xref: /openbmc/linux/drivers/pci/p2pdma.c (revision f97769fd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 #include <linux/xarray.h>
22 
23 enum pci_p2pdma_map_type {
24 	PCI_P2PDMA_MAP_UNKNOWN = 0,
25 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
26 	PCI_P2PDMA_MAP_BUS_ADDR,
27 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
28 };
29 
30 struct pci_p2pdma {
31 	struct gen_pool *pool;
32 	bool p2pmem_published;
33 	struct xarray map_types;
34 };
35 
36 struct pci_p2pdma_pagemap {
37 	struct dev_pagemap pgmap;
38 	struct pci_dev *provider;
39 	u64 bus_offset;
40 };
41 
42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
43 {
44 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
45 }
46 
47 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
48 			 char *buf)
49 {
50 	struct pci_dev *pdev = to_pci_dev(dev);
51 	size_t size = 0;
52 
53 	if (pdev->p2pdma->pool)
54 		size = gen_pool_size(pdev->p2pdma->pool);
55 
56 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
57 }
58 static DEVICE_ATTR_RO(size);
59 
60 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
61 			      char *buf)
62 {
63 	struct pci_dev *pdev = to_pci_dev(dev);
64 	size_t avail = 0;
65 
66 	if (pdev->p2pdma->pool)
67 		avail = gen_pool_avail(pdev->p2pdma->pool);
68 
69 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
70 }
71 static DEVICE_ATTR_RO(available);
72 
73 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
74 			      char *buf)
75 {
76 	struct pci_dev *pdev = to_pci_dev(dev);
77 
78 	return snprintf(buf, PAGE_SIZE, "%d\n",
79 			pdev->p2pdma->p2pmem_published);
80 }
81 static DEVICE_ATTR_RO(published);
82 
83 static struct attribute *p2pmem_attrs[] = {
84 	&dev_attr_size.attr,
85 	&dev_attr_available.attr,
86 	&dev_attr_published.attr,
87 	NULL,
88 };
89 
90 static const struct attribute_group p2pmem_group = {
91 	.attrs = p2pmem_attrs,
92 	.name = "p2pmem",
93 };
94 
95 static void pci_p2pdma_release(void *data)
96 {
97 	struct pci_dev *pdev = data;
98 	struct pci_p2pdma *p2pdma = pdev->p2pdma;
99 
100 	if (!p2pdma)
101 		return;
102 
103 	/* Flush and disable pci_alloc_p2p_mem() */
104 	pdev->p2pdma = NULL;
105 	synchronize_rcu();
106 
107 	gen_pool_destroy(p2pdma->pool);
108 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
109 	xa_destroy(&p2pdma->map_types);
110 }
111 
112 static int pci_p2pdma_setup(struct pci_dev *pdev)
113 {
114 	int error = -ENOMEM;
115 	struct pci_p2pdma *p2p;
116 
117 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
118 	if (!p2p)
119 		return -ENOMEM;
120 
121 	xa_init(&p2p->map_types);
122 
123 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 	if (!p2p->pool)
125 		goto out;
126 
127 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
128 	if (error)
129 		goto out_pool_destroy;
130 
131 	pdev->p2pdma = p2p;
132 
133 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
134 	if (error)
135 		goto out_pool_destroy;
136 
137 	return 0;
138 
139 out_pool_destroy:
140 	pdev->p2pdma = NULL;
141 	gen_pool_destroy(p2p->pool);
142 out:
143 	devm_kfree(&pdev->dev, p2p);
144 	return error;
145 }
146 
147 /**
148  * pci_p2pdma_add_resource - add memory for use as p2p memory
149  * @pdev: the device to add the memory to
150  * @bar: PCI BAR to add
151  * @size: size of the memory to add, may be zero to use the whole BAR
152  * @offset: offset into the PCI BAR
153  *
154  * The memory will be given ZONE_DEVICE struct pages so that it may
155  * be used with any DMA request.
156  */
157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
158 			    u64 offset)
159 {
160 	struct pci_p2pdma_pagemap *p2p_pgmap;
161 	struct dev_pagemap *pgmap;
162 	void *addr;
163 	int error;
164 
165 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
166 		return -EINVAL;
167 
168 	if (offset >= pci_resource_len(pdev, bar))
169 		return -EINVAL;
170 
171 	if (!size)
172 		size = pci_resource_len(pdev, bar) - offset;
173 
174 	if (size + offset > pci_resource_len(pdev, bar))
175 		return -EINVAL;
176 
177 	if (!pdev->p2pdma) {
178 		error = pci_p2pdma_setup(pdev);
179 		if (error)
180 			return error;
181 	}
182 
183 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
184 	if (!p2p_pgmap)
185 		return -ENOMEM;
186 
187 	pgmap = &p2p_pgmap->pgmap;
188 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
189 	pgmap->res.end = pgmap->res.start + size - 1;
190 	pgmap->res.flags = pci_resource_flags(pdev, bar);
191 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
192 
193 	p2p_pgmap->provider = pdev;
194 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
195 		pci_resource_start(pdev, bar);
196 
197 	addr = devm_memremap_pages(&pdev->dev, pgmap);
198 	if (IS_ERR(addr)) {
199 		error = PTR_ERR(addr);
200 		goto pgmap_free;
201 	}
202 
203 	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
204 			pci_bus_address(pdev, bar) + offset,
205 			resource_size(&pgmap->res), dev_to_node(&pdev->dev),
206 			pgmap->ref);
207 	if (error)
208 		goto pages_free;
209 
210 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
211 		 &pgmap->res);
212 
213 	return 0;
214 
215 pages_free:
216 	devm_memunmap_pages(&pdev->dev, pgmap);
217 pgmap_free:
218 	devm_kfree(&pdev->dev, pgmap);
219 	return error;
220 }
221 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
222 
223 /*
224  * Note this function returns the parent PCI device with a
225  * reference taken. It is the caller's responsibility to drop
226  * the reference.
227  */
228 static struct pci_dev *find_parent_pci_dev(struct device *dev)
229 {
230 	struct device *parent;
231 
232 	dev = get_device(dev);
233 
234 	while (dev) {
235 		if (dev_is_pci(dev))
236 			return to_pci_dev(dev);
237 
238 		parent = get_device(dev->parent);
239 		put_device(dev);
240 		dev = parent;
241 	}
242 
243 	return NULL;
244 }
245 
246 /*
247  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
248  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
249  * upstream, 0 otherwise.
250  */
251 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
252 {
253 	int pos;
254 	u16 ctrl;
255 
256 	pos = pdev->acs_cap;
257 	if (!pos)
258 		return 0;
259 
260 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
261 
262 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
263 		return 1;
264 
265 	return 0;
266 }
267 
268 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
269 {
270 	if (!buf)
271 		return;
272 
273 	seq_buf_printf(buf, "%s;", pci_name(pdev));
274 }
275 
276 static bool cpu_supports_p2pdma(void)
277 {
278 #ifdef CONFIG_X86
279 	struct cpuinfo_x86 *c = &cpu_data(0);
280 
281 	/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
282 	if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
283 		return true;
284 #endif
285 
286 	return false;
287 }
288 
289 static const struct pci_p2pdma_whitelist_entry {
290 	unsigned short vendor;
291 	unsigned short device;
292 	enum {
293 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
294 	} flags;
295 } pci_p2pdma_whitelist[] = {
296 	/* Intel Xeon E5/Core i7 */
297 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
298 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
299 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
300 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
301 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
302 	/* Intel SkyLake-E */
303 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
304 	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
305 	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
306 	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
307 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
308 	{}
309 };
310 
311 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
312 				    bool same_host_bridge)
313 {
314 	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
315 	const struct pci_p2pdma_whitelist_entry *entry;
316 	unsigned short vendor, device;
317 
318 	if (!root)
319 		return false;
320 
321 	vendor = root->vendor;
322 	device = root->device;
323 	pci_dev_put(root);
324 
325 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
326 		if (vendor != entry->vendor || device != entry->device)
327 			continue;
328 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
329 			return false;
330 
331 		return true;
332 	}
333 
334 	return false;
335 }
336 
337 /*
338  * If we can't find a common upstream bridge take a look at the root
339  * complex and compare it to a whitelist of known good hardware.
340  */
341 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b)
342 {
343 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
344 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
345 
346 	if (host_a == host_b)
347 		return __host_bridge_whitelist(host_a, true);
348 
349 	if (__host_bridge_whitelist(host_a, false) &&
350 	    __host_bridge_whitelist(host_b, false))
351 		return true;
352 
353 	return false;
354 }
355 
356 static enum pci_p2pdma_map_type
357 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
358 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
359 {
360 	struct pci_dev *a = provider, *b = client, *bb;
361 	int dist_a = 0;
362 	int dist_b = 0;
363 	int acs_cnt = 0;
364 
365 	if (acs_redirects)
366 		*acs_redirects = false;
367 
368 	/*
369 	 * Note, we don't need to take references to devices returned by
370 	 * pci_upstream_bridge() seeing we hold a reference to a child
371 	 * device which will already hold a reference to the upstream bridge.
372 	 */
373 
374 	while (a) {
375 		dist_b = 0;
376 
377 		if (pci_bridge_has_acs_redir(a)) {
378 			seq_buf_print_bus_devfn(acs_list, a);
379 			acs_cnt++;
380 		}
381 
382 		bb = b;
383 
384 		while (bb) {
385 			if (a == bb)
386 				goto check_b_path_acs;
387 
388 			bb = pci_upstream_bridge(bb);
389 			dist_b++;
390 		}
391 
392 		a = pci_upstream_bridge(a);
393 		dist_a++;
394 	}
395 
396 	if (dist)
397 		*dist = dist_a + dist_b;
398 
399 	return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
400 
401 check_b_path_acs:
402 	bb = b;
403 
404 	while (bb) {
405 		if (a == bb)
406 			break;
407 
408 		if (pci_bridge_has_acs_redir(bb)) {
409 			seq_buf_print_bus_devfn(acs_list, bb);
410 			acs_cnt++;
411 		}
412 
413 		bb = pci_upstream_bridge(bb);
414 	}
415 
416 	if (dist)
417 		*dist = dist_a + dist_b;
418 
419 	if (acs_cnt) {
420 		if (acs_redirects)
421 			*acs_redirects = true;
422 
423 		return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
424 	}
425 
426 	return PCI_P2PDMA_MAP_BUS_ADDR;
427 }
428 
429 static unsigned long map_types_idx(struct pci_dev *client)
430 {
431 	return (pci_domain_nr(client->bus) << 16) |
432 		(client->bus->number << 8) | client->devfn;
433 }
434 
435 /*
436  * Find the distance through the nearest common upstream bridge between
437  * two PCI devices.
438  *
439  * If the two devices are the same device then 0 will be returned.
440  *
441  * If there are two virtual functions of the same device behind the same
442  * bridge port then 2 will be returned (one step down to the PCIe switch,
443  * then one step back to the same device).
444  *
445  * In the case where two devices are connected to the same PCIe switch, the
446  * value 4 will be returned. This corresponds to the following PCI tree:
447  *
448  *     -+  Root Port
449  *      \+ Switch Upstream Port
450  *       +-+ Switch Downstream Port
451  *       + \- Device A
452  *       \-+ Switch Downstream Port
453  *         \- Device B
454  *
455  * The distance is 4 because we traverse from Device A through the downstream
456  * port of the switch, to the common upstream port, back up to the second
457  * downstream port and then to Device B.
458  *
459  * Any two devices that cannot communicate using p2pdma will return
460  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
461  *
462  * Any two devices that have a data path that goes through the host bridge
463  * will consult a whitelist. If the host bridges are on the whitelist,
464  * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE.
465  *
466  * If either bridge is not on the whitelist this function returns
467  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
468  *
469  * If a bridge which has any ACS redirection bits set is in the path,
470  * acs_redirects will be set to true. In this case, a list of all infringing
471  * bridge addresses will be populated in acs_list (assuming it's non-null)
472  * for printk purposes.
473  */
474 static enum pci_p2pdma_map_type
475 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
476 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
477 {
478 	enum pci_p2pdma_map_type map_type;
479 
480 	map_type = __upstream_bridge_distance(provider, client, dist,
481 					      acs_redirects, acs_list);
482 
483 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) {
484 		if (!cpu_supports_p2pdma() &&
485 		    !host_bridge_whitelist(provider, client))
486 			map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
487 	}
488 
489 	if (provider->p2pdma)
490 		xa_store(&provider->p2pdma->map_types, map_types_idx(client),
491 			 xa_mk_value(map_type), GFP_KERNEL);
492 
493 	return map_type;
494 }
495 
496 static enum pci_p2pdma_map_type
497 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client,
498 			      int *dist)
499 {
500 	struct seq_buf acs_list;
501 	bool acs_redirects;
502 	int ret;
503 
504 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
505 	if (!acs_list.buffer)
506 		return -ENOMEM;
507 
508 	ret = upstream_bridge_distance(provider, client, dist, &acs_redirects,
509 				       &acs_list);
510 	if (acs_redirects) {
511 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
512 			 pci_name(provider));
513 		/* Drop final semicolon */
514 		acs_list.buffer[acs_list.len-1] = 0;
515 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
516 			 acs_list.buffer);
517 	}
518 
519 	if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) {
520 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
521 			 pci_name(provider));
522 	}
523 
524 	kfree(acs_list.buffer);
525 
526 	return ret;
527 }
528 
529 /**
530  * pci_p2pdma_distance_many - Determine the cumulative distance between
531  *	a p2pdma provider and the clients in use.
532  * @provider: p2pdma provider to check against the client list
533  * @clients: array of devices to check (NULL-terminated)
534  * @num_clients: number of clients in the array
535  * @verbose: if true, print warnings for devices when we return -1
536  *
537  * Returns -1 if any of the clients are not compatible, otherwise returns a
538  * positive number where a lower number is the preferable choice. (If there's
539  * one client that's the same as the provider it will return 0, which is best
540  * choice).
541  *
542  * "compatible" means the provider and the clients are either all behind
543  * the same PCI root port or the host bridges connected to each of the devices
544  * are listed in the 'pci_p2pdma_whitelist'.
545  */
546 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
547 			     int num_clients, bool verbose)
548 {
549 	bool not_supported = false;
550 	struct pci_dev *pci_client;
551 	int total_dist = 0;
552 	int distance;
553 	int i, ret;
554 
555 	if (num_clients == 0)
556 		return -1;
557 
558 	for (i = 0; i < num_clients; i++) {
559 #ifdef CONFIG_DMA_VIRT_OPS
560 		if (clients[i]->dma_ops == &dma_virt_ops) {
561 			if (verbose)
562 				dev_warn(clients[i],
563 					 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n");
564 			return -1;
565 		}
566 #endif
567 
568 		pci_client = find_parent_pci_dev(clients[i]);
569 		if (!pci_client) {
570 			if (verbose)
571 				dev_warn(clients[i],
572 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
573 			return -1;
574 		}
575 
576 		if (verbose)
577 			ret = upstream_bridge_distance_warn(provider,
578 					pci_client, &distance);
579 		else
580 			ret = upstream_bridge_distance(provider, pci_client,
581 						       &distance, NULL, NULL);
582 
583 		pci_dev_put(pci_client);
584 
585 		if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED)
586 			not_supported = true;
587 
588 		if (not_supported && !verbose)
589 			break;
590 
591 		total_dist += distance;
592 	}
593 
594 	if (not_supported)
595 		return -1;
596 
597 	return total_dist;
598 }
599 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
600 
601 /**
602  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
603  * @pdev: PCI device to check
604  */
605 bool pci_has_p2pmem(struct pci_dev *pdev)
606 {
607 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
608 }
609 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
610 
611 /**
612  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
613  *	the specified list of clients and shortest distance (as determined
614  *	by pci_p2pmem_dma())
615  * @clients: array of devices to check (NULL-terminated)
616  * @num_clients: number of client devices in the list
617  *
618  * If multiple devices are behind the same switch, the one "closest" to the
619  * client devices in use will be chosen first. (So if one of the providers is
620  * the same as one of the clients, that provider will be used ahead of any
621  * other providers that are unrelated). If multiple providers are an equal
622  * distance away, one will be chosen at random.
623  *
624  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
625  * to return the reference) or NULL if no compatible device is found. The
626  * found provider will also be assigned to the client list.
627  */
628 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
629 {
630 	struct pci_dev *pdev = NULL;
631 	int distance;
632 	int closest_distance = INT_MAX;
633 	struct pci_dev **closest_pdevs;
634 	int dev_cnt = 0;
635 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
636 	int i;
637 
638 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
639 	if (!closest_pdevs)
640 		return NULL;
641 
642 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
643 		if (!pci_has_p2pmem(pdev))
644 			continue;
645 
646 		distance = pci_p2pdma_distance_many(pdev, clients,
647 						    num_clients, false);
648 		if (distance < 0 || distance > closest_distance)
649 			continue;
650 
651 		if (distance == closest_distance && dev_cnt >= max_devs)
652 			continue;
653 
654 		if (distance < closest_distance) {
655 			for (i = 0; i < dev_cnt; i++)
656 				pci_dev_put(closest_pdevs[i]);
657 
658 			dev_cnt = 0;
659 			closest_distance = distance;
660 		}
661 
662 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
663 	}
664 
665 	if (dev_cnt)
666 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
667 
668 	for (i = 0; i < dev_cnt; i++)
669 		pci_dev_put(closest_pdevs[i]);
670 
671 	kfree(closest_pdevs);
672 	return pdev;
673 }
674 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
675 
676 /**
677  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
678  * @pdev: the device to allocate memory from
679  * @size: number of bytes to allocate
680  *
681  * Returns the allocated memory or NULL on error.
682  */
683 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
684 {
685 	void *ret = NULL;
686 	struct percpu_ref *ref;
687 
688 	/*
689 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
690 	 * ensure pdev->p2pdma is non-NULL for the duration of the
691 	 * read-lock.
692 	 */
693 	rcu_read_lock();
694 	if (unlikely(!pdev->p2pdma))
695 		goto out;
696 
697 	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
698 			(void **) &ref);
699 	if (!ret)
700 		goto out;
701 
702 	if (unlikely(!percpu_ref_tryget_live(ref))) {
703 		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
704 		ret = NULL;
705 		goto out;
706 	}
707 out:
708 	rcu_read_unlock();
709 	return ret;
710 }
711 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
712 
713 /**
714  * pci_free_p2pmem - free peer-to-peer DMA memory
715  * @pdev: the device the memory was allocated from
716  * @addr: address of the memory that was allocated
717  * @size: number of bytes that were allocated
718  */
719 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
720 {
721 	struct percpu_ref *ref;
722 
723 	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
724 			(void **) &ref);
725 	percpu_ref_put(ref);
726 }
727 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
728 
729 /**
730  * pci_virt_to_bus - return the PCI bus address for a given virtual
731  *	address obtained with pci_alloc_p2pmem()
732  * @pdev: the device the memory was allocated from
733  * @addr: address of the memory that was allocated
734  */
735 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
736 {
737 	if (!addr)
738 		return 0;
739 	if (!pdev->p2pdma)
740 		return 0;
741 
742 	/*
743 	 * Note: when we added the memory to the pool we used the PCI
744 	 * bus address as the physical address. So gen_pool_virt_to_phys()
745 	 * actually returns the bus address despite the misleading name.
746 	 */
747 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
748 }
749 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
750 
751 /**
752  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
753  * @pdev: the device to allocate memory from
754  * @nents: the number of SG entries in the list
755  * @length: number of bytes to allocate
756  *
757  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
758  */
759 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
760 					 unsigned int *nents, u32 length)
761 {
762 	struct scatterlist *sg;
763 	void *addr;
764 
765 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
766 	if (!sg)
767 		return NULL;
768 
769 	sg_init_table(sg, 1);
770 
771 	addr = pci_alloc_p2pmem(pdev, length);
772 	if (!addr)
773 		goto out_free_sg;
774 
775 	sg_set_buf(sg, addr, length);
776 	*nents = 1;
777 	return sg;
778 
779 out_free_sg:
780 	kfree(sg);
781 	return NULL;
782 }
783 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
784 
785 /**
786  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
787  * @pdev: the device to allocate memory from
788  * @sgl: the allocated scatterlist
789  */
790 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
791 {
792 	struct scatterlist *sg;
793 	int count;
794 
795 	for_each_sg(sgl, sg, INT_MAX, count) {
796 		if (!sg)
797 			break;
798 
799 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
800 	}
801 	kfree(sgl);
802 }
803 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
804 
805 /**
806  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
807  *	other devices with pci_p2pmem_find()
808  * @pdev: the device with peer-to-peer DMA memory to publish
809  * @publish: set to true to publish the memory, false to unpublish it
810  *
811  * Published memory can be used by other PCI device drivers for
812  * peer-2-peer DMA operations. Non-published memory is reserved for
813  * exclusive use of the device driver that registers the peer-to-peer
814  * memory.
815  */
816 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
817 {
818 	if (pdev->p2pdma)
819 		pdev->p2pdma->p2pmem_published = publish;
820 }
821 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
822 
823 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider,
824 						    struct pci_dev *client)
825 {
826 	if (!provider->p2pdma)
827 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
828 
829 	return xa_to_value(xa_load(&provider->p2pdma->map_types,
830 				   map_types_idx(client)));
831 }
832 
833 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
834 		struct device *dev, struct scatterlist *sg, int nents)
835 {
836 	struct scatterlist *s;
837 	phys_addr_t paddr;
838 	int i;
839 
840 	/*
841 	 * p2pdma mappings are not compatible with devices that use
842 	 * dma_virt_ops. If the upper layers do the right thing
843 	 * this should never happen because it will be prevented
844 	 * by the check in pci_p2pdma_distance_many()
845 	 */
846 #ifdef CONFIG_DMA_VIRT_OPS
847 	if (WARN_ON_ONCE(dev->dma_ops == &dma_virt_ops))
848 		return 0;
849 #endif
850 
851 	for_each_sg(sg, s, nents, i) {
852 		paddr = sg_phys(s);
853 
854 		s->dma_address = paddr - p2p_pgmap->bus_offset;
855 		sg_dma_len(s) = s->length;
856 	}
857 
858 	return nents;
859 }
860 
861 /**
862  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
863  * @dev: device doing the DMA request
864  * @sg: scatter list to map
865  * @nents: elements in the scatterlist
866  * @dir: DMA direction
867  * @attrs: DMA attributes passed to dma_map_sg() (if called)
868  *
869  * Scatterlists mapped with this function should be unmapped using
870  * pci_p2pdma_unmap_sg_attrs().
871  *
872  * Returns the number of SG entries mapped or 0 on error.
873  */
874 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
875 		int nents, enum dma_data_direction dir, unsigned long attrs)
876 {
877 	struct pci_p2pdma_pagemap *p2p_pgmap =
878 		to_p2p_pgmap(sg_page(sg)->pgmap);
879 	struct pci_dev *client;
880 
881 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
882 		return 0;
883 
884 	client = to_pci_dev(dev);
885 
886 	switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) {
887 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
888 		return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
889 	case PCI_P2PDMA_MAP_BUS_ADDR:
890 		return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
891 	default:
892 		WARN_ON_ONCE(1);
893 		return 0;
894 	}
895 }
896 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);
897 
898 /**
899  * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was
900  *	mapped with pci_p2pdma_map_sg()
901  * @dev: device doing the DMA request
902  * @sg: scatter list to map
903  * @nents: number of elements returned by pci_p2pdma_map_sg()
904  * @dir: DMA direction
905  * @attrs: DMA attributes passed to dma_unmap_sg() (if called)
906  */
907 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
908 		int nents, enum dma_data_direction dir, unsigned long attrs)
909 {
910 	struct pci_p2pdma_pagemap *p2p_pgmap =
911 		to_p2p_pgmap(sg_page(sg)->pgmap);
912 	enum pci_p2pdma_map_type map_type;
913 	struct pci_dev *client;
914 
915 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
916 		return;
917 
918 	client = to_pci_dev(dev);
919 
920 	map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client);
921 
922 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
923 		dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
924 }
925 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);
926 
927 /**
928  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
929  *		to enable p2pdma
930  * @page: contents of the value to be stored
931  * @p2p_dev: returns the PCI device that was selected to be used
932  *		(if one was specified in the stored value)
933  * @use_p2pdma: returns whether to enable p2pdma or not
934  *
935  * Parses an attribute value to decide whether to enable p2pdma.
936  * The value can select a PCI device (using its full BDF device
937  * name) or a boolean (in any format strtobool() accepts). A false
938  * value disables p2pdma, a true value expects the caller
939  * to automatically find a compatible device and specifying a PCI device
940  * expects the caller to use the specific provider.
941  *
942  * pci_p2pdma_enable_show() should be used as the show operation for
943  * the attribute.
944  *
945  * Returns 0 on success
946  */
947 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
948 			    bool *use_p2pdma)
949 {
950 	struct device *dev;
951 
952 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
953 	if (dev) {
954 		*use_p2pdma = true;
955 		*p2p_dev = to_pci_dev(dev);
956 
957 		if (!pci_has_p2pmem(*p2p_dev)) {
958 			pci_err(*p2p_dev,
959 				"PCI device has no peer-to-peer memory: %s\n",
960 				page);
961 			pci_dev_put(*p2p_dev);
962 			return -ENODEV;
963 		}
964 
965 		return 0;
966 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
967 		/*
968 		 * If the user enters a PCI device that  doesn't exist
969 		 * like "0000:01:00.1", we don't want strtobool to think
970 		 * it's a '0' when it's clearly not what the user wanted.
971 		 * So we require 0's and 1's to be exactly one character.
972 		 */
973 	} else if (!strtobool(page, use_p2pdma)) {
974 		return 0;
975 	}
976 
977 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
978 	return -ENODEV;
979 }
980 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
981 
982 /**
983  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
984  *		whether p2pdma is enabled
985  * @page: contents of the stored value
986  * @p2p_dev: the selected p2p device (NULL if no device is selected)
987  * @use_p2pdma: whether p2pdma has been enabled
988  *
989  * Attributes that use pci_p2pdma_enable_store() should use this function
990  * to show the value of the attribute.
991  *
992  * Returns 0 on success
993  */
994 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
995 			       bool use_p2pdma)
996 {
997 	if (!use_p2pdma)
998 		return sprintf(page, "0\n");
999 
1000 	if (!p2p_dev)
1001 		return sprintf(page, "1\n");
1002 
1003 	return sprintf(page, "%s\n", pci_name(p2p_dev));
1004 }
1005 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1006