xref: /openbmc/linux/drivers/pci/p2pdma.c (revision cce8e04c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 
22 struct pci_p2pdma {
23 	struct percpu_ref devmap_ref;
24 	struct completion devmap_ref_done;
25 	struct gen_pool *pool;
26 	bool p2pmem_published;
27 };
28 
29 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
30 			 char *buf)
31 {
32 	struct pci_dev *pdev = to_pci_dev(dev);
33 	size_t size = 0;
34 
35 	if (pdev->p2pdma->pool)
36 		size = gen_pool_size(pdev->p2pdma->pool);
37 
38 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
39 }
40 static DEVICE_ATTR_RO(size);
41 
42 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
43 			      char *buf)
44 {
45 	struct pci_dev *pdev = to_pci_dev(dev);
46 	size_t avail = 0;
47 
48 	if (pdev->p2pdma->pool)
49 		avail = gen_pool_avail(pdev->p2pdma->pool);
50 
51 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
52 }
53 static DEVICE_ATTR_RO(available);
54 
55 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
56 			      char *buf)
57 {
58 	struct pci_dev *pdev = to_pci_dev(dev);
59 
60 	return snprintf(buf, PAGE_SIZE, "%d\n",
61 			pdev->p2pdma->p2pmem_published);
62 }
63 static DEVICE_ATTR_RO(published);
64 
65 static struct attribute *p2pmem_attrs[] = {
66 	&dev_attr_size.attr,
67 	&dev_attr_available.attr,
68 	&dev_attr_published.attr,
69 	NULL,
70 };
71 
72 static const struct attribute_group p2pmem_group = {
73 	.attrs = p2pmem_attrs,
74 	.name = "p2pmem",
75 };
76 
77 static void pci_p2pdma_percpu_release(struct percpu_ref *ref)
78 {
79 	struct pci_p2pdma *p2p =
80 		container_of(ref, struct pci_p2pdma, devmap_ref);
81 
82 	complete_all(&p2p->devmap_ref_done);
83 }
84 
85 static void pci_p2pdma_percpu_kill(struct percpu_ref *ref)
86 {
87 	/*
88 	 * pci_p2pdma_add_resource() may be called multiple times
89 	 * by a driver and may register the percpu_kill devm action multiple
90 	 * times. We only want the first action to actually kill the
91 	 * percpu_ref.
92 	 */
93 	if (percpu_ref_is_dying(ref))
94 		return;
95 
96 	percpu_ref_kill(ref);
97 }
98 
99 static void pci_p2pdma_release(void *data)
100 {
101 	struct pci_dev *pdev = data;
102 
103 	if (!pdev->p2pdma)
104 		return;
105 
106 	wait_for_completion(&pdev->p2pdma->devmap_ref_done);
107 	percpu_ref_exit(&pdev->p2pdma->devmap_ref);
108 
109 	gen_pool_destroy(pdev->p2pdma->pool);
110 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
111 	pdev->p2pdma = NULL;
112 }
113 
114 static int pci_p2pdma_setup(struct pci_dev *pdev)
115 {
116 	int error = -ENOMEM;
117 	struct pci_p2pdma *p2p;
118 
119 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
120 	if (!p2p)
121 		return -ENOMEM;
122 
123 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 	if (!p2p->pool)
125 		goto out;
126 
127 	init_completion(&p2p->devmap_ref_done);
128 	error = percpu_ref_init(&p2p->devmap_ref,
129 			pci_p2pdma_percpu_release, 0, GFP_KERNEL);
130 	if (error)
131 		goto out_pool_destroy;
132 
133 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
134 	if (error)
135 		goto out_pool_destroy;
136 
137 	pdev->p2pdma = p2p;
138 
139 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
140 	if (error)
141 		goto out_pool_destroy;
142 
143 	return 0;
144 
145 out_pool_destroy:
146 	pdev->p2pdma = NULL;
147 	gen_pool_destroy(p2p->pool);
148 out:
149 	devm_kfree(&pdev->dev, p2p);
150 	return error;
151 }
152 
153 /**
154  * pci_p2pdma_add_resource - add memory for use as p2p memory
155  * @pdev: the device to add the memory to
156  * @bar: PCI BAR to add
157  * @size: size of the memory to add, may be zero to use the whole BAR
158  * @offset: offset into the PCI BAR
159  *
160  * The memory will be given ZONE_DEVICE struct pages so that it may
161  * be used with any DMA request.
162  */
163 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
164 			    u64 offset)
165 {
166 	struct dev_pagemap *pgmap;
167 	void *addr;
168 	int error;
169 
170 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
171 		return -EINVAL;
172 
173 	if (offset >= pci_resource_len(pdev, bar))
174 		return -EINVAL;
175 
176 	if (!size)
177 		size = pci_resource_len(pdev, bar) - offset;
178 
179 	if (size + offset > pci_resource_len(pdev, bar))
180 		return -EINVAL;
181 
182 	if (!pdev->p2pdma) {
183 		error = pci_p2pdma_setup(pdev);
184 		if (error)
185 			return error;
186 	}
187 
188 	pgmap = devm_kzalloc(&pdev->dev, sizeof(*pgmap), GFP_KERNEL);
189 	if (!pgmap)
190 		return -ENOMEM;
191 
192 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
193 	pgmap->res.end = pgmap->res.start + size - 1;
194 	pgmap->res.flags = pci_resource_flags(pdev, bar);
195 	pgmap->ref = &pdev->p2pdma->devmap_ref;
196 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
197 	pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) -
198 		pci_resource_start(pdev, bar);
199 	pgmap->kill = pci_p2pdma_percpu_kill;
200 
201 	addr = devm_memremap_pages(&pdev->dev, pgmap);
202 	if (IS_ERR(addr)) {
203 		error = PTR_ERR(addr);
204 		goto pgmap_free;
205 	}
206 
207 	error = gen_pool_add_virt(pdev->p2pdma->pool, (unsigned long)addr,
208 			pci_bus_address(pdev, bar) + offset,
209 			resource_size(&pgmap->res), dev_to_node(&pdev->dev));
210 	if (error)
211 		goto pgmap_free;
212 
213 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
214 		 &pgmap->res);
215 
216 	return 0;
217 
218 pgmap_free:
219 	devm_kfree(&pdev->dev, pgmap);
220 	return error;
221 }
222 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
223 
224 /*
225  * Note this function returns the parent PCI device with a
226  * reference taken. It is the caller's responsibily to drop
227  * the reference.
228  */
229 static struct pci_dev *find_parent_pci_dev(struct device *dev)
230 {
231 	struct device *parent;
232 
233 	dev = get_device(dev);
234 
235 	while (dev) {
236 		if (dev_is_pci(dev))
237 			return to_pci_dev(dev);
238 
239 		parent = get_device(dev->parent);
240 		put_device(dev);
241 		dev = parent;
242 	}
243 
244 	return NULL;
245 }
246 
247 /*
248  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
249  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
250  * upstream, 0 otherwise.
251  */
252 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
253 {
254 	int pos;
255 	u16 ctrl;
256 
257 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
258 	if (!pos)
259 		return 0;
260 
261 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
262 
263 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
264 		return 1;
265 
266 	return 0;
267 }
268 
269 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
270 {
271 	if (!buf)
272 		return;
273 
274 	seq_buf_printf(buf, "%s;", pci_name(pdev));
275 }
276 
277 /*
278  * Find the distance through the nearest common upstream bridge between
279  * two PCI devices.
280  *
281  * If the two devices are the same device then 0 will be returned.
282  *
283  * If there are two virtual functions of the same device behind the same
284  * bridge port then 2 will be returned (one step down to the PCIe switch,
285  * then one step back to the same device).
286  *
287  * In the case where two devices are connected to the same PCIe switch, the
288  * value 4 will be returned. This corresponds to the following PCI tree:
289  *
290  *     -+  Root Port
291  *      \+ Switch Upstream Port
292  *       +-+ Switch Downstream Port
293  *       + \- Device A
294  *       \-+ Switch Downstream Port
295  *         \- Device B
296  *
297  * The distance is 4 because we traverse from Device A through the downstream
298  * port of the switch, to the common upstream port, back up to the second
299  * downstream port and then to Device B.
300  *
301  * Any two devices that don't have a common upstream bridge will return -1.
302  * In this way devices on separate PCIe root ports will be rejected, which
303  * is what we want for peer-to-peer seeing each PCIe root port defines a
304  * separate hierarchy domain and there's no way to determine whether the root
305  * complex supports forwarding between them.
306  *
307  * In the case where two devices are connected to different PCIe switches,
308  * this function will still return a positive distance as long as both
309  * switches eventually have a common upstream bridge. Note this covers
310  * the case of using multiple PCIe switches to achieve a desired level of
311  * fan-out from a root port. The exact distance will be a function of the
312  * number of switches between Device A and Device B.
313  *
314  * If a bridge which has any ACS redirection bits set is in the path
315  * then this functions will return -2. This is so we reject any
316  * cases where the TLPs are forwarded up into the root complex.
317  * In this case, a list of all infringing bridge addresses will be
318  * populated in acs_list (assuming it's non-null) for printk purposes.
319  */
320 static int upstream_bridge_distance(struct pci_dev *a,
321 				    struct pci_dev *b,
322 				    struct seq_buf *acs_list)
323 {
324 	int dist_a = 0;
325 	int dist_b = 0;
326 	struct pci_dev *bb = NULL;
327 	int acs_cnt = 0;
328 
329 	/*
330 	 * Note, we don't need to take references to devices returned by
331 	 * pci_upstream_bridge() seeing we hold a reference to a child
332 	 * device which will already hold a reference to the upstream bridge.
333 	 */
334 
335 	while (a) {
336 		dist_b = 0;
337 
338 		if (pci_bridge_has_acs_redir(a)) {
339 			seq_buf_print_bus_devfn(acs_list, a);
340 			acs_cnt++;
341 		}
342 
343 		bb = b;
344 
345 		while (bb) {
346 			if (a == bb)
347 				goto check_b_path_acs;
348 
349 			bb = pci_upstream_bridge(bb);
350 			dist_b++;
351 		}
352 
353 		a = pci_upstream_bridge(a);
354 		dist_a++;
355 	}
356 
357 	return -1;
358 
359 check_b_path_acs:
360 	bb = b;
361 
362 	while (bb) {
363 		if (a == bb)
364 			break;
365 
366 		if (pci_bridge_has_acs_redir(bb)) {
367 			seq_buf_print_bus_devfn(acs_list, bb);
368 			acs_cnt++;
369 		}
370 
371 		bb = pci_upstream_bridge(bb);
372 	}
373 
374 	if (acs_cnt)
375 		return -2;
376 
377 	return dist_a + dist_b;
378 }
379 
380 static int upstream_bridge_distance_warn(struct pci_dev *provider,
381 					 struct pci_dev *client)
382 {
383 	struct seq_buf acs_list;
384 	int ret;
385 
386 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
387 	if (!acs_list.buffer)
388 		return -ENOMEM;
389 
390 	ret = upstream_bridge_distance(provider, client, &acs_list);
391 	if (ret == -2) {
392 		pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n",
393 			 pci_name(provider));
394 		/* Drop final semicolon */
395 		acs_list.buffer[acs_list.len-1] = 0;
396 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
397 			 acs_list.buffer);
398 
399 	} else if (ret < 0) {
400 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n",
401 			 pci_name(provider));
402 	}
403 
404 	kfree(acs_list.buffer);
405 
406 	return ret;
407 }
408 
409 /**
410  * pci_p2pdma_distance_many - Determive the cumulative distance between
411  *	a p2pdma provider and the clients in use.
412  * @provider: p2pdma provider to check against the client list
413  * @clients: array of devices to check (NULL-terminated)
414  * @num_clients: number of clients in the array
415  * @verbose: if true, print warnings for devices when we return -1
416  *
417  * Returns -1 if any of the clients are not compatible (behind the same
418  * root port as the provider), otherwise returns a positive number where
419  * a lower number is the preferable choice. (If there's one client
420  * that's the same as the provider it will return 0, which is best choice).
421  *
422  * For now, "compatible" means the provider and the clients are all behind
423  * the same PCI root port. This cuts out cases that may work but is safest
424  * for the user. Future work can expand this to white-list root complexes that
425  * can safely forward between each ports.
426  */
427 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
428 			     int num_clients, bool verbose)
429 {
430 	bool not_supported = false;
431 	struct pci_dev *pci_client;
432 	int distance = 0;
433 	int i, ret;
434 
435 	if (num_clients == 0)
436 		return -1;
437 
438 	for (i = 0; i < num_clients; i++) {
439 		pci_client = find_parent_pci_dev(clients[i]);
440 		if (!pci_client) {
441 			if (verbose)
442 				dev_warn(clients[i],
443 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
444 			return -1;
445 		}
446 
447 		if (verbose)
448 			ret = upstream_bridge_distance_warn(provider,
449 							    pci_client);
450 		else
451 			ret = upstream_bridge_distance(provider, pci_client,
452 						       NULL);
453 
454 		pci_dev_put(pci_client);
455 
456 		if (ret < 0)
457 			not_supported = true;
458 
459 		if (not_supported && !verbose)
460 			break;
461 
462 		distance += ret;
463 	}
464 
465 	if (not_supported)
466 		return -1;
467 
468 	return distance;
469 }
470 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
471 
472 /**
473  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
474  * @pdev: PCI device to check
475  */
476 bool pci_has_p2pmem(struct pci_dev *pdev)
477 {
478 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
479 }
480 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
481 
482 /**
483  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
484  *	the specified list of clients and shortest distance (as determined
485  *	by pci_p2pmem_dma())
486  * @clients: array of devices to check (NULL-terminated)
487  * @num_clients: number of client devices in the list
488  *
489  * If multiple devices are behind the same switch, the one "closest" to the
490  * client devices in use will be chosen first. (So if one of the providers is
491  * the same as one of the clients, that provider will be used ahead of any
492  * other providers that are unrelated). If multiple providers are an equal
493  * distance away, one will be chosen at random.
494  *
495  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
496  * to return the reference) or NULL if no compatible device is found. The
497  * found provider will also be assigned to the client list.
498  */
499 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
500 {
501 	struct pci_dev *pdev = NULL;
502 	int distance;
503 	int closest_distance = INT_MAX;
504 	struct pci_dev **closest_pdevs;
505 	int dev_cnt = 0;
506 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
507 	int i;
508 
509 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
510 	if (!closest_pdevs)
511 		return NULL;
512 
513 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
514 		if (!pci_has_p2pmem(pdev))
515 			continue;
516 
517 		distance = pci_p2pdma_distance_many(pdev, clients,
518 						    num_clients, false);
519 		if (distance < 0 || distance > closest_distance)
520 			continue;
521 
522 		if (distance == closest_distance && dev_cnt >= max_devs)
523 			continue;
524 
525 		if (distance < closest_distance) {
526 			for (i = 0; i < dev_cnt; i++)
527 				pci_dev_put(closest_pdevs[i]);
528 
529 			dev_cnt = 0;
530 			closest_distance = distance;
531 		}
532 
533 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
534 	}
535 
536 	if (dev_cnt)
537 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
538 
539 	for (i = 0; i < dev_cnt; i++)
540 		pci_dev_put(closest_pdevs[i]);
541 
542 	kfree(closest_pdevs);
543 	return pdev;
544 }
545 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
546 
547 /**
548  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
549  * @pdev: the device to allocate memory from
550  * @size: number of bytes to allocate
551  *
552  * Returns the allocated memory or NULL on error.
553  */
554 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
555 {
556 	void *ret;
557 
558 	if (unlikely(!pdev->p2pdma))
559 		return NULL;
560 
561 	if (unlikely(!percpu_ref_tryget_live(&pdev->p2pdma->devmap_ref)))
562 		return NULL;
563 
564 	ret = (void *)gen_pool_alloc(pdev->p2pdma->pool, size);
565 
566 	if (unlikely(!ret))
567 		percpu_ref_put(&pdev->p2pdma->devmap_ref);
568 
569 	return ret;
570 }
571 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
572 
573 /**
574  * pci_free_p2pmem - free peer-to-peer DMA memory
575  * @pdev: the device the memory was allocated from
576  * @addr: address of the memory that was allocated
577  * @size: number of bytes that were allocated
578  */
579 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
580 {
581 	gen_pool_free(pdev->p2pdma->pool, (uintptr_t)addr, size);
582 	percpu_ref_put(&pdev->p2pdma->devmap_ref);
583 }
584 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
585 
586 /**
587  * pci_virt_to_bus - return the PCI bus address for a given virtual
588  *	address obtained with pci_alloc_p2pmem()
589  * @pdev: the device the memory was allocated from
590  * @addr: address of the memory that was allocated
591  */
592 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
593 {
594 	if (!addr)
595 		return 0;
596 	if (!pdev->p2pdma)
597 		return 0;
598 
599 	/*
600 	 * Note: when we added the memory to the pool we used the PCI
601 	 * bus address as the physical address. So gen_pool_virt_to_phys()
602 	 * actually returns the bus address despite the misleading name.
603 	 */
604 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
605 }
606 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
607 
608 /**
609  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
610  * @pdev: the device to allocate memory from
611  * @nents: the number of SG entries in the list
612  * @length: number of bytes to allocate
613  *
614  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
615  */
616 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
617 					 unsigned int *nents, u32 length)
618 {
619 	struct scatterlist *sg;
620 	void *addr;
621 
622 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
623 	if (!sg)
624 		return NULL;
625 
626 	sg_init_table(sg, 1);
627 
628 	addr = pci_alloc_p2pmem(pdev, length);
629 	if (!addr)
630 		goto out_free_sg;
631 
632 	sg_set_buf(sg, addr, length);
633 	*nents = 1;
634 	return sg;
635 
636 out_free_sg:
637 	kfree(sg);
638 	return NULL;
639 }
640 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
641 
642 /**
643  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
644  * @pdev: the device to allocate memory from
645  * @sgl: the allocated scatterlist
646  */
647 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
648 {
649 	struct scatterlist *sg;
650 	int count;
651 
652 	for_each_sg(sgl, sg, INT_MAX, count) {
653 		if (!sg)
654 			break;
655 
656 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
657 	}
658 	kfree(sgl);
659 }
660 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
661 
662 /**
663  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
664  *	other devices with pci_p2pmem_find()
665  * @pdev: the device with peer-to-peer DMA memory to publish
666  * @publish: set to true to publish the memory, false to unpublish it
667  *
668  * Published memory can be used by other PCI device drivers for
669  * peer-2-peer DMA operations. Non-published memory is reserved for
670  * exclusive use of the device driver that registers the peer-to-peer
671  * memory.
672  */
673 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
674 {
675 	if (pdev->p2pdma)
676 		pdev->p2pdma->p2pmem_published = publish;
677 }
678 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
679 
680 /**
681  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
682  * @dev: device doing the DMA request
683  * @sg: scatter list to map
684  * @nents: elements in the scatterlist
685  * @dir: DMA direction
686  *
687  * Scatterlists mapped with this function should not be unmapped in any way.
688  *
689  * Returns the number of SG entries mapped or 0 on error.
690  */
691 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
692 		      enum dma_data_direction dir)
693 {
694 	struct dev_pagemap *pgmap;
695 	struct scatterlist *s;
696 	phys_addr_t paddr;
697 	int i;
698 
699 	/*
700 	 * p2pdma mappings are not compatible with devices that use
701 	 * dma_virt_ops. If the upper layers do the right thing
702 	 * this should never happen because it will be prevented
703 	 * by the check in pci_p2pdma_add_client()
704 	 */
705 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
706 			 dev->dma_ops == &dma_virt_ops))
707 		return 0;
708 
709 	for_each_sg(sg, s, nents, i) {
710 		pgmap = sg_page(s)->pgmap;
711 		paddr = sg_phys(s);
712 
713 		s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset;
714 		sg_dma_len(s) = s->length;
715 	}
716 
717 	return nents;
718 }
719 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg);
720 
721 /**
722  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
723  *		to enable p2pdma
724  * @page: contents of the value to be stored
725  * @p2p_dev: returns the PCI device that was selected to be used
726  *		(if one was specified in the stored value)
727  * @use_p2pdma: returns whether to enable p2pdma or not
728  *
729  * Parses an attribute value to decide whether to enable p2pdma.
730  * The value can select a PCI device (using its full BDF device
731  * name) or a boolean (in any format strtobool() accepts). A false
732  * value disables p2pdma, a true value expects the caller
733  * to automatically find a compatible device and specifying a PCI device
734  * expects the caller to use the specific provider.
735  *
736  * pci_p2pdma_enable_show() should be used as the show operation for
737  * the attribute.
738  *
739  * Returns 0 on success
740  */
741 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
742 			    bool *use_p2pdma)
743 {
744 	struct device *dev;
745 
746 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
747 	if (dev) {
748 		*use_p2pdma = true;
749 		*p2p_dev = to_pci_dev(dev);
750 
751 		if (!pci_has_p2pmem(*p2p_dev)) {
752 			pci_err(*p2p_dev,
753 				"PCI device has no peer-to-peer memory: %s\n",
754 				page);
755 			pci_dev_put(*p2p_dev);
756 			return -ENODEV;
757 		}
758 
759 		return 0;
760 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
761 		/*
762 		 * If the user enters a PCI device that  doesn't exist
763 		 * like "0000:01:00.1", we don't want strtobool to think
764 		 * it's a '0' when it's clearly not what the user wanted.
765 		 * So we require 0's and 1's to be exactly one character.
766 		 */
767 	} else if (!strtobool(page, use_p2pdma)) {
768 		return 0;
769 	}
770 
771 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
772 	return -ENODEV;
773 }
774 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
775 
776 /**
777  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
778  *		whether p2pdma is enabled
779  * @page: contents of the stored value
780  * @p2p_dev: the selected p2p device (NULL if no device is selected)
781  * @use_p2pdma: whether p2pdma has been enabled
782  *
783  * Attributes that use pci_p2pdma_enable_store() should use this function
784  * to show the value of the attribute.
785  *
786  * Returns 0 on success
787  */
788 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
789 			       bool use_p2pdma)
790 {
791 	if (!use_p2pdma)
792 		return sprintf(page, "0\n");
793 
794 	if (!p2p_dev)
795 		return sprintf(page, "1\n");
796 
797 	return sprintf(page, "%s\n", pci_name(p2p_dev));
798 }
799 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
800