1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 #include <linux/xarray.h> 22 23 enum pci_p2pdma_map_type { 24 PCI_P2PDMA_MAP_UNKNOWN = 0, 25 PCI_P2PDMA_MAP_NOT_SUPPORTED, 26 PCI_P2PDMA_MAP_BUS_ADDR, 27 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE, 28 }; 29 30 struct pci_p2pdma { 31 struct gen_pool *pool; 32 bool p2pmem_published; 33 struct xarray map_types; 34 }; 35 36 struct pci_p2pdma_pagemap { 37 struct dev_pagemap pgmap; 38 struct pci_dev *provider; 39 u64 bus_offset; 40 }; 41 42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 43 { 44 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 45 } 46 47 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 48 char *buf) 49 { 50 struct pci_dev *pdev = to_pci_dev(dev); 51 size_t size = 0; 52 53 if (pdev->p2pdma->pool) 54 size = gen_pool_size(pdev->p2pdma->pool); 55 56 return snprintf(buf, PAGE_SIZE, "%zd\n", size); 57 } 58 static DEVICE_ATTR_RO(size); 59 60 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 61 char *buf) 62 { 63 struct pci_dev *pdev = to_pci_dev(dev); 64 size_t avail = 0; 65 66 if (pdev->p2pdma->pool) 67 avail = gen_pool_avail(pdev->p2pdma->pool); 68 69 return snprintf(buf, PAGE_SIZE, "%zd\n", avail); 70 } 71 static DEVICE_ATTR_RO(available); 72 73 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 74 char *buf) 75 { 76 struct pci_dev *pdev = to_pci_dev(dev); 77 78 return snprintf(buf, PAGE_SIZE, "%d\n", 79 pdev->p2pdma->p2pmem_published); 80 } 81 static DEVICE_ATTR_RO(published); 82 83 static struct attribute *p2pmem_attrs[] = { 84 &dev_attr_size.attr, 85 &dev_attr_available.attr, 86 &dev_attr_published.attr, 87 NULL, 88 }; 89 90 static const struct attribute_group p2pmem_group = { 91 .attrs = p2pmem_attrs, 92 .name = "p2pmem", 93 }; 94 95 static void pci_p2pdma_release(void *data) 96 { 97 struct pci_dev *pdev = data; 98 struct pci_p2pdma *p2pdma = pdev->p2pdma; 99 100 if (!p2pdma) 101 return; 102 103 /* Flush and disable pci_alloc_p2p_mem() */ 104 pdev->p2pdma = NULL; 105 synchronize_rcu(); 106 107 gen_pool_destroy(p2pdma->pool); 108 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 109 xa_destroy(&p2pdma->map_types); 110 } 111 112 static int pci_p2pdma_setup(struct pci_dev *pdev) 113 { 114 int error = -ENOMEM; 115 struct pci_p2pdma *p2p; 116 117 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 118 if (!p2p) 119 return -ENOMEM; 120 121 xa_init(&p2p->map_types); 122 123 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 124 if (!p2p->pool) 125 goto out; 126 127 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 128 if (error) 129 goto out_pool_destroy; 130 131 pdev->p2pdma = p2p; 132 133 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 134 if (error) 135 goto out_pool_destroy; 136 137 return 0; 138 139 out_pool_destroy: 140 pdev->p2pdma = NULL; 141 gen_pool_destroy(p2p->pool); 142 out: 143 devm_kfree(&pdev->dev, p2p); 144 return error; 145 } 146 147 /** 148 * pci_p2pdma_add_resource - add memory for use as p2p memory 149 * @pdev: the device to add the memory to 150 * @bar: PCI BAR to add 151 * @size: size of the memory to add, may be zero to use the whole BAR 152 * @offset: offset into the PCI BAR 153 * 154 * The memory will be given ZONE_DEVICE struct pages so that it may 155 * be used with any DMA request. 156 */ 157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 158 u64 offset) 159 { 160 struct pci_p2pdma_pagemap *p2p_pgmap; 161 struct dev_pagemap *pgmap; 162 void *addr; 163 int error; 164 165 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 166 return -EINVAL; 167 168 if (offset >= pci_resource_len(pdev, bar)) 169 return -EINVAL; 170 171 if (!size) 172 size = pci_resource_len(pdev, bar) - offset; 173 174 if (size + offset > pci_resource_len(pdev, bar)) 175 return -EINVAL; 176 177 if (!pdev->p2pdma) { 178 error = pci_p2pdma_setup(pdev); 179 if (error) 180 return error; 181 } 182 183 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 184 if (!p2p_pgmap) 185 return -ENOMEM; 186 187 pgmap = &p2p_pgmap->pgmap; 188 pgmap->res.start = pci_resource_start(pdev, bar) + offset; 189 pgmap->res.end = pgmap->res.start + size - 1; 190 pgmap->res.flags = pci_resource_flags(pdev, bar); 191 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 192 193 p2p_pgmap->provider = pdev; 194 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 195 pci_resource_start(pdev, bar); 196 197 addr = devm_memremap_pages(&pdev->dev, pgmap); 198 if (IS_ERR(addr)) { 199 error = PTR_ERR(addr); 200 goto pgmap_free; 201 } 202 203 error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr, 204 pci_bus_address(pdev, bar) + offset, 205 resource_size(&pgmap->res), dev_to_node(&pdev->dev), 206 pgmap->ref); 207 if (error) 208 goto pages_free; 209 210 pci_info(pdev, "added peer-to-peer DMA memory %pR\n", 211 &pgmap->res); 212 213 return 0; 214 215 pages_free: 216 devm_memunmap_pages(&pdev->dev, pgmap); 217 pgmap_free: 218 devm_kfree(&pdev->dev, pgmap); 219 return error; 220 } 221 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 222 223 /* 224 * Note this function returns the parent PCI device with a 225 * reference taken. It is the caller's responsibility to drop 226 * the reference. 227 */ 228 static struct pci_dev *find_parent_pci_dev(struct device *dev) 229 { 230 struct device *parent; 231 232 dev = get_device(dev); 233 234 while (dev) { 235 if (dev_is_pci(dev)) 236 return to_pci_dev(dev); 237 238 parent = get_device(dev->parent); 239 put_device(dev); 240 dev = parent; 241 } 242 243 return NULL; 244 } 245 246 /* 247 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 248 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 249 * upstream, 0 otherwise. 250 */ 251 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 252 { 253 int pos; 254 u16 ctrl; 255 256 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 257 if (!pos) 258 return 0; 259 260 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 261 262 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 263 return 1; 264 265 return 0; 266 } 267 268 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 269 { 270 if (!buf) 271 return; 272 273 seq_buf_printf(buf, "%s;", pci_name(pdev)); 274 } 275 276 static const struct pci_p2pdma_whitelist_entry { 277 unsigned short vendor; 278 unsigned short device; 279 enum { 280 REQ_SAME_HOST_BRIDGE = 1 << 0, 281 } flags; 282 } pci_p2pdma_whitelist[] = { 283 /* AMD ZEN */ 284 {PCI_VENDOR_ID_AMD, 0x1450, 0}, 285 286 /* Intel Xeon E5/Core i7 */ 287 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 288 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 289 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 290 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 291 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 292 {} 293 }; 294 295 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 296 bool same_host_bridge) 297 { 298 struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0)); 299 const struct pci_p2pdma_whitelist_entry *entry; 300 unsigned short vendor, device; 301 302 if (!root) 303 return false; 304 305 vendor = root->vendor; 306 device = root->device; 307 pci_dev_put(root); 308 309 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 310 if (vendor != entry->vendor || device != entry->device) 311 continue; 312 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 313 return false; 314 315 return true; 316 } 317 318 return false; 319 } 320 321 /* 322 * If we can't find a common upstream bridge take a look at the root 323 * complex and compare it to a whitelist of known good hardware. 324 */ 325 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b) 326 { 327 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 328 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 329 330 if (host_a == host_b) 331 return __host_bridge_whitelist(host_a, true); 332 333 if (__host_bridge_whitelist(host_a, false) && 334 __host_bridge_whitelist(host_b, false)) 335 return true; 336 337 return false; 338 } 339 340 static enum pci_p2pdma_map_type 341 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client, 342 int *dist, bool *acs_redirects, struct seq_buf *acs_list) 343 { 344 struct pci_dev *a = provider, *b = client, *bb; 345 int dist_a = 0; 346 int dist_b = 0; 347 int acs_cnt = 0; 348 349 if (acs_redirects) 350 *acs_redirects = false; 351 352 /* 353 * Note, we don't need to take references to devices returned by 354 * pci_upstream_bridge() seeing we hold a reference to a child 355 * device which will already hold a reference to the upstream bridge. 356 */ 357 358 while (a) { 359 dist_b = 0; 360 361 if (pci_bridge_has_acs_redir(a)) { 362 seq_buf_print_bus_devfn(acs_list, a); 363 acs_cnt++; 364 } 365 366 bb = b; 367 368 while (bb) { 369 if (a == bb) 370 goto check_b_path_acs; 371 372 bb = pci_upstream_bridge(bb); 373 dist_b++; 374 } 375 376 a = pci_upstream_bridge(a); 377 dist_a++; 378 } 379 380 if (dist) 381 *dist = dist_a + dist_b; 382 383 return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 384 385 check_b_path_acs: 386 bb = b; 387 388 while (bb) { 389 if (a == bb) 390 break; 391 392 if (pci_bridge_has_acs_redir(bb)) { 393 seq_buf_print_bus_devfn(acs_list, bb); 394 acs_cnt++; 395 } 396 397 bb = pci_upstream_bridge(bb); 398 } 399 400 if (dist) 401 *dist = dist_a + dist_b; 402 403 if (acs_cnt) { 404 if (acs_redirects) 405 *acs_redirects = true; 406 407 return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 408 } 409 410 return PCI_P2PDMA_MAP_BUS_ADDR; 411 } 412 413 static unsigned long map_types_idx(struct pci_dev *client) 414 { 415 return (pci_domain_nr(client->bus) << 16) | 416 (client->bus->number << 8) | client->devfn; 417 } 418 419 /* 420 * Find the distance through the nearest common upstream bridge between 421 * two PCI devices. 422 * 423 * If the two devices are the same device then 0 will be returned. 424 * 425 * If there are two virtual functions of the same device behind the same 426 * bridge port then 2 will be returned (one step down to the PCIe switch, 427 * then one step back to the same device). 428 * 429 * In the case where two devices are connected to the same PCIe switch, the 430 * value 4 will be returned. This corresponds to the following PCI tree: 431 * 432 * -+ Root Port 433 * \+ Switch Upstream Port 434 * +-+ Switch Downstream Port 435 * + \- Device A 436 * \-+ Switch Downstream Port 437 * \- Device B 438 * 439 * The distance is 4 because we traverse from Device A through the downstream 440 * port of the switch, to the common upstream port, back up to the second 441 * downstream port and then to Device B. 442 * 443 * Any two devices that cannot communicate using p2pdma will return 444 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 445 * 446 * Any two devices that have a data path that goes through the host bridge 447 * will consult a whitelist. If the host bridges are on the whitelist, 448 * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE. 449 * 450 * If either bridge is not on the whitelist this function returns 451 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 452 * 453 * If a bridge which has any ACS redirection bits set is in the path, 454 * acs_redirects will be set to true. In this case, a list of all infringing 455 * bridge addresses will be populated in acs_list (assuming it's non-null) 456 * for printk purposes. 457 */ 458 static enum pci_p2pdma_map_type 459 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client, 460 int *dist, bool *acs_redirects, struct seq_buf *acs_list) 461 { 462 enum pci_p2pdma_map_type map_type; 463 464 map_type = __upstream_bridge_distance(provider, client, dist, 465 acs_redirects, acs_list); 466 467 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) { 468 if (!host_bridge_whitelist(provider, client)) 469 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 470 } 471 472 if (provider->p2pdma) 473 xa_store(&provider->p2pdma->map_types, map_types_idx(client), 474 xa_mk_value(map_type), GFP_KERNEL); 475 476 return map_type; 477 } 478 479 static enum pci_p2pdma_map_type 480 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client, 481 int *dist) 482 { 483 struct seq_buf acs_list; 484 bool acs_redirects; 485 int ret; 486 487 seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 488 if (!acs_list.buffer) 489 return -ENOMEM; 490 491 ret = upstream_bridge_distance(provider, client, dist, &acs_redirects, 492 &acs_list); 493 if (acs_redirects) { 494 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 495 pci_name(provider)); 496 /* Drop final semicolon */ 497 acs_list.buffer[acs_list.len-1] = 0; 498 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 499 acs_list.buffer); 500 } 501 502 if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) { 503 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 504 pci_name(provider)); 505 } 506 507 kfree(acs_list.buffer); 508 509 return ret; 510 } 511 512 /** 513 * pci_p2pdma_distance_many - Determine the cumulative distance between 514 * a p2pdma provider and the clients in use. 515 * @provider: p2pdma provider to check against the client list 516 * @clients: array of devices to check (NULL-terminated) 517 * @num_clients: number of clients in the array 518 * @verbose: if true, print warnings for devices when we return -1 519 * 520 * Returns -1 if any of the clients are not compatible, otherwise returns a 521 * positive number where a lower number is the preferable choice. (If there's 522 * one client that's the same as the provider it will return 0, which is best 523 * choice). 524 * 525 * "compatible" means the provider and the clients are either all behind 526 * the same PCI root port or the host bridges connected to each of the devices 527 * are listed in the 'pci_p2pdma_whitelist'. 528 */ 529 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 530 int num_clients, bool verbose) 531 { 532 bool not_supported = false; 533 struct pci_dev *pci_client; 534 int total_dist = 0; 535 int distance; 536 int i, ret; 537 538 if (num_clients == 0) 539 return -1; 540 541 for (i = 0; i < num_clients; i++) { 542 if (IS_ENABLED(CONFIG_DMA_VIRT_OPS) && 543 clients[i]->dma_ops == &dma_virt_ops) { 544 if (verbose) 545 dev_warn(clients[i], 546 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n"); 547 return -1; 548 } 549 550 pci_client = find_parent_pci_dev(clients[i]); 551 if (!pci_client) { 552 if (verbose) 553 dev_warn(clients[i], 554 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 555 return -1; 556 } 557 558 if (verbose) 559 ret = upstream_bridge_distance_warn(provider, 560 pci_client, &distance); 561 else 562 ret = upstream_bridge_distance(provider, pci_client, 563 &distance, NULL, NULL); 564 565 pci_dev_put(pci_client); 566 567 if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) 568 not_supported = true; 569 570 if (not_supported && !verbose) 571 break; 572 573 total_dist += distance; 574 } 575 576 if (not_supported) 577 return -1; 578 579 return total_dist; 580 } 581 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 582 583 /** 584 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 585 * @pdev: PCI device to check 586 */ 587 bool pci_has_p2pmem(struct pci_dev *pdev) 588 { 589 return pdev->p2pdma && pdev->p2pdma->p2pmem_published; 590 } 591 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 592 593 /** 594 * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with 595 * the specified list of clients and shortest distance (as determined 596 * by pci_p2pmem_dma()) 597 * @clients: array of devices to check (NULL-terminated) 598 * @num_clients: number of client devices in the list 599 * 600 * If multiple devices are behind the same switch, the one "closest" to the 601 * client devices in use will be chosen first. (So if one of the providers is 602 * the same as one of the clients, that provider will be used ahead of any 603 * other providers that are unrelated). If multiple providers are an equal 604 * distance away, one will be chosen at random. 605 * 606 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 607 * to return the reference) or NULL if no compatible device is found. The 608 * found provider will also be assigned to the client list. 609 */ 610 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 611 { 612 struct pci_dev *pdev = NULL; 613 int distance; 614 int closest_distance = INT_MAX; 615 struct pci_dev **closest_pdevs; 616 int dev_cnt = 0; 617 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 618 int i; 619 620 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 621 if (!closest_pdevs) 622 return NULL; 623 624 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 625 if (!pci_has_p2pmem(pdev)) 626 continue; 627 628 distance = pci_p2pdma_distance_many(pdev, clients, 629 num_clients, false); 630 if (distance < 0 || distance > closest_distance) 631 continue; 632 633 if (distance == closest_distance && dev_cnt >= max_devs) 634 continue; 635 636 if (distance < closest_distance) { 637 for (i = 0; i < dev_cnt; i++) 638 pci_dev_put(closest_pdevs[i]); 639 640 dev_cnt = 0; 641 closest_distance = distance; 642 } 643 644 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 645 } 646 647 if (dev_cnt) 648 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 649 650 for (i = 0; i < dev_cnt; i++) 651 pci_dev_put(closest_pdevs[i]); 652 653 kfree(closest_pdevs); 654 return pdev; 655 } 656 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 657 658 /** 659 * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory 660 * @pdev: the device to allocate memory from 661 * @size: number of bytes to allocate 662 * 663 * Returns the allocated memory or NULL on error. 664 */ 665 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 666 { 667 void *ret = NULL; 668 struct percpu_ref *ref; 669 670 /* 671 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 672 * ensure pdev->p2pdma is non-NULL for the duration of the 673 * read-lock. 674 */ 675 rcu_read_lock(); 676 if (unlikely(!pdev->p2pdma)) 677 goto out; 678 679 ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size, 680 (void **) &ref); 681 if (!ret) 682 goto out; 683 684 if (unlikely(!percpu_ref_tryget_live(ref))) { 685 gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size); 686 ret = NULL; 687 goto out; 688 } 689 out: 690 rcu_read_unlock(); 691 return ret; 692 } 693 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 694 695 /** 696 * pci_free_p2pmem - free peer-to-peer DMA memory 697 * @pdev: the device the memory was allocated from 698 * @addr: address of the memory that was allocated 699 * @size: number of bytes that were allocated 700 */ 701 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 702 { 703 struct percpu_ref *ref; 704 705 gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size, 706 (void **) &ref); 707 percpu_ref_put(ref); 708 } 709 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 710 711 /** 712 * pci_virt_to_bus - return the PCI bus address for a given virtual 713 * address obtained with pci_alloc_p2pmem() 714 * @pdev: the device the memory was allocated from 715 * @addr: address of the memory that was allocated 716 */ 717 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 718 { 719 if (!addr) 720 return 0; 721 if (!pdev->p2pdma) 722 return 0; 723 724 /* 725 * Note: when we added the memory to the pool we used the PCI 726 * bus address as the physical address. So gen_pool_virt_to_phys() 727 * actually returns the bus address despite the misleading name. 728 */ 729 return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr); 730 } 731 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 732 733 /** 734 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 735 * @pdev: the device to allocate memory from 736 * @nents: the number of SG entries in the list 737 * @length: number of bytes to allocate 738 * 739 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 740 */ 741 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 742 unsigned int *nents, u32 length) 743 { 744 struct scatterlist *sg; 745 void *addr; 746 747 sg = kzalloc(sizeof(*sg), GFP_KERNEL); 748 if (!sg) 749 return NULL; 750 751 sg_init_table(sg, 1); 752 753 addr = pci_alloc_p2pmem(pdev, length); 754 if (!addr) 755 goto out_free_sg; 756 757 sg_set_buf(sg, addr, length); 758 *nents = 1; 759 return sg; 760 761 out_free_sg: 762 kfree(sg); 763 return NULL; 764 } 765 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 766 767 /** 768 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 769 * @pdev: the device to allocate memory from 770 * @sgl: the allocated scatterlist 771 */ 772 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 773 { 774 struct scatterlist *sg; 775 int count; 776 777 for_each_sg(sgl, sg, INT_MAX, count) { 778 if (!sg) 779 break; 780 781 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 782 } 783 kfree(sgl); 784 } 785 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 786 787 /** 788 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 789 * other devices with pci_p2pmem_find() 790 * @pdev: the device with peer-to-peer DMA memory to publish 791 * @publish: set to true to publish the memory, false to unpublish it 792 * 793 * Published memory can be used by other PCI device drivers for 794 * peer-2-peer DMA operations. Non-published memory is reserved for 795 * exclusive use of the device driver that registers the peer-to-peer 796 * memory. 797 */ 798 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 799 { 800 if (pdev->p2pdma) 801 pdev->p2pdma->p2pmem_published = publish; 802 } 803 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 804 805 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider, 806 struct pci_dev *client) 807 { 808 if (!provider->p2pdma) 809 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 810 811 return xa_to_value(xa_load(&provider->p2pdma->map_types, 812 map_types_idx(client))); 813 } 814 815 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap, 816 struct device *dev, struct scatterlist *sg, int nents) 817 { 818 struct scatterlist *s; 819 phys_addr_t paddr; 820 int i; 821 822 /* 823 * p2pdma mappings are not compatible with devices that use 824 * dma_virt_ops. If the upper layers do the right thing 825 * this should never happen because it will be prevented 826 * by the check in pci_p2pdma_distance_many() 827 */ 828 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) && 829 dev->dma_ops == &dma_virt_ops)) 830 return 0; 831 832 for_each_sg(sg, s, nents, i) { 833 paddr = sg_phys(s); 834 835 s->dma_address = paddr - p2p_pgmap->bus_offset; 836 sg_dma_len(s) = s->length; 837 } 838 839 return nents; 840 } 841 842 /** 843 * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA 844 * @dev: device doing the DMA request 845 * @sg: scatter list to map 846 * @nents: elements in the scatterlist 847 * @dir: DMA direction 848 * @attrs: DMA attributes passed to dma_map_sg() (if called) 849 * 850 * Scatterlists mapped with this function should be unmapped using 851 * pci_p2pdma_unmap_sg_attrs(). 852 * 853 * Returns the number of SG entries mapped or 0 on error. 854 */ 855 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 856 int nents, enum dma_data_direction dir, unsigned long attrs) 857 { 858 struct pci_p2pdma_pagemap *p2p_pgmap = 859 to_p2p_pgmap(sg_page(sg)->pgmap); 860 struct pci_dev *client; 861 862 if (WARN_ON_ONCE(!dev_is_pci(dev))) 863 return 0; 864 865 client = to_pci_dev(dev); 866 867 switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) { 868 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 869 return dma_map_sg_attrs(dev, sg, nents, dir, attrs); 870 case PCI_P2PDMA_MAP_BUS_ADDR: 871 return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents); 872 default: 873 WARN_ON_ONCE(1); 874 return 0; 875 } 876 } 877 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs); 878 879 /** 880 * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was 881 * mapped with pci_p2pdma_map_sg() 882 * @dev: device doing the DMA request 883 * @sg: scatter list to map 884 * @nents: number of elements returned by pci_p2pdma_map_sg() 885 * @dir: DMA direction 886 * @attrs: DMA attributes passed to dma_unmap_sg() (if called) 887 */ 888 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 889 int nents, enum dma_data_direction dir, unsigned long attrs) 890 { 891 struct pci_p2pdma_pagemap *p2p_pgmap = 892 to_p2p_pgmap(sg_page(sg)->pgmap); 893 enum pci_p2pdma_map_type map_type; 894 struct pci_dev *client; 895 896 if (WARN_ON_ONCE(!dev_is_pci(dev))) 897 return; 898 899 client = to_pci_dev(dev); 900 901 map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client); 902 903 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) 904 dma_unmap_sg_attrs(dev, sg, nents, dir, attrs); 905 } 906 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs); 907 908 /** 909 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 910 * to enable p2pdma 911 * @page: contents of the value to be stored 912 * @p2p_dev: returns the PCI device that was selected to be used 913 * (if one was specified in the stored value) 914 * @use_p2pdma: returns whether to enable p2pdma or not 915 * 916 * Parses an attribute value to decide whether to enable p2pdma. 917 * The value can select a PCI device (using its full BDF device 918 * name) or a boolean (in any format strtobool() accepts). A false 919 * value disables p2pdma, a true value expects the caller 920 * to automatically find a compatible device and specifying a PCI device 921 * expects the caller to use the specific provider. 922 * 923 * pci_p2pdma_enable_show() should be used as the show operation for 924 * the attribute. 925 * 926 * Returns 0 on success 927 */ 928 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 929 bool *use_p2pdma) 930 { 931 struct device *dev; 932 933 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 934 if (dev) { 935 *use_p2pdma = true; 936 *p2p_dev = to_pci_dev(dev); 937 938 if (!pci_has_p2pmem(*p2p_dev)) { 939 pci_err(*p2p_dev, 940 "PCI device has no peer-to-peer memory: %s\n", 941 page); 942 pci_dev_put(*p2p_dev); 943 return -ENODEV; 944 } 945 946 return 0; 947 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 948 /* 949 * If the user enters a PCI device that doesn't exist 950 * like "0000:01:00.1", we don't want strtobool to think 951 * it's a '0' when it's clearly not what the user wanted. 952 * So we require 0's and 1's to be exactly one character. 953 */ 954 } else if (!strtobool(page, use_p2pdma)) { 955 return 0; 956 } 957 958 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 959 return -ENODEV; 960 } 961 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 962 963 /** 964 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 965 * whether p2pdma is enabled 966 * @page: contents of the stored value 967 * @p2p_dev: the selected p2p device (NULL if no device is selected) 968 * @use_p2pdma: whether p2pdma has been enabled 969 * 970 * Attributes that use pci_p2pdma_enable_store() should use this function 971 * to show the value of the attribute. 972 * 973 * Returns 0 on success 974 */ 975 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 976 bool use_p2pdma) 977 { 978 if (!use_p2pdma) 979 return sprintf(page, "0\n"); 980 981 if (!p2p_dev) 982 return sprintf(page, "1\n"); 983 984 return sprintf(page, "%s\n", pci_name(p2p_dev)); 985 } 986 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 987