1 /* 2 * drivers/pci/pci-driver.c 3 * 4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com> 5 * (C) Copyright 2007 Novell Inc. 6 * 7 * Released under the GPL v2 only. 8 * 9 */ 10 11 #include <linux/pci.h> 12 #include <linux/module.h> 13 #include <linux/init.h> 14 #include <linux/device.h> 15 #include <linux/mempolicy.h> 16 #include <linux/string.h> 17 #include <linux/slab.h> 18 #include <linux/sched.h> 19 #include <linux/cpu.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/suspend.h> 22 #include <linux/kexec.h> 23 #include "pci.h" 24 25 struct pci_dynid { 26 struct list_head node; 27 struct pci_device_id id; 28 }; 29 30 /** 31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices 32 * @drv: target pci driver 33 * @vendor: PCI vendor ID 34 * @device: PCI device ID 35 * @subvendor: PCI subvendor ID 36 * @subdevice: PCI subdevice ID 37 * @class: PCI class 38 * @class_mask: PCI class mask 39 * @driver_data: private driver data 40 * 41 * Adds a new dynamic pci device ID to this driver and causes the 42 * driver to probe for all devices again. @drv must have been 43 * registered prior to calling this function. 44 * 45 * CONTEXT: 46 * Does GFP_KERNEL allocation. 47 * 48 * RETURNS: 49 * 0 on success, -errno on failure. 50 */ 51 int pci_add_dynid(struct pci_driver *drv, 52 unsigned int vendor, unsigned int device, 53 unsigned int subvendor, unsigned int subdevice, 54 unsigned int class, unsigned int class_mask, 55 unsigned long driver_data) 56 { 57 struct pci_dynid *dynid; 58 59 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL); 60 if (!dynid) 61 return -ENOMEM; 62 63 dynid->id.vendor = vendor; 64 dynid->id.device = device; 65 dynid->id.subvendor = subvendor; 66 dynid->id.subdevice = subdevice; 67 dynid->id.class = class; 68 dynid->id.class_mask = class_mask; 69 dynid->id.driver_data = driver_data; 70 71 spin_lock(&drv->dynids.lock); 72 list_add_tail(&dynid->node, &drv->dynids.list); 73 spin_unlock(&drv->dynids.lock); 74 75 return driver_attach(&drv->driver); 76 } 77 EXPORT_SYMBOL_GPL(pci_add_dynid); 78 79 static void pci_free_dynids(struct pci_driver *drv) 80 { 81 struct pci_dynid *dynid, *n; 82 83 spin_lock(&drv->dynids.lock); 84 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) { 85 list_del(&dynid->node); 86 kfree(dynid); 87 } 88 spin_unlock(&drv->dynids.lock); 89 } 90 91 /** 92 * store_new_id - sysfs frontend to pci_add_dynid() 93 * @driver: target device driver 94 * @buf: buffer for scanning device ID data 95 * @count: input size 96 * 97 * Allow PCI IDs to be added to an existing driver via sysfs. 98 */ 99 static ssize_t store_new_id(struct device_driver *driver, const char *buf, 100 size_t count) 101 { 102 struct pci_driver *pdrv = to_pci_driver(driver); 103 const struct pci_device_id *ids = pdrv->id_table; 104 __u32 vendor, device, subvendor = PCI_ANY_ID, 105 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 106 unsigned long driver_data = 0; 107 int fields = 0; 108 int retval = 0; 109 110 fields = sscanf(buf, "%x %x %x %x %x %x %lx", 111 &vendor, &device, &subvendor, &subdevice, 112 &class, &class_mask, &driver_data); 113 if (fields < 2) 114 return -EINVAL; 115 116 if (fields != 7) { 117 struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL); 118 if (!pdev) 119 return -ENOMEM; 120 121 pdev->vendor = vendor; 122 pdev->device = device; 123 pdev->subsystem_vendor = subvendor; 124 pdev->subsystem_device = subdevice; 125 pdev->class = class; 126 127 if (pci_match_id(pdrv->id_table, pdev)) 128 retval = -EEXIST; 129 130 kfree(pdev); 131 132 if (retval) 133 return retval; 134 } 135 136 /* Only accept driver_data values that match an existing id_table 137 entry */ 138 if (ids) { 139 retval = -EINVAL; 140 while (ids->vendor || ids->subvendor || ids->class_mask) { 141 if (driver_data == ids->driver_data) { 142 retval = 0; 143 break; 144 } 145 ids++; 146 } 147 if (retval) /* No match */ 148 return retval; 149 } 150 151 retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice, 152 class, class_mask, driver_data); 153 if (retval) 154 return retval; 155 return count; 156 } 157 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id); 158 159 /** 160 * store_remove_id - remove a PCI device ID from this driver 161 * @driver: target device driver 162 * @buf: buffer for scanning device ID data 163 * @count: input size 164 * 165 * Removes a dynamic pci device ID to this driver. 166 */ 167 static ssize_t store_remove_id(struct device_driver *driver, const char *buf, 168 size_t count) 169 { 170 struct pci_dynid *dynid, *n; 171 struct pci_driver *pdrv = to_pci_driver(driver); 172 __u32 vendor, device, subvendor = PCI_ANY_ID, 173 subdevice = PCI_ANY_ID, class = 0, class_mask = 0; 174 int fields = 0; 175 size_t retval = -ENODEV; 176 177 fields = sscanf(buf, "%x %x %x %x %x %x", 178 &vendor, &device, &subvendor, &subdevice, 179 &class, &class_mask); 180 if (fields < 2) 181 return -EINVAL; 182 183 spin_lock(&pdrv->dynids.lock); 184 list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) { 185 struct pci_device_id *id = &dynid->id; 186 if ((id->vendor == vendor) && 187 (id->device == device) && 188 (subvendor == PCI_ANY_ID || id->subvendor == subvendor) && 189 (subdevice == PCI_ANY_ID || id->subdevice == subdevice) && 190 !((id->class ^ class) & class_mask)) { 191 list_del(&dynid->node); 192 kfree(dynid); 193 retval = count; 194 break; 195 } 196 } 197 spin_unlock(&pdrv->dynids.lock); 198 199 return retval; 200 } 201 static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id); 202 203 static struct attribute *pci_drv_attrs[] = { 204 &driver_attr_new_id.attr, 205 &driver_attr_remove_id.attr, 206 NULL, 207 }; 208 ATTRIBUTE_GROUPS(pci_drv); 209 210 /** 211 * pci_match_id - See if a pci device matches a given pci_id table 212 * @ids: array of PCI device id structures to search in 213 * @dev: the PCI device structure to match against. 214 * 215 * Used by a driver to check whether a PCI device present in the 216 * system is in its list of supported devices. Returns the matching 217 * pci_device_id structure or %NULL if there is no match. 218 * 219 * Deprecated, don't use this as it will not catch any dynamic ids 220 * that a driver might want to check for. 221 */ 222 const struct pci_device_id *pci_match_id(const struct pci_device_id *ids, 223 struct pci_dev *dev) 224 { 225 if (ids) { 226 while (ids->vendor || ids->subvendor || ids->class_mask) { 227 if (pci_match_one_device(ids, dev)) 228 return ids; 229 ids++; 230 } 231 } 232 return NULL; 233 } 234 EXPORT_SYMBOL(pci_match_id); 235 236 static const struct pci_device_id pci_device_id_any = { 237 .vendor = PCI_ANY_ID, 238 .device = PCI_ANY_ID, 239 .subvendor = PCI_ANY_ID, 240 .subdevice = PCI_ANY_ID, 241 }; 242 243 /** 244 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure 245 * @drv: the PCI driver to match against 246 * @dev: the PCI device structure to match against 247 * 248 * Used by a driver to check whether a PCI device present in the 249 * system is in its list of supported devices. Returns the matching 250 * pci_device_id structure or %NULL if there is no match. 251 */ 252 static const struct pci_device_id *pci_match_device(struct pci_driver *drv, 253 struct pci_dev *dev) 254 { 255 struct pci_dynid *dynid; 256 const struct pci_device_id *found_id = NULL; 257 258 /* When driver_override is set, only bind to the matching driver */ 259 if (dev->driver_override && strcmp(dev->driver_override, drv->name)) 260 return NULL; 261 262 /* Look at the dynamic ids first, before the static ones */ 263 spin_lock(&drv->dynids.lock); 264 list_for_each_entry(dynid, &drv->dynids.list, node) { 265 if (pci_match_one_device(&dynid->id, dev)) { 266 found_id = &dynid->id; 267 break; 268 } 269 } 270 spin_unlock(&drv->dynids.lock); 271 272 if (!found_id) 273 found_id = pci_match_id(drv->id_table, dev); 274 275 /* driver_override will always match, send a dummy id */ 276 if (!found_id && dev->driver_override) 277 found_id = &pci_device_id_any; 278 279 return found_id; 280 } 281 282 struct drv_dev_and_id { 283 struct pci_driver *drv; 284 struct pci_dev *dev; 285 const struct pci_device_id *id; 286 }; 287 288 static long local_pci_probe(void *_ddi) 289 { 290 struct drv_dev_and_id *ddi = _ddi; 291 struct pci_dev *pci_dev = ddi->dev; 292 struct pci_driver *pci_drv = ddi->drv; 293 struct device *dev = &pci_dev->dev; 294 int rc; 295 296 /* 297 * Unbound PCI devices are always put in D0, regardless of 298 * runtime PM status. During probe, the device is set to 299 * active and the usage count is incremented. If the driver 300 * supports runtime PM, it should call pm_runtime_put_noidle(), 301 * or any other runtime PM helper function decrementing the usage 302 * count, in its probe routine and pm_runtime_get_noresume() in 303 * its remove routine. 304 */ 305 pm_runtime_get_sync(dev); 306 pci_dev->driver = pci_drv; 307 rc = pci_drv->probe(pci_dev, ddi->id); 308 if (!rc) 309 return rc; 310 if (rc < 0) { 311 pci_dev->driver = NULL; 312 pm_runtime_put_sync(dev); 313 return rc; 314 } 315 /* 316 * Probe function should return < 0 for failure, 0 for success 317 * Treat values > 0 as success, but warn. 318 */ 319 dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc); 320 return 0; 321 } 322 323 static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev, 324 const struct pci_device_id *id) 325 { 326 int error, node; 327 struct drv_dev_and_id ddi = { drv, dev, id }; 328 329 /* 330 * Execute driver initialization on node where the device is 331 * attached. This way the driver likely allocates its local memory 332 * on the right node. 333 */ 334 node = dev_to_node(&dev->dev); 335 336 /* 337 * On NUMA systems, we are likely to call a PF probe function using 338 * work_on_cpu(). If that probe calls pci_enable_sriov() (which 339 * adds the VF devices via pci_bus_add_device()), we may re-enter 340 * this function to call the VF probe function. Calling 341 * work_on_cpu() again will cause a lockdep warning. Since VFs are 342 * always on the same node as the PF, we can work around this by 343 * avoiding work_on_cpu() when we're already on the correct node. 344 * 345 * Preemption is enabled, so it's theoretically unsafe to use 346 * numa_node_id(), but even if we run the probe function on the 347 * wrong node, it should be functionally correct. 348 */ 349 if (node >= 0 && node != numa_node_id()) { 350 int cpu; 351 352 get_online_cpus(); 353 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask); 354 if (cpu < nr_cpu_ids) 355 error = work_on_cpu(cpu, local_pci_probe, &ddi); 356 else 357 error = local_pci_probe(&ddi); 358 put_online_cpus(); 359 } else 360 error = local_pci_probe(&ddi); 361 362 return error; 363 } 364 365 /** 366 * __pci_device_probe - check if a driver wants to claim a specific PCI device 367 * @drv: driver to call to check if it wants the PCI device 368 * @pci_dev: PCI device being probed 369 * 370 * returns 0 on success, else error. 371 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev. 372 */ 373 static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev) 374 { 375 const struct pci_device_id *id; 376 int error = 0; 377 378 if (!pci_dev->driver && drv->probe) { 379 error = -ENODEV; 380 381 id = pci_match_device(drv, pci_dev); 382 if (id) 383 error = pci_call_probe(drv, pci_dev, id); 384 if (error >= 0) 385 error = 0; 386 } 387 return error; 388 } 389 390 int __weak pcibios_alloc_irq(struct pci_dev *dev) 391 { 392 return 0; 393 } 394 395 void __weak pcibios_free_irq(struct pci_dev *dev) 396 { 397 } 398 399 static int pci_device_probe(struct device *dev) 400 { 401 int error; 402 struct pci_dev *pci_dev = to_pci_dev(dev); 403 struct pci_driver *drv = to_pci_driver(dev->driver); 404 405 error = pcibios_alloc_irq(pci_dev); 406 if (error < 0) 407 return error; 408 409 pci_dev_get(pci_dev); 410 error = __pci_device_probe(drv, pci_dev); 411 if (error) { 412 pcibios_free_irq(pci_dev); 413 pci_dev_put(pci_dev); 414 } 415 416 return error; 417 } 418 419 static int pci_device_remove(struct device *dev) 420 { 421 struct pci_dev *pci_dev = to_pci_dev(dev); 422 struct pci_driver *drv = pci_dev->driver; 423 424 if (drv) { 425 if (drv->remove) { 426 pm_runtime_get_sync(dev); 427 drv->remove(pci_dev); 428 pm_runtime_put_noidle(dev); 429 } 430 pcibios_free_irq(pci_dev); 431 pci_dev->driver = NULL; 432 } 433 434 /* Undo the runtime PM settings in local_pci_probe() */ 435 pm_runtime_put_sync(dev); 436 437 /* 438 * If the device is still on, set the power state as "unknown", 439 * since it might change by the next time we load the driver. 440 */ 441 if (pci_dev->current_state == PCI_D0) 442 pci_dev->current_state = PCI_UNKNOWN; 443 444 /* 445 * We would love to complain here if pci_dev->is_enabled is set, that 446 * the driver should have called pci_disable_device(), but the 447 * unfortunate fact is there are too many odd BIOS and bridge setups 448 * that don't like drivers doing that all of the time. 449 * Oh well, we can dream of sane hardware when we sleep, no matter how 450 * horrible the crap we have to deal with is when we are awake... 451 */ 452 453 pci_dev_put(pci_dev); 454 return 0; 455 } 456 457 static void pci_device_shutdown(struct device *dev) 458 { 459 struct pci_dev *pci_dev = to_pci_dev(dev); 460 struct pci_driver *drv = pci_dev->driver; 461 462 pm_runtime_resume(dev); 463 464 if (drv && drv->shutdown) 465 drv->shutdown(pci_dev); 466 pci_msi_shutdown(pci_dev); 467 pci_msix_shutdown(pci_dev); 468 469 #ifdef CONFIG_KEXEC_CORE 470 /* 471 * If this is a kexec reboot, turn off Bus Master bit on the 472 * device to tell it to not continue to do DMA. Don't touch 473 * devices in D3cold or unknown states. 474 * If it is not a kexec reboot, firmware will hit the PCI 475 * devices with big hammer and stop their DMA any way. 476 */ 477 if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot)) 478 pci_clear_master(pci_dev); 479 #endif 480 } 481 482 #ifdef CONFIG_PM 483 484 /* Auxiliary functions used for system resume and run-time resume. */ 485 486 /** 487 * pci_restore_standard_config - restore standard config registers of PCI device 488 * @pci_dev: PCI device to handle 489 */ 490 static int pci_restore_standard_config(struct pci_dev *pci_dev) 491 { 492 pci_update_current_state(pci_dev, PCI_UNKNOWN); 493 494 if (pci_dev->current_state != PCI_D0) { 495 int error = pci_set_power_state(pci_dev, PCI_D0); 496 if (error) 497 return error; 498 } 499 500 pci_restore_state(pci_dev); 501 return 0; 502 } 503 504 #endif 505 506 #ifdef CONFIG_PM_SLEEP 507 508 static void pci_pm_default_resume_early(struct pci_dev *pci_dev) 509 { 510 pci_power_up(pci_dev); 511 pci_restore_state(pci_dev); 512 pci_fixup_device(pci_fixup_resume_early, pci_dev); 513 } 514 515 /* 516 * Default "suspend" method for devices that have no driver provided suspend, 517 * or not even a driver at all (second part). 518 */ 519 static void pci_pm_set_unknown_state(struct pci_dev *pci_dev) 520 { 521 /* 522 * mark its power state as "unknown", since we don't know if 523 * e.g. the BIOS will change its device state when we suspend. 524 */ 525 if (pci_dev->current_state == PCI_D0) 526 pci_dev->current_state = PCI_UNKNOWN; 527 } 528 529 /* 530 * Default "resume" method for devices that have no driver provided resume, 531 * or not even a driver at all (second part). 532 */ 533 static int pci_pm_reenable_device(struct pci_dev *pci_dev) 534 { 535 int retval; 536 537 /* if the device was enabled before suspend, reenable */ 538 retval = pci_reenable_device(pci_dev); 539 /* 540 * if the device was busmaster before the suspend, make it busmaster 541 * again 542 */ 543 if (pci_dev->is_busmaster) 544 pci_set_master(pci_dev); 545 546 return retval; 547 } 548 549 static int pci_legacy_suspend(struct device *dev, pm_message_t state) 550 { 551 struct pci_dev *pci_dev = to_pci_dev(dev); 552 struct pci_driver *drv = pci_dev->driver; 553 554 if (drv && drv->suspend) { 555 pci_power_t prev = pci_dev->current_state; 556 int error; 557 558 error = drv->suspend(pci_dev, state); 559 suspend_report_result(drv->suspend, error); 560 if (error) 561 return error; 562 563 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 564 && pci_dev->current_state != PCI_UNKNOWN) { 565 WARN_ONCE(pci_dev->current_state != prev, 566 "PCI PM: Device state not saved by %pF\n", 567 drv->suspend); 568 } 569 } 570 571 pci_fixup_device(pci_fixup_suspend, pci_dev); 572 573 return 0; 574 } 575 576 static int pci_legacy_suspend_late(struct device *dev, pm_message_t state) 577 { 578 struct pci_dev *pci_dev = to_pci_dev(dev); 579 struct pci_driver *drv = pci_dev->driver; 580 581 if (drv && drv->suspend_late) { 582 pci_power_t prev = pci_dev->current_state; 583 int error; 584 585 error = drv->suspend_late(pci_dev, state); 586 suspend_report_result(drv->suspend_late, error); 587 if (error) 588 return error; 589 590 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 591 && pci_dev->current_state != PCI_UNKNOWN) { 592 WARN_ONCE(pci_dev->current_state != prev, 593 "PCI PM: Device state not saved by %pF\n", 594 drv->suspend_late); 595 goto Fixup; 596 } 597 } 598 599 if (!pci_dev->state_saved) 600 pci_save_state(pci_dev); 601 602 pci_pm_set_unknown_state(pci_dev); 603 604 Fixup: 605 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 606 607 return 0; 608 } 609 610 static int pci_legacy_resume_early(struct device *dev) 611 { 612 struct pci_dev *pci_dev = to_pci_dev(dev); 613 struct pci_driver *drv = pci_dev->driver; 614 615 return drv && drv->resume_early ? 616 drv->resume_early(pci_dev) : 0; 617 } 618 619 static int pci_legacy_resume(struct device *dev) 620 { 621 struct pci_dev *pci_dev = to_pci_dev(dev); 622 struct pci_driver *drv = pci_dev->driver; 623 624 pci_fixup_device(pci_fixup_resume, pci_dev); 625 626 return drv && drv->resume ? 627 drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev); 628 } 629 630 /* Auxiliary functions used by the new power management framework */ 631 632 static void pci_pm_default_resume(struct pci_dev *pci_dev) 633 { 634 pci_fixup_device(pci_fixup_resume, pci_dev); 635 636 if (!pci_has_subordinate(pci_dev)) 637 pci_enable_wake(pci_dev, PCI_D0, false); 638 } 639 640 static void pci_pm_default_suspend(struct pci_dev *pci_dev) 641 { 642 /* Disable non-bridge devices without PM support */ 643 if (!pci_has_subordinate(pci_dev)) 644 pci_disable_enabled_device(pci_dev); 645 } 646 647 static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev) 648 { 649 struct pci_driver *drv = pci_dev->driver; 650 bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume 651 || drv->resume_early); 652 653 /* 654 * Legacy PM support is used by default, so warn if the new framework is 655 * supported as well. Drivers are supposed to support either the 656 * former, or the latter, but not both at the same time. 657 */ 658 WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n", 659 drv->name, pci_dev->vendor, pci_dev->device); 660 661 return ret; 662 } 663 664 /* New power management framework */ 665 666 static int pci_pm_prepare(struct device *dev) 667 { 668 struct device_driver *drv = dev->driver; 669 670 /* 671 * Devices having power.ignore_children set may still be necessary for 672 * suspending their children in the next phase of device suspend. 673 */ 674 if (dev->power.ignore_children) 675 pm_runtime_resume(dev); 676 677 if (drv && drv->pm && drv->pm->prepare) { 678 int error = drv->pm->prepare(dev); 679 if (error) 680 return error; 681 } 682 return pci_dev_keep_suspended(to_pci_dev(dev)); 683 } 684 685 static void pci_pm_complete(struct device *dev) 686 { 687 pci_dev_complete_resume(to_pci_dev(dev)); 688 pm_complete_with_resume_check(dev); 689 } 690 691 #else /* !CONFIG_PM_SLEEP */ 692 693 #define pci_pm_prepare NULL 694 #define pci_pm_complete NULL 695 696 #endif /* !CONFIG_PM_SLEEP */ 697 698 #ifdef CONFIG_SUSPEND 699 700 static int pci_pm_suspend(struct device *dev) 701 { 702 struct pci_dev *pci_dev = to_pci_dev(dev); 703 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 704 705 if (pci_has_legacy_pm_support(pci_dev)) 706 return pci_legacy_suspend(dev, PMSG_SUSPEND); 707 708 if (!pm) { 709 pci_pm_default_suspend(pci_dev); 710 goto Fixup; 711 } 712 713 /* 714 * PCI devices suspended at run time need to be resumed at this point, 715 * because in general it is necessary to reconfigure them for system 716 * suspend. Namely, if the device is supposed to wake up the system 717 * from the sleep state, we may need to reconfigure it for this purpose. 718 * In turn, if the device is not supposed to wake up the system from the 719 * sleep state, we'll have to prevent it from signaling wake-up. 720 */ 721 pm_runtime_resume(dev); 722 723 pci_dev->state_saved = false; 724 if (pm->suspend) { 725 pci_power_t prev = pci_dev->current_state; 726 int error; 727 728 error = pm->suspend(dev); 729 suspend_report_result(pm->suspend, error); 730 if (error) 731 return error; 732 733 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 734 && pci_dev->current_state != PCI_UNKNOWN) { 735 WARN_ONCE(pci_dev->current_state != prev, 736 "PCI PM: State of device not saved by %pF\n", 737 pm->suspend); 738 } 739 } 740 741 Fixup: 742 pci_fixup_device(pci_fixup_suspend, pci_dev); 743 744 return 0; 745 } 746 747 static int pci_pm_suspend_noirq(struct device *dev) 748 { 749 struct pci_dev *pci_dev = to_pci_dev(dev); 750 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 751 752 if (pci_has_legacy_pm_support(pci_dev)) 753 return pci_legacy_suspend_late(dev, PMSG_SUSPEND); 754 755 if (!pm) { 756 pci_save_state(pci_dev); 757 goto Fixup; 758 } 759 760 if (pm->suspend_noirq) { 761 pci_power_t prev = pci_dev->current_state; 762 int error; 763 764 error = pm->suspend_noirq(dev); 765 suspend_report_result(pm->suspend_noirq, error); 766 if (error) 767 return error; 768 769 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 770 && pci_dev->current_state != PCI_UNKNOWN) { 771 WARN_ONCE(pci_dev->current_state != prev, 772 "PCI PM: State of device not saved by %pF\n", 773 pm->suspend_noirq); 774 goto Fixup; 775 } 776 } 777 778 if (!pci_dev->state_saved) { 779 pci_save_state(pci_dev); 780 if (!pci_has_subordinate(pci_dev)) 781 pci_prepare_to_sleep(pci_dev); 782 } 783 784 pci_pm_set_unknown_state(pci_dev); 785 786 /* 787 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's 788 * PCI COMMAND register isn't 0, the BIOS assumes that the controller 789 * hasn't been quiesced and tries to turn it off. If the controller 790 * is already in D3, this can hang or cause memory corruption. 791 * 792 * Since the value of the COMMAND register doesn't matter once the 793 * device has been suspended, we can safely set it to 0 here. 794 */ 795 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 796 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 797 798 Fixup: 799 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 800 801 return 0; 802 } 803 804 static int pci_pm_resume_noirq(struct device *dev) 805 { 806 struct pci_dev *pci_dev = to_pci_dev(dev); 807 struct device_driver *drv = dev->driver; 808 int error = 0; 809 810 pci_pm_default_resume_early(pci_dev); 811 812 if (pci_has_legacy_pm_support(pci_dev)) 813 return pci_legacy_resume_early(dev); 814 815 if (drv && drv->pm && drv->pm->resume_noirq) 816 error = drv->pm->resume_noirq(dev); 817 818 return error; 819 } 820 821 static int pci_pm_resume(struct device *dev) 822 { 823 struct pci_dev *pci_dev = to_pci_dev(dev); 824 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 825 int error = 0; 826 827 /* 828 * This is necessary for the suspend error path in which resume is 829 * called without restoring the standard config registers of the device. 830 */ 831 if (pci_dev->state_saved) 832 pci_restore_standard_config(pci_dev); 833 834 if (pci_has_legacy_pm_support(pci_dev)) 835 return pci_legacy_resume(dev); 836 837 pci_pm_default_resume(pci_dev); 838 839 if (pm) { 840 if (pm->resume) 841 error = pm->resume(dev); 842 } else { 843 pci_pm_reenable_device(pci_dev); 844 } 845 846 return error; 847 } 848 849 #else /* !CONFIG_SUSPEND */ 850 851 #define pci_pm_suspend NULL 852 #define pci_pm_suspend_noirq NULL 853 #define pci_pm_resume NULL 854 #define pci_pm_resume_noirq NULL 855 856 #endif /* !CONFIG_SUSPEND */ 857 858 #ifdef CONFIG_HIBERNATE_CALLBACKS 859 860 861 /* 862 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing 863 * a hibernate transition 864 */ 865 struct dev_pm_ops __weak pcibios_pm_ops; 866 867 static int pci_pm_freeze(struct device *dev) 868 { 869 struct pci_dev *pci_dev = to_pci_dev(dev); 870 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 871 872 if (pci_has_legacy_pm_support(pci_dev)) 873 return pci_legacy_suspend(dev, PMSG_FREEZE); 874 875 if (!pm) { 876 pci_pm_default_suspend(pci_dev); 877 return 0; 878 } 879 880 /* 881 * This used to be done in pci_pm_prepare() for all devices and some 882 * drivers may depend on it, so do it here. Ideally, runtime-suspended 883 * devices should not be touched during freeze/thaw transitions, 884 * however. 885 */ 886 pm_runtime_resume(dev); 887 888 pci_dev->state_saved = false; 889 if (pm->freeze) { 890 int error; 891 892 error = pm->freeze(dev); 893 suspend_report_result(pm->freeze, error); 894 if (error) 895 return error; 896 } 897 898 if (pcibios_pm_ops.freeze) 899 return pcibios_pm_ops.freeze(dev); 900 901 return 0; 902 } 903 904 static int pci_pm_freeze_noirq(struct device *dev) 905 { 906 struct pci_dev *pci_dev = to_pci_dev(dev); 907 struct device_driver *drv = dev->driver; 908 909 if (pci_has_legacy_pm_support(pci_dev)) 910 return pci_legacy_suspend_late(dev, PMSG_FREEZE); 911 912 if (drv && drv->pm && drv->pm->freeze_noirq) { 913 int error; 914 915 error = drv->pm->freeze_noirq(dev); 916 suspend_report_result(drv->pm->freeze_noirq, error); 917 if (error) 918 return error; 919 } 920 921 if (!pci_dev->state_saved) 922 pci_save_state(pci_dev); 923 924 pci_pm_set_unknown_state(pci_dev); 925 926 if (pcibios_pm_ops.freeze_noirq) 927 return pcibios_pm_ops.freeze_noirq(dev); 928 929 return 0; 930 } 931 932 static int pci_pm_thaw_noirq(struct device *dev) 933 { 934 struct pci_dev *pci_dev = to_pci_dev(dev); 935 struct device_driver *drv = dev->driver; 936 int error = 0; 937 938 if (pcibios_pm_ops.thaw_noirq) { 939 error = pcibios_pm_ops.thaw_noirq(dev); 940 if (error) 941 return error; 942 } 943 944 if (pci_has_legacy_pm_support(pci_dev)) 945 return pci_legacy_resume_early(dev); 946 947 pci_update_current_state(pci_dev, PCI_D0); 948 949 if (drv && drv->pm && drv->pm->thaw_noirq) 950 error = drv->pm->thaw_noirq(dev); 951 952 return error; 953 } 954 955 static int pci_pm_thaw(struct device *dev) 956 { 957 struct pci_dev *pci_dev = to_pci_dev(dev); 958 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 959 int error = 0; 960 961 if (pcibios_pm_ops.thaw) { 962 error = pcibios_pm_ops.thaw(dev); 963 if (error) 964 return error; 965 } 966 967 if (pci_has_legacy_pm_support(pci_dev)) 968 return pci_legacy_resume(dev); 969 970 if (pm) { 971 if (pm->thaw) 972 error = pm->thaw(dev); 973 } else { 974 pci_pm_reenable_device(pci_dev); 975 } 976 977 pci_dev->state_saved = false; 978 979 return error; 980 } 981 982 static int pci_pm_poweroff(struct device *dev) 983 { 984 struct pci_dev *pci_dev = to_pci_dev(dev); 985 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 986 987 if (pci_has_legacy_pm_support(pci_dev)) 988 return pci_legacy_suspend(dev, PMSG_HIBERNATE); 989 990 if (!pm) { 991 pci_pm_default_suspend(pci_dev); 992 goto Fixup; 993 } 994 995 /* The reason to do that is the same as in pci_pm_suspend(). */ 996 pm_runtime_resume(dev); 997 998 pci_dev->state_saved = false; 999 if (pm->poweroff) { 1000 int error; 1001 1002 error = pm->poweroff(dev); 1003 suspend_report_result(pm->poweroff, error); 1004 if (error) 1005 return error; 1006 } 1007 1008 Fixup: 1009 pci_fixup_device(pci_fixup_suspend, pci_dev); 1010 1011 if (pcibios_pm_ops.poweroff) 1012 return pcibios_pm_ops.poweroff(dev); 1013 1014 return 0; 1015 } 1016 1017 static int pci_pm_poweroff_noirq(struct device *dev) 1018 { 1019 struct pci_dev *pci_dev = to_pci_dev(dev); 1020 struct device_driver *drv = dev->driver; 1021 1022 if (pci_has_legacy_pm_support(to_pci_dev(dev))) 1023 return pci_legacy_suspend_late(dev, PMSG_HIBERNATE); 1024 1025 if (!drv || !drv->pm) { 1026 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1027 return 0; 1028 } 1029 1030 if (drv->pm->poweroff_noirq) { 1031 int error; 1032 1033 error = drv->pm->poweroff_noirq(dev); 1034 suspend_report_result(drv->pm->poweroff_noirq, error); 1035 if (error) 1036 return error; 1037 } 1038 1039 if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev)) 1040 pci_prepare_to_sleep(pci_dev); 1041 1042 /* 1043 * The reason for doing this here is the same as for the analogous code 1044 * in pci_pm_suspend_noirq(). 1045 */ 1046 if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI) 1047 pci_write_config_word(pci_dev, PCI_COMMAND, 0); 1048 1049 pci_fixup_device(pci_fixup_suspend_late, pci_dev); 1050 1051 if (pcibios_pm_ops.poweroff_noirq) 1052 return pcibios_pm_ops.poweroff_noirq(dev); 1053 1054 return 0; 1055 } 1056 1057 static int pci_pm_restore_noirq(struct device *dev) 1058 { 1059 struct pci_dev *pci_dev = to_pci_dev(dev); 1060 struct device_driver *drv = dev->driver; 1061 int error = 0; 1062 1063 if (pcibios_pm_ops.restore_noirq) { 1064 error = pcibios_pm_ops.restore_noirq(dev); 1065 if (error) 1066 return error; 1067 } 1068 1069 pci_pm_default_resume_early(pci_dev); 1070 1071 if (pci_has_legacy_pm_support(pci_dev)) 1072 return pci_legacy_resume_early(dev); 1073 1074 if (drv && drv->pm && drv->pm->restore_noirq) 1075 error = drv->pm->restore_noirq(dev); 1076 1077 return error; 1078 } 1079 1080 static int pci_pm_restore(struct device *dev) 1081 { 1082 struct pci_dev *pci_dev = to_pci_dev(dev); 1083 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1084 int error = 0; 1085 1086 if (pcibios_pm_ops.restore) { 1087 error = pcibios_pm_ops.restore(dev); 1088 if (error) 1089 return error; 1090 } 1091 1092 /* 1093 * This is necessary for the hibernation error path in which restore is 1094 * called without restoring the standard config registers of the device. 1095 */ 1096 if (pci_dev->state_saved) 1097 pci_restore_standard_config(pci_dev); 1098 1099 if (pci_has_legacy_pm_support(pci_dev)) 1100 return pci_legacy_resume(dev); 1101 1102 pci_pm_default_resume(pci_dev); 1103 1104 if (pm) { 1105 if (pm->restore) 1106 error = pm->restore(dev); 1107 } else { 1108 pci_pm_reenable_device(pci_dev); 1109 } 1110 1111 return error; 1112 } 1113 1114 #else /* !CONFIG_HIBERNATE_CALLBACKS */ 1115 1116 #define pci_pm_freeze NULL 1117 #define pci_pm_freeze_noirq NULL 1118 #define pci_pm_thaw NULL 1119 #define pci_pm_thaw_noirq NULL 1120 #define pci_pm_poweroff NULL 1121 #define pci_pm_poweroff_noirq NULL 1122 #define pci_pm_restore NULL 1123 #define pci_pm_restore_noirq NULL 1124 1125 #endif /* !CONFIG_HIBERNATE_CALLBACKS */ 1126 1127 #ifdef CONFIG_PM 1128 1129 static int pci_pm_runtime_suspend(struct device *dev) 1130 { 1131 struct pci_dev *pci_dev = to_pci_dev(dev); 1132 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1133 pci_power_t prev = pci_dev->current_state; 1134 int error; 1135 1136 /* 1137 * If pci_dev->driver is not set (unbound), the device should 1138 * always remain in D0 regardless of the runtime PM status 1139 */ 1140 if (!pci_dev->driver) 1141 return 0; 1142 1143 if (!pm || !pm->runtime_suspend) 1144 return -ENOSYS; 1145 1146 pci_dev->state_saved = false; 1147 pci_dev->no_d3cold = false; 1148 error = pm->runtime_suspend(dev); 1149 if (error) { 1150 /* 1151 * -EBUSY and -EAGAIN is used to request the runtime PM core 1152 * to schedule a new suspend, so log the event only with debug 1153 * log level. 1154 */ 1155 if (error == -EBUSY || error == -EAGAIN) 1156 dev_dbg(dev, "can't suspend now (%pf returned %d)\n", 1157 pm->runtime_suspend, error); 1158 else 1159 dev_err(dev, "can't suspend (%pf returned %d)\n", 1160 pm->runtime_suspend, error); 1161 1162 return error; 1163 } 1164 if (!pci_dev->d3cold_allowed) 1165 pci_dev->no_d3cold = true; 1166 1167 pci_fixup_device(pci_fixup_suspend, pci_dev); 1168 1169 if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0 1170 && pci_dev->current_state != PCI_UNKNOWN) { 1171 WARN_ONCE(pci_dev->current_state != prev, 1172 "PCI PM: State of device not saved by %pF\n", 1173 pm->runtime_suspend); 1174 return 0; 1175 } 1176 1177 if (!pci_dev->state_saved) { 1178 pci_save_state(pci_dev); 1179 pci_finish_runtime_suspend(pci_dev); 1180 } 1181 1182 return 0; 1183 } 1184 1185 static int pci_pm_runtime_resume(struct device *dev) 1186 { 1187 int rc; 1188 struct pci_dev *pci_dev = to_pci_dev(dev); 1189 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1190 1191 /* 1192 * If pci_dev->driver is not set (unbound), the device should 1193 * always remain in D0 regardless of the runtime PM status 1194 */ 1195 if (!pci_dev->driver) 1196 return 0; 1197 1198 if (!pm || !pm->runtime_resume) 1199 return -ENOSYS; 1200 1201 pci_restore_standard_config(pci_dev); 1202 pci_fixup_device(pci_fixup_resume_early, pci_dev); 1203 __pci_enable_wake(pci_dev, PCI_D0, true, false); 1204 pci_fixup_device(pci_fixup_resume, pci_dev); 1205 1206 rc = pm->runtime_resume(dev); 1207 1208 pci_dev->runtime_d3cold = false; 1209 1210 return rc; 1211 } 1212 1213 static int pci_pm_runtime_idle(struct device *dev) 1214 { 1215 struct pci_dev *pci_dev = to_pci_dev(dev); 1216 const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL; 1217 int ret = 0; 1218 1219 /* 1220 * If pci_dev->driver is not set (unbound), the device should 1221 * always remain in D0 regardless of the runtime PM status 1222 */ 1223 if (!pci_dev->driver) 1224 return 0; 1225 1226 if (!pm) 1227 return -ENOSYS; 1228 1229 if (pm->runtime_idle) 1230 ret = pm->runtime_idle(dev); 1231 1232 return ret; 1233 } 1234 1235 static const struct dev_pm_ops pci_dev_pm_ops = { 1236 .prepare = pci_pm_prepare, 1237 .complete = pci_pm_complete, 1238 .suspend = pci_pm_suspend, 1239 .resume = pci_pm_resume, 1240 .freeze = pci_pm_freeze, 1241 .thaw = pci_pm_thaw, 1242 .poweroff = pci_pm_poweroff, 1243 .restore = pci_pm_restore, 1244 .suspend_noirq = pci_pm_suspend_noirq, 1245 .resume_noirq = pci_pm_resume_noirq, 1246 .freeze_noirq = pci_pm_freeze_noirq, 1247 .thaw_noirq = pci_pm_thaw_noirq, 1248 .poweroff_noirq = pci_pm_poweroff_noirq, 1249 .restore_noirq = pci_pm_restore_noirq, 1250 .runtime_suspend = pci_pm_runtime_suspend, 1251 .runtime_resume = pci_pm_runtime_resume, 1252 .runtime_idle = pci_pm_runtime_idle, 1253 }; 1254 1255 #define PCI_PM_OPS_PTR (&pci_dev_pm_ops) 1256 1257 #else /* !CONFIG_PM */ 1258 1259 #define pci_pm_runtime_suspend NULL 1260 #define pci_pm_runtime_resume NULL 1261 #define pci_pm_runtime_idle NULL 1262 1263 #define PCI_PM_OPS_PTR NULL 1264 1265 #endif /* !CONFIG_PM */ 1266 1267 /** 1268 * __pci_register_driver - register a new pci driver 1269 * @drv: the driver structure to register 1270 * @owner: owner module of drv 1271 * @mod_name: module name string 1272 * 1273 * Adds the driver structure to the list of registered drivers. 1274 * Returns a negative value on error, otherwise 0. 1275 * If no error occurred, the driver remains registered even if 1276 * no device was claimed during registration. 1277 */ 1278 int __pci_register_driver(struct pci_driver *drv, struct module *owner, 1279 const char *mod_name) 1280 { 1281 /* initialize common driver fields */ 1282 drv->driver.name = drv->name; 1283 drv->driver.bus = &pci_bus_type; 1284 drv->driver.owner = owner; 1285 drv->driver.mod_name = mod_name; 1286 1287 spin_lock_init(&drv->dynids.lock); 1288 INIT_LIST_HEAD(&drv->dynids.list); 1289 1290 /* register with core */ 1291 return driver_register(&drv->driver); 1292 } 1293 EXPORT_SYMBOL(__pci_register_driver); 1294 1295 /** 1296 * pci_unregister_driver - unregister a pci driver 1297 * @drv: the driver structure to unregister 1298 * 1299 * Deletes the driver structure from the list of registered PCI drivers, 1300 * gives it a chance to clean up by calling its remove() function for 1301 * each device it was responsible for, and marks those devices as 1302 * driverless. 1303 */ 1304 1305 void pci_unregister_driver(struct pci_driver *drv) 1306 { 1307 driver_unregister(&drv->driver); 1308 pci_free_dynids(drv); 1309 } 1310 EXPORT_SYMBOL(pci_unregister_driver); 1311 1312 static struct pci_driver pci_compat_driver = { 1313 .name = "compat" 1314 }; 1315 1316 /** 1317 * pci_dev_driver - get the pci_driver of a device 1318 * @dev: the device to query 1319 * 1320 * Returns the appropriate pci_driver structure or %NULL if there is no 1321 * registered driver for the device. 1322 */ 1323 struct pci_driver *pci_dev_driver(const struct pci_dev *dev) 1324 { 1325 if (dev->driver) 1326 return dev->driver; 1327 else { 1328 int i; 1329 for (i = 0; i <= PCI_ROM_RESOURCE; i++) 1330 if (dev->resource[i].flags & IORESOURCE_BUSY) 1331 return &pci_compat_driver; 1332 } 1333 return NULL; 1334 } 1335 EXPORT_SYMBOL(pci_dev_driver); 1336 1337 /** 1338 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure 1339 * @dev: the PCI device structure to match against 1340 * @drv: the device driver to search for matching PCI device id structures 1341 * 1342 * Used by a driver to check whether a PCI device present in the 1343 * system is in its list of supported devices. Returns the matching 1344 * pci_device_id structure or %NULL if there is no match. 1345 */ 1346 static int pci_bus_match(struct device *dev, struct device_driver *drv) 1347 { 1348 struct pci_dev *pci_dev = to_pci_dev(dev); 1349 struct pci_driver *pci_drv; 1350 const struct pci_device_id *found_id; 1351 1352 if (!pci_dev->match_driver) 1353 return 0; 1354 1355 pci_drv = to_pci_driver(drv); 1356 found_id = pci_match_device(pci_drv, pci_dev); 1357 if (found_id) 1358 return 1; 1359 1360 return 0; 1361 } 1362 1363 /** 1364 * pci_dev_get - increments the reference count of the pci device structure 1365 * @dev: the device being referenced 1366 * 1367 * Each live reference to a device should be refcounted. 1368 * 1369 * Drivers for PCI devices should normally record such references in 1370 * their probe() methods, when they bind to a device, and release 1371 * them by calling pci_dev_put(), in their disconnect() methods. 1372 * 1373 * A pointer to the device with the incremented reference counter is returned. 1374 */ 1375 struct pci_dev *pci_dev_get(struct pci_dev *dev) 1376 { 1377 if (dev) 1378 get_device(&dev->dev); 1379 return dev; 1380 } 1381 EXPORT_SYMBOL(pci_dev_get); 1382 1383 /** 1384 * pci_dev_put - release a use of the pci device structure 1385 * @dev: device that's been disconnected 1386 * 1387 * Must be called when a user of a device is finished with it. When the last 1388 * user of the device calls this function, the memory of the device is freed. 1389 */ 1390 void pci_dev_put(struct pci_dev *dev) 1391 { 1392 if (dev) 1393 put_device(&dev->dev); 1394 } 1395 EXPORT_SYMBOL(pci_dev_put); 1396 1397 static int pci_uevent(struct device *dev, struct kobj_uevent_env *env) 1398 { 1399 struct pci_dev *pdev; 1400 1401 if (!dev) 1402 return -ENODEV; 1403 1404 pdev = to_pci_dev(dev); 1405 1406 if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class)) 1407 return -ENOMEM; 1408 1409 if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device)) 1410 return -ENOMEM; 1411 1412 if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor, 1413 pdev->subsystem_device)) 1414 return -ENOMEM; 1415 1416 if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev))) 1417 return -ENOMEM; 1418 1419 if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02X", 1420 pdev->vendor, pdev->device, 1421 pdev->subsystem_vendor, pdev->subsystem_device, 1422 (u8)(pdev->class >> 16), (u8)(pdev->class >> 8), 1423 (u8)(pdev->class))) 1424 return -ENOMEM; 1425 1426 return 0; 1427 } 1428 1429 struct bus_type pci_bus_type = { 1430 .name = "pci", 1431 .match = pci_bus_match, 1432 .uevent = pci_uevent, 1433 .probe = pci_device_probe, 1434 .remove = pci_device_remove, 1435 .shutdown = pci_device_shutdown, 1436 .dev_groups = pci_dev_groups, 1437 .bus_groups = pci_bus_groups, 1438 .drv_groups = pci_drv_groups, 1439 .pm = PCI_PM_OPS_PTR, 1440 }; 1441 EXPORT_SYMBOL(pci_bus_type); 1442 1443 static int __init pci_driver_init(void) 1444 { 1445 return bus_register(&pci_bus_type); 1446 } 1447 postcore_initcall(pci_driver_init); 1448