xref: /openbmc/linux/drivers/pci/p2pdma.c (revision ecfb9f40)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/pci-p2pdma.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/genalloc.h>
18 #include <linux/memremap.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/random.h>
21 #include <linux/seq_buf.h>
22 #include <linux/xarray.h>
23 
24 struct pci_p2pdma {
25 	struct gen_pool *pool;
26 	bool p2pmem_published;
27 	struct xarray map_types;
28 };
29 
30 struct pci_p2pdma_pagemap {
31 	struct dev_pagemap pgmap;
32 	struct pci_dev *provider;
33 	u64 bus_offset;
34 };
35 
36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
37 {
38 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
39 }
40 
41 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
42 			 char *buf)
43 {
44 	struct pci_dev *pdev = to_pci_dev(dev);
45 	struct pci_p2pdma *p2pdma;
46 	size_t size = 0;
47 
48 	rcu_read_lock();
49 	p2pdma = rcu_dereference(pdev->p2pdma);
50 	if (p2pdma && p2pdma->pool)
51 		size = gen_pool_size(p2pdma->pool);
52 	rcu_read_unlock();
53 
54 	return sysfs_emit(buf, "%zd\n", size);
55 }
56 static DEVICE_ATTR_RO(size);
57 
58 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
59 			      char *buf)
60 {
61 	struct pci_dev *pdev = to_pci_dev(dev);
62 	struct pci_p2pdma *p2pdma;
63 	size_t avail = 0;
64 
65 	rcu_read_lock();
66 	p2pdma = rcu_dereference(pdev->p2pdma);
67 	if (p2pdma && p2pdma->pool)
68 		avail = gen_pool_avail(p2pdma->pool);
69 	rcu_read_unlock();
70 
71 	return sysfs_emit(buf, "%zd\n", avail);
72 }
73 static DEVICE_ATTR_RO(available);
74 
75 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
76 			      char *buf)
77 {
78 	struct pci_dev *pdev = to_pci_dev(dev);
79 	struct pci_p2pdma *p2pdma;
80 	bool published = false;
81 
82 	rcu_read_lock();
83 	p2pdma = rcu_dereference(pdev->p2pdma);
84 	if (p2pdma)
85 		published = p2pdma->p2pmem_published;
86 	rcu_read_unlock();
87 
88 	return sysfs_emit(buf, "%d\n", published);
89 }
90 static DEVICE_ATTR_RO(published);
91 
92 static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj,
93 		struct bin_attribute *attr, struct vm_area_struct *vma)
94 {
95 	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));
96 	size_t len = vma->vm_end - vma->vm_start;
97 	struct pci_p2pdma *p2pdma;
98 	struct percpu_ref *ref;
99 	unsigned long vaddr;
100 	void *kaddr;
101 	int ret;
102 
103 	/* prevent private mappings from being established */
104 	if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) {
105 		pci_info_ratelimited(pdev,
106 				     "%s: fail, attempted private mapping\n",
107 				     current->comm);
108 		return -EINVAL;
109 	}
110 
111 	if (vma->vm_pgoff) {
112 		pci_info_ratelimited(pdev,
113 				     "%s: fail, attempted mapping with non-zero offset\n",
114 				     current->comm);
115 		return -EINVAL;
116 	}
117 
118 	rcu_read_lock();
119 	p2pdma = rcu_dereference(pdev->p2pdma);
120 	if (!p2pdma) {
121 		ret = -ENODEV;
122 		goto out;
123 	}
124 
125 	kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref);
126 	if (!kaddr) {
127 		ret = -ENOMEM;
128 		goto out;
129 	}
130 
131 	/*
132 	 * vm_insert_page() can sleep, so a reference is taken to mapping
133 	 * such that rcu_read_unlock() can be done before inserting the
134 	 * pages
135 	 */
136 	if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
137 		ret = -ENODEV;
138 		goto out_free_mem;
139 	}
140 	rcu_read_unlock();
141 
142 	for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) {
143 		ret = vm_insert_page(vma, vaddr, virt_to_page(kaddr));
144 		if (ret) {
145 			gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
146 			return ret;
147 		}
148 		percpu_ref_get(ref);
149 		put_page(virt_to_page(kaddr));
150 		kaddr += PAGE_SIZE;
151 		len -= PAGE_SIZE;
152 	}
153 
154 	percpu_ref_put(ref);
155 
156 	return 0;
157 out_free_mem:
158 	gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len);
159 out:
160 	rcu_read_unlock();
161 	return ret;
162 }
163 
164 static struct bin_attribute p2pmem_alloc_attr = {
165 	.attr = { .name = "allocate", .mode = 0660 },
166 	.mmap = p2pmem_alloc_mmap,
167 	/*
168 	 * Some places where we want to call mmap (ie. python) will check
169 	 * that the file size is greater than the mmap size before allowing
170 	 * the mmap to continue. To work around this, just set the size
171 	 * to be very large.
172 	 */
173 	.size = SZ_1T,
174 };
175 
176 static struct attribute *p2pmem_attrs[] = {
177 	&dev_attr_size.attr,
178 	&dev_attr_available.attr,
179 	&dev_attr_published.attr,
180 	NULL,
181 };
182 
183 static struct bin_attribute *p2pmem_bin_attrs[] = {
184 	&p2pmem_alloc_attr,
185 	NULL,
186 };
187 
188 static const struct attribute_group p2pmem_group = {
189 	.attrs = p2pmem_attrs,
190 	.bin_attrs = p2pmem_bin_attrs,
191 	.name = "p2pmem",
192 };
193 
194 static void p2pdma_page_free(struct page *page)
195 {
196 	struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page->pgmap);
197 	struct percpu_ref *ref;
198 
199 	gen_pool_free_owner(pgmap->provider->p2pdma->pool,
200 			    (uintptr_t)page_to_virt(page), PAGE_SIZE,
201 			    (void **)&ref);
202 	percpu_ref_put(ref);
203 }
204 
205 static const struct dev_pagemap_ops p2pdma_pgmap_ops = {
206 	.page_free = p2pdma_page_free,
207 };
208 
209 static void pci_p2pdma_release(void *data)
210 {
211 	struct pci_dev *pdev = data;
212 	struct pci_p2pdma *p2pdma;
213 
214 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
215 	if (!p2pdma)
216 		return;
217 
218 	/* Flush and disable pci_alloc_p2p_mem() */
219 	pdev->p2pdma = NULL;
220 	synchronize_rcu();
221 
222 	gen_pool_destroy(p2pdma->pool);
223 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
224 	xa_destroy(&p2pdma->map_types);
225 }
226 
227 static int pci_p2pdma_setup(struct pci_dev *pdev)
228 {
229 	int error = -ENOMEM;
230 	struct pci_p2pdma *p2p;
231 
232 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
233 	if (!p2p)
234 		return -ENOMEM;
235 
236 	xa_init(&p2p->map_types);
237 
238 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
239 	if (!p2p->pool)
240 		goto out;
241 
242 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
243 	if (error)
244 		goto out_pool_destroy;
245 
246 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
247 	if (error)
248 		goto out_pool_destroy;
249 
250 	rcu_assign_pointer(pdev->p2pdma, p2p);
251 	return 0;
252 
253 out_pool_destroy:
254 	gen_pool_destroy(p2p->pool);
255 out:
256 	devm_kfree(&pdev->dev, p2p);
257 	return error;
258 }
259 
260 static void pci_p2pdma_unmap_mappings(void *data)
261 {
262 	struct pci_dev *pdev = data;
263 
264 	/*
265 	 * Removing the alloc attribute from sysfs will call
266 	 * unmap_mapping_range() on the inode, teardown any existing userspace
267 	 * mappings and prevent new ones from being created.
268 	 */
269 	sysfs_remove_file_from_group(&pdev->dev.kobj, &p2pmem_alloc_attr.attr,
270 				     p2pmem_group.name);
271 }
272 
273 /**
274  * pci_p2pdma_add_resource - add memory for use as p2p memory
275  * @pdev: the device to add the memory to
276  * @bar: PCI BAR to add
277  * @size: size of the memory to add, may be zero to use the whole BAR
278  * @offset: offset into the PCI BAR
279  *
280  * The memory will be given ZONE_DEVICE struct pages so that it may
281  * be used with any DMA request.
282  */
283 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
284 			    u64 offset)
285 {
286 	struct pci_p2pdma_pagemap *p2p_pgmap;
287 	struct dev_pagemap *pgmap;
288 	struct pci_p2pdma *p2pdma;
289 	void *addr;
290 	int error;
291 
292 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
293 		return -EINVAL;
294 
295 	if (offset >= pci_resource_len(pdev, bar))
296 		return -EINVAL;
297 
298 	if (!size)
299 		size = pci_resource_len(pdev, bar) - offset;
300 
301 	if (size + offset > pci_resource_len(pdev, bar))
302 		return -EINVAL;
303 
304 	if (!pdev->p2pdma) {
305 		error = pci_p2pdma_setup(pdev);
306 		if (error)
307 			return error;
308 	}
309 
310 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
311 	if (!p2p_pgmap)
312 		return -ENOMEM;
313 
314 	pgmap = &p2p_pgmap->pgmap;
315 	pgmap->range.start = pci_resource_start(pdev, bar) + offset;
316 	pgmap->range.end = pgmap->range.start + size - 1;
317 	pgmap->nr_range = 1;
318 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
319 	pgmap->ops = &p2pdma_pgmap_ops;
320 
321 	p2p_pgmap->provider = pdev;
322 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
323 		pci_resource_start(pdev, bar);
324 
325 	addr = devm_memremap_pages(&pdev->dev, pgmap);
326 	if (IS_ERR(addr)) {
327 		error = PTR_ERR(addr);
328 		goto pgmap_free;
329 	}
330 
331 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings,
332 					 pdev);
333 	if (error)
334 		goto pages_free;
335 
336 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
337 	error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr,
338 			pci_bus_address(pdev, bar) + offset,
339 			range_len(&pgmap->range), dev_to_node(&pdev->dev),
340 			&pgmap->ref);
341 	if (error)
342 		goto pages_free;
343 
344 	pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
345 		 pgmap->range.start, pgmap->range.end);
346 
347 	return 0;
348 
349 pages_free:
350 	devm_memunmap_pages(&pdev->dev, pgmap);
351 pgmap_free:
352 	devm_kfree(&pdev->dev, pgmap);
353 	return error;
354 }
355 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
356 
357 /*
358  * Note this function returns the parent PCI device with a
359  * reference taken. It is the caller's responsibility to drop
360  * the reference.
361  */
362 static struct pci_dev *find_parent_pci_dev(struct device *dev)
363 {
364 	struct device *parent;
365 
366 	dev = get_device(dev);
367 
368 	while (dev) {
369 		if (dev_is_pci(dev))
370 			return to_pci_dev(dev);
371 
372 		parent = get_device(dev->parent);
373 		put_device(dev);
374 		dev = parent;
375 	}
376 
377 	return NULL;
378 }
379 
380 /*
381  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
382  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
383  * upstream, 0 otherwise.
384  */
385 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
386 {
387 	int pos;
388 	u16 ctrl;
389 
390 	pos = pdev->acs_cap;
391 	if (!pos)
392 		return 0;
393 
394 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
395 
396 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
397 		return 1;
398 
399 	return 0;
400 }
401 
402 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
403 {
404 	if (!buf)
405 		return;
406 
407 	seq_buf_printf(buf, "%s;", pci_name(pdev));
408 }
409 
410 static bool cpu_supports_p2pdma(void)
411 {
412 #ifdef CONFIG_X86
413 	struct cpuinfo_x86 *c = &cpu_data(0);
414 
415 	/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
416 	if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
417 		return true;
418 #endif
419 
420 	return false;
421 }
422 
423 static const struct pci_p2pdma_whitelist_entry {
424 	unsigned short vendor;
425 	unsigned short device;
426 	enum {
427 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
428 	} flags;
429 } pci_p2pdma_whitelist[] = {
430 	/* Intel Xeon E5/Core i7 */
431 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
432 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
433 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
434 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
435 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
436 	/* Intel SkyLake-E */
437 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
438 	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
439 	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
440 	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
441 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
442 	{PCI_VENDOR_ID_INTEL,	0x09a2, 0},
443 	{}
444 };
445 
446 /*
447  * If the first device on host's root bus is either devfn 00.0 or a PCIe
448  * Root Port, return it.  Otherwise return NULL.
449  *
450  * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[]
451  * (though there is no PCI/PCIe requirement for such a device).  On some
452  * platforms, e.g., Intel Skylake, there is no such host bridge device, and
453  * pci_p2pdma_whitelist[] may contain a Root Port at any devfn.
454  *
455  * This function is similar to pci_get_slot(host->bus, 0), but it does
456  * not take the pci_bus_sem lock since __host_bridge_whitelist() must not
457  * sleep.
458  *
459  * For this to be safe, the caller should hold a reference to a device on the
460  * bridge, which should ensure the host_bridge device will not be freed
461  * or removed from the head of the devices list.
462  */
463 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host)
464 {
465 	struct pci_dev *root;
466 
467 	root = list_first_entry_or_null(&host->bus->devices,
468 					struct pci_dev, bus_list);
469 
470 	if (!root)
471 		return NULL;
472 
473 	if (root->devfn == PCI_DEVFN(0, 0))
474 		return root;
475 
476 	if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT)
477 		return root;
478 
479 	return NULL;
480 }
481 
482 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
483 				    bool same_host_bridge, bool warn)
484 {
485 	struct pci_dev *root = pci_host_bridge_dev(host);
486 	const struct pci_p2pdma_whitelist_entry *entry;
487 	unsigned short vendor, device;
488 
489 	if (!root)
490 		return false;
491 
492 	vendor = root->vendor;
493 	device = root->device;
494 
495 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
496 		if (vendor != entry->vendor || device != entry->device)
497 			continue;
498 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
499 			return false;
500 
501 		return true;
502 	}
503 
504 	if (warn)
505 		pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n",
506 			 vendor, device);
507 
508 	return false;
509 }
510 
511 /*
512  * If we can't find a common upstream bridge take a look at the root
513  * complex and compare it to a whitelist of known good hardware.
514  */
515 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b,
516 				  bool warn)
517 {
518 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
519 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
520 
521 	if (host_a == host_b)
522 		return __host_bridge_whitelist(host_a, true, warn);
523 
524 	if (__host_bridge_whitelist(host_a, false, warn) &&
525 	    __host_bridge_whitelist(host_b, false, warn))
526 		return true;
527 
528 	return false;
529 }
530 
531 static unsigned long map_types_idx(struct pci_dev *client)
532 {
533 	return (pci_domain_nr(client->bus) << 16) |
534 		(client->bus->number << 8) | client->devfn;
535 }
536 
537 /*
538  * Calculate the P2PDMA mapping type and distance between two PCI devices.
539  *
540  * If the two devices are the same PCI function, return
541  * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0.
542  *
543  * If they are two functions of the same device, return
544  * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge,
545  * then one hop back down to another function of the same device).
546  *
547  * In the case where two devices are connected to the same PCIe switch,
548  * return a distance of 4. This corresponds to the following PCI tree:
549  *
550  *     -+  Root Port
551  *      \+ Switch Upstream Port
552  *       +-+ Switch Downstream Port 0
553  *       + \- Device A
554  *       \-+ Switch Downstream Port 1
555  *         \- Device B
556  *
557  * The distance is 4 because we traverse from Device A to Downstream Port 0
558  * to the common Switch Upstream Port, back down to Downstream Port 1 and
559  * then to Device B. The mapping type returned depends on the ACS
560  * redirection setting of the ports along the path.
561  *
562  * If ACS redirect is set on any port in the path, traffic between the
563  * devices will go through the host bridge, so return
564  * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return
565  * PCI_P2PDMA_MAP_BUS_ADDR.
566  *
567  * Any two devices that have a data path that goes through the host bridge
568  * will consult a whitelist. If the host bridge is in the whitelist, return
569  * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of
570  * ports per above. If the device is not in the whitelist, return
571  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
572  */
573 static enum pci_p2pdma_map_type
574 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client,
575 		int *dist, bool verbose)
576 {
577 	enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
578 	struct pci_dev *a = provider, *b = client, *bb;
579 	bool acs_redirects = false;
580 	struct pci_p2pdma *p2pdma;
581 	struct seq_buf acs_list;
582 	int acs_cnt = 0;
583 	int dist_a = 0;
584 	int dist_b = 0;
585 	char buf[128];
586 
587 	seq_buf_init(&acs_list, buf, sizeof(buf));
588 
589 	/*
590 	 * Note, we don't need to take references to devices returned by
591 	 * pci_upstream_bridge() seeing we hold a reference to a child
592 	 * device which will already hold a reference to the upstream bridge.
593 	 */
594 	while (a) {
595 		dist_b = 0;
596 
597 		if (pci_bridge_has_acs_redir(a)) {
598 			seq_buf_print_bus_devfn(&acs_list, a);
599 			acs_cnt++;
600 		}
601 
602 		bb = b;
603 
604 		while (bb) {
605 			if (a == bb)
606 				goto check_b_path_acs;
607 
608 			bb = pci_upstream_bridge(bb);
609 			dist_b++;
610 		}
611 
612 		a = pci_upstream_bridge(a);
613 		dist_a++;
614 	}
615 
616 	*dist = dist_a + dist_b;
617 	goto map_through_host_bridge;
618 
619 check_b_path_acs:
620 	bb = b;
621 
622 	while (bb) {
623 		if (a == bb)
624 			break;
625 
626 		if (pci_bridge_has_acs_redir(bb)) {
627 			seq_buf_print_bus_devfn(&acs_list, bb);
628 			acs_cnt++;
629 		}
630 
631 		bb = pci_upstream_bridge(bb);
632 	}
633 
634 	*dist = dist_a + dist_b;
635 
636 	if (!acs_cnt) {
637 		map_type = PCI_P2PDMA_MAP_BUS_ADDR;
638 		goto done;
639 	}
640 
641 	if (verbose) {
642 		acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */
643 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
644 			 pci_name(provider));
645 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
646 			 acs_list.buffer);
647 	}
648 	acs_redirects = true;
649 
650 map_through_host_bridge:
651 	if (!cpu_supports_p2pdma() &&
652 	    !host_bridge_whitelist(provider, client, acs_redirects)) {
653 		if (verbose)
654 			pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
655 				 pci_name(provider));
656 		map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
657 	}
658 done:
659 	rcu_read_lock();
660 	p2pdma = rcu_dereference(provider->p2pdma);
661 	if (p2pdma)
662 		xa_store(&p2pdma->map_types, map_types_idx(client),
663 			 xa_mk_value(map_type), GFP_KERNEL);
664 	rcu_read_unlock();
665 	return map_type;
666 }
667 
668 /**
669  * pci_p2pdma_distance_many - Determine the cumulative distance between
670  *	a p2pdma provider and the clients in use.
671  * @provider: p2pdma provider to check against the client list
672  * @clients: array of devices to check (NULL-terminated)
673  * @num_clients: number of clients in the array
674  * @verbose: if true, print warnings for devices when we return -1
675  *
676  * Returns -1 if any of the clients are not compatible, otherwise returns a
677  * positive number where a lower number is the preferable choice. (If there's
678  * one client that's the same as the provider it will return 0, which is best
679  * choice).
680  *
681  * "compatible" means the provider and the clients are either all behind
682  * the same PCI root port or the host bridges connected to each of the devices
683  * are listed in the 'pci_p2pdma_whitelist'.
684  */
685 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
686 			     int num_clients, bool verbose)
687 {
688 	enum pci_p2pdma_map_type map;
689 	bool not_supported = false;
690 	struct pci_dev *pci_client;
691 	int total_dist = 0;
692 	int i, distance;
693 
694 	if (num_clients == 0)
695 		return -1;
696 
697 	for (i = 0; i < num_clients; i++) {
698 		pci_client = find_parent_pci_dev(clients[i]);
699 		if (!pci_client) {
700 			if (verbose)
701 				dev_warn(clients[i],
702 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
703 			return -1;
704 		}
705 
706 		map = calc_map_type_and_dist(provider, pci_client, &distance,
707 					     verbose);
708 
709 		pci_dev_put(pci_client);
710 
711 		if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED)
712 			not_supported = true;
713 
714 		if (not_supported && !verbose)
715 			break;
716 
717 		total_dist += distance;
718 	}
719 
720 	if (not_supported)
721 		return -1;
722 
723 	return total_dist;
724 }
725 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
726 
727 /**
728  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
729  * @pdev: PCI device to check
730  */
731 bool pci_has_p2pmem(struct pci_dev *pdev)
732 {
733 	struct pci_p2pdma *p2pdma;
734 	bool res;
735 
736 	rcu_read_lock();
737 	p2pdma = rcu_dereference(pdev->p2pdma);
738 	res = p2pdma && p2pdma->p2pmem_published;
739 	rcu_read_unlock();
740 
741 	return res;
742 }
743 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
744 
745 /**
746  * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with
747  *	the specified list of clients and shortest distance (as determined
748  *	by pci_p2pmem_dma())
749  * @clients: array of devices to check (NULL-terminated)
750  * @num_clients: number of client devices in the list
751  *
752  * If multiple devices are behind the same switch, the one "closest" to the
753  * client devices in use will be chosen first. (So if one of the providers is
754  * the same as one of the clients, that provider will be used ahead of any
755  * other providers that are unrelated). If multiple providers are an equal
756  * distance away, one will be chosen at random.
757  *
758  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
759  * to return the reference) or NULL if no compatible device is found. The
760  * found provider will also be assigned to the client list.
761  */
762 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
763 {
764 	struct pci_dev *pdev = NULL;
765 	int distance;
766 	int closest_distance = INT_MAX;
767 	struct pci_dev **closest_pdevs;
768 	int dev_cnt = 0;
769 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
770 	int i;
771 
772 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
773 	if (!closest_pdevs)
774 		return NULL;
775 
776 	for_each_pci_dev(pdev) {
777 		if (!pci_has_p2pmem(pdev))
778 			continue;
779 
780 		distance = pci_p2pdma_distance_many(pdev, clients,
781 						    num_clients, false);
782 		if (distance < 0 || distance > closest_distance)
783 			continue;
784 
785 		if (distance == closest_distance && dev_cnt >= max_devs)
786 			continue;
787 
788 		if (distance < closest_distance) {
789 			for (i = 0; i < dev_cnt; i++)
790 				pci_dev_put(closest_pdevs[i]);
791 
792 			dev_cnt = 0;
793 			closest_distance = distance;
794 		}
795 
796 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
797 	}
798 
799 	if (dev_cnt)
800 		pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]);
801 
802 	for (i = 0; i < dev_cnt; i++)
803 		pci_dev_put(closest_pdevs[i]);
804 
805 	kfree(closest_pdevs);
806 	return pdev;
807 }
808 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
809 
810 /**
811  * pci_alloc_p2pmem - allocate peer-to-peer DMA memory
812  * @pdev: the device to allocate memory from
813  * @size: number of bytes to allocate
814  *
815  * Returns the allocated memory or NULL on error.
816  */
817 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
818 {
819 	void *ret = NULL;
820 	struct percpu_ref *ref;
821 	struct pci_p2pdma *p2pdma;
822 
823 	/*
824 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
825 	 * ensure pdev->p2pdma is non-NULL for the duration of the
826 	 * read-lock.
827 	 */
828 	rcu_read_lock();
829 	p2pdma = rcu_dereference(pdev->p2pdma);
830 	if (unlikely(!p2pdma))
831 		goto out;
832 
833 	ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref);
834 	if (!ret)
835 		goto out;
836 
837 	if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
838 		gen_pool_free(p2pdma->pool, (unsigned long) ret, size);
839 		ret = NULL;
840 		goto out;
841 	}
842 out:
843 	rcu_read_unlock();
844 	return ret;
845 }
846 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
847 
848 /**
849  * pci_free_p2pmem - free peer-to-peer DMA memory
850  * @pdev: the device the memory was allocated from
851  * @addr: address of the memory that was allocated
852  * @size: number of bytes that were allocated
853  */
854 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
855 {
856 	struct percpu_ref *ref;
857 	struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
858 
859 	gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size,
860 			(void **) &ref);
861 	percpu_ref_put(ref);
862 }
863 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
864 
865 /**
866  * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual
867  *	address obtained with pci_alloc_p2pmem()
868  * @pdev: the device the memory was allocated from
869  * @addr: address of the memory that was allocated
870  */
871 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
872 {
873 	struct pci_p2pdma *p2pdma;
874 
875 	if (!addr)
876 		return 0;
877 
878 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
879 	if (!p2pdma)
880 		return 0;
881 
882 	/*
883 	 * Note: when we added the memory to the pool we used the PCI
884 	 * bus address as the physical address. So gen_pool_virt_to_phys()
885 	 * actually returns the bus address despite the misleading name.
886 	 */
887 	return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr);
888 }
889 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
890 
891 /**
892  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
893  * @pdev: the device to allocate memory from
894  * @nents: the number of SG entries in the list
895  * @length: number of bytes to allocate
896  *
897  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
898  */
899 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
900 					 unsigned int *nents, u32 length)
901 {
902 	struct scatterlist *sg;
903 	void *addr;
904 
905 	sg = kmalloc(sizeof(*sg), GFP_KERNEL);
906 	if (!sg)
907 		return NULL;
908 
909 	sg_init_table(sg, 1);
910 
911 	addr = pci_alloc_p2pmem(pdev, length);
912 	if (!addr)
913 		goto out_free_sg;
914 
915 	sg_set_buf(sg, addr, length);
916 	*nents = 1;
917 	return sg;
918 
919 out_free_sg:
920 	kfree(sg);
921 	return NULL;
922 }
923 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
924 
925 /**
926  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
927  * @pdev: the device to allocate memory from
928  * @sgl: the allocated scatterlist
929  */
930 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
931 {
932 	struct scatterlist *sg;
933 	int count;
934 
935 	for_each_sg(sgl, sg, INT_MAX, count) {
936 		if (!sg)
937 			break;
938 
939 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
940 	}
941 	kfree(sgl);
942 }
943 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
944 
945 /**
946  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
947  *	other devices with pci_p2pmem_find()
948  * @pdev: the device with peer-to-peer DMA memory to publish
949  * @publish: set to true to publish the memory, false to unpublish it
950  *
951  * Published memory can be used by other PCI device drivers for
952  * peer-2-peer DMA operations. Non-published memory is reserved for
953  * exclusive use of the device driver that registers the peer-to-peer
954  * memory.
955  */
956 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
957 {
958 	struct pci_p2pdma *p2pdma;
959 
960 	rcu_read_lock();
961 	p2pdma = rcu_dereference(pdev->p2pdma);
962 	if (p2pdma)
963 		p2pdma->p2pmem_published = publish;
964 	rcu_read_unlock();
965 }
966 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
967 
968 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap,
969 						    struct device *dev)
970 {
971 	enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
972 	struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider;
973 	struct pci_dev *client;
974 	struct pci_p2pdma *p2pdma;
975 	int dist;
976 
977 	if (!provider->p2pdma)
978 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
979 
980 	if (!dev_is_pci(dev))
981 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
982 
983 	client = to_pci_dev(dev);
984 
985 	rcu_read_lock();
986 	p2pdma = rcu_dereference(provider->p2pdma);
987 
988 	if (p2pdma)
989 		type = xa_to_value(xa_load(&p2pdma->map_types,
990 					   map_types_idx(client)));
991 	rcu_read_unlock();
992 
993 	if (type == PCI_P2PDMA_MAP_UNKNOWN)
994 		return calc_map_type_and_dist(provider, client, &dist, true);
995 
996 	return type;
997 }
998 
999 /**
1000  * pci_p2pdma_map_segment - map an sg segment determining the mapping type
1001  * @state: State structure that should be declared outside of the for_each_sg()
1002  *	loop and initialized to zero.
1003  * @dev: DMA device that's doing the mapping operation
1004  * @sg: scatterlist segment to map
1005  *
1006  * This is a helper to be used by non-IOMMU dma_map_sg() implementations where
1007  * the sg segment is the same for the page_link and the dma_address.
1008  *
1009  * Attempt to map a single segment in an SGL with the PCI bus address.
1010  * The segment must point to a PCI P2PDMA page and thus must be
1011  * wrapped in a is_pci_p2pdma_page(sg_page(sg)) check.
1012  *
1013  * Returns the type of mapping used and maps the page if the type is
1014  * PCI_P2PDMA_MAP_BUS_ADDR.
1015  */
1016 enum pci_p2pdma_map_type
1017 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
1018 		       struct scatterlist *sg)
1019 {
1020 	if (state->pgmap != sg_page(sg)->pgmap) {
1021 		state->pgmap = sg_page(sg)->pgmap;
1022 		state->map = pci_p2pdma_map_type(state->pgmap, dev);
1023 		state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset;
1024 	}
1025 
1026 	if (state->map == PCI_P2PDMA_MAP_BUS_ADDR) {
1027 		sg->dma_address = sg_phys(sg) + state->bus_off;
1028 		sg_dma_len(sg) = sg->length;
1029 		sg_dma_mark_bus_address(sg);
1030 	}
1031 
1032 	return state->map;
1033 }
1034 
1035 /**
1036  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
1037  *		to enable p2pdma
1038  * @page: contents of the value to be stored
1039  * @p2p_dev: returns the PCI device that was selected to be used
1040  *		(if one was specified in the stored value)
1041  * @use_p2pdma: returns whether to enable p2pdma or not
1042  *
1043  * Parses an attribute value to decide whether to enable p2pdma.
1044  * The value can select a PCI device (using its full BDF device
1045  * name) or a boolean (in any format kstrtobool() accepts). A false
1046  * value disables p2pdma, a true value expects the caller
1047  * to automatically find a compatible device and specifying a PCI device
1048  * expects the caller to use the specific provider.
1049  *
1050  * pci_p2pdma_enable_show() should be used as the show operation for
1051  * the attribute.
1052  *
1053  * Returns 0 on success
1054  */
1055 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
1056 			    bool *use_p2pdma)
1057 {
1058 	struct device *dev;
1059 
1060 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
1061 	if (dev) {
1062 		*use_p2pdma = true;
1063 		*p2p_dev = to_pci_dev(dev);
1064 
1065 		if (!pci_has_p2pmem(*p2p_dev)) {
1066 			pci_err(*p2p_dev,
1067 				"PCI device has no peer-to-peer memory: %s\n",
1068 				page);
1069 			pci_dev_put(*p2p_dev);
1070 			return -ENODEV;
1071 		}
1072 
1073 		return 0;
1074 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
1075 		/*
1076 		 * If the user enters a PCI device that  doesn't exist
1077 		 * like "0000:01:00.1", we don't want kstrtobool to think
1078 		 * it's a '0' when it's clearly not what the user wanted.
1079 		 * So we require 0's and 1's to be exactly one character.
1080 		 */
1081 	} else if (!kstrtobool(page, use_p2pdma)) {
1082 		return 0;
1083 	}
1084 
1085 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
1086 	return -ENODEV;
1087 }
1088 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
1089 
1090 /**
1091  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
1092  *		whether p2pdma is enabled
1093  * @page: contents of the stored value
1094  * @p2p_dev: the selected p2p device (NULL if no device is selected)
1095  * @use_p2pdma: whether p2pdma has been enabled
1096  *
1097  * Attributes that use pci_p2pdma_enable_store() should use this function
1098  * to show the value of the attribute.
1099  *
1100  * Returns 0 on success
1101  */
1102 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
1103 			       bool use_p2pdma)
1104 {
1105 	if (!use_p2pdma)
1106 		return sprintf(page, "0\n");
1107 
1108 	if (!p2p_dev)
1109 		return sprintf(page, "1\n");
1110 
1111 	return sprintf(page, "%s\n", pci_name(p2p_dev));
1112 }
1113 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1114