1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 #include <linux/xarray.h> 22 23 enum pci_p2pdma_map_type { 24 PCI_P2PDMA_MAP_UNKNOWN = 0, 25 PCI_P2PDMA_MAP_NOT_SUPPORTED, 26 PCI_P2PDMA_MAP_BUS_ADDR, 27 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE, 28 }; 29 30 struct pci_p2pdma { 31 struct gen_pool *pool; 32 bool p2pmem_published; 33 struct xarray map_types; 34 }; 35 36 struct pci_p2pdma_pagemap { 37 struct dev_pagemap pgmap; 38 struct pci_dev *provider; 39 u64 bus_offset; 40 }; 41 42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 43 { 44 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 45 } 46 47 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 48 char *buf) 49 { 50 struct pci_dev *pdev = to_pci_dev(dev); 51 size_t size = 0; 52 53 if (pdev->p2pdma->pool) 54 size = gen_pool_size(pdev->p2pdma->pool); 55 56 return scnprintf(buf, PAGE_SIZE, "%zd\n", size); 57 } 58 static DEVICE_ATTR_RO(size); 59 60 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 61 char *buf) 62 { 63 struct pci_dev *pdev = to_pci_dev(dev); 64 size_t avail = 0; 65 66 if (pdev->p2pdma->pool) 67 avail = gen_pool_avail(pdev->p2pdma->pool); 68 69 return scnprintf(buf, PAGE_SIZE, "%zd\n", avail); 70 } 71 static DEVICE_ATTR_RO(available); 72 73 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 74 char *buf) 75 { 76 struct pci_dev *pdev = to_pci_dev(dev); 77 78 return scnprintf(buf, PAGE_SIZE, "%d\n", 79 pdev->p2pdma->p2pmem_published); 80 } 81 static DEVICE_ATTR_RO(published); 82 83 static struct attribute *p2pmem_attrs[] = { 84 &dev_attr_size.attr, 85 &dev_attr_available.attr, 86 &dev_attr_published.attr, 87 NULL, 88 }; 89 90 static const struct attribute_group p2pmem_group = { 91 .attrs = p2pmem_attrs, 92 .name = "p2pmem", 93 }; 94 95 static void pci_p2pdma_release(void *data) 96 { 97 struct pci_dev *pdev = data; 98 struct pci_p2pdma *p2pdma = pdev->p2pdma; 99 100 if (!p2pdma) 101 return; 102 103 /* Flush and disable pci_alloc_p2p_mem() */ 104 pdev->p2pdma = NULL; 105 synchronize_rcu(); 106 107 gen_pool_destroy(p2pdma->pool); 108 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 109 xa_destroy(&p2pdma->map_types); 110 } 111 112 static int pci_p2pdma_setup(struct pci_dev *pdev) 113 { 114 int error = -ENOMEM; 115 struct pci_p2pdma *p2p; 116 117 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 118 if (!p2p) 119 return -ENOMEM; 120 121 xa_init(&p2p->map_types); 122 123 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 124 if (!p2p->pool) 125 goto out; 126 127 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 128 if (error) 129 goto out_pool_destroy; 130 131 pdev->p2pdma = p2p; 132 133 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 134 if (error) 135 goto out_pool_destroy; 136 137 return 0; 138 139 out_pool_destroy: 140 pdev->p2pdma = NULL; 141 gen_pool_destroy(p2p->pool); 142 out: 143 devm_kfree(&pdev->dev, p2p); 144 return error; 145 } 146 147 /** 148 * pci_p2pdma_add_resource - add memory for use as p2p memory 149 * @pdev: the device to add the memory to 150 * @bar: PCI BAR to add 151 * @size: size of the memory to add, may be zero to use the whole BAR 152 * @offset: offset into the PCI BAR 153 * 154 * The memory will be given ZONE_DEVICE struct pages so that it may 155 * be used with any DMA request. 156 */ 157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 158 u64 offset) 159 { 160 struct pci_p2pdma_pagemap *p2p_pgmap; 161 struct dev_pagemap *pgmap; 162 void *addr; 163 int error; 164 165 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 166 return -EINVAL; 167 168 if (offset >= pci_resource_len(pdev, bar)) 169 return -EINVAL; 170 171 if (!size) 172 size = pci_resource_len(pdev, bar) - offset; 173 174 if (size + offset > pci_resource_len(pdev, bar)) 175 return -EINVAL; 176 177 if (!pdev->p2pdma) { 178 error = pci_p2pdma_setup(pdev); 179 if (error) 180 return error; 181 } 182 183 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 184 if (!p2p_pgmap) 185 return -ENOMEM; 186 187 pgmap = &p2p_pgmap->pgmap; 188 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 189 pgmap->range.end = pgmap->range.start + size - 1; 190 pgmap->nr_range = 1; 191 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 192 193 p2p_pgmap->provider = pdev; 194 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 195 pci_resource_start(pdev, bar); 196 197 addr = devm_memremap_pages(&pdev->dev, pgmap); 198 if (IS_ERR(addr)) { 199 error = PTR_ERR(addr); 200 goto pgmap_free; 201 } 202 203 error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr, 204 pci_bus_address(pdev, bar) + offset, 205 range_len(&pgmap->range), dev_to_node(&pdev->dev), 206 pgmap->ref); 207 if (error) 208 goto pages_free; 209 210 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 211 pgmap->range.start, pgmap->range.end); 212 213 return 0; 214 215 pages_free: 216 devm_memunmap_pages(&pdev->dev, pgmap); 217 pgmap_free: 218 devm_kfree(&pdev->dev, pgmap); 219 return error; 220 } 221 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 222 223 /* 224 * Note this function returns the parent PCI device with a 225 * reference taken. It is the caller's responsibility to drop 226 * the reference. 227 */ 228 static struct pci_dev *find_parent_pci_dev(struct device *dev) 229 { 230 struct device *parent; 231 232 dev = get_device(dev); 233 234 while (dev) { 235 if (dev_is_pci(dev)) 236 return to_pci_dev(dev); 237 238 parent = get_device(dev->parent); 239 put_device(dev); 240 dev = parent; 241 } 242 243 return NULL; 244 } 245 246 /* 247 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 248 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 249 * upstream, 0 otherwise. 250 */ 251 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 252 { 253 int pos; 254 u16 ctrl; 255 256 pos = pdev->acs_cap; 257 if (!pos) 258 return 0; 259 260 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 261 262 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 263 return 1; 264 265 return 0; 266 } 267 268 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 269 { 270 if (!buf) 271 return; 272 273 seq_buf_printf(buf, "%s;", pci_name(pdev)); 274 } 275 276 static bool cpu_supports_p2pdma(void) 277 { 278 #ifdef CONFIG_X86 279 struct cpuinfo_x86 *c = &cpu_data(0); 280 281 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 282 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 283 return true; 284 #endif 285 286 return false; 287 } 288 289 static const struct pci_p2pdma_whitelist_entry { 290 unsigned short vendor; 291 unsigned short device; 292 enum { 293 REQ_SAME_HOST_BRIDGE = 1 << 0, 294 } flags; 295 } pci_p2pdma_whitelist[] = { 296 /* Intel Xeon E5/Core i7 */ 297 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 298 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 299 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 300 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 301 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 302 /* Intel SkyLake-E */ 303 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 304 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 305 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 306 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 307 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 308 {} 309 }; 310 311 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 312 bool same_host_bridge) 313 { 314 struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0)); 315 const struct pci_p2pdma_whitelist_entry *entry; 316 unsigned short vendor, device; 317 318 if (!root) 319 return false; 320 321 vendor = root->vendor; 322 device = root->device; 323 pci_dev_put(root); 324 325 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 326 if (vendor != entry->vendor || device != entry->device) 327 continue; 328 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 329 return false; 330 331 return true; 332 } 333 334 return false; 335 } 336 337 /* 338 * If we can't find a common upstream bridge take a look at the root 339 * complex and compare it to a whitelist of known good hardware. 340 */ 341 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b) 342 { 343 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 344 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 345 346 if (host_a == host_b) 347 return __host_bridge_whitelist(host_a, true); 348 349 if (__host_bridge_whitelist(host_a, false) && 350 __host_bridge_whitelist(host_b, false)) 351 return true; 352 353 return false; 354 } 355 356 static enum pci_p2pdma_map_type 357 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client, 358 int *dist, bool *acs_redirects, struct seq_buf *acs_list) 359 { 360 struct pci_dev *a = provider, *b = client, *bb; 361 int dist_a = 0; 362 int dist_b = 0; 363 int acs_cnt = 0; 364 365 if (acs_redirects) 366 *acs_redirects = false; 367 368 /* 369 * Note, we don't need to take references to devices returned by 370 * pci_upstream_bridge() seeing we hold a reference to a child 371 * device which will already hold a reference to the upstream bridge. 372 */ 373 374 while (a) { 375 dist_b = 0; 376 377 if (pci_bridge_has_acs_redir(a)) { 378 seq_buf_print_bus_devfn(acs_list, a); 379 acs_cnt++; 380 } 381 382 bb = b; 383 384 while (bb) { 385 if (a == bb) 386 goto check_b_path_acs; 387 388 bb = pci_upstream_bridge(bb); 389 dist_b++; 390 } 391 392 a = pci_upstream_bridge(a); 393 dist_a++; 394 } 395 396 if (dist) 397 *dist = dist_a + dist_b; 398 399 return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 400 401 check_b_path_acs: 402 bb = b; 403 404 while (bb) { 405 if (a == bb) 406 break; 407 408 if (pci_bridge_has_acs_redir(bb)) { 409 seq_buf_print_bus_devfn(acs_list, bb); 410 acs_cnt++; 411 } 412 413 bb = pci_upstream_bridge(bb); 414 } 415 416 if (dist) 417 *dist = dist_a + dist_b; 418 419 if (acs_cnt) { 420 if (acs_redirects) 421 *acs_redirects = true; 422 423 return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 424 } 425 426 return PCI_P2PDMA_MAP_BUS_ADDR; 427 } 428 429 static unsigned long map_types_idx(struct pci_dev *client) 430 { 431 return (pci_domain_nr(client->bus) << 16) | 432 (client->bus->number << 8) | client->devfn; 433 } 434 435 /* 436 * Find the distance through the nearest common upstream bridge between 437 * two PCI devices. 438 * 439 * If the two devices are the same device then 0 will be returned. 440 * 441 * If there are two virtual functions of the same device behind the same 442 * bridge port then 2 will be returned (one step down to the PCIe switch, 443 * then one step back to the same device). 444 * 445 * In the case where two devices are connected to the same PCIe switch, the 446 * value 4 will be returned. This corresponds to the following PCI tree: 447 * 448 * -+ Root Port 449 * \+ Switch Upstream Port 450 * +-+ Switch Downstream Port 451 * + \- Device A 452 * \-+ Switch Downstream Port 453 * \- Device B 454 * 455 * The distance is 4 because we traverse from Device A through the downstream 456 * port of the switch, to the common upstream port, back up to the second 457 * downstream port and then to Device B. 458 * 459 * Any two devices that cannot communicate using p2pdma will return 460 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 461 * 462 * Any two devices that have a data path that goes through the host bridge 463 * will consult a whitelist. If the host bridges are on the whitelist, 464 * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE. 465 * 466 * If either bridge is not on the whitelist this function returns 467 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 468 * 469 * If a bridge which has any ACS redirection bits set is in the path, 470 * acs_redirects will be set to true. In this case, a list of all infringing 471 * bridge addresses will be populated in acs_list (assuming it's non-null) 472 * for printk purposes. 473 */ 474 static enum pci_p2pdma_map_type 475 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client, 476 int *dist, bool *acs_redirects, struct seq_buf *acs_list) 477 { 478 enum pci_p2pdma_map_type map_type; 479 480 map_type = __upstream_bridge_distance(provider, client, dist, 481 acs_redirects, acs_list); 482 483 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) { 484 if (!cpu_supports_p2pdma() && 485 !host_bridge_whitelist(provider, client)) 486 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 487 } 488 489 if (provider->p2pdma) 490 xa_store(&provider->p2pdma->map_types, map_types_idx(client), 491 xa_mk_value(map_type), GFP_KERNEL); 492 493 return map_type; 494 } 495 496 static enum pci_p2pdma_map_type 497 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client, 498 int *dist) 499 { 500 struct seq_buf acs_list; 501 bool acs_redirects; 502 int ret; 503 504 seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 505 if (!acs_list.buffer) 506 return -ENOMEM; 507 508 ret = upstream_bridge_distance(provider, client, dist, &acs_redirects, 509 &acs_list); 510 if (acs_redirects) { 511 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 512 pci_name(provider)); 513 /* Drop final semicolon */ 514 acs_list.buffer[acs_list.len-1] = 0; 515 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 516 acs_list.buffer); 517 } 518 519 if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) { 520 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 521 pci_name(provider)); 522 } 523 524 kfree(acs_list.buffer); 525 526 return ret; 527 } 528 529 /** 530 * pci_p2pdma_distance_many - Determine the cumulative distance between 531 * a p2pdma provider and the clients in use. 532 * @provider: p2pdma provider to check against the client list 533 * @clients: array of devices to check (NULL-terminated) 534 * @num_clients: number of clients in the array 535 * @verbose: if true, print warnings for devices when we return -1 536 * 537 * Returns -1 if any of the clients are not compatible, otherwise returns a 538 * positive number where a lower number is the preferable choice. (If there's 539 * one client that's the same as the provider it will return 0, which is best 540 * choice). 541 * 542 * "compatible" means the provider and the clients are either all behind 543 * the same PCI root port or the host bridges connected to each of the devices 544 * are listed in the 'pci_p2pdma_whitelist'. 545 */ 546 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 547 int num_clients, bool verbose) 548 { 549 bool not_supported = false; 550 struct pci_dev *pci_client; 551 int total_dist = 0; 552 int distance; 553 int i, ret; 554 555 if (num_clients == 0) 556 return -1; 557 558 for (i = 0; i < num_clients; i++) { 559 pci_client = find_parent_pci_dev(clients[i]); 560 if (!pci_client) { 561 if (verbose) 562 dev_warn(clients[i], 563 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 564 return -1; 565 } 566 567 if (verbose) 568 ret = upstream_bridge_distance_warn(provider, 569 pci_client, &distance); 570 else 571 ret = upstream_bridge_distance(provider, pci_client, 572 &distance, NULL, NULL); 573 574 pci_dev_put(pci_client); 575 576 if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) 577 not_supported = true; 578 579 if (not_supported && !verbose) 580 break; 581 582 total_dist += distance; 583 } 584 585 if (not_supported) 586 return -1; 587 588 return total_dist; 589 } 590 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 591 592 /** 593 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 594 * @pdev: PCI device to check 595 */ 596 bool pci_has_p2pmem(struct pci_dev *pdev) 597 { 598 return pdev->p2pdma && pdev->p2pdma->p2pmem_published; 599 } 600 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 601 602 /** 603 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 604 * the specified list of clients and shortest distance (as determined 605 * by pci_p2pmem_dma()) 606 * @clients: array of devices to check (NULL-terminated) 607 * @num_clients: number of client devices in the list 608 * 609 * If multiple devices are behind the same switch, the one "closest" to the 610 * client devices in use will be chosen first. (So if one of the providers is 611 * the same as one of the clients, that provider will be used ahead of any 612 * other providers that are unrelated). If multiple providers are an equal 613 * distance away, one will be chosen at random. 614 * 615 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 616 * to return the reference) or NULL if no compatible device is found. The 617 * found provider will also be assigned to the client list. 618 */ 619 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 620 { 621 struct pci_dev *pdev = NULL; 622 int distance; 623 int closest_distance = INT_MAX; 624 struct pci_dev **closest_pdevs; 625 int dev_cnt = 0; 626 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 627 int i; 628 629 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 630 if (!closest_pdevs) 631 return NULL; 632 633 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 634 if (!pci_has_p2pmem(pdev)) 635 continue; 636 637 distance = pci_p2pdma_distance_many(pdev, clients, 638 num_clients, false); 639 if (distance < 0 || distance > closest_distance) 640 continue; 641 642 if (distance == closest_distance && dev_cnt >= max_devs) 643 continue; 644 645 if (distance < closest_distance) { 646 for (i = 0; i < dev_cnt; i++) 647 pci_dev_put(closest_pdevs[i]); 648 649 dev_cnt = 0; 650 closest_distance = distance; 651 } 652 653 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 654 } 655 656 if (dev_cnt) 657 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 658 659 for (i = 0; i < dev_cnt; i++) 660 pci_dev_put(closest_pdevs[i]); 661 662 kfree(closest_pdevs); 663 return pdev; 664 } 665 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 666 667 /** 668 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 669 * @pdev: the device to allocate memory from 670 * @size: number of bytes to allocate 671 * 672 * Returns the allocated memory or NULL on error. 673 */ 674 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 675 { 676 void *ret = NULL; 677 struct percpu_ref *ref; 678 679 /* 680 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 681 * ensure pdev->p2pdma is non-NULL for the duration of the 682 * read-lock. 683 */ 684 rcu_read_lock(); 685 if (unlikely(!pdev->p2pdma)) 686 goto out; 687 688 ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size, 689 (void **) &ref); 690 if (!ret) 691 goto out; 692 693 if (unlikely(!percpu_ref_tryget_live(ref))) { 694 gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size); 695 ret = NULL; 696 goto out; 697 } 698 out: 699 rcu_read_unlock(); 700 return ret; 701 } 702 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 703 704 /** 705 * pci_free_p2pmem - free peer-to-peer DMA memory 706 * @pdev: the device the memory was allocated from 707 * @addr: address of the memory that was allocated 708 * @size: number of bytes that were allocated 709 */ 710 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 711 { 712 struct percpu_ref *ref; 713 714 gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size, 715 (void **) &ref); 716 percpu_ref_put(ref); 717 } 718 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 719 720 /** 721 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 722 * address obtained with pci_alloc_p2pmem() 723 * @pdev: the device the memory was allocated from 724 * @addr: address of the memory that was allocated 725 */ 726 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 727 { 728 if (!addr) 729 return 0; 730 if (!pdev->p2pdma) 731 return 0; 732 733 /* 734 * Note: when we added the memory to the pool we used the PCI 735 * bus address as the physical address. So gen_pool_virt_to_phys() 736 * actually returns the bus address despite the misleading name. 737 */ 738 return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr); 739 } 740 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 741 742 /** 743 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 744 * @pdev: the device to allocate memory from 745 * @nents: the number of SG entries in the list 746 * @length: number of bytes to allocate 747 * 748 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 749 */ 750 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 751 unsigned int *nents, u32 length) 752 { 753 struct scatterlist *sg; 754 void *addr; 755 756 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 757 if (!sg) 758 return NULL; 759 760 sg_init_table(sg, 1); 761 762 addr = pci_alloc_p2pmem(pdev, length); 763 if (!addr) 764 goto out_free_sg; 765 766 sg_set_buf(sg, addr, length); 767 *nents = 1; 768 return sg; 769 770 out_free_sg: 771 kfree(sg); 772 return NULL; 773 } 774 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 775 776 /** 777 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 778 * @pdev: the device to allocate memory from 779 * @sgl: the allocated scatterlist 780 */ 781 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 782 { 783 struct scatterlist *sg; 784 int count; 785 786 for_each_sg(sgl, sg, INT_MAX, count) { 787 if (!sg) 788 break; 789 790 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 791 } 792 kfree(sgl); 793 } 794 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 795 796 /** 797 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 798 * other devices with pci_p2pmem_find() 799 * @pdev: the device with peer-to-peer DMA memory to publish 800 * @publish: set to true to publish the memory, false to unpublish it 801 * 802 * Published memory can be used by other PCI device drivers for 803 * peer-2-peer DMA operations. Non-published memory is reserved for 804 * exclusive use of the device driver that registers the peer-to-peer 805 * memory. 806 */ 807 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 808 { 809 if (pdev->p2pdma) 810 pdev->p2pdma->p2pmem_published = publish; 811 } 812 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 813 814 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider, 815 struct pci_dev *client) 816 { 817 if (!provider->p2pdma) 818 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 819 820 return xa_to_value(xa_load(&provider->p2pdma->map_types, 821 map_types_idx(client))); 822 } 823 824 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap, 825 struct device *dev, struct scatterlist *sg, int nents) 826 { 827 struct scatterlist *s; 828 int i; 829 830 for_each_sg(sg, s, nents, i) { 831 s->dma_address = sg_phys(s) - p2p_pgmap->bus_offset; 832 sg_dma_len(s) = s->length; 833 } 834 835 return nents; 836 } 837 838 /** 839 * pci_p2pdma_map_sg_attrs - map a PCI peer-to-peer scatterlist for DMA 840 * @dev: device doing the DMA request 841 * @sg: scatter list to map 842 * @nents: elements in the scatterlist 843 * @dir: DMA direction 844 * @attrs: DMA attributes passed to dma_map_sg() (if called) 845 * 846 * Scatterlists mapped with this function should be unmapped using 847 * pci_p2pdma_unmap_sg_attrs(). 848 * 849 * Returns the number of SG entries mapped or 0 on error. 850 */ 851 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 852 int nents, enum dma_data_direction dir, unsigned long attrs) 853 { 854 struct pci_p2pdma_pagemap *p2p_pgmap = 855 to_p2p_pgmap(sg_page(sg)->pgmap); 856 struct pci_dev *client; 857 858 if (WARN_ON_ONCE(!dev_is_pci(dev))) 859 return 0; 860 861 client = to_pci_dev(dev); 862 863 switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) { 864 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 865 return dma_map_sg_attrs(dev, sg, nents, dir, attrs); 866 case PCI_P2PDMA_MAP_BUS_ADDR: 867 return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents); 868 default: 869 WARN_ON_ONCE(1); 870 return 0; 871 } 872 } 873 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs); 874 875 /** 876 * pci_p2pdma_unmap_sg_attrs - unmap a PCI peer-to-peer scatterlist that was 877 * mapped with pci_p2pdma_map_sg() 878 * @dev: device doing the DMA request 879 * @sg: scatter list to map 880 * @nents: number of elements returned by pci_p2pdma_map_sg() 881 * @dir: DMA direction 882 * @attrs: DMA attributes passed to dma_unmap_sg() (if called) 883 */ 884 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 885 int nents, enum dma_data_direction dir, unsigned long attrs) 886 { 887 struct pci_p2pdma_pagemap *p2p_pgmap = 888 to_p2p_pgmap(sg_page(sg)->pgmap); 889 enum pci_p2pdma_map_type map_type; 890 struct pci_dev *client; 891 892 if (WARN_ON_ONCE(!dev_is_pci(dev))) 893 return; 894 895 client = to_pci_dev(dev); 896 897 map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client); 898 899 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) 900 dma_unmap_sg_attrs(dev, sg, nents, dir, attrs); 901 } 902 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs); 903 904 /** 905 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 906 * to enable p2pdma 907 * @page: contents of the value to be stored 908 * @p2p_dev: returns the PCI device that was selected to be used 909 * (if one was specified in the stored value) 910 * @use_p2pdma: returns whether to enable p2pdma or not 911 * 912 * Parses an attribute value to decide whether to enable p2pdma. 913 * The value can select a PCI device (using its full BDF device 914 * name) or a boolean (in any format strtobool() accepts). A false 915 * value disables p2pdma, a true value expects the caller 916 * to automatically find a compatible device and specifying a PCI device 917 * expects the caller to use the specific provider. 918 * 919 * pci_p2pdma_enable_show() should be used as the show operation for 920 * the attribute. 921 * 922 * Returns 0 on success 923 */ 924 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 925 bool *use_p2pdma) 926 { 927 struct device *dev; 928 929 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 930 if (dev) { 931 *use_p2pdma = true; 932 *p2p_dev = to_pci_dev(dev); 933 934 if (!pci_has_p2pmem(*p2p_dev)) { 935 pci_err(*p2p_dev, 936 "PCI device has no peer-to-peer memory: %s\n", 937 page); 938 pci_dev_put(*p2p_dev); 939 return -ENODEV; 940 } 941 942 return 0; 943 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 944 /* 945 * If the user enters a PCI device that doesn't exist 946 * like "0000:01:00.1", we don't want strtobool to think 947 * it's a '0' when it's clearly not what the user wanted. 948 * So we require 0's and 1's to be exactly one character. 949 */ 950 } else if (!strtobool(page, use_p2pdma)) { 951 return 0; 952 } 953 954 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 955 return -ENODEV; 956 } 957 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 958 959 /** 960 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 961 * whether p2pdma is enabled 962 * @page: contents of the stored value 963 * @p2p_dev: the selected p2p device (NULL if no device is selected) 964 * @use_p2pdma: whether p2pdma has been enabled 965 * 966 * Attributes that use pci_p2pdma_enable_store() should use this function 967 * to show the value of the attribute. 968 * 969 * Returns 0 on success 970 */ 971 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 972 bool use_p2pdma) 973 { 974 if (!use_p2pdma) 975 return sprintf(page, "0\n"); 976 977 if (!p2p_dev) 978 return sprintf(page, "1\n"); 979 980 return sprintf(page, "%s\n", pci_name(p2p_dev)); 981 } 982 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 983