1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 #include <linux/xarray.h> 22 23 enum pci_p2pdma_map_type { 24 PCI_P2PDMA_MAP_UNKNOWN = 0, 25 PCI_P2PDMA_MAP_NOT_SUPPORTED, 26 PCI_P2PDMA_MAP_BUS_ADDR, 27 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE, 28 }; 29 30 struct pci_p2pdma { 31 struct gen_pool *pool; 32 bool p2pmem_published; 33 struct xarray map_types; 34 }; 35 36 struct pci_p2pdma_pagemap { 37 struct dev_pagemap pgmap; 38 struct pci_dev *provider; 39 u64 bus_offset; 40 }; 41 42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 43 { 44 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 45 } 46 47 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 48 char *buf) 49 { 50 struct pci_dev *pdev = to_pci_dev(dev); 51 size_t size = 0; 52 53 if (pdev->p2pdma->pool) 54 size = gen_pool_size(pdev->p2pdma->pool); 55 56 return snprintf(buf, PAGE_SIZE, "%zd\n", size); 57 } 58 static DEVICE_ATTR_RO(size); 59 60 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 61 char *buf) 62 { 63 struct pci_dev *pdev = to_pci_dev(dev); 64 size_t avail = 0; 65 66 if (pdev->p2pdma->pool) 67 avail = gen_pool_avail(pdev->p2pdma->pool); 68 69 return snprintf(buf, PAGE_SIZE, "%zd\n", avail); 70 } 71 static DEVICE_ATTR_RO(available); 72 73 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 74 char *buf) 75 { 76 struct pci_dev *pdev = to_pci_dev(dev); 77 78 return snprintf(buf, PAGE_SIZE, "%d\n", 79 pdev->p2pdma->p2pmem_published); 80 } 81 static DEVICE_ATTR_RO(published); 82 83 static struct attribute *p2pmem_attrs[] = { 84 &dev_attr_size.attr, 85 &dev_attr_available.attr, 86 &dev_attr_published.attr, 87 NULL, 88 }; 89 90 static const struct attribute_group p2pmem_group = { 91 .attrs = p2pmem_attrs, 92 .name = "p2pmem", 93 }; 94 95 static void pci_p2pdma_release(void *data) 96 { 97 struct pci_dev *pdev = data; 98 struct pci_p2pdma *p2pdma = pdev->p2pdma; 99 100 if (!p2pdma) 101 return; 102 103 /* Flush and disable pci_alloc_p2p_mem() */ 104 pdev->p2pdma = NULL; 105 synchronize_rcu(); 106 107 gen_pool_destroy(p2pdma->pool); 108 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 109 xa_destroy(&p2pdma->map_types); 110 } 111 112 static int pci_p2pdma_setup(struct pci_dev *pdev) 113 { 114 int error = -ENOMEM; 115 struct pci_p2pdma *p2p; 116 117 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 118 if (!p2p) 119 return -ENOMEM; 120 121 xa_init(&p2p->map_types); 122 123 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 124 if (!p2p->pool) 125 goto out; 126 127 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 128 if (error) 129 goto out_pool_destroy; 130 131 pdev->p2pdma = p2p; 132 133 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 134 if (error) 135 goto out_pool_destroy; 136 137 return 0; 138 139 out_pool_destroy: 140 pdev->p2pdma = NULL; 141 gen_pool_destroy(p2p->pool); 142 out: 143 devm_kfree(&pdev->dev, p2p); 144 return error; 145 } 146 147 /** 148 * pci_p2pdma_add_resource - add memory for use as p2p memory 149 * @pdev: the device to add the memory to 150 * @bar: PCI BAR to add 151 * @size: size of the memory to add, may be zero to use the whole BAR 152 * @offset: offset into the PCI BAR 153 * 154 * The memory will be given ZONE_DEVICE struct pages so that it may 155 * be used with any DMA request. 156 */ 157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 158 u64 offset) 159 { 160 struct pci_p2pdma_pagemap *p2p_pgmap; 161 struct dev_pagemap *pgmap; 162 void *addr; 163 int error; 164 165 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 166 return -EINVAL; 167 168 if (offset >= pci_resource_len(pdev, bar)) 169 return -EINVAL; 170 171 if (!size) 172 size = pci_resource_len(pdev, bar) - offset; 173 174 if (size + offset > pci_resource_len(pdev, bar)) 175 return -EINVAL; 176 177 if (!pdev->p2pdma) { 178 error = pci_p2pdma_setup(pdev); 179 if (error) 180 return error; 181 } 182 183 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 184 if (!p2p_pgmap) 185 return -ENOMEM; 186 187 pgmap = &p2p_pgmap->pgmap; 188 pgmap->res.start = pci_resource_start(pdev, bar) + offset; 189 pgmap->res.end = pgmap->res.start + size - 1; 190 pgmap->res.flags = pci_resource_flags(pdev, bar); 191 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 192 193 p2p_pgmap->provider = pdev; 194 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 195 pci_resource_start(pdev, bar); 196 197 addr = devm_memremap_pages(&pdev->dev, pgmap); 198 if (IS_ERR(addr)) { 199 error = PTR_ERR(addr); 200 goto pgmap_free; 201 } 202 203 error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr, 204 pci_bus_address(pdev, bar) + offset, 205 resource_size(&pgmap->res), dev_to_node(&pdev->dev), 206 pgmap->ref); 207 if (error) 208 goto pages_free; 209 210 pci_info(pdev, "added peer-to-peer DMA memory %pR\n", 211 &pgmap->res); 212 213 return 0; 214 215 pages_free: 216 devm_memunmap_pages(&pdev->dev, pgmap); 217 pgmap_free: 218 devm_kfree(&pdev->dev, pgmap); 219 return error; 220 } 221 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 222 223 /* 224 * Note this function returns the parent PCI device with a 225 * reference taken. It is the caller's responsibility to drop 226 * the reference. 227 */ 228 static struct pci_dev *find_parent_pci_dev(struct device *dev) 229 { 230 struct device *parent; 231 232 dev = get_device(dev); 233 234 while (dev) { 235 if (dev_is_pci(dev)) 236 return to_pci_dev(dev); 237 238 parent = get_device(dev->parent); 239 put_device(dev); 240 dev = parent; 241 } 242 243 return NULL; 244 } 245 246 /* 247 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 248 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 249 * upstream, 0 otherwise. 250 */ 251 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 252 { 253 int pos; 254 u16 ctrl; 255 256 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 257 if (!pos) 258 return 0; 259 260 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 261 262 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 263 return 1; 264 265 return 0; 266 } 267 268 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 269 { 270 if (!buf) 271 return; 272 273 seq_buf_printf(buf, "%s;", pci_name(pdev)); 274 } 275 276 static const struct pci_p2pdma_whitelist_entry { 277 unsigned short vendor; 278 unsigned short device; 279 enum { 280 REQ_SAME_HOST_BRIDGE = 1 << 0, 281 } flags; 282 } pci_p2pdma_whitelist[] = { 283 /* AMD ZEN */ 284 {PCI_VENDOR_ID_AMD, 0x1450, 0}, 285 286 /* Intel Xeon E5/Core i7 */ 287 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 288 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 289 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 290 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 291 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 292 /* Intel SkyLake-E */ 293 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 294 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 295 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 296 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 297 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 298 {} 299 }; 300 301 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 302 bool same_host_bridge) 303 { 304 struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0)); 305 const struct pci_p2pdma_whitelist_entry *entry; 306 unsigned short vendor, device; 307 308 if (!root) 309 return false; 310 311 vendor = root->vendor; 312 device = root->device; 313 pci_dev_put(root); 314 315 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 316 if (vendor != entry->vendor || device != entry->device) 317 continue; 318 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 319 return false; 320 321 return true; 322 } 323 324 return false; 325 } 326 327 /* 328 * If we can't find a common upstream bridge take a look at the root 329 * complex and compare it to a whitelist of known good hardware. 330 */ 331 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b) 332 { 333 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 334 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 335 336 if (host_a == host_b) 337 return __host_bridge_whitelist(host_a, true); 338 339 if (__host_bridge_whitelist(host_a, false) && 340 __host_bridge_whitelist(host_b, false)) 341 return true; 342 343 return false; 344 } 345 346 static enum pci_p2pdma_map_type 347 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client, 348 int *dist, bool *acs_redirects, struct seq_buf *acs_list) 349 { 350 struct pci_dev *a = provider, *b = client, *bb; 351 int dist_a = 0; 352 int dist_b = 0; 353 int acs_cnt = 0; 354 355 if (acs_redirects) 356 *acs_redirects = false; 357 358 /* 359 * Note, we don't need to take references to devices returned by 360 * pci_upstream_bridge() seeing we hold a reference to a child 361 * device which will already hold a reference to the upstream bridge. 362 */ 363 364 while (a) { 365 dist_b = 0; 366 367 if (pci_bridge_has_acs_redir(a)) { 368 seq_buf_print_bus_devfn(acs_list, a); 369 acs_cnt++; 370 } 371 372 bb = b; 373 374 while (bb) { 375 if (a == bb) 376 goto check_b_path_acs; 377 378 bb = pci_upstream_bridge(bb); 379 dist_b++; 380 } 381 382 a = pci_upstream_bridge(a); 383 dist_a++; 384 } 385 386 if (dist) 387 *dist = dist_a + dist_b; 388 389 return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 390 391 check_b_path_acs: 392 bb = b; 393 394 while (bb) { 395 if (a == bb) 396 break; 397 398 if (pci_bridge_has_acs_redir(bb)) { 399 seq_buf_print_bus_devfn(acs_list, bb); 400 acs_cnt++; 401 } 402 403 bb = pci_upstream_bridge(bb); 404 } 405 406 if (dist) 407 *dist = dist_a + dist_b; 408 409 if (acs_cnt) { 410 if (acs_redirects) 411 *acs_redirects = true; 412 413 return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 414 } 415 416 return PCI_P2PDMA_MAP_BUS_ADDR; 417 } 418 419 static unsigned long map_types_idx(struct pci_dev *client) 420 { 421 return (pci_domain_nr(client->bus) << 16) | 422 (client->bus->number << 8) | client->devfn; 423 } 424 425 /* 426 * Find the distance through the nearest common upstream bridge between 427 * two PCI devices. 428 * 429 * If the two devices are the same device then 0 will be returned. 430 * 431 * If there are two virtual functions of the same device behind the same 432 * bridge port then 2 will be returned (one step down to the PCIe switch, 433 * then one step back to the same device). 434 * 435 * In the case where two devices are connected to the same PCIe switch, the 436 * value 4 will be returned. This corresponds to the following PCI tree: 437 * 438 * -+ Root Port 439 * \+ Switch Upstream Port 440 * +-+ Switch Downstream Port 441 * + \- Device A 442 * \-+ Switch Downstream Port 443 * \- Device B 444 * 445 * The distance is 4 because we traverse from Device A through the downstream 446 * port of the switch, to the common upstream port, back up to the second 447 * downstream port and then to Device B. 448 * 449 * Any two devices that cannot communicate using p2pdma will return 450 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 451 * 452 * Any two devices that have a data path that goes through the host bridge 453 * will consult a whitelist. If the host bridges are on the whitelist, 454 * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE. 455 * 456 * If either bridge is not on the whitelist this function returns 457 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 458 * 459 * If a bridge which has any ACS redirection bits set is in the path, 460 * acs_redirects will be set to true. In this case, a list of all infringing 461 * bridge addresses will be populated in acs_list (assuming it's non-null) 462 * for printk purposes. 463 */ 464 static enum pci_p2pdma_map_type 465 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client, 466 int *dist, bool *acs_redirects, struct seq_buf *acs_list) 467 { 468 enum pci_p2pdma_map_type map_type; 469 470 map_type = __upstream_bridge_distance(provider, client, dist, 471 acs_redirects, acs_list); 472 473 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) { 474 if (!host_bridge_whitelist(provider, client)) 475 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 476 } 477 478 if (provider->p2pdma) 479 xa_store(&provider->p2pdma->map_types, map_types_idx(client), 480 xa_mk_value(map_type), GFP_KERNEL); 481 482 return map_type; 483 } 484 485 static enum pci_p2pdma_map_type 486 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client, 487 int *dist) 488 { 489 struct seq_buf acs_list; 490 bool acs_redirects; 491 int ret; 492 493 seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 494 if (!acs_list.buffer) 495 return -ENOMEM; 496 497 ret = upstream_bridge_distance(provider, client, dist, &acs_redirects, 498 &acs_list); 499 if (acs_redirects) { 500 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 501 pci_name(provider)); 502 /* Drop final semicolon */ 503 acs_list.buffer[acs_list.len-1] = 0; 504 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 505 acs_list.buffer); 506 } 507 508 if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) { 509 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 510 pci_name(provider)); 511 } 512 513 kfree(acs_list.buffer); 514 515 return ret; 516 } 517 518 /** 519 * pci_p2pdma_distance_many - Determine the cumulative distance between 520 * a p2pdma provider and the clients in use. 521 * @provider: p2pdma provider to check against the client list 522 * @clients: array of devices to check (NULL-terminated) 523 * @num_clients: number of clients in the array 524 * @verbose: if true, print warnings for devices when we return -1 525 * 526 * Returns -1 if any of the clients are not compatible, otherwise returns a 527 * positive number where a lower number is the preferable choice. (If there's 528 * one client that's the same as the provider it will return 0, which is best 529 * choice). 530 * 531 * "compatible" means the provider and the clients are either all behind 532 * the same PCI root port or the host bridges connected to each of the devices 533 * are listed in the 'pci_p2pdma_whitelist'. 534 */ 535 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 536 int num_clients, bool verbose) 537 { 538 bool not_supported = false; 539 struct pci_dev *pci_client; 540 int total_dist = 0; 541 int distance; 542 int i, ret; 543 544 if (num_clients == 0) 545 return -1; 546 547 for (i = 0; i < num_clients; i++) { 548 if (IS_ENABLED(CONFIG_DMA_VIRT_OPS) && 549 clients[i]->dma_ops == &dma_virt_ops) { 550 if (verbose) 551 dev_warn(clients[i], 552 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n"); 553 return -1; 554 } 555 556 pci_client = find_parent_pci_dev(clients[i]); 557 if (!pci_client) { 558 if (verbose) 559 dev_warn(clients[i], 560 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 561 return -1; 562 } 563 564 if (verbose) 565 ret = upstream_bridge_distance_warn(provider, 566 pci_client, &distance); 567 else 568 ret = upstream_bridge_distance(provider, pci_client, 569 &distance, NULL, NULL); 570 571 pci_dev_put(pci_client); 572 573 if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) 574 not_supported = true; 575 576 if (not_supported && !verbose) 577 break; 578 579 total_dist += distance; 580 } 581 582 if (not_supported) 583 return -1; 584 585 return total_dist; 586 } 587 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 588 589 /** 590 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 591 * @pdev: PCI device to check 592 */ 593 bool pci_has_p2pmem(struct pci_dev *pdev) 594 { 595 return pdev->p2pdma && pdev->p2pdma->p2pmem_published; 596 } 597 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 598 599 /** 600 * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with 601 * the specified list of clients and shortest distance (as determined 602 * by pci_p2pmem_dma()) 603 * @clients: array of devices to check (NULL-terminated) 604 * @num_clients: number of client devices in the list 605 * 606 * If multiple devices are behind the same switch, the one "closest" to the 607 * client devices in use will be chosen first. (So if one of the providers is 608 * the same as one of the clients, that provider will be used ahead of any 609 * other providers that are unrelated). If multiple providers are an equal 610 * distance away, one will be chosen at random. 611 * 612 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 613 * to return the reference) or NULL if no compatible device is found. The 614 * found provider will also be assigned to the client list. 615 */ 616 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 617 { 618 struct pci_dev *pdev = NULL; 619 int distance; 620 int closest_distance = INT_MAX; 621 struct pci_dev **closest_pdevs; 622 int dev_cnt = 0; 623 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 624 int i; 625 626 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 627 if (!closest_pdevs) 628 return NULL; 629 630 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 631 if (!pci_has_p2pmem(pdev)) 632 continue; 633 634 distance = pci_p2pdma_distance_many(pdev, clients, 635 num_clients, false); 636 if (distance < 0 || distance > closest_distance) 637 continue; 638 639 if (distance == closest_distance && dev_cnt >= max_devs) 640 continue; 641 642 if (distance < closest_distance) { 643 for (i = 0; i < dev_cnt; i++) 644 pci_dev_put(closest_pdevs[i]); 645 646 dev_cnt = 0; 647 closest_distance = distance; 648 } 649 650 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 651 } 652 653 if (dev_cnt) 654 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 655 656 for (i = 0; i < dev_cnt; i++) 657 pci_dev_put(closest_pdevs[i]); 658 659 kfree(closest_pdevs); 660 return pdev; 661 } 662 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 663 664 /** 665 * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory 666 * @pdev: the device to allocate memory from 667 * @size: number of bytes to allocate 668 * 669 * Returns the allocated memory or NULL on error. 670 */ 671 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 672 { 673 void *ret = NULL; 674 struct percpu_ref *ref; 675 676 /* 677 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 678 * ensure pdev->p2pdma is non-NULL for the duration of the 679 * read-lock. 680 */ 681 rcu_read_lock(); 682 if (unlikely(!pdev->p2pdma)) 683 goto out; 684 685 ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size, 686 (void **) &ref); 687 if (!ret) 688 goto out; 689 690 if (unlikely(!percpu_ref_tryget_live(ref))) { 691 gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size); 692 ret = NULL; 693 goto out; 694 } 695 out: 696 rcu_read_unlock(); 697 return ret; 698 } 699 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 700 701 /** 702 * pci_free_p2pmem - free peer-to-peer DMA memory 703 * @pdev: the device the memory was allocated from 704 * @addr: address of the memory that was allocated 705 * @size: number of bytes that were allocated 706 */ 707 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 708 { 709 struct percpu_ref *ref; 710 711 gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size, 712 (void **) &ref); 713 percpu_ref_put(ref); 714 } 715 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 716 717 /** 718 * pci_virt_to_bus - return the PCI bus address for a given virtual 719 * address obtained with pci_alloc_p2pmem() 720 * @pdev: the device the memory was allocated from 721 * @addr: address of the memory that was allocated 722 */ 723 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 724 { 725 if (!addr) 726 return 0; 727 if (!pdev->p2pdma) 728 return 0; 729 730 /* 731 * Note: when we added the memory to the pool we used the PCI 732 * bus address as the physical address. So gen_pool_virt_to_phys() 733 * actually returns the bus address despite the misleading name. 734 */ 735 return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr); 736 } 737 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 738 739 /** 740 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 741 * @pdev: the device to allocate memory from 742 * @nents: the number of SG entries in the list 743 * @length: number of bytes to allocate 744 * 745 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 746 */ 747 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 748 unsigned int *nents, u32 length) 749 { 750 struct scatterlist *sg; 751 void *addr; 752 753 sg = kzalloc(sizeof(*sg), GFP_KERNEL); 754 if (!sg) 755 return NULL; 756 757 sg_init_table(sg, 1); 758 759 addr = pci_alloc_p2pmem(pdev, length); 760 if (!addr) 761 goto out_free_sg; 762 763 sg_set_buf(sg, addr, length); 764 *nents = 1; 765 return sg; 766 767 out_free_sg: 768 kfree(sg); 769 return NULL; 770 } 771 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 772 773 /** 774 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 775 * @pdev: the device to allocate memory from 776 * @sgl: the allocated scatterlist 777 */ 778 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 779 { 780 struct scatterlist *sg; 781 int count; 782 783 for_each_sg(sgl, sg, INT_MAX, count) { 784 if (!sg) 785 break; 786 787 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 788 } 789 kfree(sgl); 790 } 791 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 792 793 /** 794 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 795 * other devices with pci_p2pmem_find() 796 * @pdev: the device with peer-to-peer DMA memory to publish 797 * @publish: set to true to publish the memory, false to unpublish it 798 * 799 * Published memory can be used by other PCI device drivers for 800 * peer-2-peer DMA operations. Non-published memory is reserved for 801 * exclusive use of the device driver that registers the peer-to-peer 802 * memory. 803 */ 804 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 805 { 806 if (pdev->p2pdma) 807 pdev->p2pdma->p2pmem_published = publish; 808 } 809 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 810 811 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider, 812 struct pci_dev *client) 813 { 814 if (!provider->p2pdma) 815 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 816 817 return xa_to_value(xa_load(&provider->p2pdma->map_types, 818 map_types_idx(client))); 819 } 820 821 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap, 822 struct device *dev, struct scatterlist *sg, int nents) 823 { 824 struct scatterlist *s; 825 phys_addr_t paddr; 826 int i; 827 828 /* 829 * p2pdma mappings are not compatible with devices that use 830 * dma_virt_ops. If the upper layers do the right thing 831 * this should never happen because it will be prevented 832 * by the check in pci_p2pdma_distance_many() 833 */ 834 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) && 835 dev->dma_ops == &dma_virt_ops)) 836 return 0; 837 838 for_each_sg(sg, s, nents, i) { 839 paddr = sg_phys(s); 840 841 s->dma_address = paddr - p2p_pgmap->bus_offset; 842 sg_dma_len(s) = s->length; 843 } 844 845 return nents; 846 } 847 848 /** 849 * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA 850 * @dev: device doing the DMA request 851 * @sg: scatter list to map 852 * @nents: elements in the scatterlist 853 * @dir: DMA direction 854 * @attrs: DMA attributes passed to dma_map_sg() (if called) 855 * 856 * Scatterlists mapped with this function should be unmapped using 857 * pci_p2pdma_unmap_sg_attrs(). 858 * 859 * Returns the number of SG entries mapped or 0 on error. 860 */ 861 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 862 int nents, enum dma_data_direction dir, unsigned long attrs) 863 { 864 struct pci_p2pdma_pagemap *p2p_pgmap = 865 to_p2p_pgmap(sg_page(sg)->pgmap); 866 struct pci_dev *client; 867 868 if (WARN_ON_ONCE(!dev_is_pci(dev))) 869 return 0; 870 871 client = to_pci_dev(dev); 872 873 switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) { 874 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 875 return dma_map_sg_attrs(dev, sg, nents, dir, attrs); 876 case PCI_P2PDMA_MAP_BUS_ADDR: 877 return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents); 878 default: 879 WARN_ON_ONCE(1); 880 return 0; 881 } 882 } 883 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs); 884 885 /** 886 * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was 887 * mapped with pci_p2pdma_map_sg() 888 * @dev: device doing the DMA request 889 * @sg: scatter list to map 890 * @nents: number of elements returned by pci_p2pdma_map_sg() 891 * @dir: DMA direction 892 * @attrs: DMA attributes passed to dma_unmap_sg() (if called) 893 */ 894 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 895 int nents, enum dma_data_direction dir, unsigned long attrs) 896 { 897 struct pci_p2pdma_pagemap *p2p_pgmap = 898 to_p2p_pgmap(sg_page(sg)->pgmap); 899 enum pci_p2pdma_map_type map_type; 900 struct pci_dev *client; 901 902 if (WARN_ON_ONCE(!dev_is_pci(dev))) 903 return; 904 905 client = to_pci_dev(dev); 906 907 map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client); 908 909 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) 910 dma_unmap_sg_attrs(dev, sg, nents, dir, attrs); 911 } 912 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs); 913 914 /** 915 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 916 * to enable p2pdma 917 * @page: contents of the value to be stored 918 * @p2p_dev: returns the PCI device that was selected to be used 919 * (if one was specified in the stored value) 920 * @use_p2pdma: returns whether to enable p2pdma or not 921 * 922 * Parses an attribute value to decide whether to enable p2pdma. 923 * The value can select a PCI device (using its full BDF device 924 * name) or a boolean (in any format strtobool() accepts). A false 925 * value disables p2pdma, a true value expects the caller 926 * to automatically find a compatible device and specifying a PCI device 927 * expects the caller to use the specific provider. 928 * 929 * pci_p2pdma_enable_show() should be used as the show operation for 930 * the attribute. 931 * 932 * Returns 0 on success 933 */ 934 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 935 bool *use_p2pdma) 936 { 937 struct device *dev; 938 939 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 940 if (dev) { 941 *use_p2pdma = true; 942 *p2p_dev = to_pci_dev(dev); 943 944 if (!pci_has_p2pmem(*p2p_dev)) { 945 pci_err(*p2p_dev, 946 "PCI device has no peer-to-peer memory: %s\n", 947 page); 948 pci_dev_put(*p2p_dev); 949 return -ENODEV; 950 } 951 952 return 0; 953 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 954 /* 955 * If the user enters a PCI device that doesn't exist 956 * like "0000:01:00.1", we don't want strtobool to think 957 * it's a '0' when it's clearly not what the user wanted. 958 * So we require 0's and 1's to be exactly one character. 959 */ 960 } else if (!strtobool(page, use_p2pdma)) { 961 return 0; 962 } 963 964 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 965 return -ENODEV; 966 } 967 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 968 969 /** 970 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 971 * whether p2pdma is enabled 972 * @page: contents of the stored value 973 * @p2p_dev: the selected p2p device (NULL if no device is selected) 974 * @use_p2pdma: whether p2pdma has been enabled 975 * 976 * Attributes that use pci_p2pdma_enable_store() should use this function 977 * to show the value of the attribute. 978 * 979 * Returns 0 on success 980 */ 981 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 982 bool use_p2pdma) 983 { 984 if (!use_p2pdma) 985 return sprintf(page, "0\n"); 986 987 if (!p2p_dev) 988 return sprintf(page, "1\n"); 989 990 return sprintf(page, "%s\n", pci_name(p2p_dev)); 991 } 992 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 993