xref: /openbmc/linux/drivers/pci/p2pdma.c (revision dff03381)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/dma-map-ops.h>
14 #include <linux/pci-p2pdma.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/genalloc.h>
18 #include <linux/memremap.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/random.h>
21 #include <linux/seq_buf.h>
22 #include <linux/xarray.h>
23 
24 struct pci_p2pdma {
25 	struct gen_pool *pool;
26 	bool p2pmem_published;
27 	struct xarray map_types;
28 };
29 
30 struct pci_p2pdma_pagemap {
31 	struct dev_pagemap pgmap;
32 	struct pci_dev *provider;
33 	u64 bus_offset;
34 };
35 
36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
37 {
38 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
39 }
40 
41 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
42 			 char *buf)
43 {
44 	struct pci_dev *pdev = to_pci_dev(dev);
45 	struct pci_p2pdma *p2pdma;
46 	size_t size = 0;
47 
48 	rcu_read_lock();
49 	p2pdma = rcu_dereference(pdev->p2pdma);
50 	if (p2pdma && p2pdma->pool)
51 		size = gen_pool_size(p2pdma->pool);
52 	rcu_read_unlock();
53 
54 	return sysfs_emit(buf, "%zd\n", size);
55 }
56 static DEVICE_ATTR_RO(size);
57 
58 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
59 			      char *buf)
60 {
61 	struct pci_dev *pdev = to_pci_dev(dev);
62 	struct pci_p2pdma *p2pdma;
63 	size_t avail = 0;
64 
65 	rcu_read_lock();
66 	p2pdma = rcu_dereference(pdev->p2pdma);
67 	if (p2pdma && p2pdma->pool)
68 		avail = gen_pool_avail(p2pdma->pool);
69 	rcu_read_unlock();
70 
71 	return sysfs_emit(buf, "%zd\n", avail);
72 }
73 static DEVICE_ATTR_RO(available);
74 
75 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
76 			      char *buf)
77 {
78 	struct pci_dev *pdev = to_pci_dev(dev);
79 	struct pci_p2pdma *p2pdma;
80 	bool published = false;
81 
82 	rcu_read_lock();
83 	p2pdma = rcu_dereference(pdev->p2pdma);
84 	if (p2pdma)
85 		published = p2pdma->p2pmem_published;
86 	rcu_read_unlock();
87 
88 	return sysfs_emit(buf, "%d\n", published);
89 }
90 static DEVICE_ATTR_RO(published);
91 
92 static struct attribute *p2pmem_attrs[] = {
93 	&dev_attr_size.attr,
94 	&dev_attr_available.attr,
95 	&dev_attr_published.attr,
96 	NULL,
97 };
98 
99 static const struct attribute_group p2pmem_group = {
100 	.attrs = p2pmem_attrs,
101 	.name = "p2pmem",
102 };
103 
104 static void pci_p2pdma_release(void *data)
105 {
106 	struct pci_dev *pdev = data;
107 	struct pci_p2pdma *p2pdma;
108 
109 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
110 	if (!p2pdma)
111 		return;
112 
113 	/* Flush and disable pci_alloc_p2p_mem() */
114 	pdev->p2pdma = NULL;
115 	synchronize_rcu();
116 
117 	gen_pool_destroy(p2pdma->pool);
118 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
119 	xa_destroy(&p2pdma->map_types);
120 }
121 
122 static int pci_p2pdma_setup(struct pci_dev *pdev)
123 {
124 	int error = -ENOMEM;
125 	struct pci_p2pdma *p2p;
126 
127 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
128 	if (!p2p)
129 		return -ENOMEM;
130 
131 	xa_init(&p2p->map_types);
132 
133 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
134 	if (!p2p->pool)
135 		goto out;
136 
137 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
138 	if (error)
139 		goto out_pool_destroy;
140 
141 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
142 	if (error)
143 		goto out_pool_destroy;
144 
145 	rcu_assign_pointer(pdev->p2pdma, p2p);
146 	return 0;
147 
148 out_pool_destroy:
149 	gen_pool_destroy(p2p->pool);
150 out:
151 	devm_kfree(&pdev->dev, p2p);
152 	return error;
153 }
154 
155 /**
156  * pci_p2pdma_add_resource - add memory for use as p2p memory
157  * @pdev: the device to add the memory to
158  * @bar: PCI BAR to add
159  * @size: size of the memory to add, may be zero to use the whole BAR
160  * @offset: offset into the PCI BAR
161  *
162  * The memory will be given ZONE_DEVICE struct pages so that it may
163  * be used with any DMA request.
164  */
165 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
166 			    u64 offset)
167 {
168 	struct pci_p2pdma_pagemap *p2p_pgmap;
169 	struct dev_pagemap *pgmap;
170 	struct pci_p2pdma *p2pdma;
171 	void *addr;
172 	int error;
173 
174 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
175 		return -EINVAL;
176 
177 	if (offset >= pci_resource_len(pdev, bar))
178 		return -EINVAL;
179 
180 	if (!size)
181 		size = pci_resource_len(pdev, bar) - offset;
182 
183 	if (size + offset > pci_resource_len(pdev, bar))
184 		return -EINVAL;
185 
186 	if (!pdev->p2pdma) {
187 		error = pci_p2pdma_setup(pdev);
188 		if (error)
189 			return error;
190 	}
191 
192 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
193 	if (!p2p_pgmap)
194 		return -ENOMEM;
195 
196 	pgmap = &p2p_pgmap->pgmap;
197 	pgmap->range.start = pci_resource_start(pdev, bar) + offset;
198 	pgmap->range.end = pgmap->range.start + size - 1;
199 	pgmap->nr_range = 1;
200 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
201 
202 	p2p_pgmap->provider = pdev;
203 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
204 		pci_resource_start(pdev, bar);
205 
206 	addr = devm_memremap_pages(&pdev->dev, pgmap);
207 	if (IS_ERR(addr)) {
208 		error = PTR_ERR(addr);
209 		goto pgmap_free;
210 	}
211 
212 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
213 	error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr,
214 			pci_bus_address(pdev, bar) + offset,
215 			range_len(&pgmap->range), dev_to_node(&pdev->dev),
216 			&pgmap->ref);
217 	if (error)
218 		goto pages_free;
219 
220 	pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n",
221 		 pgmap->range.start, pgmap->range.end);
222 
223 	return 0;
224 
225 pages_free:
226 	devm_memunmap_pages(&pdev->dev, pgmap);
227 pgmap_free:
228 	devm_kfree(&pdev->dev, pgmap);
229 	return error;
230 }
231 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
232 
233 /*
234  * Note this function returns the parent PCI device with a
235  * reference taken. It is the caller's responsibility to drop
236  * the reference.
237  */
238 static struct pci_dev *find_parent_pci_dev(struct device *dev)
239 {
240 	struct device *parent;
241 
242 	dev = get_device(dev);
243 
244 	while (dev) {
245 		if (dev_is_pci(dev))
246 			return to_pci_dev(dev);
247 
248 		parent = get_device(dev->parent);
249 		put_device(dev);
250 		dev = parent;
251 	}
252 
253 	return NULL;
254 }
255 
256 /*
257  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
258  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
259  * upstream, 0 otherwise.
260  */
261 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
262 {
263 	int pos;
264 	u16 ctrl;
265 
266 	pos = pdev->acs_cap;
267 	if (!pos)
268 		return 0;
269 
270 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
271 
272 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
273 		return 1;
274 
275 	return 0;
276 }
277 
278 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
279 {
280 	if (!buf)
281 		return;
282 
283 	seq_buf_printf(buf, "%s;", pci_name(pdev));
284 }
285 
286 static bool cpu_supports_p2pdma(void)
287 {
288 #ifdef CONFIG_X86
289 	struct cpuinfo_x86 *c = &cpu_data(0);
290 
291 	/* Any AMD CPU whose family ID is Zen or newer supports p2pdma */
292 	if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17)
293 		return true;
294 #endif
295 
296 	return false;
297 }
298 
299 static const struct pci_p2pdma_whitelist_entry {
300 	unsigned short vendor;
301 	unsigned short device;
302 	enum {
303 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
304 	} flags;
305 } pci_p2pdma_whitelist[] = {
306 	/* Intel Xeon E5/Core i7 */
307 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
308 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
309 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
310 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
311 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
312 	/* Intel SkyLake-E */
313 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
314 	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
315 	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
316 	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
317 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
318 	{PCI_VENDOR_ID_INTEL,	0x09a2, 0},
319 	{}
320 };
321 
322 /*
323  * If the first device on host's root bus is either devfn 00.0 or a PCIe
324  * Root Port, return it.  Otherwise return NULL.
325  *
326  * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[]
327  * (though there is no PCI/PCIe requirement for such a device).  On some
328  * platforms, e.g., Intel Skylake, there is no such host bridge device, and
329  * pci_p2pdma_whitelist[] may contain a Root Port at any devfn.
330  *
331  * This function is similar to pci_get_slot(host->bus, 0), but it does
332  * not take the pci_bus_sem lock since __host_bridge_whitelist() must not
333  * sleep.
334  *
335  * For this to be safe, the caller should hold a reference to a device on the
336  * bridge, which should ensure the host_bridge device will not be freed
337  * or removed from the head of the devices list.
338  */
339 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host)
340 {
341 	struct pci_dev *root;
342 
343 	root = list_first_entry_or_null(&host->bus->devices,
344 					struct pci_dev, bus_list);
345 
346 	if (!root)
347 		return NULL;
348 
349 	if (root->devfn == PCI_DEVFN(0, 0))
350 		return root;
351 
352 	if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT)
353 		return root;
354 
355 	return NULL;
356 }
357 
358 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
359 				    bool same_host_bridge, bool warn)
360 {
361 	struct pci_dev *root = pci_host_bridge_dev(host);
362 	const struct pci_p2pdma_whitelist_entry *entry;
363 	unsigned short vendor, device;
364 
365 	if (!root)
366 		return false;
367 
368 	vendor = root->vendor;
369 	device = root->device;
370 
371 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
372 		if (vendor != entry->vendor || device != entry->device)
373 			continue;
374 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
375 			return false;
376 
377 		return true;
378 	}
379 
380 	if (warn)
381 		pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n",
382 			 vendor, device);
383 
384 	return false;
385 }
386 
387 /*
388  * If we can't find a common upstream bridge take a look at the root
389  * complex and compare it to a whitelist of known good hardware.
390  */
391 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b,
392 				  bool warn)
393 {
394 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
395 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
396 
397 	if (host_a == host_b)
398 		return __host_bridge_whitelist(host_a, true, warn);
399 
400 	if (__host_bridge_whitelist(host_a, false, warn) &&
401 	    __host_bridge_whitelist(host_b, false, warn))
402 		return true;
403 
404 	return false;
405 }
406 
407 static unsigned long map_types_idx(struct pci_dev *client)
408 {
409 	return (pci_domain_nr(client->bus) << 16) |
410 		(client->bus->number << 8) | client->devfn;
411 }
412 
413 /*
414  * Calculate the P2PDMA mapping type and distance between two PCI devices.
415  *
416  * If the two devices are the same PCI function, return
417  * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0.
418  *
419  * If they are two functions of the same device, return
420  * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge,
421  * then one hop back down to another function of the same device).
422  *
423  * In the case where two devices are connected to the same PCIe switch,
424  * return a distance of 4. This corresponds to the following PCI tree:
425  *
426  *     -+  Root Port
427  *      \+ Switch Upstream Port
428  *       +-+ Switch Downstream Port 0
429  *       + \- Device A
430  *       \-+ Switch Downstream Port 1
431  *         \- Device B
432  *
433  * The distance is 4 because we traverse from Device A to Downstream Port 0
434  * to the common Switch Upstream Port, back down to Downstream Port 1 and
435  * then to Device B. The mapping type returned depends on the ACS
436  * redirection setting of the ports along the path.
437  *
438  * If ACS redirect is set on any port in the path, traffic between the
439  * devices will go through the host bridge, so return
440  * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return
441  * PCI_P2PDMA_MAP_BUS_ADDR.
442  *
443  * Any two devices that have a data path that goes through the host bridge
444  * will consult a whitelist. If the host bridge is in the whitelist, return
445  * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of
446  * ports per above. If the device is not in the whitelist, return
447  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
448  */
449 static enum pci_p2pdma_map_type
450 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client,
451 		int *dist, bool verbose)
452 {
453 	enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
454 	struct pci_dev *a = provider, *b = client, *bb;
455 	bool acs_redirects = false;
456 	struct pci_p2pdma *p2pdma;
457 	struct seq_buf acs_list;
458 	int acs_cnt = 0;
459 	int dist_a = 0;
460 	int dist_b = 0;
461 	char buf[128];
462 
463 	seq_buf_init(&acs_list, buf, sizeof(buf));
464 
465 	/*
466 	 * Note, we don't need to take references to devices returned by
467 	 * pci_upstream_bridge() seeing we hold a reference to a child
468 	 * device which will already hold a reference to the upstream bridge.
469 	 */
470 	while (a) {
471 		dist_b = 0;
472 
473 		if (pci_bridge_has_acs_redir(a)) {
474 			seq_buf_print_bus_devfn(&acs_list, a);
475 			acs_cnt++;
476 		}
477 
478 		bb = b;
479 
480 		while (bb) {
481 			if (a == bb)
482 				goto check_b_path_acs;
483 
484 			bb = pci_upstream_bridge(bb);
485 			dist_b++;
486 		}
487 
488 		a = pci_upstream_bridge(a);
489 		dist_a++;
490 	}
491 
492 	*dist = dist_a + dist_b;
493 	goto map_through_host_bridge;
494 
495 check_b_path_acs:
496 	bb = b;
497 
498 	while (bb) {
499 		if (a == bb)
500 			break;
501 
502 		if (pci_bridge_has_acs_redir(bb)) {
503 			seq_buf_print_bus_devfn(&acs_list, bb);
504 			acs_cnt++;
505 		}
506 
507 		bb = pci_upstream_bridge(bb);
508 	}
509 
510 	*dist = dist_a + dist_b;
511 
512 	if (!acs_cnt) {
513 		map_type = PCI_P2PDMA_MAP_BUS_ADDR;
514 		goto done;
515 	}
516 
517 	if (verbose) {
518 		acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */
519 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
520 			 pci_name(provider));
521 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
522 			 acs_list.buffer);
523 	}
524 	acs_redirects = true;
525 
526 map_through_host_bridge:
527 	if (!cpu_supports_p2pdma() &&
528 	    !host_bridge_whitelist(provider, client, acs_redirects)) {
529 		if (verbose)
530 			pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
531 				 pci_name(provider));
532 		map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
533 	}
534 done:
535 	rcu_read_lock();
536 	p2pdma = rcu_dereference(provider->p2pdma);
537 	if (p2pdma)
538 		xa_store(&p2pdma->map_types, map_types_idx(client),
539 			 xa_mk_value(map_type), GFP_KERNEL);
540 	rcu_read_unlock();
541 	return map_type;
542 }
543 
544 /**
545  * pci_p2pdma_distance_many - Determine the cumulative distance between
546  *	a p2pdma provider and the clients in use.
547  * @provider: p2pdma provider to check against the client list
548  * @clients: array of devices to check (NULL-terminated)
549  * @num_clients: number of clients in the array
550  * @verbose: if true, print warnings for devices when we return -1
551  *
552  * Returns -1 if any of the clients are not compatible, otherwise returns a
553  * positive number where a lower number is the preferable choice. (If there's
554  * one client that's the same as the provider it will return 0, which is best
555  * choice).
556  *
557  * "compatible" means the provider and the clients are either all behind
558  * the same PCI root port or the host bridges connected to each of the devices
559  * are listed in the 'pci_p2pdma_whitelist'.
560  */
561 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
562 			     int num_clients, bool verbose)
563 {
564 	enum pci_p2pdma_map_type map;
565 	bool not_supported = false;
566 	struct pci_dev *pci_client;
567 	int total_dist = 0;
568 	int i, distance;
569 
570 	if (num_clients == 0)
571 		return -1;
572 
573 	for (i = 0; i < num_clients; i++) {
574 		pci_client = find_parent_pci_dev(clients[i]);
575 		if (!pci_client) {
576 			if (verbose)
577 				dev_warn(clients[i],
578 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
579 			return -1;
580 		}
581 
582 		map = calc_map_type_and_dist(provider, pci_client, &distance,
583 					     verbose);
584 
585 		pci_dev_put(pci_client);
586 
587 		if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED)
588 			not_supported = true;
589 
590 		if (not_supported && !verbose)
591 			break;
592 
593 		total_dist += distance;
594 	}
595 
596 	if (not_supported)
597 		return -1;
598 
599 	return total_dist;
600 }
601 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
602 
603 /**
604  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
605  * @pdev: PCI device to check
606  */
607 bool pci_has_p2pmem(struct pci_dev *pdev)
608 {
609 	struct pci_p2pdma *p2pdma;
610 	bool res;
611 
612 	rcu_read_lock();
613 	p2pdma = rcu_dereference(pdev->p2pdma);
614 	res = p2pdma && p2pdma->p2pmem_published;
615 	rcu_read_unlock();
616 
617 	return res;
618 }
619 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
620 
621 /**
622  * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with
623  *	the specified list of clients and shortest distance (as determined
624  *	by pci_p2pmem_dma())
625  * @clients: array of devices to check (NULL-terminated)
626  * @num_clients: number of client devices in the list
627  *
628  * If multiple devices are behind the same switch, the one "closest" to the
629  * client devices in use will be chosen first. (So if one of the providers is
630  * the same as one of the clients, that provider will be used ahead of any
631  * other providers that are unrelated). If multiple providers are an equal
632  * distance away, one will be chosen at random.
633  *
634  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
635  * to return the reference) or NULL if no compatible device is found. The
636  * found provider will also be assigned to the client list.
637  */
638 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
639 {
640 	struct pci_dev *pdev = NULL;
641 	int distance;
642 	int closest_distance = INT_MAX;
643 	struct pci_dev **closest_pdevs;
644 	int dev_cnt = 0;
645 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
646 	int i;
647 
648 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
649 	if (!closest_pdevs)
650 		return NULL;
651 
652 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
653 		if (!pci_has_p2pmem(pdev))
654 			continue;
655 
656 		distance = pci_p2pdma_distance_many(pdev, clients,
657 						    num_clients, false);
658 		if (distance < 0 || distance > closest_distance)
659 			continue;
660 
661 		if (distance == closest_distance && dev_cnt >= max_devs)
662 			continue;
663 
664 		if (distance < closest_distance) {
665 			for (i = 0; i < dev_cnt; i++)
666 				pci_dev_put(closest_pdevs[i]);
667 
668 			dev_cnt = 0;
669 			closest_distance = distance;
670 		}
671 
672 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
673 	}
674 
675 	if (dev_cnt)
676 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
677 
678 	for (i = 0; i < dev_cnt; i++)
679 		pci_dev_put(closest_pdevs[i]);
680 
681 	kfree(closest_pdevs);
682 	return pdev;
683 }
684 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
685 
686 /**
687  * pci_alloc_p2pmem - allocate peer-to-peer DMA memory
688  * @pdev: the device to allocate memory from
689  * @size: number of bytes to allocate
690  *
691  * Returns the allocated memory or NULL on error.
692  */
693 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
694 {
695 	void *ret = NULL;
696 	struct percpu_ref *ref;
697 	struct pci_p2pdma *p2pdma;
698 
699 	/*
700 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
701 	 * ensure pdev->p2pdma is non-NULL for the duration of the
702 	 * read-lock.
703 	 */
704 	rcu_read_lock();
705 	p2pdma = rcu_dereference(pdev->p2pdma);
706 	if (unlikely(!p2pdma))
707 		goto out;
708 
709 	ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref);
710 	if (!ret)
711 		goto out;
712 
713 	if (unlikely(!percpu_ref_tryget_live_rcu(ref))) {
714 		gen_pool_free(p2pdma->pool, (unsigned long) ret, size);
715 		ret = NULL;
716 		goto out;
717 	}
718 out:
719 	rcu_read_unlock();
720 	return ret;
721 }
722 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
723 
724 /**
725  * pci_free_p2pmem - free peer-to-peer DMA memory
726  * @pdev: the device the memory was allocated from
727  * @addr: address of the memory that was allocated
728  * @size: number of bytes that were allocated
729  */
730 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
731 {
732 	struct percpu_ref *ref;
733 	struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
734 
735 	gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size,
736 			(void **) &ref);
737 	percpu_ref_put(ref);
738 }
739 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
740 
741 /**
742  * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual
743  *	address obtained with pci_alloc_p2pmem()
744  * @pdev: the device the memory was allocated from
745  * @addr: address of the memory that was allocated
746  */
747 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
748 {
749 	struct pci_p2pdma *p2pdma;
750 
751 	if (!addr)
752 		return 0;
753 
754 	p2pdma = rcu_dereference_protected(pdev->p2pdma, 1);
755 	if (!p2pdma)
756 		return 0;
757 
758 	/*
759 	 * Note: when we added the memory to the pool we used the PCI
760 	 * bus address as the physical address. So gen_pool_virt_to_phys()
761 	 * actually returns the bus address despite the misleading name.
762 	 */
763 	return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr);
764 }
765 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
766 
767 /**
768  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
769  * @pdev: the device to allocate memory from
770  * @nents: the number of SG entries in the list
771  * @length: number of bytes to allocate
772  *
773  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
774  */
775 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
776 					 unsigned int *nents, u32 length)
777 {
778 	struct scatterlist *sg;
779 	void *addr;
780 
781 	sg = kmalloc(sizeof(*sg), GFP_KERNEL);
782 	if (!sg)
783 		return NULL;
784 
785 	sg_init_table(sg, 1);
786 
787 	addr = pci_alloc_p2pmem(pdev, length);
788 	if (!addr)
789 		goto out_free_sg;
790 
791 	sg_set_buf(sg, addr, length);
792 	*nents = 1;
793 	return sg;
794 
795 out_free_sg:
796 	kfree(sg);
797 	return NULL;
798 }
799 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
800 
801 /**
802  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
803  * @pdev: the device to allocate memory from
804  * @sgl: the allocated scatterlist
805  */
806 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
807 {
808 	struct scatterlist *sg;
809 	int count;
810 
811 	for_each_sg(sgl, sg, INT_MAX, count) {
812 		if (!sg)
813 			break;
814 
815 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
816 	}
817 	kfree(sgl);
818 }
819 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
820 
821 /**
822  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
823  *	other devices with pci_p2pmem_find()
824  * @pdev: the device with peer-to-peer DMA memory to publish
825  * @publish: set to true to publish the memory, false to unpublish it
826  *
827  * Published memory can be used by other PCI device drivers for
828  * peer-2-peer DMA operations. Non-published memory is reserved for
829  * exclusive use of the device driver that registers the peer-to-peer
830  * memory.
831  */
832 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
833 {
834 	struct pci_p2pdma *p2pdma;
835 
836 	rcu_read_lock();
837 	p2pdma = rcu_dereference(pdev->p2pdma);
838 	if (p2pdma)
839 		p2pdma->p2pmem_published = publish;
840 	rcu_read_unlock();
841 }
842 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
843 
844 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap,
845 						    struct device *dev)
846 {
847 	enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
848 	struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider;
849 	struct pci_dev *client;
850 	struct pci_p2pdma *p2pdma;
851 	int dist;
852 
853 	if (!provider->p2pdma)
854 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
855 
856 	if (!dev_is_pci(dev))
857 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
858 
859 	client = to_pci_dev(dev);
860 
861 	rcu_read_lock();
862 	p2pdma = rcu_dereference(provider->p2pdma);
863 
864 	if (p2pdma)
865 		type = xa_to_value(xa_load(&p2pdma->map_types,
866 					   map_types_idx(client)));
867 	rcu_read_unlock();
868 
869 	if (type == PCI_P2PDMA_MAP_UNKNOWN)
870 		return calc_map_type_and_dist(provider, client, &dist, true);
871 
872 	return type;
873 }
874 
875 /**
876  * pci_p2pdma_map_segment - map an sg segment determining the mapping type
877  * @state: State structure that should be declared outside of the for_each_sg()
878  *	loop and initialized to zero.
879  * @dev: DMA device that's doing the mapping operation
880  * @sg: scatterlist segment to map
881  *
882  * This is a helper to be used by non-IOMMU dma_map_sg() implementations where
883  * the sg segment is the same for the page_link and the dma_address.
884  *
885  * Attempt to map a single segment in an SGL with the PCI bus address.
886  * The segment must point to a PCI P2PDMA page and thus must be
887  * wrapped in a is_pci_p2pdma_page(sg_page(sg)) check.
888  *
889  * Returns the type of mapping used and maps the page if the type is
890  * PCI_P2PDMA_MAP_BUS_ADDR.
891  */
892 enum pci_p2pdma_map_type
893 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev,
894 		       struct scatterlist *sg)
895 {
896 	if (state->pgmap != sg_page(sg)->pgmap) {
897 		state->pgmap = sg_page(sg)->pgmap;
898 		state->map = pci_p2pdma_map_type(state->pgmap, dev);
899 		state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset;
900 	}
901 
902 	if (state->map == PCI_P2PDMA_MAP_BUS_ADDR) {
903 		sg->dma_address = sg_phys(sg) + state->bus_off;
904 		sg_dma_len(sg) = sg->length;
905 		sg_dma_mark_bus_address(sg);
906 	}
907 
908 	return state->map;
909 }
910 
911 /**
912  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
913  *		to enable p2pdma
914  * @page: contents of the value to be stored
915  * @p2p_dev: returns the PCI device that was selected to be used
916  *		(if one was specified in the stored value)
917  * @use_p2pdma: returns whether to enable p2pdma or not
918  *
919  * Parses an attribute value to decide whether to enable p2pdma.
920  * The value can select a PCI device (using its full BDF device
921  * name) or a boolean (in any format kstrtobool() accepts). A false
922  * value disables p2pdma, a true value expects the caller
923  * to automatically find a compatible device and specifying a PCI device
924  * expects the caller to use the specific provider.
925  *
926  * pci_p2pdma_enable_show() should be used as the show operation for
927  * the attribute.
928  *
929  * Returns 0 on success
930  */
931 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
932 			    bool *use_p2pdma)
933 {
934 	struct device *dev;
935 
936 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
937 	if (dev) {
938 		*use_p2pdma = true;
939 		*p2p_dev = to_pci_dev(dev);
940 
941 		if (!pci_has_p2pmem(*p2p_dev)) {
942 			pci_err(*p2p_dev,
943 				"PCI device has no peer-to-peer memory: %s\n",
944 				page);
945 			pci_dev_put(*p2p_dev);
946 			return -ENODEV;
947 		}
948 
949 		return 0;
950 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
951 		/*
952 		 * If the user enters a PCI device that  doesn't exist
953 		 * like "0000:01:00.1", we don't want kstrtobool to think
954 		 * it's a '0' when it's clearly not what the user wanted.
955 		 * So we require 0's and 1's to be exactly one character.
956 		 */
957 	} else if (!kstrtobool(page, use_p2pdma)) {
958 		return 0;
959 	}
960 
961 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
962 	return -ENODEV;
963 }
964 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
965 
966 /**
967  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
968  *		whether p2pdma is enabled
969  * @page: contents of the stored value
970  * @p2p_dev: the selected p2p device (NULL if no device is selected)
971  * @use_p2pdma: whether p2pdma has been enabled
972  *
973  * Attributes that use pci_p2pdma_enable_store() should use this function
974  * to show the value of the attribute.
975  *
976  * Returns 0 on success
977  */
978 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
979 			       bool use_p2pdma)
980 {
981 	if (!use_p2pdma)
982 		return sprintf(page, "0\n");
983 
984 	if (!p2p_dev)
985 		return sprintf(page, "1\n");
986 
987 	return sprintf(page, "%s\n", pci_name(p2p_dev));
988 }
989 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
990