xref: /openbmc/linux/drivers/pci/p2pdma.c (revision e29a6d63)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 #include <linux/xarray.h>
22 
23 enum pci_p2pdma_map_type {
24 	PCI_P2PDMA_MAP_UNKNOWN = 0,
25 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
26 	PCI_P2PDMA_MAP_BUS_ADDR,
27 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
28 };
29 
30 struct pci_p2pdma {
31 	struct gen_pool *pool;
32 	bool p2pmem_published;
33 	struct xarray map_types;
34 };
35 
36 struct pci_p2pdma_pagemap {
37 	struct dev_pagemap pgmap;
38 	struct pci_dev *provider;
39 	u64 bus_offset;
40 };
41 
42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
43 {
44 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
45 }
46 
47 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
48 			 char *buf)
49 {
50 	struct pci_dev *pdev = to_pci_dev(dev);
51 	size_t size = 0;
52 
53 	if (pdev->p2pdma->pool)
54 		size = gen_pool_size(pdev->p2pdma->pool);
55 
56 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
57 }
58 static DEVICE_ATTR_RO(size);
59 
60 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
61 			      char *buf)
62 {
63 	struct pci_dev *pdev = to_pci_dev(dev);
64 	size_t avail = 0;
65 
66 	if (pdev->p2pdma->pool)
67 		avail = gen_pool_avail(pdev->p2pdma->pool);
68 
69 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
70 }
71 static DEVICE_ATTR_RO(available);
72 
73 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
74 			      char *buf)
75 {
76 	struct pci_dev *pdev = to_pci_dev(dev);
77 
78 	return snprintf(buf, PAGE_SIZE, "%d\n",
79 			pdev->p2pdma->p2pmem_published);
80 }
81 static DEVICE_ATTR_RO(published);
82 
83 static struct attribute *p2pmem_attrs[] = {
84 	&dev_attr_size.attr,
85 	&dev_attr_available.attr,
86 	&dev_attr_published.attr,
87 	NULL,
88 };
89 
90 static const struct attribute_group p2pmem_group = {
91 	.attrs = p2pmem_attrs,
92 	.name = "p2pmem",
93 };
94 
95 static void pci_p2pdma_release(void *data)
96 {
97 	struct pci_dev *pdev = data;
98 	struct pci_p2pdma *p2pdma = pdev->p2pdma;
99 
100 	if (!p2pdma)
101 		return;
102 
103 	/* Flush and disable pci_alloc_p2p_mem() */
104 	pdev->p2pdma = NULL;
105 	synchronize_rcu();
106 
107 	gen_pool_destroy(p2pdma->pool);
108 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
109 	xa_destroy(&p2pdma->map_types);
110 }
111 
112 static int pci_p2pdma_setup(struct pci_dev *pdev)
113 {
114 	int error = -ENOMEM;
115 	struct pci_p2pdma *p2p;
116 
117 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
118 	if (!p2p)
119 		return -ENOMEM;
120 
121 	xa_init(&p2p->map_types);
122 
123 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 	if (!p2p->pool)
125 		goto out;
126 
127 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
128 	if (error)
129 		goto out_pool_destroy;
130 
131 	pdev->p2pdma = p2p;
132 
133 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
134 	if (error)
135 		goto out_pool_destroy;
136 
137 	return 0;
138 
139 out_pool_destroy:
140 	pdev->p2pdma = NULL;
141 	gen_pool_destroy(p2p->pool);
142 out:
143 	devm_kfree(&pdev->dev, p2p);
144 	return error;
145 }
146 
147 /**
148  * pci_p2pdma_add_resource - add memory for use as p2p memory
149  * @pdev: the device to add the memory to
150  * @bar: PCI BAR to add
151  * @size: size of the memory to add, may be zero to use the whole BAR
152  * @offset: offset into the PCI BAR
153  *
154  * The memory will be given ZONE_DEVICE struct pages so that it may
155  * be used with any DMA request.
156  */
157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
158 			    u64 offset)
159 {
160 	struct pci_p2pdma_pagemap *p2p_pgmap;
161 	struct dev_pagemap *pgmap;
162 	void *addr;
163 	int error;
164 
165 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
166 		return -EINVAL;
167 
168 	if (offset >= pci_resource_len(pdev, bar))
169 		return -EINVAL;
170 
171 	if (!size)
172 		size = pci_resource_len(pdev, bar) - offset;
173 
174 	if (size + offset > pci_resource_len(pdev, bar))
175 		return -EINVAL;
176 
177 	if (!pdev->p2pdma) {
178 		error = pci_p2pdma_setup(pdev);
179 		if (error)
180 			return error;
181 	}
182 
183 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
184 	if (!p2p_pgmap)
185 		return -ENOMEM;
186 
187 	pgmap = &p2p_pgmap->pgmap;
188 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
189 	pgmap->res.end = pgmap->res.start + size - 1;
190 	pgmap->res.flags = pci_resource_flags(pdev, bar);
191 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
192 
193 	p2p_pgmap->provider = pdev;
194 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
195 		pci_resource_start(pdev, bar);
196 
197 	addr = devm_memremap_pages(&pdev->dev, pgmap);
198 	if (IS_ERR(addr)) {
199 		error = PTR_ERR(addr);
200 		goto pgmap_free;
201 	}
202 
203 	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
204 			pci_bus_address(pdev, bar) + offset,
205 			resource_size(&pgmap->res), dev_to_node(&pdev->dev),
206 			pgmap->ref);
207 	if (error)
208 		goto pages_free;
209 
210 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
211 		 &pgmap->res);
212 
213 	return 0;
214 
215 pages_free:
216 	devm_memunmap_pages(&pdev->dev, pgmap);
217 pgmap_free:
218 	devm_kfree(&pdev->dev, pgmap);
219 	return error;
220 }
221 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
222 
223 /*
224  * Note this function returns the parent PCI device with a
225  * reference taken. It is the caller's responsibility to drop
226  * the reference.
227  */
228 static struct pci_dev *find_parent_pci_dev(struct device *dev)
229 {
230 	struct device *parent;
231 
232 	dev = get_device(dev);
233 
234 	while (dev) {
235 		if (dev_is_pci(dev))
236 			return to_pci_dev(dev);
237 
238 		parent = get_device(dev->parent);
239 		put_device(dev);
240 		dev = parent;
241 	}
242 
243 	return NULL;
244 }
245 
246 /*
247  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
248  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
249  * upstream, 0 otherwise.
250  */
251 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
252 {
253 	int pos;
254 	u16 ctrl;
255 
256 	pos = pdev->acs_cap;
257 	if (!pos)
258 		return 0;
259 
260 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
261 
262 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
263 		return 1;
264 
265 	return 0;
266 }
267 
268 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
269 {
270 	if (!buf)
271 		return;
272 
273 	seq_buf_printf(buf, "%s;", pci_name(pdev));
274 }
275 
276 static bool cpu_supports_p2pdma(void)
277 {
278 #ifdef CONFIG_X86
279 	struct cpuinfo_x86 *c = &cpu_data(0);
280 
281 	/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
282 	if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
283 		return true;
284 #endif
285 
286 	return false;
287 }
288 
289 static const struct pci_p2pdma_whitelist_entry {
290 	unsigned short vendor;
291 	unsigned short device;
292 	enum {
293 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
294 	} flags;
295 } pci_p2pdma_whitelist[] = {
296 	/* Intel Xeon E5/Core i7 */
297 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
298 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
299 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
300 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
301 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
302 	/* Intel SkyLake-E */
303 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
304 	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
305 	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
306 	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
307 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
308 	{}
309 };
310 
311 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
312 				    bool same_host_bridge)
313 {
314 	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
315 	const struct pci_p2pdma_whitelist_entry *entry;
316 	unsigned short vendor, device;
317 
318 	if (!root)
319 		return false;
320 
321 	vendor = root->vendor;
322 	device = root->device;
323 	pci_dev_put(root);
324 
325 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
326 		if (vendor != entry->vendor || device != entry->device)
327 			continue;
328 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
329 			return false;
330 
331 		return true;
332 	}
333 
334 	return false;
335 }
336 
337 /*
338  * If we can't find a common upstream bridge take a look at the root
339  * complex and compare it to a whitelist of known good hardware.
340  */
341 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b)
342 {
343 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
344 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
345 
346 	if (host_a == host_b)
347 		return __host_bridge_whitelist(host_a, true);
348 
349 	if (__host_bridge_whitelist(host_a, false) &&
350 	    __host_bridge_whitelist(host_b, false))
351 		return true;
352 
353 	return false;
354 }
355 
356 static enum pci_p2pdma_map_type
357 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
358 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
359 {
360 	struct pci_dev *a = provider, *b = client, *bb;
361 	int dist_a = 0;
362 	int dist_b = 0;
363 	int acs_cnt = 0;
364 
365 	if (acs_redirects)
366 		*acs_redirects = false;
367 
368 	/*
369 	 * Note, we don't need to take references to devices returned by
370 	 * pci_upstream_bridge() seeing we hold a reference to a child
371 	 * device which will already hold a reference to the upstream bridge.
372 	 */
373 
374 	while (a) {
375 		dist_b = 0;
376 
377 		if (pci_bridge_has_acs_redir(a)) {
378 			seq_buf_print_bus_devfn(acs_list, a);
379 			acs_cnt++;
380 		}
381 
382 		bb = b;
383 
384 		while (bb) {
385 			if (a == bb)
386 				goto check_b_path_acs;
387 
388 			bb = pci_upstream_bridge(bb);
389 			dist_b++;
390 		}
391 
392 		a = pci_upstream_bridge(a);
393 		dist_a++;
394 	}
395 
396 	if (dist)
397 		*dist = dist_a + dist_b;
398 
399 	return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
400 
401 check_b_path_acs:
402 	bb = b;
403 
404 	while (bb) {
405 		if (a == bb)
406 			break;
407 
408 		if (pci_bridge_has_acs_redir(bb)) {
409 			seq_buf_print_bus_devfn(acs_list, bb);
410 			acs_cnt++;
411 		}
412 
413 		bb = pci_upstream_bridge(bb);
414 	}
415 
416 	if (dist)
417 		*dist = dist_a + dist_b;
418 
419 	if (acs_cnt) {
420 		if (acs_redirects)
421 			*acs_redirects = true;
422 
423 		return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
424 	}
425 
426 	return PCI_P2PDMA_MAP_BUS_ADDR;
427 }
428 
429 static unsigned long map_types_idx(struct pci_dev *client)
430 {
431 	return (pci_domain_nr(client->bus) << 16) |
432 		(client->bus->number << 8) | client->devfn;
433 }
434 
435 /*
436  * Find the distance through the nearest common upstream bridge between
437  * two PCI devices.
438  *
439  * If the two devices are the same device then 0 will be returned.
440  *
441  * If there are two virtual functions of the same device behind the same
442  * bridge port then 2 will be returned (one step down to the PCIe switch,
443  * then one step back to the same device).
444  *
445  * In the case where two devices are connected to the same PCIe switch, the
446  * value 4 will be returned. This corresponds to the following PCI tree:
447  *
448  *     -+  Root Port
449  *      \+ Switch Upstream Port
450  *       +-+ Switch Downstream Port
451  *       + \- Device A
452  *       \-+ Switch Downstream Port
453  *         \- Device B
454  *
455  * The distance is 4 because we traverse from Device A through the downstream
456  * port of the switch, to the common upstream port, back up to the second
457  * downstream port and then to Device B.
458  *
459  * Any two devices that cannot communicate using p2pdma will return
460  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
461  *
462  * Any two devices that have a data path that goes through the host bridge
463  * will consult a whitelist. If the host bridges are on the whitelist,
464  * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE.
465  *
466  * If either bridge is not on the whitelist this function returns
467  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
468  *
469  * If a bridge which has any ACS redirection bits set is in the path,
470  * acs_redirects will be set to true. In this case, a list of all infringing
471  * bridge addresses will be populated in acs_list (assuming it's non-null)
472  * for printk purposes.
473  */
474 static enum pci_p2pdma_map_type
475 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
476 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
477 {
478 	enum pci_p2pdma_map_type map_type;
479 
480 	map_type = __upstream_bridge_distance(provider, client, dist,
481 					      acs_redirects, acs_list);
482 
483 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) {
484 		if (!cpu_supports_p2pdma() &&
485 		    !host_bridge_whitelist(provider, client))
486 			map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
487 	}
488 
489 	if (provider->p2pdma)
490 		xa_store(&provider->p2pdma->map_types, map_types_idx(client),
491 			 xa_mk_value(map_type), GFP_KERNEL);
492 
493 	return map_type;
494 }
495 
496 static enum pci_p2pdma_map_type
497 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client,
498 			      int *dist)
499 {
500 	struct seq_buf acs_list;
501 	bool acs_redirects;
502 	int ret;
503 
504 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
505 	if (!acs_list.buffer)
506 		return -ENOMEM;
507 
508 	ret = upstream_bridge_distance(provider, client, dist, &acs_redirects,
509 				       &acs_list);
510 	if (acs_redirects) {
511 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
512 			 pci_name(provider));
513 		/* Drop final semicolon */
514 		acs_list.buffer[acs_list.len-1] = 0;
515 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
516 			 acs_list.buffer);
517 	}
518 
519 	if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) {
520 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
521 			 pci_name(provider));
522 	}
523 
524 	kfree(acs_list.buffer);
525 
526 	return ret;
527 }
528 
529 /**
530  * pci_p2pdma_distance_many - Determine the cumulative distance between
531  *	a p2pdma provider and the clients in use.
532  * @provider: p2pdma provider to check against the client list
533  * @clients: array of devices to check (NULL-terminated)
534  * @num_clients: number of clients in the array
535  * @verbose: if true, print warnings for devices when we return -1
536  *
537  * Returns -1 if any of the clients are not compatible, otherwise returns a
538  * positive number where a lower number is the preferable choice. (If there's
539  * one client that's the same as the provider it will return 0, which is best
540  * choice).
541  *
542  * "compatible" means the provider and the clients are either all behind
543  * the same PCI root port or the host bridges connected to each of the devices
544  * are listed in the 'pci_p2pdma_whitelist'.
545  */
546 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
547 			     int num_clients, bool verbose)
548 {
549 	bool not_supported = false;
550 	struct pci_dev *pci_client;
551 	int total_dist = 0;
552 	int distance;
553 	int i, ret;
554 
555 	if (num_clients == 0)
556 		return -1;
557 
558 	for (i = 0; i < num_clients; i++) {
559 		if (IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
560 		    clients[i]->dma_ops == &dma_virt_ops) {
561 			if (verbose)
562 				dev_warn(clients[i],
563 					 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n");
564 			return -1;
565 		}
566 
567 		pci_client = find_parent_pci_dev(clients[i]);
568 		if (!pci_client) {
569 			if (verbose)
570 				dev_warn(clients[i],
571 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
572 			return -1;
573 		}
574 
575 		if (verbose)
576 			ret = upstream_bridge_distance_warn(provider,
577 					pci_client, &distance);
578 		else
579 			ret = upstream_bridge_distance(provider, pci_client,
580 						       &distance, NULL, NULL);
581 
582 		pci_dev_put(pci_client);
583 
584 		if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED)
585 			not_supported = true;
586 
587 		if (not_supported && !verbose)
588 			break;
589 
590 		total_dist += distance;
591 	}
592 
593 	if (not_supported)
594 		return -1;
595 
596 	return total_dist;
597 }
598 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
599 
600 /**
601  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
602  * @pdev: PCI device to check
603  */
604 bool pci_has_p2pmem(struct pci_dev *pdev)
605 {
606 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
607 }
608 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
609 
610 /**
611  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
612  *	the specified list of clients and shortest distance (as determined
613  *	by pci_p2pmem_dma())
614  * @clients: array of devices to check (NULL-terminated)
615  * @num_clients: number of client devices in the list
616  *
617  * If multiple devices are behind the same switch, the one "closest" to the
618  * client devices in use will be chosen first. (So if one of the providers is
619  * the same as one of the clients, that provider will be used ahead of any
620  * other providers that are unrelated). If multiple providers are an equal
621  * distance away, one will be chosen at random.
622  *
623  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
624  * to return the reference) or NULL if no compatible device is found. The
625  * found provider will also be assigned to the client list.
626  */
627 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
628 {
629 	struct pci_dev *pdev = NULL;
630 	int distance;
631 	int closest_distance = INT_MAX;
632 	struct pci_dev **closest_pdevs;
633 	int dev_cnt = 0;
634 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
635 	int i;
636 
637 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
638 	if (!closest_pdevs)
639 		return NULL;
640 
641 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
642 		if (!pci_has_p2pmem(pdev))
643 			continue;
644 
645 		distance = pci_p2pdma_distance_many(pdev, clients,
646 						    num_clients, false);
647 		if (distance < 0 || distance > closest_distance)
648 			continue;
649 
650 		if (distance == closest_distance && dev_cnt >= max_devs)
651 			continue;
652 
653 		if (distance < closest_distance) {
654 			for (i = 0; i < dev_cnt; i++)
655 				pci_dev_put(closest_pdevs[i]);
656 
657 			dev_cnt = 0;
658 			closest_distance = distance;
659 		}
660 
661 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
662 	}
663 
664 	if (dev_cnt)
665 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
666 
667 	for (i = 0; i < dev_cnt; i++)
668 		pci_dev_put(closest_pdevs[i]);
669 
670 	kfree(closest_pdevs);
671 	return pdev;
672 }
673 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
674 
675 /**
676  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
677  * @pdev: the device to allocate memory from
678  * @size: number of bytes to allocate
679  *
680  * Returns the allocated memory or NULL on error.
681  */
682 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
683 {
684 	void *ret = NULL;
685 	struct percpu_ref *ref;
686 
687 	/*
688 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
689 	 * ensure pdev->p2pdma is non-NULL for the duration of the
690 	 * read-lock.
691 	 */
692 	rcu_read_lock();
693 	if (unlikely(!pdev->p2pdma))
694 		goto out;
695 
696 	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
697 			(void **) &ref);
698 	if (!ret)
699 		goto out;
700 
701 	if (unlikely(!percpu_ref_tryget_live(ref))) {
702 		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
703 		ret = NULL;
704 		goto out;
705 	}
706 out:
707 	rcu_read_unlock();
708 	return ret;
709 }
710 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
711 
712 /**
713  * pci_free_p2pmem - free peer-to-peer DMA memory
714  * @pdev: the device the memory was allocated from
715  * @addr: address of the memory that was allocated
716  * @size: number of bytes that were allocated
717  */
718 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
719 {
720 	struct percpu_ref *ref;
721 
722 	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
723 			(void **) &ref);
724 	percpu_ref_put(ref);
725 }
726 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
727 
728 /**
729  * pci_virt_to_bus - return the PCI bus address for a given virtual
730  *	address obtained with pci_alloc_p2pmem()
731  * @pdev: the device the memory was allocated from
732  * @addr: address of the memory that was allocated
733  */
734 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
735 {
736 	if (!addr)
737 		return 0;
738 	if (!pdev->p2pdma)
739 		return 0;
740 
741 	/*
742 	 * Note: when we added the memory to the pool we used the PCI
743 	 * bus address as the physical address. So gen_pool_virt_to_phys()
744 	 * actually returns the bus address despite the misleading name.
745 	 */
746 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
747 }
748 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
749 
750 /**
751  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
752  * @pdev: the device to allocate memory from
753  * @nents: the number of SG entries in the list
754  * @length: number of bytes to allocate
755  *
756  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
757  */
758 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
759 					 unsigned int *nents, u32 length)
760 {
761 	struct scatterlist *sg;
762 	void *addr;
763 
764 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
765 	if (!sg)
766 		return NULL;
767 
768 	sg_init_table(sg, 1);
769 
770 	addr = pci_alloc_p2pmem(pdev, length);
771 	if (!addr)
772 		goto out_free_sg;
773 
774 	sg_set_buf(sg, addr, length);
775 	*nents = 1;
776 	return sg;
777 
778 out_free_sg:
779 	kfree(sg);
780 	return NULL;
781 }
782 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
783 
784 /**
785  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
786  * @pdev: the device to allocate memory from
787  * @sgl: the allocated scatterlist
788  */
789 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
790 {
791 	struct scatterlist *sg;
792 	int count;
793 
794 	for_each_sg(sgl, sg, INT_MAX, count) {
795 		if (!sg)
796 			break;
797 
798 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
799 	}
800 	kfree(sgl);
801 }
802 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
803 
804 /**
805  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
806  *	other devices with pci_p2pmem_find()
807  * @pdev: the device with peer-to-peer DMA memory to publish
808  * @publish: set to true to publish the memory, false to unpublish it
809  *
810  * Published memory can be used by other PCI device drivers for
811  * peer-2-peer DMA operations. Non-published memory is reserved for
812  * exclusive use of the device driver that registers the peer-to-peer
813  * memory.
814  */
815 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
816 {
817 	if (pdev->p2pdma)
818 		pdev->p2pdma->p2pmem_published = publish;
819 }
820 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
821 
822 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider,
823 						    struct pci_dev *client)
824 {
825 	if (!provider->p2pdma)
826 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
827 
828 	return xa_to_value(xa_load(&provider->p2pdma->map_types,
829 				   map_types_idx(client)));
830 }
831 
832 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
833 		struct device *dev, struct scatterlist *sg, int nents)
834 {
835 	struct scatterlist *s;
836 	phys_addr_t paddr;
837 	int i;
838 
839 	/*
840 	 * p2pdma mappings are not compatible with devices that use
841 	 * dma_virt_ops. If the upper layers do the right thing
842 	 * this should never happen because it will be prevented
843 	 * by the check in pci_p2pdma_distance_many()
844 	 */
845 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
846 			 dev->dma_ops == &dma_virt_ops))
847 		return 0;
848 
849 	for_each_sg(sg, s, nents, i) {
850 		paddr = sg_phys(s);
851 
852 		s->dma_address = paddr - p2p_pgmap->bus_offset;
853 		sg_dma_len(s) = s->length;
854 	}
855 
856 	return nents;
857 }
858 
859 /**
860  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
861  * @dev: device doing the DMA request
862  * @sg: scatter list to map
863  * @nents: elements in the scatterlist
864  * @dir: DMA direction
865  * @attrs: DMA attributes passed to dma_map_sg() (if called)
866  *
867  * Scatterlists mapped with this function should be unmapped using
868  * pci_p2pdma_unmap_sg_attrs().
869  *
870  * Returns the number of SG entries mapped or 0 on error.
871  */
872 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
873 		int nents, enum dma_data_direction dir, unsigned long attrs)
874 {
875 	struct pci_p2pdma_pagemap *p2p_pgmap =
876 		to_p2p_pgmap(sg_page(sg)->pgmap);
877 	struct pci_dev *client;
878 
879 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
880 		return 0;
881 
882 	client = to_pci_dev(dev);
883 
884 	switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) {
885 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
886 		return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
887 	case PCI_P2PDMA_MAP_BUS_ADDR:
888 		return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
889 	default:
890 		WARN_ON_ONCE(1);
891 		return 0;
892 	}
893 }
894 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);
895 
896 /**
897  * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was
898  *	mapped with pci_p2pdma_map_sg()
899  * @dev: device doing the DMA request
900  * @sg: scatter list to map
901  * @nents: number of elements returned by pci_p2pdma_map_sg()
902  * @dir: DMA direction
903  * @attrs: DMA attributes passed to dma_unmap_sg() (if called)
904  */
905 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
906 		int nents, enum dma_data_direction dir, unsigned long attrs)
907 {
908 	struct pci_p2pdma_pagemap *p2p_pgmap =
909 		to_p2p_pgmap(sg_page(sg)->pgmap);
910 	enum pci_p2pdma_map_type map_type;
911 	struct pci_dev *client;
912 
913 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
914 		return;
915 
916 	client = to_pci_dev(dev);
917 
918 	map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client);
919 
920 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
921 		dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
922 }
923 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);
924 
925 /**
926  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
927  *		to enable p2pdma
928  * @page: contents of the value to be stored
929  * @p2p_dev: returns the PCI device that was selected to be used
930  *		(if one was specified in the stored value)
931  * @use_p2pdma: returns whether to enable p2pdma or not
932  *
933  * Parses an attribute value to decide whether to enable p2pdma.
934  * The value can select a PCI device (using its full BDF device
935  * name) or a boolean (in any format strtobool() accepts). A false
936  * value disables p2pdma, a true value expects the caller
937  * to automatically find a compatible device and specifying a PCI device
938  * expects the caller to use the specific provider.
939  *
940  * pci_p2pdma_enable_show() should be used as the show operation for
941  * the attribute.
942  *
943  * Returns 0 on success
944  */
945 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
946 			    bool *use_p2pdma)
947 {
948 	struct device *dev;
949 
950 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
951 	if (dev) {
952 		*use_p2pdma = true;
953 		*p2p_dev = to_pci_dev(dev);
954 
955 		if (!pci_has_p2pmem(*p2p_dev)) {
956 			pci_err(*p2p_dev,
957 				"PCI device has no peer-to-peer memory: %s\n",
958 				page);
959 			pci_dev_put(*p2p_dev);
960 			return -ENODEV;
961 		}
962 
963 		return 0;
964 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
965 		/*
966 		 * If the user enters a PCI device that  doesn't exist
967 		 * like "0000:01:00.1", we don't want strtobool to think
968 		 * it's a '0' when it's clearly not what the user wanted.
969 		 * So we require 0's and 1's to be exactly one character.
970 		 */
971 	} else if (!strtobool(page, use_p2pdma)) {
972 		return 0;
973 	}
974 
975 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
976 	return -ENODEV;
977 }
978 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
979 
980 /**
981  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
982  *		whether p2pdma is enabled
983  * @page: contents of the stored value
984  * @p2p_dev: the selected p2p device (NULL if no device is selected)
985  * @use_p2pdma: whether p2pdma has been enabled
986  *
987  * Attributes that use pci_p2pdma_enable_store() should use this function
988  * to show the value of the attribute.
989  *
990  * Returns 0 on success
991  */
992 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
993 			       bool use_p2pdma)
994 {
995 	if (!use_p2pdma)
996 		return sprintf(page, "0\n");
997 
998 	if (!p2p_dev)
999 		return sprintf(page, "1\n");
1000 
1001 	return sprintf(page, "%s\n", pci_name(p2p_dev));
1002 }
1003 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
1004