1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 22 struct pci_p2pdma { 23 struct percpu_ref devmap_ref; 24 struct completion devmap_ref_done; 25 struct gen_pool *pool; 26 bool p2pmem_published; 27 }; 28 29 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 30 char *buf) 31 { 32 struct pci_dev *pdev = to_pci_dev(dev); 33 size_t size = 0; 34 35 if (pdev->p2pdma->pool) 36 size = gen_pool_size(pdev->p2pdma->pool); 37 38 return snprintf(buf, PAGE_SIZE, "%zd\n", size); 39 } 40 static DEVICE_ATTR_RO(size); 41 42 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 43 char *buf) 44 { 45 struct pci_dev *pdev = to_pci_dev(dev); 46 size_t avail = 0; 47 48 if (pdev->p2pdma->pool) 49 avail = gen_pool_avail(pdev->p2pdma->pool); 50 51 return snprintf(buf, PAGE_SIZE, "%zd\n", avail); 52 } 53 static DEVICE_ATTR_RO(available); 54 55 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 56 char *buf) 57 { 58 struct pci_dev *pdev = to_pci_dev(dev); 59 60 return snprintf(buf, PAGE_SIZE, "%d\n", 61 pdev->p2pdma->p2pmem_published); 62 } 63 static DEVICE_ATTR_RO(published); 64 65 static struct attribute *p2pmem_attrs[] = { 66 &dev_attr_size.attr, 67 &dev_attr_available.attr, 68 &dev_attr_published.attr, 69 NULL, 70 }; 71 72 static const struct attribute_group p2pmem_group = { 73 .attrs = p2pmem_attrs, 74 .name = "p2pmem", 75 }; 76 77 static void pci_p2pdma_percpu_release(struct percpu_ref *ref) 78 { 79 struct pci_p2pdma *p2p = 80 container_of(ref, struct pci_p2pdma, devmap_ref); 81 82 complete_all(&p2p->devmap_ref_done); 83 } 84 85 static void pci_p2pdma_percpu_kill(struct percpu_ref *ref) 86 { 87 /* 88 * pci_p2pdma_add_resource() may be called multiple times 89 * by a driver and may register the percpu_kill devm action multiple 90 * times. We only want the first action to actually kill the 91 * percpu_ref. 92 */ 93 if (percpu_ref_is_dying(ref)) 94 return; 95 96 percpu_ref_kill(ref); 97 } 98 99 static void pci_p2pdma_release(void *data) 100 { 101 struct pci_dev *pdev = data; 102 103 if (!pdev->p2pdma) 104 return; 105 106 wait_for_completion(&pdev->p2pdma->devmap_ref_done); 107 percpu_ref_exit(&pdev->p2pdma->devmap_ref); 108 109 gen_pool_destroy(pdev->p2pdma->pool); 110 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 111 pdev->p2pdma = NULL; 112 } 113 114 static int pci_p2pdma_setup(struct pci_dev *pdev) 115 { 116 int error = -ENOMEM; 117 struct pci_p2pdma *p2p; 118 119 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 120 if (!p2p) 121 return -ENOMEM; 122 123 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 124 if (!p2p->pool) 125 goto out; 126 127 init_completion(&p2p->devmap_ref_done); 128 error = percpu_ref_init(&p2p->devmap_ref, 129 pci_p2pdma_percpu_release, 0, GFP_KERNEL); 130 if (error) 131 goto out_pool_destroy; 132 133 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 134 if (error) 135 goto out_pool_destroy; 136 137 pdev->p2pdma = p2p; 138 139 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 140 if (error) 141 goto out_pool_destroy; 142 143 return 0; 144 145 out_pool_destroy: 146 pdev->p2pdma = NULL; 147 gen_pool_destroy(p2p->pool); 148 out: 149 devm_kfree(&pdev->dev, p2p); 150 return error; 151 } 152 153 /** 154 * pci_p2pdma_add_resource - add memory for use as p2p memory 155 * @pdev: the device to add the memory to 156 * @bar: PCI BAR to add 157 * @size: size of the memory to add, may be zero to use the whole BAR 158 * @offset: offset into the PCI BAR 159 * 160 * The memory will be given ZONE_DEVICE struct pages so that it may 161 * be used with any DMA request. 162 */ 163 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 164 u64 offset) 165 { 166 struct dev_pagemap *pgmap; 167 void *addr; 168 int error; 169 170 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 171 return -EINVAL; 172 173 if (offset >= pci_resource_len(pdev, bar)) 174 return -EINVAL; 175 176 if (!size) 177 size = pci_resource_len(pdev, bar) - offset; 178 179 if (size + offset > pci_resource_len(pdev, bar)) 180 return -EINVAL; 181 182 if (!pdev->p2pdma) { 183 error = pci_p2pdma_setup(pdev); 184 if (error) 185 return error; 186 } 187 188 pgmap = devm_kzalloc(&pdev->dev, sizeof(*pgmap), GFP_KERNEL); 189 if (!pgmap) 190 return -ENOMEM; 191 192 pgmap->res.start = pci_resource_start(pdev, bar) + offset; 193 pgmap->res.end = pgmap->res.start + size - 1; 194 pgmap->res.flags = pci_resource_flags(pdev, bar); 195 pgmap->ref = &pdev->p2pdma->devmap_ref; 196 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 197 pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) - 198 pci_resource_start(pdev, bar); 199 pgmap->kill = pci_p2pdma_percpu_kill; 200 201 addr = devm_memremap_pages(&pdev->dev, pgmap); 202 if (IS_ERR(addr)) { 203 error = PTR_ERR(addr); 204 goto pgmap_free; 205 } 206 207 error = gen_pool_add_virt(pdev->p2pdma->pool, (unsigned long)addr, 208 pci_bus_address(pdev, bar) + offset, 209 resource_size(&pgmap->res), dev_to_node(&pdev->dev)); 210 if (error) 211 goto pgmap_free; 212 213 pci_info(pdev, "added peer-to-peer DMA memory %pR\n", 214 &pgmap->res); 215 216 return 0; 217 218 pgmap_free: 219 devm_kfree(&pdev->dev, pgmap); 220 return error; 221 } 222 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 223 224 /* 225 * Note this function returns the parent PCI device with a 226 * reference taken. It is the caller's responsibily to drop 227 * the reference. 228 */ 229 static struct pci_dev *find_parent_pci_dev(struct device *dev) 230 { 231 struct device *parent; 232 233 dev = get_device(dev); 234 235 while (dev) { 236 if (dev_is_pci(dev)) 237 return to_pci_dev(dev); 238 239 parent = get_device(dev->parent); 240 put_device(dev); 241 dev = parent; 242 } 243 244 return NULL; 245 } 246 247 /* 248 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 249 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 250 * upstream, 0 otherwise. 251 */ 252 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 253 { 254 int pos; 255 u16 ctrl; 256 257 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 258 if (!pos) 259 return 0; 260 261 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 262 263 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 264 return 1; 265 266 return 0; 267 } 268 269 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 270 { 271 if (!buf) 272 return; 273 274 seq_buf_printf(buf, "%s;", pci_name(pdev)); 275 } 276 277 /* 278 * If we can't find a common upstream bridge take a look at the root 279 * complex and compare it to a whitelist of known good hardware. 280 */ 281 static bool root_complex_whitelist(struct pci_dev *dev) 282 { 283 struct pci_host_bridge *host = pci_find_host_bridge(dev->bus); 284 struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0)); 285 unsigned short vendor, device; 286 287 if (!root) 288 return false; 289 290 vendor = root->vendor; 291 device = root->device; 292 pci_dev_put(root); 293 294 /* AMD ZEN host bridges can do peer to peer */ 295 if (vendor == PCI_VENDOR_ID_AMD && device == 0x1450) 296 return true; 297 298 return false; 299 } 300 301 /* 302 * Find the distance through the nearest common upstream bridge between 303 * two PCI devices. 304 * 305 * If the two devices are the same device then 0 will be returned. 306 * 307 * If there are two virtual functions of the same device behind the same 308 * bridge port then 2 will be returned (one step down to the PCIe switch, 309 * then one step back to the same device). 310 * 311 * In the case where two devices are connected to the same PCIe switch, the 312 * value 4 will be returned. This corresponds to the following PCI tree: 313 * 314 * -+ Root Port 315 * \+ Switch Upstream Port 316 * +-+ Switch Downstream Port 317 * + \- Device A 318 * \-+ Switch Downstream Port 319 * \- Device B 320 * 321 * The distance is 4 because we traverse from Device A through the downstream 322 * port of the switch, to the common upstream port, back up to the second 323 * downstream port and then to Device B. 324 * 325 * Any two devices that don't have a common upstream bridge will return -1. 326 * In this way devices on separate PCIe root ports will be rejected, which 327 * is what we want for peer-to-peer seeing each PCIe root port defines a 328 * separate hierarchy domain and there's no way to determine whether the root 329 * complex supports forwarding between them. 330 * 331 * In the case where two devices are connected to different PCIe switches, 332 * this function will still return a positive distance as long as both 333 * switches eventually have a common upstream bridge. Note this covers 334 * the case of using multiple PCIe switches to achieve a desired level of 335 * fan-out from a root port. The exact distance will be a function of the 336 * number of switches between Device A and Device B. 337 * 338 * If a bridge which has any ACS redirection bits set is in the path 339 * then this functions will return -2. This is so we reject any 340 * cases where the TLPs are forwarded up into the root complex. 341 * In this case, a list of all infringing bridge addresses will be 342 * populated in acs_list (assuming it's non-null) for printk purposes. 343 */ 344 static int upstream_bridge_distance(struct pci_dev *provider, 345 struct pci_dev *client, 346 struct seq_buf *acs_list) 347 { 348 struct pci_dev *a = provider, *b = client, *bb; 349 int dist_a = 0; 350 int dist_b = 0; 351 int acs_cnt = 0; 352 353 /* 354 * Note, we don't need to take references to devices returned by 355 * pci_upstream_bridge() seeing we hold a reference to a child 356 * device which will already hold a reference to the upstream bridge. 357 */ 358 359 while (a) { 360 dist_b = 0; 361 362 if (pci_bridge_has_acs_redir(a)) { 363 seq_buf_print_bus_devfn(acs_list, a); 364 acs_cnt++; 365 } 366 367 bb = b; 368 369 while (bb) { 370 if (a == bb) 371 goto check_b_path_acs; 372 373 bb = pci_upstream_bridge(bb); 374 dist_b++; 375 } 376 377 a = pci_upstream_bridge(a); 378 dist_a++; 379 } 380 381 /* 382 * Allow the connection if both devices are on a whitelisted root 383 * complex, but add an arbitary large value to the distance. 384 */ 385 if (root_complex_whitelist(provider) && 386 root_complex_whitelist(client)) 387 return 0x1000 + dist_a + dist_b; 388 389 return -1; 390 391 check_b_path_acs: 392 bb = b; 393 394 while (bb) { 395 if (a == bb) 396 break; 397 398 if (pci_bridge_has_acs_redir(bb)) { 399 seq_buf_print_bus_devfn(acs_list, bb); 400 acs_cnt++; 401 } 402 403 bb = pci_upstream_bridge(bb); 404 } 405 406 if (acs_cnt) 407 return -2; 408 409 return dist_a + dist_b; 410 } 411 412 static int upstream_bridge_distance_warn(struct pci_dev *provider, 413 struct pci_dev *client) 414 { 415 struct seq_buf acs_list; 416 int ret; 417 418 seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 419 if (!acs_list.buffer) 420 return -ENOMEM; 421 422 ret = upstream_bridge_distance(provider, client, &acs_list); 423 if (ret == -2) { 424 pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n", 425 pci_name(provider)); 426 /* Drop final semicolon */ 427 acs_list.buffer[acs_list.len-1] = 0; 428 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 429 acs_list.buffer); 430 431 } else if (ret < 0) { 432 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n", 433 pci_name(provider)); 434 } 435 436 kfree(acs_list.buffer); 437 438 return ret; 439 } 440 441 /** 442 * pci_p2pdma_distance_many - Determive the cumulative distance between 443 * a p2pdma provider and the clients in use. 444 * @provider: p2pdma provider to check against the client list 445 * @clients: array of devices to check (NULL-terminated) 446 * @num_clients: number of clients in the array 447 * @verbose: if true, print warnings for devices when we return -1 448 * 449 * Returns -1 if any of the clients are not compatible (behind the same 450 * root port as the provider), otherwise returns a positive number where 451 * a lower number is the preferable choice. (If there's one client 452 * that's the same as the provider it will return 0, which is best choice). 453 * 454 * For now, "compatible" means the provider and the clients are all behind 455 * the same PCI root port. This cuts out cases that may work but is safest 456 * for the user. Future work can expand this to white-list root complexes that 457 * can safely forward between each ports. 458 */ 459 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 460 int num_clients, bool verbose) 461 { 462 bool not_supported = false; 463 struct pci_dev *pci_client; 464 int distance = 0; 465 int i, ret; 466 467 if (num_clients == 0) 468 return -1; 469 470 for (i = 0; i < num_clients; i++) { 471 pci_client = find_parent_pci_dev(clients[i]); 472 if (!pci_client) { 473 if (verbose) 474 dev_warn(clients[i], 475 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 476 return -1; 477 } 478 479 if (verbose) 480 ret = upstream_bridge_distance_warn(provider, 481 pci_client); 482 else 483 ret = upstream_bridge_distance(provider, pci_client, 484 NULL); 485 486 pci_dev_put(pci_client); 487 488 if (ret < 0) 489 not_supported = true; 490 491 if (not_supported && !verbose) 492 break; 493 494 distance += ret; 495 } 496 497 if (not_supported) 498 return -1; 499 500 return distance; 501 } 502 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 503 504 /** 505 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 506 * @pdev: PCI device to check 507 */ 508 bool pci_has_p2pmem(struct pci_dev *pdev) 509 { 510 return pdev->p2pdma && pdev->p2pdma->p2pmem_published; 511 } 512 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 513 514 /** 515 * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with 516 * the specified list of clients and shortest distance (as determined 517 * by pci_p2pmem_dma()) 518 * @clients: array of devices to check (NULL-terminated) 519 * @num_clients: number of client devices in the list 520 * 521 * If multiple devices are behind the same switch, the one "closest" to the 522 * client devices in use will be chosen first. (So if one of the providers is 523 * the same as one of the clients, that provider will be used ahead of any 524 * other providers that are unrelated). If multiple providers are an equal 525 * distance away, one will be chosen at random. 526 * 527 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 528 * to return the reference) or NULL if no compatible device is found. The 529 * found provider will also be assigned to the client list. 530 */ 531 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 532 { 533 struct pci_dev *pdev = NULL; 534 int distance; 535 int closest_distance = INT_MAX; 536 struct pci_dev **closest_pdevs; 537 int dev_cnt = 0; 538 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 539 int i; 540 541 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 542 if (!closest_pdevs) 543 return NULL; 544 545 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 546 if (!pci_has_p2pmem(pdev)) 547 continue; 548 549 distance = pci_p2pdma_distance_many(pdev, clients, 550 num_clients, false); 551 if (distance < 0 || distance > closest_distance) 552 continue; 553 554 if (distance == closest_distance && dev_cnt >= max_devs) 555 continue; 556 557 if (distance < closest_distance) { 558 for (i = 0; i < dev_cnt; i++) 559 pci_dev_put(closest_pdevs[i]); 560 561 dev_cnt = 0; 562 closest_distance = distance; 563 } 564 565 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 566 } 567 568 if (dev_cnt) 569 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 570 571 for (i = 0; i < dev_cnt; i++) 572 pci_dev_put(closest_pdevs[i]); 573 574 kfree(closest_pdevs); 575 return pdev; 576 } 577 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 578 579 /** 580 * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory 581 * @pdev: the device to allocate memory from 582 * @size: number of bytes to allocate 583 * 584 * Returns the allocated memory or NULL on error. 585 */ 586 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 587 { 588 void *ret; 589 590 if (unlikely(!pdev->p2pdma)) 591 return NULL; 592 593 if (unlikely(!percpu_ref_tryget_live(&pdev->p2pdma->devmap_ref))) 594 return NULL; 595 596 ret = (void *)gen_pool_alloc(pdev->p2pdma->pool, size); 597 598 if (unlikely(!ret)) 599 percpu_ref_put(&pdev->p2pdma->devmap_ref); 600 601 return ret; 602 } 603 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 604 605 /** 606 * pci_free_p2pmem - free peer-to-peer DMA memory 607 * @pdev: the device the memory was allocated from 608 * @addr: address of the memory that was allocated 609 * @size: number of bytes that were allocated 610 */ 611 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 612 { 613 gen_pool_free(pdev->p2pdma->pool, (uintptr_t)addr, size); 614 percpu_ref_put(&pdev->p2pdma->devmap_ref); 615 } 616 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 617 618 /** 619 * pci_virt_to_bus - return the PCI bus address for a given virtual 620 * address obtained with pci_alloc_p2pmem() 621 * @pdev: the device the memory was allocated from 622 * @addr: address of the memory that was allocated 623 */ 624 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 625 { 626 if (!addr) 627 return 0; 628 if (!pdev->p2pdma) 629 return 0; 630 631 /* 632 * Note: when we added the memory to the pool we used the PCI 633 * bus address as the physical address. So gen_pool_virt_to_phys() 634 * actually returns the bus address despite the misleading name. 635 */ 636 return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr); 637 } 638 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 639 640 /** 641 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 642 * @pdev: the device to allocate memory from 643 * @nents: the number of SG entries in the list 644 * @length: number of bytes to allocate 645 * 646 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 647 */ 648 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 649 unsigned int *nents, u32 length) 650 { 651 struct scatterlist *sg; 652 void *addr; 653 654 sg = kzalloc(sizeof(*sg), GFP_KERNEL); 655 if (!sg) 656 return NULL; 657 658 sg_init_table(sg, 1); 659 660 addr = pci_alloc_p2pmem(pdev, length); 661 if (!addr) 662 goto out_free_sg; 663 664 sg_set_buf(sg, addr, length); 665 *nents = 1; 666 return sg; 667 668 out_free_sg: 669 kfree(sg); 670 return NULL; 671 } 672 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 673 674 /** 675 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 676 * @pdev: the device to allocate memory from 677 * @sgl: the allocated scatterlist 678 */ 679 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 680 { 681 struct scatterlist *sg; 682 int count; 683 684 for_each_sg(sgl, sg, INT_MAX, count) { 685 if (!sg) 686 break; 687 688 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 689 } 690 kfree(sgl); 691 } 692 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 693 694 /** 695 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 696 * other devices with pci_p2pmem_find() 697 * @pdev: the device with peer-to-peer DMA memory to publish 698 * @publish: set to true to publish the memory, false to unpublish it 699 * 700 * Published memory can be used by other PCI device drivers for 701 * peer-2-peer DMA operations. Non-published memory is reserved for 702 * exclusive use of the device driver that registers the peer-to-peer 703 * memory. 704 */ 705 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 706 { 707 if (pdev->p2pdma) 708 pdev->p2pdma->p2pmem_published = publish; 709 } 710 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 711 712 /** 713 * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA 714 * @dev: device doing the DMA request 715 * @sg: scatter list to map 716 * @nents: elements in the scatterlist 717 * @dir: DMA direction 718 * 719 * Scatterlists mapped with this function should not be unmapped in any way. 720 * 721 * Returns the number of SG entries mapped or 0 on error. 722 */ 723 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 724 enum dma_data_direction dir) 725 { 726 struct dev_pagemap *pgmap; 727 struct scatterlist *s; 728 phys_addr_t paddr; 729 int i; 730 731 /* 732 * p2pdma mappings are not compatible with devices that use 733 * dma_virt_ops. If the upper layers do the right thing 734 * this should never happen because it will be prevented 735 * by the check in pci_p2pdma_add_client() 736 */ 737 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) && 738 dev->dma_ops == &dma_virt_ops)) 739 return 0; 740 741 for_each_sg(sg, s, nents, i) { 742 pgmap = sg_page(s)->pgmap; 743 paddr = sg_phys(s); 744 745 s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset; 746 sg_dma_len(s) = s->length; 747 } 748 749 return nents; 750 } 751 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg); 752 753 /** 754 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 755 * to enable p2pdma 756 * @page: contents of the value to be stored 757 * @p2p_dev: returns the PCI device that was selected to be used 758 * (if one was specified in the stored value) 759 * @use_p2pdma: returns whether to enable p2pdma or not 760 * 761 * Parses an attribute value to decide whether to enable p2pdma. 762 * The value can select a PCI device (using its full BDF device 763 * name) or a boolean (in any format strtobool() accepts). A false 764 * value disables p2pdma, a true value expects the caller 765 * to automatically find a compatible device and specifying a PCI device 766 * expects the caller to use the specific provider. 767 * 768 * pci_p2pdma_enable_show() should be used as the show operation for 769 * the attribute. 770 * 771 * Returns 0 on success 772 */ 773 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 774 bool *use_p2pdma) 775 { 776 struct device *dev; 777 778 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 779 if (dev) { 780 *use_p2pdma = true; 781 *p2p_dev = to_pci_dev(dev); 782 783 if (!pci_has_p2pmem(*p2p_dev)) { 784 pci_err(*p2p_dev, 785 "PCI device has no peer-to-peer memory: %s\n", 786 page); 787 pci_dev_put(*p2p_dev); 788 return -ENODEV; 789 } 790 791 return 0; 792 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 793 /* 794 * If the user enters a PCI device that doesn't exist 795 * like "0000:01:00.1", we don't want strtobool to think 796 * it's a '0' when it's clearly not what the user wanted. 797 * So we require 0's and 1's to be exactly one character. 798 */ 799 } else if (!strtobool(page, use_p2pdma)) { 800 return 0; 801 } 802 803 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 804 return -ENODEV; 805 } 806 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 807 808 /** 809 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 810 * whether p2pdma is enabled 811 * @page: contents of the stored value 812 * @p2p_dev: the selected p2p device (NULL if no device is selected) 813 * @use_p2pdma: whether p2pdma has been enabled 814 * 815 * Attributes that use pci_p2pdma_enable_store() should use this function 816 * to show the value of the attribute. 817 * 818 * Returns 0 on success 819 */ 820 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 821 bool use_p2pdma) 822 { 823 if (!use_p2pdma) 824 return sprintf(page, "0\n"); 825 826 if (!p2p_dev) 827 return sprintf(page, "1\n"); 828 829 return sprintf(page, "%s\n", pci_name(p2p_dev)); 830 } 831 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 832