1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/pci-p2pdma.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/genalloc.h> 18 #include <linux/memremap.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/random.h> 21 #include <linux/seq_buf.h> 22 #include <linux/xarray.h> 23 24 struct pci_p2pdma { 25 struct gen_pool *pool; 26 bool p2pmem_published; 27 struct xarray map_types; 28 }; 29 30 struct pci_p2pdma_pagemap { 31 struct dev_pagemap pgmap; 32 struct pci_dev *provider; 33 u64 bus_offset; 34 }; 35 36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 37 { 38 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 39 } 40 41 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 42 char *buf) 43 { 44 struct pci_dev *pdev = to_pci_dev(dev); 45 struct pci_p2pdma *p2pdma; 46 size_t size = 0; 47 48 rcu_read_lock(); 49 p2pdma = rcu_dereference(pdev->p2pdma); 50 if (p2pdma && p2pdma->pool) 51 size = gen_pool_size(p2pdma->pool); 52 rcu_read_unlock(); 53 54 return sysfs_emit(buf, "%zd\n", size); 55 } 56 static DEVICE_ATTR_RO(size); 57 58 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 59 char *buf) 60 { 61 struct pci_dev *pdev = to_pci_dev(dev); 62 struct pci_p2pdma *p2pdma; 63 size_t avail = 0; 64 65 rcu_read_lock(); 66 p2pdma = rcu_dereference(pdev->p2pdma); 67 if (p2pdma && p2pdma->pool) 68 avail = gen_pool_avail(p2pdma->pool); 69 rcu_read_unlock(); 70 71 return sysfs_emit(buf, "%zd\n", avail); 72 } 73 static DEVICE_ATTR_RO(available); 74 75 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 76 char *buf) 77 { 78 struct pci_dev *pdev = to_pci_dev(dev); 79 struct pci_p2pdma *p2pdma; 80 bool published = false; 81 82 rcu_read_lock(); 83 p2pdma = rcu_dereference(pdev->p2pdma); 84 if (p2pdma) 85 published = p2pdma->p2pmem_published; 86 rcu_read_unlock(); 87 88 return sysfs_emit(buf, "%d\n", published); 89 } 90 static DEVICE_ATTR_RO(published); 91 92 static struct attribute *p2pmem_attrs[] = { 93 &dev_attr_size.attr, 94 &dev_attr_available.attr, 95 &dev_attr_published.attr, 96 NULL, 97 }; 98 99 static const struct attribute_group p2pmem_group = { 100 .attrs = p2pmem_attrs, 101 .name = "p2pmem", 102 }; 103 104 static void pci_p2pdma_release(void *data) 105 { 106 struct pci_dev *pdev = data; 107 struct pci_p2pdma *p2pdma; 108 109 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 110 if (!p2pdma) 111 return; 112 113 /* Flush and disable pci_alloc_p2p_mem() */ 114 pdev->p2pdma = NULL; 115 synchronize_rcu(); 116 117 gen_pool_destroy(p2pdma->pool); 118 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 119 xa_destroy(&p2pdma->map_types); 120 } 121 122 static int pci_p2pdma_setup(struct pci_dev *pdev) 123 { 124 int error = -ENOMEM; 125 struct pci_p2pdma *p2p; 126 127 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 128 if (!p2p) 129 return -ENOMEM; 130 131 xa_init(&p2p->map_types); 132 133 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 134 if (!p2p->pool) 135 goto out; 136 137 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 138 if (error) 139 goto out_pool_destroy; 140 141 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 142 if (error) 143 goto out_pool_destroy; 144 145 rcu_assign_pointer(pdev->p2pdma, p2p); 146 return 0; 147 148 out_pool_destroy: 149 gen_pool_destroy(p2p->pool); 150 out: 151 devm_kfree(&pdev->dev, p2p); 152 return error; 153 } 154 155 /** 156 * pci_p2pdma_add_resource - add memory for use as p2p memory 157 * @pdev: the device to add the memory to 158 * @bar: PCI BAR to add 159 * @size: size of the memory to add, may be zero to use the whole BAR 160 * @offset: offset into the PCI BAR 161 * 162 * The memory will be given ZONE_DEVICE struct pages so that it may 163 * be used with any DMA request. 164 */ 165 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 166 u64 offset) 167 { 168 struct pci_p2pdma_pagemap *p2p_pgmap; 169 struct dev_pagemap *pgmap; 170 struct pci_p2pdma *p2pdma; 171 void *addr; 172 int error; 173 174 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 175 return -EINVAL; 176 177 if (offset >= pci_resource_len(pdev, bar)) 178 return -EINVAL; 179 180 if (!size) 181 size = pci_resource_len(pdev, bar) - offset; 182 183 if (size + offset > pci_resource_len(pdev, bar)) 184 return -EINVAL; 185 186 if (!pdev->p2pdma) { 187 error = pci_p2pdma_setup(pdev); 188 if (error) 189 return error; 190 } 191 192 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 193 if (!p2p_pgmap) 194 return -ENOMEM; 195 196 pgmap = &p2p_pgmap->pgmap; 197 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 198 pgmap->range.end = pgmap->range.start + size - 1; 199 pgmap->nr_range = 1; 200 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 201 202 p2p_pgmap->provider = pdev; 203 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 204 pci_resource_start(pdev, bar); 205 206 addr = devm_memremap_pages(&pdev->dev, pgmap); 207 if (IS_ERR(addr)) { 208 error = PTR_ERR(addr); 209 goto pgmap_free; 210 } 211 212 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 213 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, 214 pci_bus_address(pdev, bar) + offset, 215 range_len(&pgmap->range), dev_to_node(&pdev->dev), 216 &pgmap->ref); 217 if (error) 218 goto pages_free; 219 220 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 221 pgmap->range.start, pgmap->range.end); 222 223 return 0; 224 225 pages_free: 226 devm_memunmap_pages(&pdev->dev, pgmap); 227 pgmap_free: 228 devm_kfree(&pdev->dev, pgmap); 229 return error; 230 } 231 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 232 233 /* 234 * Note this function returns the parent PCI device with a 235 * reference taken. It is the caller's responsibility to drop 236 * the reference. 237 */ 238 static struct pci_dev *find_parent_pci_dev(struct device *dev) 239 { 240 struct device *parent; 241 242 dev = get_device(dev); 243 244 while (dev) { 245 if (dev_is_pci(dev)) 246 return to_pci_dev(dev); 247 248 parent = get_device(dev->parent); 249 put_device(dev); 250 dev = parent; 251 } 252 253 return NULL; 254 } 255 256 /* 257 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 258 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 259 * upstream, 0 otherwise. 260 */ 261 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 262 { 263 int pos; 264 u16 ctrl; 265 266 pos = pdev->acs_cap; 267 if (!pos) 268 return 0; 269 270 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 271 272 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 273 return 1; 274 275 return 0; 276 } 277 278 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 279 { 280 if (!buf) 281 return; 282 283 seq_buf_printf(buf, "%s;", pci_name(pdev)); 284 } 285 286 static bool cpu_supports_p2pdma(void) 287 { 288 #ifdef CONFIG_X86 289 struct cpuinfo_x86 *c = &cpu_data(0); 290 291 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 292 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 293 return true; 294 #endif 295 296 return false; 297 } 298 299 static const struct pci_p2pdma_whitelist_entry { 300 unsigned short vendor; 301 unsigned short device; 302 enum { 303 REQ_SAME_HOST_BRIDGE = 1 << 0, 304 } flags; 305 } pci_p2pdma_whitelist[] = { 306 /* Intel Xeon E5/Core i7 */ 307 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 308 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 309 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 310 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 311 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 312 /* Intel SkyLake-E */ 313 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 314 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 315 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 316 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 317 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 318 {PCI_VENDOR_ID_INTEL, 0x09a2, 0}, 319 {} 320 }; 321 322 /* 323 * If the first device on host's root bus is either devfn 00.0 or a PCIe 324 * Root Port, return it. Otherwise return NULL. 325 * 326 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[] 327 * (though there is no PCI/PCIe requirement for such a device). On some 328 * platforms, e.g., Intel Skylake, there is no such host bridge device, and 329 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn. 330 * 331 * This function is similar to pci_get_slot(host->bus, 0), but it does 332 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not 333 * sleep. 334 * 335 * For this to be safe, the caller should hold a reference to a device on the 336 * bridge, which should ensure the host_bridge device will not be freed 337 * or removed from the head of the devices list. 338 */ 339 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) 340 { 341 struct pci_dev *root; 342 343 root = list_first_entry_or_null(&host->bus->devices, 344 struct pci_dev, bus_list); 345 346 if (!root) 347 return NULL; 348 349 if (root->devfn == PCI_DEVFN(0, 0)) 350 return root; 351 352 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT) 353 return root; 354 355 return NULL; 356 } 357 358 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 359 bool same_host_bridge, bool warn) 360 { 361 struct pci_dev *root = pci_host_bridge_dev(host); 362 const struct pci_p2pdma_whitelist_entry *entry; 363 unsigned short vendor, device; 364 365 if (!root) 366 return false; 367 368 vendor = root->vendor; 369 device = root->device; 370 371 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 372 if (vendor != entry->vendor || device != entry->device) 373 continue; 374 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 375 return false; 376 377 return true; 378 } 379 380 if (warn) 381 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", 382 vendor, device); 383 384 return false; 385 } 386 387 /* 388 * If we can't find a common upstream bridge take a look at the root 389 * complex and compare it to a whitelist of known good hardware. 390 */ 391 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, 392 bool warn) 393 { 394 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 395 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 396 397 if (host_a == host_b) 398 return __host_bridge_whitelist(host_a, true, warn); 399 400 if (__host_bridge_whitelist(host_a, false, warn) && 401 __host_bridge_whitelist(host_b, false, warn)) 402 return true; 403 404 return false; 405 } 406 407 static unsigned long map_types_idx(struct pci_dev *client) 408 { 409 return (pci_domain_nr(client->bus) << 16) | 410 (client->bus->number << 8) | client->devfn; 411 } 412 413 /* 414 * Calculate the P2PDMA mapping type and distance between two PCI devices. 415 * 416 * If the two devices are the same PCI function, return 417 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. 418 * 419 * If they are two functions of the same device, return 420 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, 421 * then one hop back down to another function of the same device). 422 * 423 * In the case where two devices are connected to the same PCIe switch, 424 * return a distance of 4. This corresponds to the following PCI tree: 425 * 426 * -+ Root Port 427 * \+ Switch Upstream Port 428 * +-+ Switch Downstream Port 0 429 * + \- Device A 430 * \-+ Switch Downstream Port 1 431 * \- Device B 432 * 433 * The distance is 4 because we traverse from Device A to Downstream Port 0 434 * to the common Switch Upstream Port, back down to Downstream Port 1 and 435 * then to Device B. The mapping type returned depends on the ACS 436 * redirection setting of the ports along the path. 437 * 438 * If ACS redirect is set on any port in the path, traffic between the 439 * devices will go through the host bridge, so return 440 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return 441 * PCI_P2PDMA_MAP_BUS_ADDR. 442 * 443 * Any two devices that have a data path that goes through the host bridge 444 * will consult a whitelist. If the host bridge is in the whitelist, return 445 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of 446 * ports per above. If the device is not in the whitelist, return 447 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 448 */ 449 static enum pci_p2pdma_map_type 450 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, 451 int *dist, bool verbose) 452 { 453 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 454 struct pci_dev *a = provider, *b = client, *bb; 455 bool acs_redirects = false; 456 struct pci_p2pdma *p2pdma; 457 struct seq_buf acs_list; 458 int acs_cnt = 0; 459 int dist_a = 0; 460 int dist_b = 0; 461 char buf[128]; 462 463 seq_buf_init(&acs_list, buf, sizeof(buf)); 464 465 /* 466 * Note, we don't need to take references to devices returned by 467 * pci_upstream_bridge() seeing we hold a reference to a child 468 * device which will already hold a reference to the upstream bridge. 469 */ 470 while (a) { 471 dist_b = 0; 472 473 if (pci_bridge_has_acs_redir(a)) { 474 seq_buf_print_bus_devfn(&acs_list, a); 475 acs_cnt++; 476 } 477 478 bb = b; 479 480 while (bb) { 481 if (a == bb) 482 goto check_b_path_acs; 483 484 bb = pci_upstream_bridge(bb); 485 dist_b++; 486 } 487 488 a = pci_upstream_bridge(a); 489 dist_a++; 490 } 491 492 *dist = dist_a + dist_b; 493 goto map_through_host_bridge; 494 495 check_b_path_acs: 496 bb = b; 497 498 while (bb) { 499 if (a == bb) 500 break; 501 502 if (pci_bridge_has_acs_redir(bb)) { 503 seq_buf_print_bus_devfn(&acs_list, bb); 504 acs_cnt++; 505 } 506 507 bb = pci_upstream_bridge(bb); 508 } 509 510 *dist = dist_a + dist_b; 511 512 if (!acs_cnt) { 513 map_type = PCI_P2PDMA_MAP_BUS_ADDR; 514 goto done; 515 } 516 517 if (verbose) { 518 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ 519 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 520 pci_name(provider)); 521 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 522 acs_list.buffer); 523 } 524 acs_redirects = true; 525 526 map_through_host_bridge: 527 if (!cpu_supports_p2pdma() && 528 !host_bridge_whitelist(provider, client, acs_redirects)) { 529 if (verbose) 530 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 531 pci_name(provider)); 532 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 533 } 534 done: 535 rcu_read_lock(); 536 p2pdma = rcu_dereference(provider->p2pdma); 537 if (p2pdma) 538 xa_store(&p2pdma->map_types, map_types_idx(client), 539 xa_mk_value(map_type), GFP_KERNEL); 540 rcu_read_unlock(); 541 return map_type; 542 } 543 544 /** 545 * pci_p2pdma_distance_many - Determine the cumulative distance between 546 * a p2pdma provider and the clients in use. 547 * @provider: p2pdma provider to check against the client list 548 * @clients: array of devices to check (NULL-terminated) 549 * @num_clients: number of clients in the array 550 * @verbose: if true, print warnings for devices when we return -1 551 * 552 * Returns -1 if any of the clients are not compatible, otherwise returns a 553 * positive number where a lower number is the preferable choice. (If there's 554 * one client that's the same as the provider it will return 0, which is best 555 * choice). 556 * 557 * "compatible" means the provider and the clients are either all behind 558 * the same PCI root port or the host bridges connected to each of the devices 559 * are listed in the 'pci_p2pdma_whitelist'. 560 */ 561 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 562 int num_clients, bool verbose) 563 { 564 enum pci_p2pdma_map_type map; 565 bool not_supported = false; 566 struct pci_dev *pci_client; 567 int total_dist = 0; 568 int i, distance; 569 570 if (num_clients == 0) 571 return -1; 572 573 for (i = 0; i < num_clients; i++) { 574 pci_client = find_parent_pci_dev(clients[i]); 575 if (!pci_client) { 576 if (verbose) 577 dev_warn(clients[i], 578 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 579 return -1; 580 } 581 582 map = calc_map_type_and_dist(provider, pci_client, &distance, 583 verbose); 584 585 pci_dev_put(pci_client); 586 587 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) 588 not_supported = true; 589 590 if (not_supported && !verbose) 591 break; 592 593 total_dist += distance; 594 } 595 596 if (not_supported) 597 return -1; 598 599 return total_dist; 600 } 601 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 602 603 /** 604 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 605 * @pdev: PCI device to check 606 */ 607 bool pci_has_p2pmem(struct pci_dev *pdev) 608 { 609 struct pci_p2pdma *p2pdma; 610 bool res; 611 612 rcu_read_lock(); 613 p2pdma = rcu_dereference(pdev->p2pdma); 614 res = p2pdma && p2pdma->p2pmem_published; 615 rcu_read_unlock(); 616 617 return res; 618 } 619 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 620 621 /** 622 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 623 * the specified list of clients and shortest distance (as determined 624 * by pci_p2pmem_dma()) 625 * @clients: array of devices to check (NULL-terminated) 626 * @num_clients: number of client devices in the list 627 * 628 * If multiple devices are behind the same switch, the one "closest" to the 629 * client devices in use will be chosen first. (So if one of the providers is 630 * the same as one of the clients, that provider will be used ahead of any 631 * other providers that are unrelated). If multiple providers are an equal 632 * distance away, one will be chosen at random. 633 * 634 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 635 * to return the reference) or NULL if no compatible device is found. The 636 * found provider will also be assigned to the client list. 637 */ 638 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 639 { 640 struct pci_dev *pdev = NULL; 641 int distance; 642 int closest_distance = INT_MAX; 643 struct pci_dev **closest_pdevs; 644 int dev_cnt = 0; 645 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 646 int i; 647 648 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 649 if (!closest_pdevs) 650 return NULL; 651 652 for_each_pci_dev(pdev) { 653 if (!pci_has_p2pmem(pdev)) 654 continue; 655 656 distance = pci_p2pdma_distance_many(pdev, clients, 657 num_clients, false); 658 if (distance < 0 || distance > closest_distance) 659 continue; 660 661 if (distance == closest_distance && dev_cnt >= max_devs) 662 continue; 663 664 if (distance < closest_distance) { 665 for (i = 0; i < dev_cnt; i++) 666 pci_dev_put(closest_pdevs[i]); 667 668 dev_cnt = 0; 669 closest_distance = distance; 670 } 671 672 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 673 } 674 675 if (dev_cnt) 676 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 677 678 for (i = 0; i < dev_cnt; i++) 679 pci_dev_put(closest_pdevs[i]); 680 681 kfree(closest_pdevs); 682 return pdev; 683 } 684 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 685 686 /** 687 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 688 * @pdev: the device to allocate memory from 689 * @size: number of bytes to allocate 690 * 691 * Returns the allocated memory or NULL on error. 692 */ 693 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 694 { 695 void *ret = NULL; 696 struct percpu_ref *ref; 697 struct pci_p2pdma *p2pdma; 698 699 /* 700 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 701 * ensure pdev->p2pdma is non-NULL for the duration of the 702 * read-lock. 703 */ 704 rcu_read_lock(); 705 p2pdma = rcu_dereference(pdev->p2pdma); 706 if (unlikely(!p2pdma)) 707 goto out; 708 709 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); 710 if (!ret) 711 goto out; 712 713 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 714 gen_pool_free(p2pdma->pool, (unsigned long) ret, size); 715 ret = NULL; 716 goto out; 717 } 718 out: 719 rcu_read_unlock(); 720 return ret; 721 } 722 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 723 724 /** 725 * pci_free_p2pmem - free peer-to-peer DMA memory 726 * @pdev: the device the memory was allocated from 727 * @addr: address of the memory that was allocated 728 * @size: number of bytes that were allocated 729 */ 730 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 731 { 732 struct percpu_ref *ref; 733 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 734 735 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, 736 (void **) &ref); 737 percpu_ref_put(ref); 738 } 739 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 740 741 /** 742 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 743 * address obtained with pci_alloc_p2pmem() 744 * @pdev: the device the memory was allocated from 745 * @addr: address of the memory that was allocated 746 */ 747 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 748 { 749 struct pci_p2pdma *p2pdma; 750 751 if (!addr) 752 return 0; 753 754 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 755 if (!p2pdma) 756 return 0; 757 758 /* 759 * Note: when we added the memory to the pool we used the PCI 760 * bus address as the physical address. So gen_pool_virt_to_phys() 761 * actually returns the bus address despite the misleading name. 762 */ 763 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); 764 } 765 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 766 767 /** 768 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 769 * @pdev: the device to allocate memory from 770 * @nents: the number of SG entries in the list 771 * @length: number of bytes to allocate 772 * 773 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 774 */ 775 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 776 unsigned int *nents, u32 length) 777 { 778 struct scatterlist *sg; 779 void *addr; 780 781 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 782 if (!sg) 783 return NULL; 784 785 sg_init_table(sg, 1); 786 787 addr = pci_alloc_p2pmem(pdev, length); 788 if (!addr) 789 goto out_free_sg; 790 791 sg_set_buf(sg, addr, length); 792 *nents = 1; 793 return sg; 794 795 out_free_sg: 796 kfree(sg); 797 return NULL; 798 } 799 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 800 801 /** 802 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 803 * @pdev: the device to allocate memory from 804 * @sgl: the allocated scatterlist 805 */ 806 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 807 { 808 struct scatterlist *sg; 809 int count; 810 811 for_each_sg(sgl, sg, INT_MAX, count) { 812 if (!sg) 813 break; 814 815 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 816 } 817 kfree(sgl); 818 } 819 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 820 821 /** 822 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 823 * other devices with pci_p2pmem_find() 824 * @pdev: the device with peer-to-peer DMA memory to publish 825 * @publish: set to true to publish the memory, false to unpublish it 826 * 827 * Published memory can be used by other PCI device drivers for 828 * peer-2-peer DMA operations. Non-published memory is reserved for 829 * exclusive use of the device driver that registers the peer-to-peer 830 * memory. 831 */ 832 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 833 { 834 struct pci_p2pdma *p2pdma; 835 836 rcu_read_lock(); 837 p2pdma = rcu_dereference(pdev->p2pdma); 838 if (p2pdma) 839 p2pdma->p2pmem_published = publish; 840 rcu_read_unlock(); 841 } 842 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 843 844 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap, 845 struct device *dev) 846 { 847 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 848 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider; 849 struct pci_dev *client; 850 struct pci_p2pdma *p2pdma; 851 int dist; 852 853 if (!provider->p2pdma) 854 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 855 856 if (!dev_is_pci(dev)) 857 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 858 859 client = to_pci_dev(dev); 860 861 rcu_read_lock(); 862 p2pdma = rcu_dereference(provider->p2pdma); 863 864 if (p2pdma) 865 type = xa_to_value(xa_load(&p2pdma->map_types, 866 map_types_idx(client))); 867 rcu_read_unlock(); 868 869 if (type == PCI_P2PDMA_MAP_UNKNOWN) 870 return calc_map_type_and_dist(provider, client, &dist, true); 871 872 return type; 873 } 874 875 /** 876 * pci_p2pdma_map_segment - map an sg segment determining the mapping type 877 * @state: State structure that should be declared outside of the for_each_sg() 878 * loop and initialized to zero. 879 * @dev: DMA device that's doing the mapping operation 880 * @sg: scatterlist segment to map 881 * 882 * This is a helper to be used by non-IOMMU dma_map_sg() implementations where 883 * the sg segment is the same for the page_link and the dma_address. 884 * 885 * Attempt to map a single segment in an SGL with the PCI bus address. 886 * The segment must point to a PCI P2PDMA page and thus must be 887 * wrapped in a is_pci_p2pdma_page(sg_page(sg)) check. 888 * 889 * Returns the type of mapping used and maps the page if the type is 890 * PCI_P2PDMA_MAP_BUS_ADDR. 891 */ 892 enum pci_p2pdma_map_type 893 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev, 894 struct scatterlist *sg) 895 { 896 if (state->pgmap != sg_page(sg)->pgmap) { 897 state->pgmap = sg_page(sg)->pgmap; 898 state->map = pci_p2pdma_map_type(state->pgmap, dev); 899 state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset; 900 } 901 902 if (state->map == PCI_P2PDMA_MAP_BUS_ADDR) { 903 sg->dma_address = sg_phys(sg) + state->bus_off; 904 sg_dma_len(sg) = sg->length; 905 sg_dma_mark_bus_address(sg); 906 } 907 908 return state->map; 909 } 910 911 /** 912 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 913 * to enable p2pdma 914 * @page: contents of the value to be stored 915 * @p2p_dev: returns the PCI device that was selected to be used 916 * (if one was specified in the stored value) 917 * @use_p2pdma: returns whether to enable p2pdma or not 918 * 919 * Parses an attribute value to decide whether to enable p2pdma. 920 * The value can select a PCI device (using its full BDF device 921 * name) or a boolean (in any format kstrtobool() accepts). A false 922 * value disables p2pdma, a true value expects the caller 923 * to automatically find a compatible device and specifying a PCI device 924 * expects the caller to use the specific provider. 925 * 926 * pci_p2pdma_enable_show() should be used as the show operation for 927 * the attribute. 928 * 929 * Returns 0 on success 930 */ 931 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 932 bool *use_p2pdma) 933 { 934 struct device *dev; 935 936 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 937 if (dev) { 938 *use_p2pdma = true; 939 *p2p_dev = to_pci_dev(dev); 940 941 if (!pci_has_p2pmem(*p2p_dev)) { 942 pci_err(*p2p_dev, 943 "PCI device has no peer-to-peer memory: %s\n", 944 page); 945 pci_dev_put(*p2p_dev); 946 return -ENODEV; 947 } 948 949 return 0; 950 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 951 /* 952 * If the user enters a PCI device that doesn't exist 953 * like "0000:01:00.1", we don't want kstrtobool to think 954 * it's a '0' when it's clearly not what the user wanted. 955 * So we require 0's and 1's to be exactly one character. 956 */ 957 } else if (!kstrtobool(page, use_p2pdma)) { 958 return 0; 959 } 960 961 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 962 return -ENODEV; 963 } 964 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 965 966 /** 967 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 968 * whether p2pdma is enabled 969 * @page: contents of the stored value 970 * @p2p_dev: the selected p2p device (NULL if no device is selected) 971 * @use_p2pdma: whether p2pdma has been enabled 972 * 973 * Attributes that use pci_p2pdma_enable_store() should use this function 974 * to show the value of the attribute. 975 * 976 * Returns 0 on success 977 */ 978 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 979 bool use_p2pdma) 980 { 981 if (!use_p2pdma) 982 return sprintf(page, "0\n"); 983 984 if (!p2p_dev) 985 return sprintf(page, "1\n"); 986 987 return sprintf(page, "%s\n", pci_name(p2p_dev)); 988 } 989 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 990