1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 #include <linux/xarray.h> 22 23 enum pci_p2pdma_map_type { 24 PCI_P2PDMA_MAP_UNKNOWN = 0, 25 PCI_P2PDMA_MAP_NOT_SUPPORTED, 26 PCI_P2PDMA_MAP_BUS_ADDR, 27 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE, 28 }; 29 30 struct pci_p2pdma { 31 struct gen_pool *pool; 32 bool p2pmem_published; 33 struct xarray map_types; 34 }; 35 36 struct pci_p2pdma_pagemap { 37 struct dev_pagemap pgmap; 38 struct pci_dev *provider; 39 u64 bus_offset; 40 }; 41 42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 43 { 44 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 45 } 46 47 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 48 char *buf) 49 { 50 struct pci_dev *pdev = to_pci_dev(dev); 51 struct pci_p2pdma *p2pdma; 52 size_t size = 0; 53 54 rcu_read_lock(); 55 p2pdma = rcu_dereference(pdev->p2pdma); 56 if (p2pdma && p2pdma->pool) 57 size = gen_pool_size(p2pdma->pool); 58 rcu_read_unlock(); 59 60 return sysfs_emit(buf, "%zd\n", size); 61 } 62 static DEVICE_ATTR_RO(size); 63 64 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 65 char *buf) 66 { 67 struct pci_dev *pdev = to_pci_dev(dev); 68 struct pci_p2pdma *p2pdma; 69 size_t avail = 0; 70 71 rcu_read_lock(); 72 p2pdma = rcu_dereference(pdev->p2pdma); 73 if (p2pdma && p2pdma->pool) 74 avail = gen_pool_avail(p2pdma->pool); 75 rcu_read_unlock(); 76 77 return sysfs_emit(buf, "%zd\n", avail); 78 } 79 static DEVICE_ATTR_RO(available); 80 81 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 82 char *buf) 83 { 84 struct pci_dev *pdev = to_pci_dev(dev); 85 struct pci_p2pdma *p2pdma; 86 bool published = false; 87 88 rcu_read_lock(); 89 p2pdma = rcu_dereference(pdev->p2pdma); 90 if (p2pdma) 91 published = p2pdma->p2pmem_published; 92 rcu_read_unlock(); 93 94 return sysfs_emit(buf, "%d\n", published); 95 } 96 static DEVICE_ATTR_RO(published); 97 98 static struct attribute *p2pmem_attrs[] = { 99 &dev_attr_size.attr, 100 &dev_attr_available.attr, 101 &dev_attr_published.attr, 102 NULL, 103 }; 104 105 static const struct attribute_group p2pmem_group = { 106 .attrs = p2pmem_attrs, 107 .name = "p2pmem", 108 }; 109 110 static void pci_p2pdma_release(void *data) 111 { 112 struct pci_dev *pdev = data; 113 struct pci_p2pdma *p2pdma; 114 115 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 116 if (!p2pdma) 117 return; 118 119 /* Flush and disable pci_alloc_p2p_mem() */ 120 pdev->p2pdma = NULL; 121 synchronize_rcu(); 122 123 gen_pool_destroy(p2pdma->pool); 124 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 125 xa_destroy(&p2pdma->map_types); 126 } 127 128 static int pci_p2pdma_setup(struct pci_dev *pdev) 129 { 130 int error = -ENOMEM; 131 struct pci_p2pdma *p2p; 132 133 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 134 if (!p2p) 135 return -ENOMEM; 136 137 xa_init(&p2p->map_types); 138 139 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 140 if (!p2p->pool) 141 goto out; 142 143 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 144 if (error) 145 goto out_pool_destroy; 146 147 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 148 if (error) 149 goto out_pool_destroy; 150 151 rcu_assign_pointer(pdev->p2pdma, p2p); 152 return 0; 153 154 out_pool_destroy: 155 gen_pool_destroy(p2p->pool); 156 out: 157 devm_kfree(&pdev->dev, p2p); 158 return error; 159 } 160 161 /** 162 * pci_p2pdma_add_resource - add memory for use as p2p memory 163 * @pdev: the device to add the memory to 164 * @bar: PCI BAR to add 165 * @size: size of the memory to add, may be zero to use the whole BAR 166 * @offset: offset into the PCI BAR 167 * 168 * The memory will be given ZONE_DEVICE struct pages so that it may 169 * be used with any DMA request. 170 */ 171 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 172 u64 offset) 173 { 174 struct pci_p2pdma_pagemap *p2p_pgmap; 175 struct dev_pagemap *pgmap; 176 struct pci_p2pdma *p2pdma; 177 void *addr; 178 int error; 179 180 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 181 return -EINVAL; 182 183 if (offset >= pci_resource_len(pdev, bar)) 184 return -EINVAL; 185 186 if (!size) 187 size = pci_resource_len(pdev, bar) - offset; 188 189 if (size + offset > pci_resource_len(pdev, bar)) 190 return -EINVAL; 191 192 if (!pdev->p2pdma) { 193 error = pci_p2pdma_setup(pdev); 194 if (error) 195 return error; 196 } 197 198 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 199 if (!p2p_pgmap) 200 return -ENOMEM; 201 202 pgmap = &p2p_pgmap->pgmap; 203 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 204 pgmap->range.end = pgmap->range.start + size - 1; 205 pgmap->nr_range = 1; 206 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 207 208 p2p_pgmap->provider = pdev; 209 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 210 pci_resource_start(pdev, bar); 211 212 addr = devm_memremap_pages(&pdev->dev, pgmap); 213 if (IS_ERR(addr)) { 214 error = PTR_ERR(addr); 215 goto pgmap_free; 216 } 217 218 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 219 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, 220 pci_bus_address(pdev, bar) + offset, 221 range_len(&pgmap->range), dev_to_node(&pdev->dev), 222 &pgmap->ref); 223 if (error) 224 goto pages_free; 225 226 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 227 pgmap->range.start, pgmap->range.end); 228 229 return 0; 230 231 pages_free: 232 devm_memunmap_pages(&pdev->dev, pgmap); 233 pgmap_free: 234 devm_kfree(&pdev->dev, pgmap); 235 return error; 236 } 237 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 238 239 /* 240 * Note this function returns the parent PCI device with a 241 * reference taken. It is the caller's responsibility to drop 242 * the reference. 243 */ 244 static struct pci_dev *find_parent_pci_dev(struct device *dev) 245 { 246 struct device *parent; 247 248 dev = get_device(dev); 249 250 while (dev) { 251 if (dev_is_pci(dev)) 252 return to_pci_dev(dev); 253 254 parent = get_device(dev->parent); 255 put_device(dev); 256 dev = parent; 257 } 258 259 return NULL; 260 } 261 262 /* 263 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 264 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 265 * upstream, 0 otherwise. 266 */ 267 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 268 { 269 int pos; 270 u16 ctrl; 271 272 pos = pdev->acs_cap; 273 if (!pos) 274 return 0; 275 276 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 277 278 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 279 return 1; 280 281 return 0; 282 } 283 284 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 285 { 286 if (!buf) 287 return; 288 289 seq_buf_printf(buf, "%s;", pci_name(pdev)); 290 } 291 292 static bool cpu_supports_p2pdma(void) 293 { 294 #ifdef CONFIG_X86 295 struct cpuinfo_x86 *c = &cpu_data(0); 296 297 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 298 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 299 return true; 300 #endif 301 302 return false; 303 } 304 305 static const struct pci_p2pdma_whitelist_entry { 306 unsigned short vendor; 307 unsigned short device; 308 enum { 309 REQ_SAME_HOST_BRIDGE = 1 << 0, 310 } flags; 311 } pci_p2pdma_whitelist[] = { 312 /* Intel Xeon E5/Core i7 */ 313 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 314 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 315 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 316 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 317 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 318 /* Intel SkyLake-E */ 319 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 320 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 321 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 322 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 323 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 324 {} 325 }; 326 327 /* 328 * This lookup function tries to find the PCI device corresponding to a given 329 * host bridge. 330 * 331 * It assumes the host bridge device is the first PCI device in the 332 * bus->devices list and that the devfn is 00.0. These assumptions should hold 333 * for all the devices in the whitelist above. 334 * 335 * This function is equivalent to pci_get_slot(host->bus, 0), however it does 336 * not take the pci_bus_sem lock seeing __host_bridge_whitelist() must not 337 * sleep. 338 * 339 * For this to be safe, the caller should hold a reference to a device on the 340 * bridge, which should ensure the host_bridge device will not be freed 341 * or removed from the head of the devices list. 342 */ 343 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) 344 { 345 struct pci_dev *root; 346 347 root = list_first_entry_or_null(&host->bus->devices, 348 struct pci_dev, bus_list); 349 350 if (!root) 351 return NULL; 352 if (root->devfn != PCI_DEVFN(0, 0)) 353 return NULL; 354 355 return root; 356 } 357 358 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 359 bool same_host_bridge, bool warn) 360 { 361 struct pci_dev *root = pci_host_bridge_dev(host); 362 const struct pci_p2pdma_whitelist_entry *entry; 363 unsigned short vendor, device; 364 365 if (!root) 366 return false; 367 368 vendor = root->vendor; 369 device = root->device; 370 371 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 372 if (vendor != entry->vendor || device != entry->device) 373 continue; 374 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 375 return false; 376 377 return true; 378 } 379 380 if (warn) 381 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", 382 vendor, device); 383 384 return false; 385 } 386 387 /* 388 * If we can't find a common upstream bridge take a look at the root 389 * complex and compare it to a whitelist of known good hardware. 390 */ 391 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, 392 bool warn) 393 { 394 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 395 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 396 397 if (host_a == host_b) 398 return __host_bridge_whitelist(host_a, true, warn); 399 400 if (__host_bridge_whitelist(host_a, false, warn) && 401 __host_bridge_whitelist(host_b, false, warn)) 402 return true; 403 404 return false; 405 } 406 407 static unsigned long map_types_idx(struct pci_dev *client) 408 { 409 return (pci_domain_nr(client->bus) << 16) | 410 (client->bus->number << 8) | client->devfn; 411 } 412 413 /* 414 * Calculate the P2PDMA mapping type and distance between two PCI devices. 415 * 416 * If the two devices are the same PCI function, return 417 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. 418 * 419 * If they are two functions of the same device, return 420 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, 421 * then one hop back down to another function of the same device). 422 * 423 * In the case where two devices are connected to the same PCIe switch, 424 * return a distance of 4. This corresponds to the following PCI tree: 425 * 426 * -+ Root Port 427 * \+ Switch Upstream Port 428 * +-+ Switch Downstream Port 0 429 * + \- Device A 430 * \-+ Switch Downstream Port 1 431 * \- Device B 432 * 433 * The distance is 4 because we traverse from Device A to Downstream Port 0 434 * to the common Switch Upstream Port, back down to Downstream Port 1 and 435 * then to Device B. The mapping type returned depends on the ACS 436 * redirection setting of the ports along the path. 437 * 438 * If ACS redirect is set on any port in the path, traffic between the 439 * devices will go through the host bridge, so return 440 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return 441 * PCI_P2PDMA_MAP_BUS_ADDR. 442 * 443 * Any two devices that have a data path that goes through the host bridge 444 * will consult a whitelist. If the host bridge is in the whitelist, return 445 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of 446 * ports per above. If the device is not in the whitelist, return 447 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 448 */ 449 static enum pci_p2pdma_map_type 450 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, 451 int *dist, bool verbose) 452 { 453 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 454 struct pci_dev *a = provider, *b = client, *bb; 455 bool acs_redirects = false; 456 struct pci_p2pdma *p2pdma; 457 struct seq_buf acs_list; 458 int acs_cnt = 0; 459 int dist_a = 0; 460 int dist_b = 0; 461 char buf[128]; 462 463 seq_buf_init(&acs_list, buf, sizeof(buf)); 464 465 /* 466 * Note, we don't need to take references to devices returned by 467 * pci_upstream_bridge() seeing we hold a reference to a child 468 * device which will already hold a reference to the upstream bridge. 469 */ 470 while (a) { 471 dist_b = 0; 472 473 if (pci_bridge_has_acs_redir(a)) { 474 seq_buf_print_bus_devfn(&acs_list, a); 475 acs_cnt++; 476 } 477 478 bb = b; 479 480 while (bb) { 481 if (a == bb) 482 goto check_b_path_acs; 483 484 bb = pci_upstream_bridge(bb); 485 dist_b++; 486 } 487 488 a = pci_upstream_bridge(a); 489 dist_a++; 490 } 491 492 *dist = dist_a + dist_b; 493 goto map_through_host_bridge; 494 495 check_b_path_acs: 496 bb = b; 497 498 while (bb) { 499 if (a == bb) 500 break; 501 502 if (pci_bridge_has_acs_redir(bb)) { 503 seq_buf_print_bus_devfn(&acs_list, bb); 504 acs_cnt++; 505 } 506 507 bb = pci_upstream_bridge(bb); 508 } 509 510 *dist = dist_a + dist_b; 511 512 if (!acs_cnt) { 513 map_type = PCI_P2PDMA_MAP_BUS_ADDR; 514 goto done; 515 } 516 517 if (verbose) { 518 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ 519 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 520 pci_name(provider)); 521 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 522 acs_list.buffer); 523 } 524 acs_redirects = true; 525 526 map_through_host_bridge: 527 if (!cpu_supports_p2pdma() && 528 !host_bridge_whitelist(provider, client, acs_redirects)) { 529 if (verbose) 530 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 531 pci_name(provider)); 532 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 533 } 534 done: 535 rcu_read_lock(); 536 p2pdma = rcu_dereference(provider->p2pdma); 537 if (p2pdma) 538 xa_store(&p2pdma->map_types, map_types_idx(client), 539 xa_mk_value(map_type), GFP_KERNEL); 540 rcu_read_unlock(); 541 return map_type; 542 } 543 544 /** 545 * pci_p2pdma_distance_many - Determine the cumulative distance between 546 * a p2pdma provider and the clients in use. 547 * @provider: p2pdma provider to check against the client list 548 * @clients: array of devices to check (NULL-terminated) 549 * @num_clients: number of clients in the array 550 * @verbose: if true, print warnings for devices when we return -1 551 * 552 * Returns -1 if any of the clients are not compatible, otherwise returns a 553 * positive number where a lower number is the preferable choice. (If there's 554 * one client that's the same as the provider it will return 0, which is best 555 * choice). 556 * 557 * "compatible" means the provider and the clients are either all behind 558 * the same PCI root port or the host bridges connected to each of the devices 559 * are listed in the 'pci_p2pdma_whitelist'. 560 */ 561 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 562 int num_clients, bool verbose) 563 { 564 enum pci_p2pdma_map_type map; 565 bool not_supported = false; 566 struct pci_dev *pci_client; 567 int total_dist = 0; 568 int i, distance; 569 570 if (num_clients == 0) 571 return -1; 572 573 for (i = 0; i < num_clients; i++) { 574 pci_client = find_parent_pci_dev(clients[i]); 575 if (!pci_client) { 576 if (verbose) 577 dev_warn(clients[i], 578 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 579 return -1; 580 } 581 582 map = calc_map_type_and_dist(provider, pci_client, &distance, 583 verbose); 584 585 pci_dev_put(pci_client); 586 587 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) 588 not_supported = true; 589 590 if (not_supported && !verbose) 591 break; 592 593 total_dist += distance; 594 } 595 596 if (not_supported) 597 return -1; 598 599 return total_dist; 600 } 601 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 602 603 /** 604 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 605 * @pdev: PCI device to check 606 */ 607 bool pci_has_p2pmem(struct pci_dev *pdev) 608 { 609 struct pci_p2pdma *p2pdma; 610 bool res; 611 612 rcu_read_lock(); 613 p2pdma = rcu_dereference(pdev->p2pdma); 614 res = p2pdma && p2pdma->p2pmem_published; 615 rcu_read_unlock(); 616 617 return res; 618 } 619 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 620 621 /** 622 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 623 * the specified list of clients and shortest distance (as determined 624 * by pci_p2pmem_dma()) 625 * @clients: array of devices to check (NULL-terminated) 626 * @num_clients: number of client devices in the list 627 * 628 * If multiple devices are behind the same switch, the one "closest" to the 629 * client devices in use will be chosen first. (So if one of the providers is 630 * the same as one of the clients, that provider will be used ahead of any 631 * other providers that are unrelated). If multiple providers are an equal 632 * distance away, one will be chosen at random. 633 * 634 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 635 * to return the reference) or NULL if no compatible device is found. The 636 * found provider will also be assigned to the client list. 637 */ 638 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 639 { 640 struct pci_dev *pdev = NULL; 641 int distance; 642 int closest_distance = INT_MAX; 643 struct pci_dev **closest_pdevs; 644 int dev_cnt = 0; 645 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 646 int i; 647 648 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 649 if (!closest_pdevs) 650 return NULL; 651 652 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 653 if (!pci_has_p2pmem(pdev)) 654 continue; 655 656 distance = pci_p2pdma_distance_many(pdev, clients, 657 num_clients, false); 658 if (distance < 0 || distance > closest_distance) 659 continue; 660 661 if (distance == closest_distance && dev_cnt >= max_devs) 662 continue; 663 664 if (distance < closest_distance) { 665 for (i = 0; i < dev_cnt; i++) 666 pci_dev_put(closest_pdevs[i]); 667 668 dev_cnt = 0; 669 closest_distance = distance; 670 } 671 672 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 673 } 674 675 if (dev_cnt) 676 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 677 678 for (i = 0; i < dev_cnt; i++) 679 pci_dev_put(closest_pdevs[i]); 680 681 kfree(closest_pdevs); 682 return pdev; 683 } 684 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 685 686 /** 687 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 688 * @pdev: the device to allocate memory from 689 * @size: number of bytes to allocate 690 * 691 * Returns the allocated memory or NULL on error. 692 */ 693 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 694 { 695 void *ret = NULL; 696 struct percpu_ref *ref; 697 struct pci_p2pdma *p2pdma; 698 699 /* 700 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 701 * ensure pdev->p2pdma is non-NULL for the duration of the 702 * read-lock. 703 */ 704 rcu_read_lock(); 705 p2pdma = rcu_dereference(pdev->p2pdma); 706 if (unlikely(!p2pdma)) 707 goto out; 708 709 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); 710 if (!ret) 711 goto out; 712 713 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 714 gen_pool_free(p2pdma->pool, (unsigned long) ret, size); 715 ret = NULL; 716 goto out; 717 } 718 out: 719 rcu_read_unlock(); 720 return ret; 721 } 722 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 723 724 /** 725 * pci_free_p2pmem - free peer-to-peer DMA memory 726 * @pdev: the device the memory was allocated from 727 * @addr: address of the memory that was allocated 728 * @size: number of bytes that were allocated 729 */ 730 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 731 { 732 struct percpu_ref *ref; 733 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 734 735 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, 736 (void **) &ref); 737 percpu_ref_put(ref); 738 } 739 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 740 741 /** 742 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 743 * address obtained with pci_alloc_p2pmem() 744 * @pdev: the device the memory was allocated from 745 * @addr: address of the memory that was allocated 746 */ 747 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 748 { 749 struct pci_p2pdma *p2pdma; 750 751 if (!addr) 752 return 0; 753 754 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 755 if (!p2pdma) 756 return 0; 757 758 /* 759 * Note: when we added the memory to the pool we used the PCI 760 * bus address as the physical address. So gen_pool_virt_to_phys() 761 * actually returns the bus address despite the misleading name. 762 */ 763 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); 764 } 765 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 766 767 /** 768 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 769 * @pdev: the device to allocate memory from 770 * @nents: the number of SG entries in the list 771 * @length: number of bytes to allocate 772 * 773 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 774 */ 775 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 776 unsigned int *nents, u32 length) 777 { 778 struct scatterlist *sg; 779 void *addr; 780 781 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 782 if (!sg) 783 return NULL; 784 785 sg_init_table(sg, 1); 786 787 addr = pci_alloc_p2pmem(pdev, length); 788 if (!addr) 789 goto out_free_sg; 790 791 sg_set_buf(sg, addr, length); 792 *nents = 1; 793 return sg; 794 795 out_free_sg: 796 kfree(sg); 797 return NULL; 798 } 799 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 800 801 /** 802 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 803 * @pdev: the device to allocate memory from 804 * @sgl: the allocated scatterlist 805 */ 806 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 807 { 808 struct scatterlist *sg; 809 int count; 810 811 for_each_sg(sgl, sg, INT_MAX, count) { 812 if (!sg) 813 break; 814 815 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 816 } 817 kfree(sgl); 818 } 819 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 820 821 /** 822 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 823 * other devices with pci_p2pmem_find() 824 * @pdev: the device with peer-to-peer DMA memory to publish 825 * @publish: set to true to publish the memory, false to unpublish it 826 * 827 * Published memory can be used by other PCI device drivers for 828 * peer-2-peer DMA operations. Non-published memory is reserved for 829 * exclusive use of the device driver that registers the peer-to-peer 830 * memory. 831 */ 832 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 833 { 834 struct pci_p2pdma *p2pdma; 835 836 rcu_read_lock(); 837 p2pdma = rcu_dereference(pdev->p2pdma); 838 if (p2pdma) 839 p2pdma->p2pmem_published = publish; 840 rcu_read_unlock(); 841 } 842 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 843 844 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap, 845 struct device *dev) 846 { 847 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 848 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider; 849 struct pci_dev *client; 850 struct pci_p2pdma *p2pdma; 851 852 if (!provider->p2pdma) 853 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 854 855 if (!dev_is_pci(dev)) 856 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 857 858 client = to_pci_dev(dev); 859 860 rcu_read_lock(); 861 p2pdma = rcu_dereference(provider->p2pdma); 862 863 if (p2pdma) 864 type = xa_to_value(xa_load(&p2pdma->map_types, 865 map_types_idx(client))); 866 rcu_read_unlock(); 867 return type; 868 } 869 870 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap, 871 struct device *dev, struct scatterlist *sg, int nents) 872 { 873 struct scatterlist *s; 874 int i; 875 876 for_each_sg(sg, s, nents, i) { 877 s->dma_address = sg_phys(s) + p2p_pgmap->bus_offset; 878 sg_dma_len(s) = s->length; 879 } 880 881 return nents; 882 } 883 884 /** 885 * pci_p2pdma_map_sg_attrs - map a PCI peer-to-peer scatterlist for DMA 886 * @dev: device doing the DMA request 887 * @sg: scatter list to map 888 * @nents: elements in the scatterlist 889 * @dir: DMA direction 890 * @attrs: DMA attributes passed to dma_map_sg() (if called) 891 * 892 * Scatterlists mapped with this function should be unmapped using 893 * pci_p2pdma_unmap_sg_attrs(). 894 * 895 * Returns the number of SG entries mapped or 0 on error. 896 */ 897 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 898 int nents, enum dma_data_direction dir, unsigned long attrs) 899 { 900 struct pci_p2pdma_pagemap *p2p_pgmap = 901 to_p2p_pgmap(sg_page(sg)->pgmap); 902 903 switch (pci_p2pdma_map_type(sg_page(sg)->pgmap, dev)) { 904 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 905 return dma_map_sg_attrs(dev, sg, nents, dir, attrs); 906 case PCI_P2PDMA_MAP_BUS_ADDR: 907 return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents); 908 default: 909 WARN_ON_ONCE(1); 910 return 0; 911 } 912 } 913 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs); 914 915 /** 916 * pci_p2pdma_unmap_sg_attrs - unmap a PCI peer-to-peer scatterlist that was 917 * mapped with pci_p2pdma_map_sg() 918 * @dev: device doing the DMA request 919 * @sg: scatter list to map 920 * @nents: number of elements returned by pci_p2pdma_map_sg() 921 * @dir: DMA direction 922 * @attrs: DMA attributes passed to dma_unmap_sg() (if called) 923 */ 924 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 925 int nents, enum dma_data_direction dir, unsigned long attrs) 926 { 927 enum pci_p2pdma_map_type map_type; 928 929 map_type = pci_p2pdma_map_type(sg_page(sg)->pgmap, dev); 930 931 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) 932 dma_unmap_sg_attrs(dev, sg, nents, dir, attrs); 933 } 934 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs); 935 936 /** 937 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 938 * to enable p2pdma 939 * @page: contents of the value to be stored 940 * @p2p_dev: returns the PCI device that was selected to be used 941 * (if one was specified in the stored value) 942 * @use_p2pdma: returns whether to enable p2pdma or not 943 * 944 * Parses an attribute value to decide whether to enable p2pdma. 945 * The value can select a PCI device (using its full BDF device 946 * name) or a boolean (in any format kstrtobool() accepts). A false 947 * value disables p2pdma, a true value expects the caller 948 * to automatically find a compatible device and specifying a PCI device 949 * expects the caller to use the specific provider. 950 * 951 * pci_p2pdma_enable_show() should be used as the show operation for 952 * the attribute. 953 * 954 * Returns 0 on success 955 */ 956 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 957 bool *use_p2pdma) 958 { 959 struct device *dev; 960 961 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 962 if (dev) { 963 *use_p2pdma = true; 964 *p2p_dev = to_pci_dev(dev); 965 966 if (!pci_has_p2pmem(*p2p_dev)) { 967 pci_err(*p2p_dev, 968 "PCI device has no peer-to-peer memory: %s\n", 969 page); 970 pci_dev_put(*p2p_dev); 971 return -ENODEV; 972 } 973 974 return 0; 975 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 976 /* 977 * If the user enters a PCI device that doesn't exist 978 * like "0000:01:00.1", we don't want kstrtobool to think 979 * it's a '0' when it's clearly not what the user wanted. 980 * So we require 0's and 1's to be exactly one character. 981 */ 982 } else if (!kstrtobool(page, use_p2pdma)) { 983 return 0; 984 } 985 986 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 987 return -ENODEV; 988 } 989 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 990 991 /** 992 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 993 * whether p2pdma is enabled 994 * @page: contents of the stored value 995 * @p2p_dev: the selected p2p device (NULL if no device is selected) 996 * @use_p2pdma: whether p2pdma has been enabled 997 * 998 * Attributes that use pci_p2pdma_enable_store() should use this function 999 * to show the value of the attribute. 1000 * 1001 * Returns 0 on success 1002 */ 1003 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 1004 bool use_p2pdma) 1005 { 1006 if (!use_p2pdma) 1007 return sprintf(page, "0\n"); 1008 1009 if (!p2p_dev) 1010 return sprintf(page, "1\n"); 1011 1012 return sprintf(page, "%s\n", pci_name(p2p_dev)); 1013 } 1014 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 1015