default_resume_early(pci_dev); 806 807 if (pci_has_legacy_pm_support(pci_dev)) 808 return pci_legacy_resume_early(dev); 809 810 if (drv && drv->pm && drv->pm->resume_noirq) 811 error = drv->pm->resume_noirq(dev); 812 813 return error; 814 } 815 816 static int pci_pm_resume(struct device *dev) 817 { 818 struct pci_dev *pci_dev = to_pci_dev(dev); 819 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 820 int error = 0; 821 822 /* 823 * This is necessary for the suspend error path in which resume is 824 * called without restoring the standard config registers of the device. 825 */ 826 if (pci_dev->state_saved) 827 pci_restore_standard_config(pci_dev); 828 829 if (pci_has_legacy_pm_support(pci_dev)) 830 return pci_legacy_resume(dev); 831 832 pci_pm_default_resume(pci_dev); 833 834 if (pm) { 835 if (pm->resume) 836 error = pm->resume(dev); 837 } else { 838 pci_pm_reenable_device(pci_dev); 839 } 840 841 return error; 842 } 843 844 #else /* !CONFIG_SUSPEND */ 845 846 #define pci_pm_suspend NULL 847 #define pci_pm_suspend_noirq NULL 848 #define pci_pm_resume NULL 849 #define pci_pm_resume_noirq NULL 850 851 #endif /* !CONFIG_SUSPEND */ 852 853 #ifdef CONFIG_HIBERNATE_CALLBACKS 854 855 856 /* 857 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 858 * a hibernate transition 859 */ 860 struct dev_pm_ops __weak pcibios_pm_ops; 861 862 static int pci_pm_freeze(struct device *dev) 863 { 864 struct pci_dev *pci_dev = to_pci_dev(dev); 865 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 866 867 if (pci_has_legacy_pm_support(pci_dev)) 868 return pci_legacy_suspend(dev, PMSG_FREEZE); 869 870 if (!pm) { 871 pci_pm_default_suspend(pci_dev); 872 return 0; 873 } 874 875 /* 876 * This used to be done in pci_pm_prepare() for all devices and some 877 * drivers may depend on it, so do it here. Ideally, runtime-suspended 878 * devices should not be touched during freeze/thaw transitions, 879 * however. 880 */ 881 pm_runtime_resume(dev); 882 883 pci_dev->state_saved = false; 884 if (pm->freeze) { 885 int error; 886 887 error = pm->freeze(dev); 888 suspend_report_result(pm->freeze, error); 889 if (error) 890 return error; 891 } 892 893 if (pcibios_pm_ops.freeze) 894 return pcibios_pm_ops.freeze(dev); 895 896 return 0; 897 } 898 899 static int pci_pm_freeze_noirq(struct device *dev) 900 { 901 struct pci_dev *pci_dev = to_pci_dev(dev); 902 struct device_driver *drv = dev->driver; 903 904 if (pci_has_legacy_pm_support(pci_dev)) 905 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 906 907 if (drv && drv->pm && drv->pm->freeze_noirq) { 908 int error; 909 910 error = drv->pm->freeze_noirq(dev); 911 suspend_report_result(drv->pm->freeze_noirq, error); 912 if (error) 913 return error; 914 } 915 916 if (!pci_dev->state_saved) 917 pci_save_state(pci_dev); 918 919 pci_pm_set_unknown_state(pci_dev); 920 921 if (pcibios_pm_ops.freeze_noirq) 922 return pcibios_pm_ops.freeze_noirq(dev); 923 924 return 0; 925 } 926 927 static int pci_pm_thaw_noirq(struct device *dev) 928 { 929 struct pci_dev *pci_dev = to_pci_dev(dev); 930 struct device_driver *drv = dev->driver; 931 int error = 0; 932 933 if (pcibios_pm_ops.thaw_noirq) { 934 error = pcibios_pm_ops.thaw_noirq(dev); 935 if (error) 936 return error; 937 } 938 939 if (pci_has_legacy_pm_support(pci_dev)) 940 return pci_legacy_resume_early(dev); 941 942 pci_update_current_state(pci_dev, PCI_D0); 943 944 if (drv && drv->pm && drv->pm->thaw_noirq) 945 error = drv->pm->thaw_noirq(dev); 946 947 return error; 948 } 949 950 static int pci_pm_thaw(struct device *dev) 951 { 952 struct pci_dev *pci_dev = to_pci_dev(dev); 953 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 954 int error = 0; 955 956 if (pcibios_pm_ops.thaw) { 957 error = pcibios_pm_ops.thaw(dev); 958 if (error) 959 return error; 960 } 961 962 if (pci_has_legacy_pm_support(pci_dev)) 963 return pci_legacy_resume(dev); 964 965 if (pm) { 966 if (pm->thaw) 967 error = pm->thaw(dev); 968 } else { 969 pci_pm_reenable_device(pci_dev); 970 } 971 972 pci_dev->state_saved = false; 973 974 return error; 975 } 976 977 static int pci_pm_poweroff(struct device *dev) 978 { 979 struct pci_dev *pci_dev = to_pci_dev(dev); 980 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 981 982 if (pci_has_legacy_pm_support(pci_dev)) 983 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 984 985 if (!pm) { 986 pci_pm_default_suspend(pci_dev); 987 goto Fixup; 988 } 989 990 /* The reason to do that is the same as in pci_pm_suspend(). */ 991 pm_runtime_resume(dev); 992 993 pci_dev->state_saved = false; 994 if (pm->poweroff) { 995 int error; 996 997 error = pm->poweroff(dev); 998 suspend_report_result(pm->poweroff, error); 999 if (error) 1000 return error; 1001 } 1002 1003 Fixup: 1004 pci_fixup_device(pci_fixup_suspend, pci_dev); 1005 1006 if (pcibios_pm_ops.poweroff) 1007 return pcibios_pm_ops.poweroff(dev); 1008 1009 return 0; 1010 } 1011 1012 static int pci_pm_poweroff_noirq(struct device *dev) 1013 { 1014 struct pci_dev *pci_dev = to_pci_dev(dev); 1015 struct device_driver *drv = dev->driver; 1016 1017 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1018 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1019 1020 if (!drv || !drv->pm) { 1021 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1022 return 0; 1023 } 1024 1025 if (drv->pm->poweroff_noirq) { 1026 int error; 1027 1028 error = drv->pm->poweroff_noirq(dev); 1029 suspend_report_result(drv->pm->poweroff_noirq, error); 1030 if (error) 1031 return error; 1032 } 1033 1034 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1035 pci_prepare_to_sleep(pci_dev); 1036 1037 /* 1038 * The reason for doing this here is the same as for the analogous code 1039 * in pci_pm_suspend_noirq(). 1040 */ 1041 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1042 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1043 1044 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1045 1046 if (pcibios_pm_ops.poweroff_noirq) 1047 return pcibios_pm_ops.poweroff_noirq(dev); 1048 1049 return 0; 1050 } 1051 1052 static int pci_pm_restore_noirq(struct device *dev) 1053 { 1054 struct pci_dev *pci_dev = to_pci_dev(dev); 1055 struct device_driver *drv = dev->driver; 1056 int error = 0; 1057 1058 if (pcibios_pm_ops.restore_noirq) { 1059 error = pcibios_pm_ops.restore_noirq(dev); 1060 if (error) 1061 return error; 1062 } 1063 1064 pci_pm_default_resume_early(pci_dev); 1065 1066 if (pci_has_legacy_pm_support(pci_dev)) 1067 return pci_legacy_resume_early(dev); 1068 1069 if (drv && drv->pm && drv->pm->restore_noirq) 1070 error = drv->pm->restore_noirq(dev); 1071 1072 return error; 1073 } 1074 1075 static int pci_pm_restore(struct device *dev) 1076 { 1077 struct pci_dev *pci_dev = to_pci_dev(dev); 1078 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1079 int error = 0; 1080 1081 if (pcibios_pm_ops.restore) { 1082 error = pcibios_pm_ops.restore(dev); 1083 if (error) 1084 return error; 1085 } 1086 1087 /* 1088 * This is necessary for the hibernation error path in which restore is 1089 * called without restoring the standard config registers of the device. 1090 */ 1091 if (pci_dev->state_saved) 1092 pci_restore_standard_config(pci_dev); 1093 1094 if (pci_has_legacy_pm_support(pci_dev)) 1095 return pci_legacy_resume(dev); 1096 1097 pci_pm_default_resume(pci_dev); 1098 1099 if (pm) { 1100 if (pm->restore) 1101 error = pm->restore(dev); 1102 } else { 1103 pci_pm_reenable_device(pci_dev); 1104 } 1105 1106 return error; 1107 } 1108 1109 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1110 1111 #define pci_pm_freeze NULL 1112 #define pci_pm_freeze_noirq NULL 1113 #define pci_pm_thaw NULL 1114 #define pci_pm_thaw_noirq NULL 1115 #define pci_pm_poweroff NULL 1116 #define pci_pm_poweroff_noirq NULL 1117 #define pci_pm_restore NULL 1118 #define pci_pm_restore_noirq NULL 1119 1120 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1121 1122 #ifdef CONFIG_PM 1123 1124 static int pci_pm_runtime_suspend(struct device *dev) 1125 { 1126 struct pci_dev *pci_dev = to_pci_dev(dev); 1127 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1128 pci_power_t prev = pci_dev->current_state; 1129 int error; 1130 1131 /* 1132 * If pci_dev->driver is not set (unbound), the device should 1133 * always remain in D0 regardless of the runtime PM status 1134 */ 1135 if (!pci_dev->driver) 1136 return 0; 1137 1138 if (!pm || !pm->runtime_suspend) 1139 return -ENOSYS; 1140 1141 pci_dev->state_saved = false; 1142 pci_dev->no_d3cold = false; 1143 error = pm->runtime_suspend(dev); 1144 suspend_report_result(pm->runtime_suspend, error); 1145 if (error) 1146 return error; 1147 if (!pci_dev->d3cold_allowed) 1148 pci_dev->no_d3cold = true; 1149 1150 pci_fixup_device(pci_fixup_suspend, pci_dev); 1151 1152 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1153 && pci_dev->current_state != PCI_UNKNOWN) { 1154 WARN_ONCE(pci_dev->current_state != prev, 1155 "PCI PM: State of device not saved by %pF\n", 1156 pm->runtime_suspend); 1157 return 0; 1158 } 1159 1160 if (!pci_dev->state_saved) { 1161 pci_save_state(pci_dev); 1162 pci_finish_runtime_suspend(pci_dev); 1163 } 1164 1165 return 0; 1166 } 1167 1168 static int pci_pm_runtime_resume(struct device *dev) 1169 { 1170 int rc; 1171 struct pci_dev *pci_dev = to_pci_dev(dev); 1172 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1173 1174 /* 1175 * If pci_dev->driver is not set (unbound), the device should 1176 * always remain in D0 regardless of the runtime PM status 1177 */ 1178 if (!pci_dev->driver) 1179 return 0; 1180 1181 if (!pm || !pm->runtime_resume) 1182 return -ENOSYS; 1183 1184 pci_restore_standard_config(pci_dev); 1185 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1186 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1187 pci_fixup_device(pci_fixup_resume, pci_dev); 1188 1189 rc = pm->runtime_resume(dev); 1190 1191 pci_dev->runtime_d3cold = false; 1192 1193 return rc; 1194 } 1195 1196 static int pci_pm_runtime_idle(struct device *dev) 1197 { 1198 struct pci_dev *pci_dev = to_pci_dev(dev); 1199 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1200 int ret = 0; 1201 1202 /* 1203 * If pci_dev->driver is not set (unbound), the device should 1204 * always remain in D0 regardless of the runtime PM status 1205 */ 1206 if (!pci_dev->driver) 1207 return 0; 1208 1209 if (!pm) 1210 return -ENOSYS; 1211 1212 if (pm->runtime_idle) 1213 ret = pm->runtime_idle(dev); 1214 1215 return ret; 1216 } 1217 1218 static const struct dev_pm_ops pci_dev_pm_ops = { 1219 .prepare = pci_pm_prepare, 1220 .suspend = pci_pm_suspend, 1221 .resume = pci_pm_resume, 1222 .freeze = pci_pm_freeze, 1223 .thaw = pci_pm_thaw, 1224 .poweroff = pci_pm_poweroff, 1225 .restore = pci_pm_restore, 1226 .suspend_noirq = pci_pm_suspend_noirq, 1227 .resume_noirq = pci_pm_resume_noirq, 1228 .freeze_noirq = pci_pm_freeze_noirq, 1229 .thaw_noirq = pci_pm_thaw_noirq, 1230 .poweroff_noirq = pci_pm_poweroff_noirq, 1231 .restore_noirq = pci_pm_restore_noirq, 1232 .runtime_suspend = pci_pm_runtime_suspend, 1233 .runtime_resume = pci_pm_runtime_resume, 1234 .runtime_idle = pci_pm_runtime_idle, 1235 }; 1236 1237 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1238 1239 #else /* !CONFIG_PM */ 1240 1241 #define pci_pm_runtime_suspend NULL 1242 #define pci_pm_runtime_resume NULL 1243 #define pci_pm_runtime_idle NULL 1244 1245 #define PCI_PM_OPS_PTR NULL 1246 1247 #endif /* !CONFIG_PM */ 1248 1249 /** 1250 * __pci_register_driver - register a new pci driver 1251 * @drv: the driver structure to register 1252 * @owner: owner module of drv 1253 * @mod_name: module name string 1254 * 1255 * Adds the driver structure to the list of registered drivers. 1256 * Returns a negative value on error, otherwise 0. 1257 * If no error occurred, the driver remains registered even if 1258 * no device was claimed during registration. 1259 */ 1260 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1261 const char *mod_name) 1262 { 1263 /* initialize common driver fields */ 1264 drv->driver.name = drv->name; 1265 drv->driver.bus = &pci_bus_type; 1266 drv->driver.owner = owner; 1267 drv->driver.mod_name = mod_name; 1268 1269 spin_lock_init(&drv->dynids.lock); 1270 INIT_LIST_HEAD(&drv->dynids.list); 1271 1272 /* register with core */ 1273 return driver_register(&drv->driver); 1274 } 1275 EXPORT_SYMBOL(__pci_register_driver); 1276 1277 /** 1278 * pci_unregister_driver - unregister a pci driver 1279 * @drv: the driver structure to unregister 1280 * 1281 * Deletes the driver structure from the list of registered PCI drivers, 1282 * gives it a chance to clean up by calling its remove() function for 1283 * each device it was responsible for, and marks those devices as 1284 * driverless. 1285 */ 1286 1287 void pci_unregister_driver(struct pci_driver *drv) 1288 { 1289 driver_unregister(&drv->driver); 1290 pci_free_dynids(drv); 1291 } 1292 EXPORT_SYMBOL(pci_unregister_driver); 1293 1294 static struct pci_driver pci_compat_driver = { 1295 .name = "compat" 1296 }; 1297 1298 /** 1299 * pci_dev_driver - get the pci_driver of a device 1300 * @dev: the device to query 1301 * 1302 * Returns the appropriate pci_driver structure or %NULL if there is no 1303 * registered driver for the device. 1304 */ 1305 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1306 { 1307 if (dev->driver) 1308 return dev->driver; 1309 else { 1310 int i; 1311 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1312 if (dev->resource[i].flags & IORESOURCE_BUSY) 1313 return &pci_compat_driver; 1314 } 1315 return NULL; 1316 } 1317 EXPORT_SYMBOL(pci_dev_driver); 1318 1319 /** 1320 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1321 * @dev: the PCI device structure to match against 1322 * @drv: the device driver to search for matching PCI device id structures 1323 * 1324 * Used by a driver to check whether a PCI device present in the 1325 * system is in its list of supported devices. Returns the matching 1326 * pci_device_id structure or %NULL if there is no match. 1327 */ 1328 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1329 { 1330 struct pci_dev *pci_dev = to_pci_dev(dev); 1331 struct pci_driver *pci_drv; 1332 const struct pci_device_id *found_id; 1333 1334 if (!pci_dev->match_driver) 1335 return 0; 1336 1337 pci_drv = to_pci_driver(drv); 1338 found_id = pci_match_device(pci_drv, pci_dev); 1339 if (found_id) 1340 return 1; 1341 1342 return 0; 1343 } 1344 1345 /** 1346 * pci_dev_get - increments the reference count of the pci device structure 1347 * @dev: the device being referenced 1348 * 1349 * Each live reference to a device should be refcounted. 1350 * 1351 * Drivers for PCI devices should normally record such references in 1352 * their probe() methods, when they bind to a device, and release 1353 * them by calling pci_dev_put(), in their disconnect() methods. 1354 * 1355 * A pointer to the device with the incremented reference counter is returned. 1356 */ 1357 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1358 { 1359 if (dev) 1360 get_device(&dev->dev); 1361 return dev; 1362 } 1363 EXPORT_SYMBOL(pci_dev_get); 1364 1365 /** 1366 * pci_dev_put - release a use of the pci device structure 1367 * @dev: device that's been disconnected 1368 * 1369 * Must be called when a user of a device is finished with it. When the last 1370 * user of the device calls this function, the memory of the device is freed. 1371 */ 1372 void pci_dev_put(struct pci_dev *dev) 1373 { 1374 if (dev) 1375 put_device(&dev->dev); 1376 } 1377 EXPORT_SYMBOL(pci_dev_put); 1378 1379 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1380 { 1381 struct pci_dev *pdev; 1382 1383 if (!dev) 1384 return -ENODEV; 1385 1386 pdev = to_pci_dev(dev); 1387 1388 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1389 return -ENOMEM; 1390 1391 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1392 return -ENOMEM; 1393 1394 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1395 pdev->subsystem_device)) 1396 return -ENOMEM; 1397 1398 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1399 return -ENOMEM; 1400 1401 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1402 pdev->vendor, pdev->device, 1403 pdev->subsystem_vendor, pdev->subsystem_device, 1404 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1405 (u8)(pdev->class))) 1406 return -ENOMEM; 1407 1408 return 0; 1409 } 1410 1411 struct bus_type pci_bus_type = { 1412 .name = "pci", 1413 .match = pci_bus_match, 1414 .uevent = pci_uevent, 1415 .probe = pci_device_probe, 1416 .remove = pci_device_remove, 1417 .shutdown = pci_device_shutdown, 1418 .dev_groups = pci_dev_groups, 1419 .bus_groups = pci_bus_groups, 1420 .drv_groups = pci_drv_groups, 1421 .pm = PCI_PM_OPS_PTR, 1422 }; 1423 EXPORT_SYMBOL(pci_bus_type); 1424 1425 static int __init pci_driver_init(void) 1426 { 1427 return bus_register(&pci_bus_type); 1428 } 1429 postcore_initcall(pci_driver_init); 1430