xref: /openbmc/linux/drivers/pci/p2pdma.c (revision b58c6630)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 #include <linux/xarray.h>
22 
23 enum pci_p2pdma_map_type {
24 	PCI_P2PDMA_MAP_UNKNOWN = 0,
25 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
26 	PCI_P2PDMA_MAP_BUS_ADDR,
27 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
28 };
29 
30 struct pci_p2pdma {
31 	struct gen_pool *pool;
32 	bool p2pmem_published;
33 	struct xarray map_types;
34 };
35 
36 struct pci_p2pdma_pagemap {
37 	struct dev_pagemap pgmap;
38 	struct pci_dev *provider;
39 	u64 bus_offset;
40 };
41 
42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
43 {
44 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
45 }
46 
47 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
48 			 char *buf)
49 {
50 	struct pci_dev *pdev = to_pci_dev(dev);
51 	size_t size = 0;
52 
53 	if (pdev->p2pdma->pool)
54 		size = gen_pool_size(pdev->p2pdma->pool);
55 
56 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
57 }
58 static DEVICE_ATTR_RO(size);
59 
60 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
61 			      char *buf)
62 {
63 	struct pci_dev *pdev = to_pci_dev(dev);
64 	size_t avail = 0;
65 
66 	if (pdev->p2pdma->pool)
67 		avail = gen_pool_avail(pdev->p2pdma->pool);
68 
69 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
70 }
71 static DEVICE_ATTR_RO(available);
72 
73 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
74 			      char *buf)
75 {
76 	struct pci_dev *pdev = to_pci_dev(dev);
77 
78 	return snprintf(buf, PAGE_SIZE, "%d\n",
79 			pdev->p2pdma->p2pmem_published);
80 }
81 static DEVICE_ATTR_RO(published);
82 
83 static struct attribute *p2pmem_attrs[] = {
84 	&dev_attr_size.attr,
85 	&dev_attr_available.attr,
86 	&dev_attr_published.attr,
87 	NULL,
88 };
89 
90 static const struct attribute_group p2pmem_group = {
91 	.attrs = p2pmem_attrs,
92 	.name = "p2pmem",
93 };
94 
95 static void pci_p2pdma_release(void *data)
96 {
97 	struct pci_dev *pdev = data;
98 	struct pci_p2pdma *p2pdma = pdev->p2pdma;
99 
100 	if (!p2pdma)
101 		return;
102 
103 	/* Flush and disable pci_alloc_p2p_mem() */
104 	pdev->p2pdma = NULL;
105 	synchronize_rcu();
106 
107 	gen_pool_destroy(p2pdma->pool);
108 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
109 	xa_destroy(&p2pdma->map_types);
110 }
111 
112 static int pci_p2pdma_setup(struct pci_dev *pdev)
113 {
114 	int error = -ENOMEM;
115 	struct pci_p2pdma *p2p;
116 
117 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
118 	if (!p2p)
119 		return -ENOMEM;
120 
121 	xa_init(&p2p->map_types);
122 
123 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 	if (!p2p->pool)
125 		goto out;
126 
127 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
128 	if (error)
129 		goto out_pool_destroy;
130 
131 	pdev->p2pdma = p2p;
132 
133 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
134 	if (error)
135 		goto out_pool_destroy;
136 
137 	return 0;
138 
139 out_pool_destroy:
140 	pdev->p2pdma = NULL;
141 	gen_pool_destroy(p2p->pool);
142 out:
143 	devm_kfree(&pdev->dev, p2p);
144 	return error;
145 }
146 
147 /**
148  * pci_p2pdma_add_resource - add memory for use as p2p memory
149  * @pdev: the device to add the memory to
150  * @bar: PCI BAR to add
151  * @size: size of the memory to add, may be zero to use the whole BAR
152  * @offset: offset into the PCI BAR
153  *
154  * The memory will be given ZONE_DEVICE struct pages so that it may
155  * be used with any DMA request.
156  */
157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
158 			    u64 offset)
159 {
160 	struct pci_p2pdma_pagemap *p2p_pgmap;
161 	struct dev_pagemap *pgmap;
162 	void *addr;
163 	int error;
164 
165 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
166 		return -EINVAL;
167 
168 	if (offset >= pci_resource_len(pdev, bar))
169 		return -EINVAL;
170 
171 	if (!size)
172 		size = pci_resource_len(pdev, bar) - offset;
173 
174 	if (size + offset > pci_resource_len(pdev, bar))
175 		return -EINVAL;
176 
177 	if (!pdev->p2pdma) {
178 		error = pci_p2pdma_setup(pdev);
179 		if (error)
180 			return error;
181 	}
182 
183 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
184 	if (!p2p_pgmap)
185 		return -ENOMEM;
186 
187 	pgmap = &p2p_pgmap->pgmap;
188 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
189 	pgmap->res.end = pgmap->res.start + size - 1;
190 	pgmap->res.flags = pci_resource_flags(pdev, bar);
191 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
192 
193 	p2p_pgmap->provider = pdev;
194 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
195 		pci_resource_start(pdev, bar);
196 
197 	addr = devm_memremap_pages(&pdev->dev, pgmap);
198 	if (IS_ERR(addr)) {
199 		error = PTR_ERR(addr);
200 		goto pgmap_free;
201 	}
202 
203 	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
204 			pci_bus_address(pdev, bar) + offset,
205 			resource_size(&pgmap->res), dev_to_node(&pdev->dev),
206 			pgmap->ref);
207 	if (error)
208 		goto pages_free;
209 
210 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
211 		 &pgmap->res);
212 
213 	return 0;
214 
215 pages_free:
216 	devm_memunmap_pages(&pdev->dev, pgmap);
217 pgmap_free:
218 	devm_kfree(&pdev->dev, pgmap);
219 	return error;
220 }
221 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
222 
223 /*
224  * Note this function returns the parent PCI device with a
225  * reference taken. It is the caller's responsibility to drop
226  * the reference.
227  */
228 static struct pci_dev *find_parent_pci_dev(struct device *dev)
229 {
230 	struct device *parent;
231 
232 	dev = get_device(dev);
233 
234 	while (dev) {
235 		if (dev_is_pci(dev))
236 			return to_pci_dev(dev);
237 
238 		parent = get_device(dev->parent);
239 		put_device(dev);
240 		dev = parent;
241 	}
242 
243 	return NULL;
244 }
245 
246 /*
247  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
248  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
249  * upstream, 0 otherwise.
250  */
251 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
252 {
253 	int pos;
254 	u16 ctrl;
255 
256 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
257 	if (!pos)
258 		return 0;
259 
260 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
261 
262 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
263 		return 1;
264 
265 	return 0;
266 }
267 
268 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
269 {
270 	if (!buf)
271 		return;
272 
273 	seq_buf_printf(buf, "%s;", pci_name(pdev));
274 }
275 
276 static const struct pci_p2pdma_whitelist_entry {
277 	unsigned short vendor;
278 	unsigned short device;
279 	enum {
280 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
281 	} flags;
282 } pci_p2pdma_whitelist[] = {
283 	/* AMD ZEN */
284 	{PCI_VENDOR_ID_AMD,	0x1450,	0},
285 
286 	/* Intel Xeon E5/Core i7 */
287 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
288 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
289 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
290 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
291 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
292 	/* Intel SkyLake-E */
293 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
294 	{PCI_VENDOR_ID_INTEL,	0x2031, 0},
295 	{PCI_VENDOR_ID_INTEL,	0x2032, 0},
296 	{PCI_VENDOR_ID_INTEL,	0x2033, 0},
297 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
298 	{}
299 };
300 
301 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
302 				    bool same_host_bridge)
303 {
304 	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
305 	const struct pci_p2pdma_whitelist_entry *entry;
306 	unsigned short vendor, device;
307 
308 	if (!root)
309 		return false;
310 
311 	vendor = root->vendor;
312 	device = root->device;
313 	pci_dev_put(root);
314 
315 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
316 		if (vendor != entry->vendor || device != entry->device)
317 			continue;
318 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
319 			return false;
320 
321 		return true;
322 	}
323 
324 	return false;
325 }
326 
327 /*
328  * If we can't find a common upstream bridge take a look at the root
329  * complex and compare it to a whitelist of known good hardware.
330  */
331 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b)
332 {
333 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
334 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
335 
336 	if (host_a == host_b)
337 		return __host_bridge_whitelist(host_a, true);
338 
339 	if (__host_bridge_whitelist(host_a, false) &&
340 	    __host_bridge_whitelist(host_b, false))
341 		return true;
342 
343 	return false;
344 }
345 
346 static enum pci_p2pdma_map_type
347 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
348 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
349 {
350 	struct pci_dev *a = provider, *b = client, *bb;
351 	int dist_a = 0;
352 	int dist_b = 0;
353 	int acs_cnt = 0;
354 
355 	if (acs_redirects)
356 		*acs_redirects = false;
357 
358 	/*
359 	 * Note, we don't need to take references to devices returned by
360 	 * pci_upstream_bridge() seeing we hold a reference to a child
361 	 * device which will already hold a reference to the upstream bridge.
362 	 */
363 
364 	while (a) {
365 		dist_b = 0;
366 
367 		if (pci_bridge_has_acs_redir(a)) {
368 			seq_buf_print_bus_devfn(acs_list, a);
369 			acs_cnt++;
370 		}
371 
372 		bb = b;
373 
374 		while (bb) {
375 			if (a == bb)
376 				goto check_b_path_acs;
377 
378 			bb = pci_upstream_bridge(bb);
379 			dist_b++;
380 		}
381 
382 		a = pci_upstream_bridge(a);
383 		dist_a++;
384 	}
385 
386 	if (dist)
387 		*dist = dist_a + dist_b;
388 
389 	return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
390 
391 check_b_path_acs:
392 	bb = b;
393 
394 	while (bb) {
395 		if (a == bb)
396 			break;
397 
398 		if (pci_bridge_has_acs_redir(bb)) {
399 			seq_buf_print_bus_devfn(acs_list, bb);
400 			acs_cnt++;
401 		}
402 
403 		bb = pci_upstream_bridge(bb);
404 	}
405 
406 	if (dist)
407 		*dist = dist_a + dist_b;
408 
409 	if (acs_cnt) {
410 		if (acs_redirects)
411 			*acs_redirects = true;
412 
413 		return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
414 	}
415 
416 	return PCI_P2PDMA_MAP_BUS_ADDR;
417 }
418 
419 static unsigned long map_types_idx(struct pci_dev *client)
420 {
421 	return (pci_domain_nr(client->bus) << 16) |
422 		(client->bus->number << 8) | client->devfn;
423 }
424 
425 /*
426  * Find the distance through the nearest common upstream bridge between
427  * two PCI devices.
428  *
429  * If the two devices are the same device then 0 will be returned.
430  *
431  * If there are two virtual functions of the same device behind the same
432  * bridge port then 2 will be returned (one step down to the PCIe switch,
433  * then one step back to the same device).
434  *
435  * In the case where two devices are connected to the same PCIe switch, the
436  * value 4 will be returned. This corresponds to the following PCI tree:
437  *
438  *     -+  Root Port
439  *      \+ Switch Upstream Port
440  *       +-+ Switch Downstream Port
441  *       + \- Device A
442  *       \-+ Switch Downstream Port
443  *         \- Device B
444  *
445  * The distance is 4 because we traverse from Device A through the downstream
446  * port of the switch, to the common upstream port, back up to the second
447  * downstream port and then to Device B.
448  *
449  * Any two devices that cannot communicate using p2pdma will return
450  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
451  *
452  * Any two devices that have a data path that goes through the host bridge
453  * will consult a whitelist. If the host bridges are on the whitelist,
454  * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE.
455  *
456  * If either bridge is not on the whitelist this function returns
457  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
458  *
459  * If a bridge which has any ACS redirection bits set is in the path,
460  * acs_redirects will be set to true. In this case, a list of all infringing
461  * bridge addresses will be populated in acs_list (assuming it's non-null)
462  * for printk purposes.
463  */
464 static enum pci_p2pdma_map_type
465 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
466 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
467 {
468 	enum pci_p2pdma_map_type map_type;
469 
470 	map_type = __upstream_bridge_distance(provider, client, dist,
471 					      acs_redirects, acs_list);
472 
473 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) {
474 		if (!host_bridge_whitelist(provider, client))
475 			map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
476 	}
477 
478 	if (provider->p2pdma)
479 		xa_store(&provider->p2pdma->map_types, map_types_idx(client),
480 			 xa_mk_value(map_type), GFP_KERNEL);
481 
482 	return map_type;
483 }
484 
485 static enum pci_p2pdma_map_type
486 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client,
487 			      int *dist)
488 {
489 	struct seq_buf acs_list;
490 	bool acs_redirects;
491 	int ret;
492 
493 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
494 	if (!acs_list.buffer)
495 		return -ENOMEM;
496 
497 	ret = upstream_bridge_distance(provider, client, dist, &acs_redirects,
498 				       &acs_list);
499 	if (acs_redirects) {
500 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
501 			 pci_name(provider));
502 		/* Drop final semicolon */
503 		acs_list.buffer[acs_list.len-1] = 0;
504 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
505 			 acs_list.buffer);
506 	}
507 
508 	if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) {
509 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
510 			 pci_name(provider));
511 	}
512 
513 	kfree(acs_list.buffer);
514 
515 	return ret;
516 }
517 
518 /**
519  * pci_p2pdma_distance_many - Determine the cumulative distance between
520  *	a p2pdma provider and the clients in use.
521  * @provider: p2pdma provider to check against the client list
522  * @clients: array of devices to check (NULL-terminated)
523  * @num_clients: number of clients in the array
524  * @verbose: if true, print warnings for devices when we return -1
525  *
526  * Returns -1 if any of the clients are not compatible, otherwise returns a
527  * positive number where a lower number is the preferable choice. (If there's
528  * one client that's the same as the provider it will return 0, which is best
529  * choice).
530  *
531  * "compatible" means the provider and the clients are either all behind
532  * the same PCI root port or the host bridges connected to each of the devices
533  * are listed in the 'pci_p2pdma_whitelist'.
534  */
535 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
536 			     int num_clients, bool verbose)
537 {
538 	bool not_supported = false;
539 	struct pci_dev *pci_client;
540 	int total_dist = 0;
541 	int distance;
542 	int i, ret;
543 
544 	if (num_clients == 0)
545 		return -1;
546 
547 	for (i = 0; i < num_clients; i++) {
548 		if (IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
549 		    clients[i]->dma_ops == &dma_virt_ops) {
550 			if (verbose)
551 				dev_warn(clients[i],
552 					 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n");
553 			return -1;
554 		}
555 
556 		pci_client = find_parent_pci_dev(clients[i]);
557 		if (!pci_client) {
558 			if (verbose)
559 				dev_warn(clients[i],
560 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
561 			return -1;
562 		}
563 
564 		if (verbose)
565 			ret = upstream_bridge_distance_warn(provider,
566 					pci_client, &distance);
567 		else
568 			ret = upstream_bridge_distance(provider, pci_client,
569 						       &distance, NULL, NULL);
570 
571 		pci_dev_put(pci_client);
572 
573 		if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED)
574 			not_supported = true;
575 
576 		if (not_supported && !verbose)
577 			break;
578 
579 		total_dist += distance;
580 	}
581 
582 	if (not_supported)
583 		return -1;
584 
585 	return total_dist;
586 }
587 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
588 
589 /**
590  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
591  * @pdev: PCI device to check
592  */
593 bool pci_has_p2pmem(struct pci_dev *pdev)
594 {
595 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
596 }
597 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
598 
599 /**
600  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
601  *	the specified list of clients and shortest distance (as determined
602  *	by pci_p2pmem_dma())
603  * @clients: array of devices to check (NULL-terminated)
604  * @num_clients: number of client devices in the list
605  *
606  * If multiple devices are behind the same switch, the one "closest" to the
607  * client devices in use will be chosen first. (So if one of the providers is
608  * the same as one of the clients, that provider will be used ahead of any
609  * other providers that are unrelated). If multiple providers are an equal
610  * distance away, one will be chosen at random.
611  *
612  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
613  * to return the reference) or NULL if no compatible device is found. The
614  * found provider will also be assigned to the client list.
615  */
616 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
617 {
618 	struct pci_dev *pdev = NULL;
619 	int distance;
620 	int closest_distance = INT_MAX;
621 	struct pci_dev **closest_pdevs;
622 	int dev_cnt = 0;
623 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
624 	int i;
625 
626 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
627 	if (!closest_pdevs)
628 		return NULL;
629 
630 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
631 		if (!pci_has_p2pmem(pdev))
632 			continue;
633 
634 		distance = pci_p2pdma_distance_many(pdev, clients,
635 						    num_clients, false);
636 		if (distance < 0 || distance > closest_distance)
637 			continue;
638 
639 		if (distance == closest_distance && dev_cnt >= max_devs)
640 			continue;
641 
642 		if (distance < closest_distance) {
643 			for (i = 0; i < dev_cnt; i++)
644 				pci_dev_put(closest_pdevs[i]);
645 
646 			dev_cnt = 0;
647 			closest_distance = distance;
648 		}
649 
650 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
651 	}
652 
653 	if (dev_cnt)
654 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
655 
656 	for (i = 0; i < dev_cnt; i++)
657 		pci_dev_put(closest_pdevs[i]);
658 
659 	kfree(closest_pdevs);
660 	return pdev;
661 }
662 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
663 
664 /**
665  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
666  * @pdev: the device to allocate memory from
667  * @size: number of bytes to allocate
668  *
669  * Returns the allocated memory or NULL on error.
670  */
671 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
672 {
673 	void *ret = NULL;
674 	struct percpu_ref *ref;
675 
676 	/*
677 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
678 	 * ensure pdev->p2pdma is non-NULL for the duration of the
679 	 * read-lock.
680 	 */
681 	rcu_read_lock();
682 	if (unlikely(!pdev->p2pdma))
683 		goto out;
684 
685 	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
686 			(void **) &ref);
687 	if (!ret)
688 		goto out;
689 
690 	if (unlikely(!percpu_ref_tryget_live(ref))) {
691 		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
692 		ret = NULL;
693 		goto out;
694 	}
695 out:
696 	rcu_read_unlock();
697 	return ret;
698 }
699 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
700 
701 /**
702  * pci_free_p2pmem - free peer-to-peer DMA memory
703  * @pdev: the device the memory was allocated from
704  * @addr: address of the memory that was allocated
705  * @size: number of bytes that were allocated
706  */
707 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
708 {
709 	struct percpu_ref *ref;
710 
711 	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
712 			(void **) &ref);
713 	percpu_ref_put(ref);
714 }
715 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
716 
717 /**
718  * pci_virt_to_bus - return the PCI bus address for a given virtual
719  *	address obtained with pci_alloc_p2pmem()
720  * @pdev: the device the memory was allocated from
721  * @addr: address of the memory that was allocated
722  */
723 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
724 {
725 	if (!addr)
726 		return 0;
727 	if (!pdev->p2pdma)
728 		return 0;
729 
730 	/*
731 	 * Note: when we added the memory to the pool we used the PCI
732 	 * bus address as the physical address. So gen_pool_virt_to_phys()
733 	 * actually returns the bus address despite the misleading name.
734 	 */
735 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
736 }
737 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
738 
739 /**
740  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
741  * @pdev: the device to allocate memory from
742  * @nents: the number of SG entries in the list
743  * @length: number of bytes to allocate
744  *
745  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
746  */
747 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
748 					 unsigned int *nents, u32 length)
749 {
750 	struct scatterlist *sg;
751 	void *addr;
752 
753 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
754 	if (!sg)
755 		return NULL;
756 
757 	sg_init_table(sg, 1);
758 
759 	addr = pci_alloc_p2pmem(pdev, length);
760 	if (!addr)
761 		goto out_free_sg;
762 
763 	sg_set_buf(sg, addr, length);
764 	*nents = 1;
765 	return sg;
766 
767 out_free_sg:
768 	kfree(sg);
769 	return NULL;
770 }
771 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
772 
773 /**
774  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
775  * @pdev: the device to allocate memory from
776  * @sgl: the allocated scatterlist
777  */
778 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
779 {
780 	struct scatterlist *sg;
781 	int count;
782 
783 	for_each_sg(sgl, sg, INT_MAX, count) {
784 		if (!sg)
785 			break;
786 
787 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
788 	}
789 	kfree(sgl);
790 }
791 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
792 
793 /**
794  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
795  *	other devices with pci_p2pmem_find()
796  * @pdev: the device with peer-to-peer DMA memory to publish
797  * @publish: set to true to publish the memory, false to unpublish it
798  *
799  * Published memory can be used by other PCI device drivers for
800  * peer-2-peer DMA operations. Non-published memory is reserved for
801  * exclusive use of the device driver that registers the peer-to-peer
802  * memory.
803  */
804 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
805 {
806 	if (pdev->p2pdma)
807 		pdev->p2pdma->p2pmem_published = publish;
808 }
809 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
810 
811 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider,
812 						    struct pci_dev *client)
813 {
814 	if (!provider->p2pdma)
815 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
816 
817 	return xa_to_value(xa_load(&provider->p2pdma->map_types,
818 				   map_types_idx(client)));
819 }
820 
821 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
822 		struct device *dev, struct scatterlist *sg, int nents)
823 {
824 	struct scatterlist *s;
825 	phys_addr_t paddr;
826 	int i;
827 
828 	/*
829 	 * p2pdma mappings are not compatible with devices that use
830 	 * dma_virt_ops. If the upper layers do the right thing
831 	 * this should never happen because it will be prevented
832 	 * by the check in pci_p2pdma_distance_many()
833 	 */
834 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
835 			 dev->dma_ops == &dma_virt_ops))
836 		return 0;
837 
838 	for_each_sg(sg, s, nents, i) {
839 		paddr = sg_phys(s);
840 
841 		s->dma_address = paddr - p2p_pgmap->bus_offset;
842 		sg_dma_len(s) = s->length;
843 	}
844 
845 	return nents;
846 }
847 
848 /**
849  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
850  * @dev: device doing the DMA request
851  * @sg: scatter list to map
852  * @nents: elements in the scatterlist
853  * @dir: DMA direction
854  * @attrs: DMA attributes passed to dma_map_sg() (if called)
855  *
856  * Scatterlists mapped with this function should be unmapped using
857  * pci_p2pdma_unmap_sg_attrs().
858  *
859  * Returns the number of SG entries mapped or 0 on error.
860  */
861 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
862 		int nents, enum dma_data_direction dir, unsigned long attrs)
863 {
864 	struct pci_p2pdma_pagemap *p2p_pgmap =
865 		to_p2p_pgmap(sg_page(sg)->pgmap);
866 	struct pci_dev *client;
867 
868 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
869 		return 0;
870 
871 	client = to_pci_dev(dev);
872 
873 	switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) {
874 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
875 		return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
876 	case PCI_P2PDMA_MAP_BUS_ADDR:
877 		return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
878 	default:
879 		WARN_ON_ONCE(1);
880 		return 0;
881 	}
882 }
883 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);
884 
885 /**
886  * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was
887  *	mapped with pci_p2pdma_map_sg()
888  * @dev: device doing the DMA request
889  * @sg: scatter list to map
890  * @nents: number of elements returned by pci_p2pdma_map_sg()
891  * @dir: DMA direction
892  * @attrs: DMA attributes passed to dma_unmap_sg() (if called)
893  */
894 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
895 		int nents, enum dma_data_direction dir, unsigned long attrs)
896 {
897 	struct pci_p2pdma_pagemap *p2p_pgmap =
898 		to_p2p_pgmap(sg_page(sg)->pgmap);
899 	enum pci_p2pdma_map_type map_type;
900 	struct pci_dev *client;
901 
902 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
903 		return;
904 
905 	client = to_pci_dev(dev);
906 
907 	map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client);
908 
909 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
910 		dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
911 }
912 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);
913 
914 /**
915  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
916  *		to enable p2pdma
917  * @page: contents of the value to be stored
918  * @p2p_dev: returns the PCI device that was selected to be used
919  *		(if one was specified in the stored value)
920  * @use_p2pdma: returns whether to enable p2pdma or not
921  *
922  * Parses an attribute value to decide whether to enable p2pdma.
923  * The value can select a PCI device (using its full BDF device
924  * name) or a boolean (in any format strtobool() accepts). A false
925  * value disables p2pdma, a true value expects the caller
926  * to automatically find a compatible device and specifying a PCI device
927  * expects the caller to use the specific provider.
928  *
929  * pci_p2pdma_enable_show() should be used as the show operation for
930  * the attribute.
931  *
932  * Returns 0 on success
933  */
934 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
935 			    bool *use_p2pdma)
936 {
937 	struct device *dev;
938 
939 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
940 	if (dev) {
941 		*use_p2pdma = true;
942 		*p2p_dev = to_pci_dev(dev);
943 
944 		if (!pci_has_p2pmem(*p2p_dev)) {
945 			pci_err(*p2p_dev,
946 				"PCI device has no peer-to-peer memory: %s\n",
947 				page);
948 			pci_dev_put(*p2p_dev);
949 			return -ENODEV;
950 		}
951 
952 		return 0;
953 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
954 		/*
955 		 * If the user enters a PCI device that  doesn't exist
956 		 * like "0000:01:00.1", we don't want strtobool to think
957 		 * it's a '0' when it's clearly not what the user wanted.
958 		 * So we require 0's and 1's to be exactly one character.
959 		 */
960 	} else if (!strtobool(page, use_p2pdma)) {
961 		return 0;
962 	}
963 
964 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
965 	return -ENODEV;
966 }
967 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
968 
969 /**
970  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
971  *		whether p2pdma is enabled
972  * @page: contents of the stored value
973  * @p2p_dev: the selected p2p device (NULL if no device is selected)
974  * @use_p2pdma: whether p2pdma has been enabled
975  *
976  * Attributes that use pci_p2pdma_enable_store() should use this function
977  * to show the value of the attribute.
978  *
979  * Returns 0 on success
980  */
981 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
982 			       bool use_p2pdma)
983 {
984 	if (!use_p2pdma)
985 		return sprintf(page, "0\n");
986 
987 	if (!p2p_dev)
988 		return sprintf(page, "1\n");
989 
990 	return sprintf(page, "%s\n", pci_name(p2p_dev));
991 }
992 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
993