1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 4 * (C) Copyright 2007 Novell Inc. 5 */ 6 7 #include <linux/pci.h> 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/device.h> 11 #include <linux/mempolicy.h> 12 #include <linux/string.h> 13 #include <linux/slab.h> 14 #include <linux/sched.h> 15 #include <linux/cpu.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/suspend.h> 18 #include <linux/kexec.h> 19 #include "pci.h" 20 #include "pcie/portdrv.h" 21 22 struct pci_dynid { 23 struct list_head node; 24 struct pci_device_id id; 25 }; 26 27 /** 28 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 29 * @drv: target pci driver 30 * @vendor: PCI vendor ID 31 * @device: PCI device ID 32 * @subvendor: PCI subvendor ID 33 * @subdevice: PCI subdevice ID 34 * @class: PCI class 35 * @class_mask: PCI class mask 36 * @driver_data: private driver data 37 * 38 * Adds a new dynamic pci device ID to this driver and causes the 39 * driver to probe for all devices again. @drv must have been 40 * registered prior to calling this function. 41 * 42 * CONTEXT: 43 * Does GFP_KERNEL allocation. 44 * 45 * RETURNS: 46 * 0 on success, -errno on failure. 47 */ 48 int pci_add_dynid(struct pci_driver *drv, 49 unsigned int vendor, unsigned int device, 50 unsigned int subvendor, unsigned int subdevice, 51 unsigned int class, unsigned int class_mask, 52 unsigned long driver_data) 53 { 54 struct pci_dynid *dynid; 55 56 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 57 if (!dynid) 58 return -ENOMEM; 59 60 dynid->id.vendor = vendor; 61 dynid->id.device = device; 62 dynid->id.subvendor = subvendor; 63 dynid->id.subdevice = subdevice; 64 dynid->id.class = class; 65 dynid->id.class_mask = class_mask; 66 dynid->id.driver_data = driver_data; 67 68 spin_lock(&drv->dynids.lock); 69 list_add_tail(&dynid->node, &drv->dynids.list); 70 spin_unlock(&drv->dynids.lock); 71 72 return driver_attach(&drv->driver); 73 } 74 EXPORT_SYMBOL_GPL(pci_add_dynid); 75 76 static void pci_free_dynids(struct pci_driver *drv) 77 { 78 struct pci_dynid *dynid, *n; 79 80 spin_lock(&drv->dynids.lock); 81 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 82 list_del(&dynid->node); 83 kfree(dynid); 84 } 85 spin_unlock(&drv->dynids.lock); 86 } 87 88 /** 89 * store_new_id - sysfs frontend to pci_add_dynid() 90 * @driver: target device driver 91 * @buf: buffer for scanning device ID data 92 * @count: input size 93 * 94 * Allow PCI IDs to be added to an existing driver via sysfs. 95 */ 96 static ssize_t new_id_store(struct device_driver *driver, const char *buf, 97 size_t count) 98 { 99 struct pci_driver *pdrv = to_pci_driver(driver); 100 const struct pci_device_id *ids = pdrv->id_table; 101 __u32 vendor, device, subvendor = PCI_ANY_ID, 102 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 103 unsigned long driver_data = 0; 104 int fields = 0; 105 int retval = 0; 106 107 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 108 &vendor, &device, &subvendor, &subdevice, 109 &class, &class_mask, &driver_data); 110 if (fields < 2) 111 return -EINVAL; 112 113 if (fields != 7) { 114 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 115 if (!pdev) 116 return -ENOMEM; 117 118 pdev->vendor = vendor; 119 pdev->device = device; 120 pdev->subsystem_vendor = subvendor; 121 pdev->subsystem_device = subdevice; 122 pdev->class = class; 123 124 if (pci_match_id(pdrv->id_table, pdev)) 125 retval = -EEXIST; 126 127 kfree(pdev); 128 129 if (retval) 130 return retval; 131 } 132 133 /* Only accept driver_data values that match an existing id_table 134 entry */ 135 if (ids) { 136 retval = -EINVAL; 137 while (ids->vendor || ids->subvendor || ids->class_mask) { 138 if (driver_data == ids->driver_data) { 139 retval = 0; 140 break; 141 } 142 ids++; 143 } 144 if (retval) /* No match */ 145 return retval; 146 } 147 148 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 149 class, class_mask, driver_data); 150 if (retval) 151 return retval; 152 return count; 153 } 154 static DRIVER_ATTR_WO(new_id); 155 156 /** 157 * store_remove_id - remove a PCI device ID from this driver 158 * @driver: target device driver 159 * @buf: buffer for scanning device ID data 160 * @count: input size 161 * 162 * Removes a dynamic pci device ID to this driver. 163 */ 164 static ssize_t remove_id_store(struct device_driver *driver, const char *buf, 165 size_t count) 166 { 167 struct pci_dynid *dynid, *n; 168 struct pci_driver *pdrv = to_pci_driver(driver); 169 __u32 vendor, device, subvendor = PCI_ANY_ID, 170 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 171 int fields = 0; 172 size_t retval = -ENODEV; 173 174 fields = sscanf(buf, "%x %x %x %x %x %x", 175 &vendor, &device, &subvendor, &subdevice, 176 &class, &class_mask); 177 if (fields < 2) 178 return -EINVAL; 179 180 spin_lock(&pdrv->dynids.lock); 181 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 182 struct pci_device_id *id = &dynid->id; 183 if ((id->vendor == vendor) && 184 (id->device == device) && 185 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 186 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 187 !((id->class ^ class) & class_mask)) { 188 list_del(&dynid->node); 189 kfree(dynid); 190 retval = count; 191 break; 192 } 193 } 194 spin_unlock(&pdrv->dynids.lock); 195 196 return retval; 197 } 198 static DRIVER_ATTR_WO(remove_id); 199 200 static struct attribute *pci_drv_attrs[] = { 201 &driver_attr_new_id.attr, 202 &driver_attr_remove_id.attr, 203 NULL, 204 }; 205 ATTRIBUTE_GROUPS(pci_drv); 206 207 /** 208 * pci_match_id - See if a pci device matches a given pci_id table 209 * @ids: array of PCI device id structures to search in 210 * @dev: the PCI device structure to match against. 211 * 212 * Used by a driver to check whether a PCI device present in the 213 * system is in its list of supported devices. Returns the matching 214 * pci_device_id structure or %NULL if there is no match. 215 * 216 * Deprecated, don't use this as it will not catch any dynamic ids 217 * that a driver might want to check for. 218 */ 219 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 220 struct pci_dev *dev) 221 { 222 if (ids) { 223 while (ids->vendor || ids->subvendor || ids->class_mask) { 224 if (pci_match_one_device(ids, dev)) 225 return ids; 226 ids++; 227 } 228 } 229 return NULL; 230 } 231 EXPORT_SYMBOL(pci_match_id); 232 233 static const struct pci_device_id pci_device_id_any = { 234 .vendor = PCI_ANY_ID, 235 .device = PCI_ANY_ID, 236 .subvendor = PCI_ANY_ID, 237 .subdevice = PCI_ANY_ID, 238 }; 239 240 /** 241 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 242 * @drv: the PCI driver to match against 243 * @dev: the PCI device structure to match against 244 * 245 * Used by a driver to check whether a PCI device present in the 246 * system is in its list of supported devices. Returns the matching 247 * pci_device_id structure or %NULL if there is no match. 248 */ 249 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 250 struct pci_dev *dev) 251 { 252 struct pci_dynid *dynid; 253 const struct pci_device_id *found_id = NULL; 254 255 /* When driver_override is set, only bind to the matching driver */ 256 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 257 return NULL; 258 259 /* Look at the dynamic ids first, before the static ones */ 260 spin_lock(&drv->dynids.lock); 261 list_for_each_entry(dynid, &drv->dynids.list, node) { 262 if (pci_match_one_device(&dynid->id, dev)) { 263 found_id = &dynid->id; 264 break; 265 } 266 } 267 spin_unlock(&drv->dynids.lock); 268 269 if (!found_id) 270 found_id = pci_match_id(drv->id_table, dev); 271 272 /* driver_override will always match, send a dummy id */ 273 if (!found_id && dev->driver_override) 274 found_id = &pci_device_id_any; 275 276 return found_id; 277 } 278 279 struct drv_dev_and_id { 280 struct pci_driver *drv; 281 struct pci_dev *dev; 282 const struct pci_device_id *id; 283 }; 284 285 static long local_pci_probe(void *_ddi) 286 { 287 struct drv_dev_and_id *ddi = _ddi; 288 struct pci_dev *pci_dev = ddi->dev; 289 struct pci_driver *pci_drv = ddi->drv; 290 struct device *dev = &pci_dev->dev; 291 int rc; 292 293 /* 294 * Unbound PCI devices are always put in D0, regardless of 295 * runtime PM status. During probe, the device is set to 296 * active and the usage count is incremented. If the driver 297 * supports runtime PM, it should call pm_runtime_put_noidle(), 298 * or any other runtime PM helper function decrementing the usage 299 * count, in its probe routine and pm_runtime_get_noresume() in 300 * its remove routine. 301 */ 302 pm_runtime_get_sync(dev); 303 pci_dev->driver = pci_drv; 304 rc = pci_drv->probe(pci_dev, ddi->id); 305 if (!rc) 306 return rc; 307 if (rc < 0) { 308 pci_dev->driver = NULL; 309 pm_runtime_put_sync(dev); 310 return rc; 311 } 312 /* 313 * Probe function should return < 0 for failure, 0 for success 314 * Treat values > 0 as success, but warn. 315 */ 316 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 317 return 0; 318 } 319 320 static bool pci_physfn_is_probed(struct pci_dev *dev) 321 { 322 #ifdef CONFIG_PCI_IOV 323 return dev->is_virtfn && dev->physfn->is_probed; 324 #else 325 return false; 326 #endif 327 } 328 329 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 330 const struct pci_device_id *id) 331 { 332 int error, node, cpu; 333 struct drv_dev_and_id ddi = { drv, dev, id }; 334 335 /* 336 * Execute driver initialization on node where the device is 337 * attached. This way the driver likely allocates its local memory 338 * on the right node. 339 */ 340 node = dev_to_node(&dev->dev); 341 dev->is_probed = 1; 342 343 cpu_hotplug_disable(); 344 345 /* 346 * Prevent nesting work_on_cpu() for the case where a Virtual Function 347 * device is probed from work_on_cpu() of the Physical device. 348 */ 349 if (node < 0 || node >= MAX_NUMNODES || !node_online(node) || 350 pci_physfn_is_probed(dev)) 351 cpu = nr_cpu_ids; 352 else 353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 354 355 if (cpu < nr_cpu_ids) 356 error = work_on_cpu(cpu, local_pci_probe, &ddi); 357 else 358 error = local_pci_probe(&ddi); 359 360 dev->is_probed = 0; 361 cpu_hotplug_enable(); 362 return error; 363 } 364 365 /** 366 * __pci_device_probe - check if a driver wants to claim a specific PCI device 367 * @drv: driver to call to check if it wants the PCI device 368 * @pci_dev: PCI device being probed 369 * 370 * returns 0 on success, else error. 371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 372 */ 373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 374 { 375 const struct pci_device_id *id; 376 int error = 0; 377 378 if (!pci_dev->driver && drv->probe) { 379 error = -ENODEV; 380 381 id = pci_match_device(drv, pci_dev); 382 if (id) 383 error = pci_call_probe(drv, pci_dev, id); 384 } 385 return error; 386 } 387 388 int __weak pcibios_alloc_irq(struct pci_dev *dev) 389 { 390 return 0; 391 } 392 393 void __weak pcibios_free_irq(struct pci_dev *dev) 394 { 395 } 396 397 #ifdef CONFIG_PCI_IOV 398 static inline bool pci_device_can_probe(struct pci_dev *pdev) 399 { 400 return (!pdev->is_virtfn || pdev->physfn->sriov->drivers_autoprobe); 401 } 402 #else 403 static inline bool pci_device_can_probe(struct pci_dev *pdev) 404 { 405 return true; 406 } 407 #endif 408 409 static int pci_device_probe(struct device *dev) 410 { 411 int error; 412 struct pci_dev *pci_dev = to_pci_dev(dev); 413 struct pci_driver *drv = to_pci_driver(dev->driver); 414 415 pci_assign_irq(pci_dev); 416 417 error = pcibios_alloc_irq(pci_dev); 418 if (error < 0) 419 return error; 420 421 pci_dev_get(pci_dev); 422 if (pci_device_can_probe(pci_dev)) { 423 error = __pci_device_probe(drv, pci_dev); 424 if (error) { 425 pcibios_free_irq(pci_dev); 426 pci_dev_put(pci_dev); 427 } 428 } 429 430 return error; 431 } 432 433 static int pci_device_remove(struct device *dev) 434 { 435 struct pci_dev *pci_dev = to_pci_dev(dev); 436 struct pci_driver *drv = pci_dev->driver; 437 438 if (drv) { 439 if (drv->remove) { 440 pm_runtime_get_sync(dev); 441 drv->remove(pci_dev); 442 pm_runtime_put_noidle(dev); 443 } 444 pcibios_free_irq(pci_dev); 445 pci_dev->driver = NULL; 446 } 447 448 /* Undo the runtime PM settings in local_pci_probe() */ 449 pm_runtime_put_sync(dev); 450 451 /* 452 * If the device is still on, set the power state as "unknown", 453 * since it might change by the next time we load the driver. 454 */ 455 if (pci_dev->current_state == PCI_D0) 456 pci_dev->current_state = PCI_UNKNOWN; 457 458 /* 459 * We would love to complain here if pci_dev->is_enabled is set, that 460 * the driver should have called pci_disable_device(), but the 461 * unfortunate fact is there are too many odd BIOS and bridge setups 462 * that don't like drivers doing that all of the time. 463 * Oh well, we can dream of sane hardware when we sleep, no matter how 464 * horrible the crap we have to deal with is when we are awake... 465 */ 466 467 pci_dev_put(pci_dev); 468 return 0; 469 } 470 471 static void pci_device_shutdown(struct device *dev) 472 { 473 struct pci_dev *pci_dev = to_pci_dev(dev); 474 struct pci_driver *drv = pci_dev->driver; 475 476 pm_runtime_resume(dev); 477 478 if (drv && drv->shutdown) 479 drv->shutdown(pci_dev); 480 481 /* 482 * If this is a kexec reboot, turn off Bus Master bit on the 483 * device to tell it to not continue to do DMA. Don't touch 484 * devices in D3cold or unknown states. 485 * If it is not a kexec reboot, firmware will hit the PCI 486 * devices with big hammer and stop their DMA any way. 487 */ 488 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 489 pci_clear_master(pci_dev); 490 } 491 492 #ifdef CONFIG_PM 493 494 /* Auxiliary functions used for system resume and run-time resume. */ 495 496 /** 497 * pci_restore_standard_config - restore standard config registers of PCI device 498 * @pci_dev: PCI device to handle 499 */ 500 static int pci_restore_standard_config(struct pci_dev *pci_dev) 501 { 502 pci_update_current_state(pci_dev, PCI_UNKNOWN); 503 504 if (pci_dev->current_state != PCI_D0) { 505 int error = pci_set_power_state(pci_dev, PCI_D0); 506 if (error) 507 return error; 508 } 509 510 pci_restore_state(pci_dev); 511 pci_pme_restore(pci_dev); 512 return 0; 513 } 514 515 #endif 516 517 #ifdef CONFIG_PM_SLEEP 518 519 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 520 { 521 pci_power_up(pci_dev); 522 pci_restore_state(pci_dev); 523 pci_pme_restore(pci_dev); 524 pci_fixup_device(pci_fixup_resume_early, pci_dev); 525 } 526 527 /* 528 * Default "suspend" method for devices that have no driver provided suspend, 529 * or not even a driver at all (second part). 530 */ 531 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 532 { 533 /* 534 * mark its power state as "unknown", since we don't know if 535 * e.g. the BIOS will change its device state when we suspend. 536 */ 537 if (pci_dev->current_state == PCI_D0) 538 pci_dev->current_state = PCI_UNKNOWN; 539 } 540 541 /* 542 * Default "resume" method for devices that have no driver provided resume, 543 * or not even a driver at all (second part). 544 */ 545 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 546 { 547 int retval; 548 549 /* if the device was enabled before suspend, reenable */ 550 retval = pci_reenable_device(pci_dev); 551 /* 552 * if the device was busmaster before the suspend, make it busmaster 553 * again 554 */ 555 if (pci_dev->is_busmaster) 556 pci_set_master(pci_dev); 557 558 return retval; 559 } 560 561 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 562 { 563 struct pci_dev *pci_dev = to_pci_dev(dev); 564 struct pci_driver *drv = pci_dev->driver; 565 566 if (drv && drv->suspend) { 567 pci_power_t prev = pci_dev->current_state; 568 int error; 569 570 error = drv->suspend(pci_dev, state); 571 suspend_report_result(drv->suspend, error); 572 if (error) 573 return error; 574 575 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 576 && pci_dev->current_state != PCI_UNKNOWN) { 577 WARN_ONCE(pci_dev->current_state != prev, 578 "PCI PM: Device state not saved by %pF\n", 579 drv->suspend); 580 } 581 } 582 583 pci_fixup_device(pci_fixup_suspend, pci_dev); 584 585 return 0; 586 } 587 588 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 589 { 590 struct pci_dev *pci_dev = to_pci_dev(dev); 591 struct pci_driver *drv = pci_dev->driver; 592 593 if (drv && drv->suspend_late) { 594 pci_power_t prev = pci_dev->current_state; 595 int error; 596 597 error = drv->suspend_late(pci_dev, state); 598 suspend_report_result(drv->suspend_late, error); 599 if (error) 600 return error; 601 602 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 603 && pci_dev->current_state != PCI_UNKNOWN) { 604 WARN_ONCE(pci_dev->current_state != prev, 605 "PCI PM: Device state not saved by %pF\n", 606 drv->suspend_late); 607 goto Fixup; 608 } 609 } 610 611 if (!pci_dev->state_saved) 612 pci_save_state(pci_dev); 613 614 pci_pm_set_unknown_state(pci_dev); 615 616 Fixup: 617 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 618 619 return 0; 620 } 621 622 static int pci_legacy_resume_early(struct device *dev) 623 { 624 struct pci_dev *pci_dev = to_pci_dev(dev); 625 struct pci_driver *drv = pci_dev->driver; 626 627 return drv && drv->resume_early ? 628 drv->resume_early(pci_dev) : 0; 629 } 630 631 static int pci_legacy_resume(struct device *dev) 632 { 633 struct pci_dev *pci_dev = to_pci_dev(dev); 634 struct pci_driver *drv = pci_dev->driver; 635 636 pci_fixup_device(pci_fixup_resume, pci_dev); 637 638 return drv && drv->resume ? 639 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 640 } 641 642 /* Auxiliary functions used by the new power management framework */ 643 644 static void pci_pm_default_resume(struct pci_dev *pci_dev) 645 { 646 pci_fixup_device(pci_fixup_resume, pci_dev); 647 pci_enable_wake(pci_dev, PCI_D0, false); 648 } 649 650 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 651 { 652 /* Disable non-bridge devices without PM support */ 653 if (!pci_has_subordinate(pci_dev)) 654 pci_disable_enabled_device(pci_dev); 655 } 656 657 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 658 { 659 struct pci_driver *drv = pci_dev->driver; 660 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 661 || drv->resume_early); 662 663 /* 664 * Legacy PM support is used by default, so warn if the new framework is 665 * supported as well. Drivers are supposed to support either the 666 * former, or the latter, but not both at the same time. 667 */ 668 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 669 drv->name, pci_dev->vendor, pci_dev->device); 670 671 return ret; 672 } 673 674 /* New power management framework */ 675 676 static int pci_pm_prepare(struct device *dev) 677 { 678 struct device_driver *drv = dev->driver; 679 680 if (drv && drv->pm && drv->pm->prepare) { 681 int error = drv->pm->prepare(dev); 682 if (error < 0) 683 return error; 684 685 if (!error && dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_PREPARE)) 686 return 0; 687 } 688 return pci_dev_keep_suspended(to_pci_dev(dev)); 689 } 690 691 static void pci_pm_complete(struct device *dev) 692 { 693 struct pci_dev *pci_dev = to_pci_dev(dev); 694 695 pci_dev_complete_resume(pci_dev); 696 pm_generic_complete(dev); 697 698 /* Resume device if platform firmware has put it in reset-power-on */ 699 if (pm_runtime_suspended(dev) && pm_resume_via_firmware()) { 700 pci_power_t pre_sleep_state = pci_dev->current_state; 701 702 pci_update_current_state(pci_dev, pci_dev->current_state); 703 if (pci_dev->current_state < pre_sleep_state) 704 pm_request_resume(dev); 705 } 706 } 707 708 #else /* !CONFIG_PM_SLEEP */ 709 710 #define pci_pm_prepare NULL 711 #define pci_pm_complete NULL 712 713 #endif /* !CONFIG_PM_SLEEP */ 714 715 #ifdef CONFIG_SUSPEND 716 static void pcie_pme_root_status_cleanup(struct pci_dev *pci_dev) 717 { 718 /* 719 * Some BIOSes forget to clear Root PME Status bits after system 720 * wakeup, which breaks ACPI-based runtime wakeup on PCI Express. 721 * Clear those bits now just in case (shouldn't hurt). 722 */ 723 if (pci_is_pcie(pci_dev) && 724 (pci_pcie_type(pci_dev) == PCI_EXP_TYPE_ROOT_PORT || 725 pci_pcie_type(pci_dev) == PCI_EXP_TYPE_RC_EC)) 726 pcie_clear_root_pme_status(pci_dev); 727 } 728 729 static int pci_pm_suspend(struct device *dev) 730 { 731 struct pci_dev *pci_dev = to_pci_dev(dev); 732 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 733 734 if (pci_has_legacy_pm_support(pci_dev)) 735 return pci_legacy_suspend(dev, PMSG_SUSPEND); 736 737 if (!pm) { 738 pci_pm_default_suspend(pci_dev); 739 return 0; 740 } 741 742 /* 743 * PCI devices suspended at run time may need to be resumed at this 744 * point, because in general it may be necessary to reconfigure them for 745 * system suspend. Namely, if the device is expected to wake up the 746 * system from the sleep state, it may have to be reconfigured for this 747 * purpose, or if the device is not expected to wake up the system from 748 * the sleep state, it should be prevented from signaling wakeup events 749 * going forward. 750 * 751 * Also if the driver of the device does not indicate that its system 752 * suspend callbacks can cope with runtime-suspended devices, it is 753 * better to resume the device from runtime suspend here. 754 */ 755 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 756 !pci_dev_keep_suspended(pci_dev)) 757 pm_runtime_resume(dev); 758 759 pci_dev->state_saved = false; 760 if (pm->suspend) { 761 pci_power_t prev = pci_dev->current_state; 762 int error; 763 764 error = pm->suspend(dev); 765 suspend_report_result(pm->suspend, error); 766 if (error) 767 return error; 768 769 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 770 && pci_dev->current_state != PCI_UNKNOWN) { 771 WARN_ONCE(pci_dev->current_state != prev, 772 "PCI PM: State of device not saved by %pF\n", 773 pm->suspend); 774 } 775 } 776 777 return 0; 778 } 779 780 static int pci_pm_suspend_late(struct device *dev) 781 { 782 if (dev_pm_smart_suspend_and_suspended(dev)) 783 return 0; 784 785 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 786 787 return pm_generic_suspend_late(dev); 788 } 789 790 static int pci_pm_suspend_noirq(struct device *dev) 791 { 792 struct pci_dev *pci_dev = to_pci_dev(dev); 793 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 794 795 if (dev_pm_smart_suspend_and_suspended(dev)) { 796 dev->power.may_skip_resume = true; 797 return 0; 798 } 799 800 if (pci_has_legacy_pm_support(pci_dev)) 801 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 802 803 if (!pm) { 804 pci_save_state(pci_dev); 805 goto Fixup; 806 } 807 808 if (pm->suspend_noirq) { 809 pci_power_t prev = pci_dev->current_state; 810 int error; 811 812 error = pm->suspend_noirq(dev); 813 suspend_report_result(pm->suspend_noirq, error); 814 if (error) 815 return error; 816 817 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 818 && pci_dev->current_state != PCI_UNKNOWN) { 819 WARN_ONCE(pci_dev->current_state != prev, 820 "PCI PM: State of device not saved by %pF\n", 821 pm->suspend_noirq); 822 goto Fixup; 823 } 824 } 825 826 if (!pci_dev->state_saved) { 827 pci_save_state(pci_dev); 828 if (pci_power_manageable(pci_dev)) 829 pci_prepare_to_sleep(pci_dev); 830 } 831 832 dev_dbg(dev, "PCI PM: Suspend power state: %s\n", 833 pci_power_name(pci_dev->current_state)); 834 835 pci_pm_set_unknown_state(pci_dev); 836 837 /* 838 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 839 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 840 * hasn't been quiesced and tries to turn it off. If the controller 841 * is already in D3, this can hang or cause memory corruption. 842 * 843 * Since the value of the COMMAND register doesn't matter once the 844 * device has been suspended, we can safely set it to 0 here. 845 */ 846 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 847 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 848 849 Fixup: 850 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 851 852 /* 853 * If the target system sleep state is suspend-to-idle, it is sufficient 854 * to check whether or not the device's wakeup settings are good for 855 * runtime PM. Otherwise, the pm_resume_via_firmware() check will cause 856 * pci_pm_complete() to take care of fixing up the device's state 857 * anyway, if need be. 858 */ 859 dev->power.may_skip_resume = device_may_wakeup(dev) || 860 !device_can_wakeup(dev); 861 862 return 0; 863 } 864 865 static int pci_pm_resume_noirq(struct device *dev) 866 { 867 struct pci_dev *pci_dev = to_pci_dev(dev); 868 struct device_driver *drv = dev->driver; 869 int error = 0; 870 871 if (dev_pm_may_skip_resume(dev)) 872 return 0; 873 874 /* 875 * Devices with DPM_FLAG_SMART_SUSPEND may be left in runtime suspend 876 * during system suspend, so update their runtime PM status to "active" 877 * as they are going to be put into D0 shortly. 878 */ 879 if (dev_pm_smart_suspend_and_suspended(dev)) 880 pm_runtime_set_active(dev); 881 882 pci_pm_default_resume_early(pci_dev); 883 884 if (pci_has_legacy_pm_support(pci_dev)) 885 return pci_legacy_resume_early(dev); 886 887 pcie_pme_root_status_cleanup(pci_dev); 888 889 if (drv && drv->pm && drv->pm->resume_noirq) 890 error = drv->pm->resume_noirq(dev); 891 892 return error; 893 } 894 895 static int pci_pm_resume(struct device *dev) 896 { 897 struct pci_dev *pci_dev = to_pci_dev(dev); 898 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 899 int error = 0; 900 901 /* 902 * This is necessary for the suspend error path in which resume is 903 * called without restoring the standard config registers of the device. 904 */ 905 if (pci_dev->state_saved) 906 pci_restore_standard_config(pci_dev); 907 908 if (pci_has_legacy_pm_support(pci_dev)) 909 return pci_legacy_resume(dev); 910 911 pci_pm_default_resume(pci_dev); 912 913 if (pm) { 914 if (pm->resume) 915 error = pm->resume(dev); 916 } else { 917 pci_pm_reenable_device(pci_dev); 918 } 919 920 return error; 921 } 922 923 #else /* !CONFIG_SUSPEND */ 924 925 #define pci_pm_suspend NULL 926 #define pci_pm_suspend_late NULL 927 #define pci_pm_suspend_noirq NULL 928 #define pci_pm_resume NULL 929 #define pci_pm_resume_noirq NULL 930 931 #endif /* !CONFIG_SUSPEND */ 932 933 #ifdef CONFIG_HIBERNATE_CALLBACKS 934 935 936 /* 937 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 938 * a hibernate transition 939 */ 940 struct dev_pm_ops __weak pcibios_pm_ops; 941 942 static int pci_pm_freeze(struct device *dev) 943 { 944 struct pci_dev *pci_dev = to_pci_dev(dev); 945 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 946 947 if (pci_has_legacy_pm_support(pci_dev)) 948 return pci_legacy_suspend(dev, PMSG_FREEZE); 949 950 if (!pm) { 951 pci_pm_default_suspend(pci_dev); 952 return 0; 953 } 954 955 /* 956 * This used to be done in pci_pm_prepare() for all devices and some 957 * drivers may depend on it, so do it here. Ideally, runtime-suspended 958 * devices should not be touched during freeze/thaw transitions, 959 * however. 960 */ 961 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND)) 962 pm_runtime_resume(dev); 963 964 pci_dev->state_saved = false; 965 if (pm->freeze) { 966 int error; 967 968 error = pm->freeze(dev); 969 suspend_report_result(pm->freeze, error); 970 if (error) 971 return error; 972 } 973 974 return 0; 975 } 976 977 static int pci_pm_freeze_late(struct device *dev) 978 { 979 if (dev_pm_smart_suspend_and_suspended(dev)) 980 return 0; 981 982 return pm_generic_freeze_late(dev); 983 } 984 985 static int pci_pm_freeze_noirq(struct device *dev) 986 { 987 struct pci_dev *pci_dev = to_pci_dev(dev); 988 struct device_driver *drv = dev->driver; 989 990 if (dev_pm_smart_suspend_and_suspended(dev)) 991 return 0; 992 993 if (pci_has_legacy_pm_support(pci_dev)) 994 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 995 996 if (drv && drv->pm && drv->pm->freeze_noirq) { 997 int error; 998 999 error = drv->pm->freeze_noirq(dev); 1000 suspend_report_result(drv->pm->freeze_noirq, error); 1001 if (error) 1002 return error; 1003 } 1004 1005 if (!pci_dev->state_saved) 1006 pci_save_state(pci_dev); 1007 1008 pci_pm_set_unknown_state(pci_dev); 1009 1010 if (pcibios_pm_ops.freeze_noirq) 1011 return pcibios_pm_ops.freeze_noirq(dev); 1012 1013 return 0; 1014 } 1015 1016 static int pci_pm_thaw_noirq(struct device *dev) 1017 { 1018 struct pci_dev *pci_dev = to_pci_dev(dev); 1019 struct device_driver *drv = dev->driver; 1020 int error = 0; 1021 1022 /* 1023 * If the device is in runtime suspend, the code below may not work 1024 * correctly with it, so skip that code and make the PM core skip all of 1025 * the subsequent "thaw" callbacks for the device. 1026 */ 1027 if (dev_pm_smart_suspend_and_suspended(dev)) { 1028 dev_pm_skip_next_resume_phases(dev); 1029 return 0; 1030 } 1031 1032 if (pcibios_pm_ops.thaw_noirq) { 1033 error = pcibios_pm_ops.thaw_noirq(dev); 1034 if (error) 1035 return error; 1036 } 1037 1038 if (pci_has_legacy_pm_support(pci_dev)) 1039 return pci_legacy_resume_early(dev); 1040 1041 /* 1042 * pci_restore_state() requires the device to be in D0 (because of MSI 1043 * restoration among other things), so force it into D0 in case the 1044 * driver's "freeze" callbacks put it into a low-power state directly. 1045 */ 1046 pci_set_power_state(pci_dev, PCI_D0); 1047 pci_restore_state(pci_dev); 1048 1049 if (drv && drv->pm && drv->pm->thaw_noirq) 1050 error = drv->pm->thaw_noirq(dev); 1051 1052 return error; 1053 } 1054 1055 static int pci_pm_thaw(struct device *dev) 1056 { 1057 struct pci_dev *pci_dev = to_pci_dev(dev); 1058 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1059 int error = 0; 1060 1061 if (pci_has_legacy_pm_support(pci_dev)) 1062 return pci_legacy_resume(dev); 1063 1064 if (pm) { 1065 if (pm->thaw) 1066 error = pm->thaw(dev); 1067 } else { 1068 pci_pm_reenable_device(pci_dev); 1069 } 1070 1071 pci_dev->state_saved = false; 1072 1073 return error; 1074 } 1075 1076 static int pci_pm_poweroff(struct device *dev) 1077 { 1078 struct pci_dev *pci_dev = to_pci_dev(dev); 1079 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1080 1081 if (pci_has_legacy_pm_support(pci_dev)) 1082 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 1083 1084 if (!pm) { 1085 pci_pm_default_suspend(pci_dev); 1086 return 0; 1087 } 1088 1089 /* The reason to do that is the same as in pci_pm_suspend(). */ 1090 if (!dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) || 1091 !pci_dev_keep_suspended(pci_dev)) 1092 pm_runtime_resume(dev); 1093 1094 pci_dev->state_saved = false; 1095 if (pm->poweroff) { 1096 int error; 1097 1098 error = pm->poweroff(dev); 1099 suspend_report_result(pm->poweroff, error); 1100 if (error) 1101 return error; 1102 } 1103 1104 return 0; 1105 } 1106 1107 static int pci_pm_poweroff_late(struct device *dev) 1108 { 1109 if (dev_pm_smart_suspend_and_suspended(dev)) 1110 return 0; 1111 1112 pci_fixup_device(pci_fixup_suspend, to_pci_dev(dev)); 1113 1114 return pm_generic_poweroff_late(dev); 1115 } 1116 1117 static int pci_pm_poweroff_noirq(struct device *dev) 1118 { 1119 struct pci_dev *pci_dev = to_pci_dev(dev); 1120 struct device_driver *drv = dev->driver; 1121 1122 if (dev_pm_smart_suspend_and_suspended(dev)) 1123 return 0; 1124 1125 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1126 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1127 1128 if (!drv || !drv->pm) { 1129 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1130 return 0; 1131 } 1132 1133 if (drv->pm->poweroff_noirq) { 1134 int error; 1135 1136 error = drv->pm->poweroff_noirq(dev); 1137 suspend_report_result(drv->pm->poweroff_noirq, error); 1138 if (error) 1139 return error; 1140 } 1141 1142 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1143 pci_prepare_to_sleep(pci_dev); 1144 1145 /* 1146 * The reason for doing this here is the same as for the analogous code 1147 * in pci_pm_suspend_noirq(). 1148 */ 1149 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1150 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1151 1152 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1153 1154 if (pcibios_pm_ops.poweroff_noirq) 1155 return pcibios_pm_ops.poweroff_noirq(dev); 1156 1157 return 0; 1158 } 1159 1160 static int pci_pm_restore_noirq(struct device *dev) 1161 { 1162 struct pci_dev *pci_dev = to_pci_dev(dev); 1163 struct device_driver *drv = dev->driver; 1164 int error = 0; 1165 1166 /* This is analogous to the pci_pm_resume_noirq() case. */ 1167 if (dev_pm_smart_suspend_and_suspended(dev)) 1168 pm_runtime_set_active(dev); 1169 1170 if (pcibios_pm_ops.restore_noirq) { 1171 error = pcibios_pm_ops.restore_noirq(dev); 1172 if (error) 1173 return error; 1174 } 1175 1176 pci_pm_default_resume_early(pci_dev); 1177 1178 if (pci_has_legacy_pm_support(pci_dev)) 1179 return pci_legacy_resume_early(dev); 1180 1181 if (drv && drv->pm && drv->pm->restore_noirq) 1182 error = drv->pm->restore_noirq(dev); 1183 1184 return error; 1185 } 1186 1187 static int pci_pm_restore(struct device *dev) 1188 { 1189 struct pci_dev *pci_dev = to_pci_dev(dev); 1190 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1191 int error = 0; 1192 1193 /* 1194 * This is necessary for the hibernation error path in which restore is 1195 * called without restoring the standard config registers of the device. 1196 */ 1197 if (pci_dev->state_saved) 1198 pci_restore_standard_config(pci_dev); 1199 1200 if (pci_has_legacy_pm_support(pci_dev)) 1201 return pci_legacy_resume(dev); 1202 1203 pci_pm_default_resume(pci_dev); 1204 1205 if (pm) { 1206 if (pm->restore) 1207 error = pm->restore(dev); 1208 } else { 1209 pci_pm_reenable_device(pci_dev); 1210 } 1211 1212 return error; 1213 } 1214 1215 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1216 1217 #define pci_pm_freeze NULL 1218 #define pci_pm_freeze_late NULL 1219 #define pci_pm_freeze_noirq NULL 1220 #define pci_pm_thaw NULL 1221 #define pci_pm_thaw_noirq NULL 1222 #define pci_pm_poweroff NULL 1223 #define pci_pm_poweroff_late NULL 1224 #define pci_pm_poweroff_noirq NULL 1225 #define pci_pm_restore NULL 1226 #define pci_pm_restore_noirq NULL 1227 1228 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1229 1230 #ifdef CONFIG_PM 1231 1232 static int pci_pm_runtime_suspend(struct device *dev) 1233 { 1234 struct pci_dev *pci_dev = to_pci_dev(dev); 1235 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1236 pci_power_t prev = pci_dev->current_state; 1237 int error; 1238 1239 /* 1240 * If pci_dev->driver is not set (unbound), we leave the device in D0, 1241 * but it may go to D3cold when the bridge above it runtime suspends. 1242 * Save its config space in case that happens. 1243 */ 1244 if (!pci_dev->driver) { 1245 pci_save_state(pci_dev); 1246 return 0; 1247 } 1248 1249 if (!pm || !pm->runtime_suspend) 1250 return -ENOSYS; 1251 1252 pci_dev->state_saved = false; 1253 error = pm->runtime_suspend(dev); 1254 if (error) { 1255 /* 1256 * -EBUSY and -EAGAIN is used to request the runtime PM core 1257 * to schedule a new suspend, so log the event only with debug 1258 * log level. 1259 */ 1260 if (error == -EBUSY || error == -EAGAIN) 1261 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1262 pm->runtime_suspend, error); 1263 else 1264 dev_err(dev, "can't suspend (%pf returned %d)\n", 1265 pm->runtime_suspend, error); 1266 1267 return error; 1268 } 1269 1270 pci_fixup_device(pci_fixup_suspend, pci_dev); 1271 1272 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1273 && pci_dev->current_state != PCI_UNKNOWN) { 1274 WARN_ONCE(pci_dev->current_state != prev, 1275 "PCI PM: State of device not saved by %pF\n", 1276 pm->runtime_suspend); 1277 return 0; 1278 } 1279 1280 if (!pci_dev->state_saved) { 1281 pci_save_state(pci_dev); 1282 pci_finish_runtime_suspend(pci_dev); 1283 } 1284 1285 return 0; 1286 } 1287 1288 static int pci_pm_runtime_resume(struct device *dev) 1289 { 1290 int rc; 1291 struct pci_dev *pci_dev = to_pci_dev(dev); 1292 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1293 1294 /* 1295 * Restoring config space is necessary even if the device is not bound 1296 * to a driver because although we left it in D0, it may have gone to 1297 * D3cold when the bridge above it runtime suspended. 1298 */ 1299 pci_restore_standard_config(pci_dev); 1300 1301 if (!pci_dev->driver) 1302 return 0; 1303 1304 if (!pm || !pm->runtime_resume) 1305 return -ENOSYS; 1306 1307 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1308 pci_enable_wake(pci_dev, PCI_D0, false); 1309 pci_fixup_device(pci_fixup_resume, pci_dev); 1310 1311 rc = pm->runtime_resume(dev); 1312 1313 pci_dev->runtime_d3cold = false; 1314 1315 return rc; 1316 } 1317 1318 static int pci_pm_runtime_idle(struct device *dev) 1319 { 1320 struct pci_dev *pci_dev = to_pci_dev(dev); 1321 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1322 int ret = 0; 1323 1324 /* 1325 * If pci_dev->driver is not set (unbound), the device should 1326 * always remain in D0 regardless of the runtime PM status 1327 */ 1328 if (!pci_dev->driver) 1329 return 0; 1330 1331 if (!pm) 1332 return -ENOSYS; 1333 1334 if (pm->runtime_idle) 1335 ret = pm->runtime_idle(dev); 1336 1337 return ret; 1338 } 1339 1340 static const struct dev_pm_ops pci_dev_pm_ops = { 1341 .prepare = pci_pm_prepare, 1342 .complete = pci_pm_complete, 1343 .suspend = pci_pm_suspend, 1344 .suspend_late = pci_pm_suspend_late, 1345 .resume = pci_pm_resume, 1346 .freeze = pci_pm_freeze, 1347 .freeze_late = pci_pm_freeze_late, 1348 .thaw = pci_pm_thaw, 1349 .poweroff = pci_pm_poweroff, 1350 .poweroff_late = pci_pm_poweroff_late, 1351 .restore = pci_pm_restore, 1352 .suspend_noirq = pci_pm_suspend_noirq, 1353 .resume_noirq = pci_pm_resume_noirq, 1354 .freeze_noirq = pci_pm_freeze_noirq, 1355 .thaw_noirq = pci_pm_thaw_noirq, 1356 .poweroff_noirq = pci_pm_poweroff_noirq, 1357 .restore_noirq = pci_pm_restore_noirq, 1358 .runtime_suspend = pci_pm_runtime_suspend, 1359 .runtime_resume = pci_pm_runtime_resume, 1360 .runtime_idle = pci_pm_runtime_idle, 1361 }; 1362 1363 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1364 1365 #else /* !CONFIG_PM */ 1366 1367 #define pci_pm_runtime_suspend NULL 1368 #define pci_pm_runtime_resume NULL 1369 #define pci_pm_runtime_idle NULL 1370 1371 #define PCI_PM_OPS_PTR NULL 1372 1373 #endif /* !CONFIG_PM */ 1374 1375 /** 1376 * __pci_register_driver - register a new pci driver 1377 * @drv: the driver structure to register 1378 * @owner: owner module of drv 1379 * @mod_name: module name string 1380 * 1381 * Adds the driver structure to the list of registered drivers. 1382 * Returns a negative value on error, otherwise 0. 1383 * If no error occurred, the driver remains registered even if 1384 * no device was claimed during registration. 1385 */ 1386 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1387 const char *mod_name) 1388 { 1389 /* initialize common driver fields */ 1390 drv->driver.name = drv->name; 1391 drv->driver.bus = &pci_bus_type; 1392 drv->driver.owner = owner; 1393 drv->driver.mod_name = mod_name; 1394 drv->driver.groups = drv->groups; 1395 1396 spin_lock_init(&drv->dynids.lock); 1397 INIT_LIST_HEAD(&drv->dynids.list); 1398 1399 /* register with core */ 1400 return driver_register(&drv->driver); 1401 } 1402 EXPORT_SYMBOL(__pci_register_driver); 1403 1404 /** 1405 * pci_unregister_driver - unregister a pci driver 1406 * @drv: the driver structure to unregister 1407 * 1408 * Deletes the driver structure from the list of registered PCI drivers, 1409 * gives it a chance to clean up by calling its remove() function for 1410 * each device it was responsible for, and marks those devices as 1411 * driverless. 1412 */ 1413 1414 void pci_unregister_driver(struct pci_driver *drv) 1415 { 1416 driver_unregister(&drv->driver); 1417 pci_free_dynids(drv); 1418 } 1419 EXPORT_SYMBOL(pci_unregister_driver); 1420 1421 static struct pci_driver pci_compat_driver = { 1422 .name = "compat" 1423 }; 1424 1425 /** 1426 * pci_dev_driver - get the pci_driver of a device 1427 * @dev: the device to query 1428 * 1429 * Returns the appropriate pci_driver structure or %NULL if there is no 1430 * registered driver for the device. 1431 */ 1432 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1433 { 1434 if (dev->driver) 1435 return dev->driver; 1436 else { 1437 int i; 1438 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1439 if (dev->resource[i].flags & IORESOURCE_BUSY) 1440 return &pci_compat_driver; 1441 } 1442 return NULL; 1443 } 1444 EXPORT_SYMBOL(pci_dev_driver); 1445 1446 /** 1447 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1448 * @dev: the PCI device structure to match against 1449 * @drv: the device driver to search for matching PCI device id structures 1450 * 1451 * Used by a driver to check whether a PCI device present in the 1452 * system is in its list of supported devices. Returns the matching 1453 * pci_device_id structure or %NULL if there is no match. 1454 */ 1455 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1456 { 1457 struct pci_dev *pci_dev = to_pci_dev(dev); 1458 struct pci_driver *pci_drv; 1459 const struct pci_device_id *found_id; 1460 1461 if (!pci_dev->match_driver) 1462 return 0; 1463 1464 pci_drv = to_pci_driver(drv); 1465 found_id = pci_match_device(pci_drv, pci_dev); 1466 if (found_id) 1467 return 1; 1468 1469 return 0; 1470 } 1471 1472 /** 1473 * pci_dev_get - increments the reference count of the pci device structure 1474 * @dev: the device being referenced 1475 * 1476 * Each live reference to a device should be refcounted. 1477 * 1478 * Drivers for PCI devices should normally record such references in 1479 * their probe() methods, when they bind to a device, and release 1480 * them by calling pci_dev_put(), in their disconnect() methods. 1481 * 1482 * A pointer to the device with the incremented reference counter is returned. 1483 */ 1484 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1485 { 1486 if (dev) 1487 get_device(&dev->dev); 1488 return dev; 1489 } 1490 EXPORT_SYMBOL(pci_dev_get); 1491 1492 /** 1493 * pci_dev_put - release a use of the pci device structure 1494 * @dev: device that's been disconnected 1495 * 1496 * Must be called when a user of a device is finished with it. When the last 1497 * user of the device calls this function, the memory of the device is freed. 1498 */ 1499 void pci_dev_put(struct pci_dev *dev) 1500 { 1501 if (dev) 1502 put_device(&dev->dev); 1503 } 1504 EXPORT_SYMBOL(pci_dev_put); 1505 1506 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1507 { 1508 struct pci_dev *pdev; 1509 1510 if (!dev) 1511 return -ENODEV; 1512 1513 pdev = to_pci_dev(dev); 1514 1515 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1516 return -ENOMEM; 1517 1518 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1519 return -ENOMEM; 1520 1521 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1522 pdev->subsystem_device)) 1523 return -ENOMEM; 1524 1525 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1526 return -ENOMEM; 1527 1528 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1529 pdev->vendor, pdev->device, 1530 pdev->subsystem_vendor, pdev->subsystem_device, 1531 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1532 (u8)(pdev->class))) 1533 return -ENOMEM; 1534 1535 return 0; 1536 } 1537 1538 #if defined(CONFIG_PCIEAER) || defined(CONFIG_EEH) 1539 /** 1540 * pci_uevent_ers - emit a uevent during recovery path of PCI device 1541 * @pdev: PCI device undergoing error recovery 1542 * @err_type: type of error event 1543 */ 1544 void pci_uevent_ers(struct pci_dev *pdev, enum pci_ers_result err_type) 1545 { 1546 int idx = 0; 1547 char *envp[3]; 1548 1549 switch (err_type) { 1550 case PCI_ERS_RESULT_NONE: 1551 case PCI_ERS_RESULT_CAN_RECOVER: 1552 envp[idx++] = "ERROR_EVENT=BEGIN_RECOVERY"; 1553 envp[idx++] = "DEVICE_ONLINE=0"; 1554 break; 1555 case PCI_ERS_RESULT_RECOVERED: 1556 envp[idx++] = "ERROR_EVENT=SUCCESSFUL_RECOVERY"; 1557 envp[idx++] = "DEVICE_ONLINE=1"; 1558 break; 1559 case PCI_ERS_RESULT_DISCONNECT: 1560 envp[idx++] = "ERROR_EVENT=FAILED_RECOVERY"; 1561 envp[idx++] = "DEVICE_ONLINE=0"; 1562 break; 1563 default: 1564 break; 1565 } 1566 1567 if (idx > 0) { 1568 envp[idx++] = NULL; 1569 kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, envp); 1570 } 1571 } 1572 #endif 1573 1574 static int pci_bus_num_vf(struct device *dev) 1575 { 1576 return pci_num_vf(to_pci_dev(dev)); 1577 } 1578 1579 struct bus_type pci_bus_type = { 1580 .name = "pci", 1581 .match = pci_bus_match, 1582 .uevent = pci_uevent, 1583 .probe = pci_device_probe, 1584 .remove = pci_device_remove, 1585 .shutdown = pci_device_shutdown, 1586 .dev_groups = pci_dev_groups, 1587 .bus_groups = pci_bus_groups, 1588 .drv_groups = pci_drv_groups, 1589 .pm = PCI_PM_OPS_PTR, 1590 .num_vf = pci_bus_num_vf, 1591 .force_dma = true, 1592 }; 1593 EXPORT_SYMBOL(pci_bus_type); 1594 1595 #ifdef CONFIG_PCIEPORTBUS 1596 static int pcie_port_bus_match(struct device *dev, struct device_driver *drv) 1597 { 1598 struct pcie_device *pciedev; 1599 struct pcie_port_service_driver *driver; 1600 1601 if (drv->bus != &pcie_port_bus_type || dev->bus != &pcie_port_bus_type) 1602 return 0; 1603 1604 pciedev = to_pcie_device(dev); 1605 driver = to_service_driver(drv); 1606 1607 if (driver->service != pciedev->service) 1608 return 0; 1609 1610 if (driver->port_type != PCIE_ANY_PORT && 1611 driver->port_type != pci_pcie_type(pciedev->port)) 1612 return 0; 1613 1614 return 1; 1615 } 1616 1617 struct bus_type pcie_port_bus_type = { 1618 .name = "pci_express", 1619 .match = pcie_port_bus_match, 1620 }; 1621 EXPORT_SYMBOL_GPL(pcie_port_bus_type); 1622 #endif 1623 1624 static int __init pci_driver_init(void) 1625 { 1626 int ret; 1627 1628 ret = bus_register(&pci_bus_type); 1629 if (ret) 1630 return ret; 1631 1632 #ifdef CONFIG_PCIEPORTBUS 1633 ret = bus_register(&pcie_port_bus_type); 1634 if (ret) 1635 return ret; 1636 #endif 1637 1638 return 0; 1639 } 1640 postcore_initcall(pci_driver_init); 1641