xref: /openbmc/linux/drivers/pci/p2pdma.c (revision 6c33a6f4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 #include <linux/xarray.h>
22 
23 enum pci_p2pdma_map_type {
24 	PCI_P2PDMA_MAP_UNKNOWN = 0,
25 	PCI_P2PDMA_MAP_NOT_SUPPORTED,
26 	PCI_P2PDMA_MAP_BUS_ADDR,
27 	PCI_P2PDMA_MAP_THRU_HOST_BRIDGE,
28 };
29 
30 struct pci_p2pdma {
31 	struct gen_pool *pool;
32 	bool p2pmem_published;
33 	struct xarray map_types;
34 };
35 
36 struct pci_p2pdma_pagemap {
37 	struct dev_pagemap pgmap;
38 	struct pci_dev *provider;
39 	u64 bus_offset;
40 };
41 
42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap)
43 {
44 	return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap);
45 }
46 
47 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
48 			 char *buf)
49 {
50 	struct pci_dev *pdev = to_pci_dev(dev);
51 	size_t size = 0;
52 
53 	if (pdev->p2pdma->pool)
54 		size = gen_pool_size(pdev->p2pdma->pool);
55 
56 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
57 }
58 static DEVICE_ATTR_RO(size);
59 
60 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
61 			      char *buf)
62 {
63 	struct pci_dev *pdev = to_pci_dev(dev);
64 	size_t avail = 0;
65 
66 	if (pdev->p2pdma->pool)
67 		avail = gen_pool_avail(pdev->p2pdma->pool);
68 
69 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
70 }
71 static DEVICE_ATTR_RO(available);
72 
73 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
74 			      char *buf)
75 {
76 	struct pci_dev *pdev = to_pci_dev(dev);
77 
78 	return snprintf(buf, PAGE_SIZE, "%d\n",
79 			pdev->p2pdma->p2pmem_published);
80 }
81 static DEVICE_ATTR_RO(published);
82 
83 static struct attribute *p2pmem_attrs[] = {
84 	&dev_attr_size.attr,
85 	&dev_attr_available.attr,
86 	&dev_attr_published.attr,
87 	NULL,
88 };
89 
90 static const struct attribute_group p2pmem_group = {
91 	.attrs = p2pmem_attrs,
92 	.name = "p2pmem",
93 };
94 
95 static void pci_p2pdma_release(void *data)
96 {
97 	struct pci_dev *pdev = data;
98 	struct pci_p2pdma *p2pdma = pdev->p2pdma;
99 
100 	if (!p2pdma)
101 		return;
102 
103 	/* Flush and disable pci_alloc_p2p_mem() */
104 	pdev->p2pdma = NULL;
105 	synchronize_rcu();
106 
107 	gen_pool_destroy(p2pdma->pool);
108 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
109 	xa_destroy(&p2pdma->map_types);
110 }
111 
112 static int pci_p2pdma_setup(struct pci_dev *pdev)
113 {
114 	int error = -ENOMEM;
115 	struct pci_p2pdma *p2p;
116 
117 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
118 	if (!p2p)
119 		return -ENOMEM;
120 
121 	xa_init(&p2p->map_types);
122 
123 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
124 	if (!p2p->pool)
125 		goto out;
126 
127 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
128 	if (error)
129 		goto out_pool_destroy;
130 
131 	pdev->p2pdma = p2p;
132 
133 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
134 	if (error)
135 		goto out_pool_destroy;
136 
137 	return 0;
138 
139 out_pool_destroy:
140 	pdev->p2pdma = NULL;
141 	gen_pool_destroy(p2p->pool);
142 out:
143 	devm_kfree(&pdev->dev, p2p);
144 	return error;
145 }
146 
147 /**
148  * pci_p2pdma_add_resource - add memory for use as p2p memory
149  * @pdev: the device to add the memory to
150  * @bar: PCI BAR to add
151  * @size: size of the memory to add, may be zero to use the whole BAR
152  * @offset: offset into the PCI BAR
153  *
154  * The memory will be given ZONE_DEVICE struct pages so that it may
155  * be used with any DMA request.
156  */
157 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
158 			    u64 offset)
159 {
160 	struct pci_p2pdma_pagemap *p2p_pgmap;
161 	struct dev_pagemap *pgmap;
162 	void *addr;
163 	int error;
164 
165 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
166 		return -EINVAL;
167 
168 	if (offset >= pci_resource_len(pdev, bar))
169 		return -EINVAL;
170 
171 	if (!size)
172 		size = pci_resource_len(pdev, bar) - offset;
173 
174 	if (size + offset > pci_resource_len(pdev, bar))
175 		return -EINVAL;
176 
177 	if (!pdev->p2pdma) {
178 		error = pci_p2pdma_setup(pdev);
179 		if (error)
180 			return error;
181 	}
182 
183 	p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL);
184 	if (!p2p_pgmap)
185 		return -ENOMEM;
186 
187 	pgmap = &p2p_pgmap->pgmap;
188 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
189 	pgmap->res.end = pgmap->res.start + size - 1;
190 	pgmap->res.flags = pci_resource_flags(pdev, bar);
191 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
192 
193 	p2p_pgmap->provider = pdev;
194 	p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) -
195 		pci_resource_start(pdev, bar);
196 
197 	addr = devm_memremap_pages(&pdev->dev, pgmap);
198 	if (IS_ERR(addr)) {
199 		error = PTR_ERR(addr);
200 		goto pgmap_free;
201 	}
202 
203 	error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr,
204 			pci_bus_address(pdev, bar) + offset,
205 			resource_size(&pgmap->res), dev_to_node(&pdev->dev),
206 			pgmap->ref);
207 	if (error)
208 		goto pages_free;
209 
210 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
211 		 &pgmap->res);
212 
213 	return 0;
214 
215 pages_free:
216 	devm_memunmap_pages(&pdev->dev, pgmap);
217 pgmap_free:
218 	devm_kfree(&pdev->dev, pgmap);
219 	return error;
220 }
221 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
222 
223 /*
224  * Note this function returns the parent PCI device with a
225  * reference taken. It is the caller's responsibility to drop
226  * the reference.
227  */
228 static struct pci_dev *find_parent_pci_dev(struct device *dev)
229 {
230 	struct device *parent;
231 
232 	dev = get_device(dev);
233 
234 	while (dev) {
235 		if (dev_is_pci(dev))
236 			return to_pci_dev(dev);
237 
238 		parent = get_device(dev->parent);
239 		put_device(dev);
240 		dev = parent;
241 	}
242 
243 	return NULL;
244 }
245 
246 /*
247  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
248  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
249  * upstream, 0 otherwise.
250  */
251 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
252 {
253 	int pos;
254 	u16 ctrl;
255 
256 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
257 	if (!pos)
258 		return 0;
259 
260 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
261 
262 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
263 		return 1;
264 
265 	return 0;
266 }
267 
268 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
269 {
270 	if (!buf)
271 		return;
272 
273 	seq_buf_printf(buf, "%s;", pci_name(pdev));
274 }
275 
276 static const struct pci_p2pdma_whitelist_entry {
277 	unsigned short vendor;
278 	unsigned short device;
279 	enum {
280 		REQ_SAME_HOST_BRIDGE	= 1 << 0,
281 	} flags;
282 } pci_p2pdma_whitelist[] = {
283 	/* AMD ZEN */
284 	{PCI_VENDOR_ID_AMD,	0x1450,	0},
285 
286 	/* Intel Xeon E5/Core i7 */
287 	{PCI_VENDOR_ID_INTEL,	0x3c00, REQ_SAME_HOST_BRIDGE},
288 	{PCI_VENDOR_ID_INTEL,	0x3c01, REQ_SAME_HOST_BRIDGE},
289 	/* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */
290 	{PCI_VENDOR_ID_INTEL,	0x2f00, REQ_SAME_HOST_BRIDGE},
291 	{PCI_VENDOR_ID_INTEL,	0x2f01, REQ_SAME_HOST_BRIDGE},
292 	/* Intel SkyLake-E */
293 	{PCI_VENDOR_ID_INTEL,	0x2030, 0},
294 	{PCI_VENDOR_ID_INTEL,	0x2020, 0},
295 	{}
296 };
297 
298 static bool __host_bridge_whitelist(struct pci_host_bridge *host,
299 				    bool same_host_bridge)
300 {
301 	struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0));
302 	const struct pci_p2pdma_whitelist_entry *entry;
303 	unsigned short vendor, device;
304 
305 	if (!root)
306 		return false;
307 
308 	vendor = root->vendor;
309 	device = root->device;
310 	pci_dev_put(root);
311 
312 	for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) {
313 		if (vendor != entry->vendor || device != entry->device)
314 			continue;
315 		if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge)
316 			return false;
317 
318 		return true;
319 	}
320 
321 	return false;
322 }
323 
324 /*
325  * If we can't find a common upstream bridge take a look at the root
326  * complex and compare it to a whitelist of known good hardware.
327  */
328 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b)
329 {
330 	struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus);
331 	struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus);
332 
333 	if (host_a == host_b)
334 		return __host_bridge_whitelist(host_a, true);
335 
336 	if (__host_bridge_whitelist(host_a, false) &&
337 	    __host_bridge_whitelist(host_b, false))
338 		return true;
339 
340 	return false;
341 }
342 
343 static enum pci_p2pdma_map_type
344 __upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
345 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
346 {
347 	struct pci_dev *a = provider, *b = client, *bb;
348 	int dist_a = 0;
349 	int dist_b = 0;
350 	int acs_cnt = 0;
351 
352 	if (acs_redirects)
353 		*acs_redirects = false;
354 
355 	/*
356 	 * Note, we don't need to take references to devices returned by
357 	 * pci_upstream_bridge() seeing we hold a reference to a child
358 	 * device which will already hold a reference to the upstream bridge.
359 	 */
360 
361 	while (a) {
362 		dist_b = 0;
363 
364 		if (pci_bridge_has_acs_redir(a)) {
365 			seq_buf_print_bus_devfn(acs_list, a);
366 			acs_cnt++;
367 		}
368 
369 		bb = b;
370 
371 		while (bb) {
372 			if (a == bb)
373 				goto check_b_path_acs;
374 
375 			bb = pci_upstream_bridge(bb);
376 			dist_b++;
377 		}
378 
379 		a = pci_upstream_bridge(a);
380 		dist_a++;
381 	}
382 
383 	if (dist)
384 		*dist = dist_a + dist_b;
385 
386 	return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
387 
388 check_b_path_acs:
389 	bb = b;
390 
391 	while (bb) {
392 		if (a == bb)
393 			break;
394 
395 		if (pci_bridge_has_acs_redir(bb)) {
396 			seq_buf_print_bus_devfn(acs_list, bb);
397 			acs_cnt++;
398 		}
399 
400 		bb = pci_upstream_bridge(bb);
401 	}
402 
403 	if (dist)
404 		*dist = dist_a + dist_b;
405 
406 	if (acs_cnt) {
407 		if (acs_redirects)
408 			*acs_redirects = true;
409 
410 		return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE;
411 	}
412 
413 	return PCI_P2PDMA_MAP_BUS_ADDR;
414 }
415 
416 static unsigned long map_types_idx(struct pci_dev *client)
417 {
418 	return (pci_domain_nr(client->bus) << 16) |
419 		(client->bus->number << 8) | client->devfn;
420 }
421 
422 /*
423  * Find the distance through the nearest common upstream bridge between
424  * two PCI devices.
425  *
426  * If the two devices are the same device then 0 will be returned.
427  *
428  * If there are two virtual functions of the same device behind the same
429  * bridge port then 2 will be returned (one step down to the PCIe switch,
430  * then one step back to the same device).
431  *
432  * In the case where two devices are connected to the same PCIe switch, the
433  * value 4 will be returned. This corresponds to the following PCI tree:
434  *
435  *     -+  Root Port
436  *      \+ Switch Upstream Port
437  *       +-+ Switch Downstream Port
438  *       + \- Device A
439  *       \-+ Switch Downstream Port
440  *         \- Device B
441  *
442  * The distance is 4 because we traverse from Device A through the downstream
443  * port of the switch, to the common upstream port, back up to the second
444  * downstream port and then to Device B.
445  *
446  * Any two devices that cannot communicate using p2pdma will return
447  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
448  *
449  * Any two devices that have a data path that goes through the host bridge
450  * will consult a whitelist. If the host bridges are on the whitelist,
451  * this function will return PCI_P2PDMA_MAP_THRU_HOST_BRIDGE.
452  *
453  * If either bridge is not on the whitelist this function returns
454  * PCI_P2PDMA_MAP_NOT_SUPPORTED.
455  *
456  * If a bridge which has any ACS redirection bits set is in the path,
457  * acs_redirects will be set to true. In this case, a list of all infringing
458  * bridge addresses will be populated in acs_list (assuming it's non-null)
459  * for printk purposes.
460  */
461 static enum pci_p2pdma_map_type
462 upstream_bridge_distance(struct pci_dev *provider, struct pci_dev *client,
463 		int *dist, bool *acs_redirects, struct seq_buf *acs_list)
464 {
465 	enum pci_p2pdma_map_type map_type;
466 
467 	map_type = __upstream_bridge_distance(provider, client, dist,
468 					      acs_redirects, acs_list);
469 
470 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) {
471 		if (!host_bridge_whitelist(provider, client))
472 			map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED;
473 	}
474 
475 	if (provider->p2pdma)
476 		xa_store(&provider->p2pdma->map_types, map_types_idx(client),
477 			 xa_mk_value(map_type), GFP_KERNEL);
478 
479 	return map_type;
480 }
481 
482 static enum pci_p2pdma_map_type
483 upstream_bridge_distance_warn(struct pci_dev *provider, struct pci_dev *client,
484 			      int *dist)
485 {
486 	struct seq_buf acs_list;
487 	bool acs_redirects;
488 	int ret;
489 
490 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
491 	if (!acs_list.buffer)
492 		return -ENOMEM;
493 
494 	ret = upstream_bridge_distance(provider, client, dist, &acs_redirects,
495 				       &acs_list);
496 	if (acs_redirects) {
497 		pci_warn(client, "ACS redirect is set between the client and provider (%s)\n",
498 			 pci_name(provider));
499 		/* Drop final semicolon */
500 		acs_list.buffer[acs_list.len-1] = 0;
501 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
502 			 acs_list.buffer);
503 	}
504 
505 	if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED) {
506 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n",
507 			 pci_name(provider));
508 	}
509 
510 	kfree(acs_list.buffer);
511 
512 	return ret;
513 }
514 
515 /**
516  * pci_p2pdma_distance_many - Determine the cumulative distance between
517  *	a p2pdma provider and the clients in use.
518  * @provider: p2pdma provider to check against the client list
519  * @clients: array of devices to check (NULL-terminated)
520  * @num_clients: number of clients in the array
521  * @verbose: if true, print warnings for devices when we return -1
522  *
523  * Returns -1 if any of the clients are not compatible, otherwise returns a
524  * positive number where a lower number is the preferable choice. (If there's
525  * one client that's the same as the provider it will return 0, which is best
526  * choice).
527  *
528  * "compatible" means the provider and the clients are either all behind
529  * the same PCI root port or the host bridges connected to each of the devices
530  * are listed in the 'pci_p2pdma_whitelist'.
531  */
532 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
533 			     int num_clients, bool verbose)
534 {
535 	bool not_supported = false;
536 	struct pci_dev *pci_client;
537 	int total_dist = 0;
538 	int distance;
539 	int i, ret;
540 
541 	if (num_clients == 0)
542 		return -1;
543 
544 	for (i = 0; i < num_clients; i++) {
545 		if (IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
546 		    clients[i]->dma_ops == &dma_virt_ops) {
547 			if (verbose)
548 				dev_warn(clients[i],
549 					 "cannot be used for peer-to-peer DMA because the driver makes use of dma_virt_ops\n");
550 			return -1;
551 		}
552 
553 		pci_client = find_parent_pci_dev(clients[i]);
554 		if (!pci_client) {
555 			if (verbose)
556 				dev_warn(clients[i],
557 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
558 			return -1;
559 		}
560 
561 		if (verbose)
562 			ret = upstream_bridge_distance_warn(provider,
563 					pci_client, &distance);
564 		else
565 			ret = upstream_bridge_distance(provider, pci_client,
566 						       &distance, NULL, NULL);
567 
568 		pci_dev_put(pci_client);
569 
570 		if (ret == PCI_P2PDMA_MAP_NOT_SUPPORTED)
571 			not_supported = true;
572 
573 		if (not_supported && !verbose)
574 			break;
575 
576 		total_dist += distance;
577 	}
578 
579 	if (not_supported)
580 		return -1;
581 
582 	return total_dist;
583 }
584 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
585 
586 /**
587  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
588  * @pdev: PCI device to check
589  */
590 bool pci_has_p2pmem(struct pci_dev *pdev)
591 {
592 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
593 }
594 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
595 
596 /**
597  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
598  *	the specified list of clients and shortest distance (as determined
599  *	by pci_p2pmem_dma())
600  * @clients: array of devices to check (NULL-terminated)
601  * @num_clients: number of client devices in the list
602  *
603  * If multiple devices are behind the same switch, the one "closest" to the
604  * client devices in use will be chosen first. (So if one of the providers is
605  * the same as one of the clients, that provider will be used ahead of any
606  * other providers that are unrelated). If multiple providers are an equal
607  * distance away, one will be chosen at random.
608  *
609  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
610  * to return the reference) or NULL if no compatible device is found. The
611  * found provider will also be assigned to the client list.
612  */
613 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
614 {
615 	struct pci_dev *pdev = NULL;
616 	int distance;
617 	int closest_distance = INT_MAX;
618 	struct pci_dev **closest_pdevs;
619 	int dev_cnt = 0;
620 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
621 	int i;
622 
623 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
624 	if (!closest_pdevs)
625 		return NULL;
626 
627 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
628 		if (!pci_has_p2pmem(pdev))
629 			continue;
630 
631 		distance = pci_p2pdma_distance_many(pdev, clients,
632 						    num_clients, false);
633 		if (distance < 0 || distance > closest_distance)
634 			continue;
635 
636 		if (distance == closest_distance && dev_cnt >= max_devs)
637 			continue;
638 
639 		if (distance < closest_distance) {
640 			for (i = 0; i < dev_cnt; i++)
641 				pci_dev_put(closest_pdevs[i]);
642 
643 			dev_cnt = 0;
644 			closest_distance = distance;
645 		}
646 
647 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
648 	}
649 
650 	if (dev_cnt)
651 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
652 
653 	for (i = 0; i < dev_cnt; i++)
654 		pci_dev_put(closest_pdevs[i]);
655 
656 	kfree(closest_pdevs);
657 	return pdev;
658 }
659 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
660 
661 /**
662  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
663  * @pdev: the device to allocate memory from
664  * @size: number of bytes to allocate
665  *
666  * Returns the allocated memory or NULL on error.
667  */
668 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
669 {
670 	void *ret = NULL;
671 	struct percpu_ref *ref;
672 
673 	/*
674 	 * Pairs with synchronize_rcu() in pci_p2pdma_release() to
675 	 * ensure pdev->p2pdma is non-NULL for the duration of the
676 	 * read-lock.
677 	 */
678 	rcu_read_lock();
679 	if (unlikely(!pdev->p2pdma))
680 		goto out;
681 
682 	ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size,
683 			(void **) &ref);
684 	if (!ret)
685 		goto out;
686 
687 	if (unlikely(!percpu_ref_tryget_live(ref))) {
688 		gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size);
689 		ret = NULL;
690 		goto out;
691 	}
692 out:
693 	rcu_read_unlock();
694 	return ret;
695 }
696 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
697 
698 /**
699  * pci_free_p2pmem - free peer-to-peer DMA memory
700  * @pdev: the device the memory was allocated from
701  * @addr: address of the memory that was allocated
702  * @size: number of bytes that were allocated
703  */
704 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
705 {
706 	struct percpu_ref *ref;
707 
708 	gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size,
709 			(void **) &ref);
710 	percpu_ref_put(ref);
711 }
712 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
713 
714 /**
715  * pci_virt_to_bus - return the PCI bus address for a given virtual
716  *	address obtained with pci_alloc_p2pmem()
717  * @pdev: the device the memory was allocated from
718  * @addr: address of the memory that was allocated
719  */
720 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
721 {
722 	if (!addr)
723 		return 0;
724 	if (!pdev->p2pdma)
725 		return 0;
726 
727 	/*
728 	 * Note: when we added the memory to the pool we used the PCI
729 	 * bus address as the physical address. So gen_pool_virt_to_phys()
730 	 * actually returns the bus address despite the misleading name.
731 	 */
732 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
733 }
734 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
735 
736 /**
737  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
738  * @pdev: the device to allocate memory from
739  * @nents: the number of SG entries in the list
740  * @length: number of bytes to allocate
741  *
742  * Return: %NULL on error or &struct scatterlist pointer and @nents on success
743  */
744 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
745 					 unsigned int *nents, u32 length)
746 {
747 	struct scatterlist *sg;
748 	void *addr;
749 
750 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
751 	if (!sg)
752 		return NULL;
753 
754 	sg_init_table(sg, 1);
755 
756 	addr = pci_alloc_p2pmem(pdev, length);
757 	if (!addr)
758 		goto out_free_sg;
759 
760 	sg_set_buf(sg, addr, length);
761 	*nents = 1;
762 	return sg;
763 
764 out_free_sg:
765 	kfree(sg);
766 	return NULL;
767 }
768 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
769 
770 /**
771  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
772  * @pdev: the device to allocate memory from
773  * @sgl: the allocated scatterlist
774  */
775 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
776 {
777 	struct scatterlist *sg;
778 	int count;
779 
780 	for_each_sg(sgl, sg, INT_MAX, count) {
781 		if (!sg)
782 			break;
783 
784 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
785 	}
786 	kfree(sgl);
787 }
788 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
789 
790 /**
791  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
792  *	other devices with pci_p2pmem_find()
793  * @pdev: the device with peer-to-peer DMA memory to publish
794  * @publish: set to true to publish the memory, false to unpublish it
795  *
796  * Published memory can be used by other PCI device drivers for
797  * peer-2-peer DMA operations. Non-published memory is reserved for
798  * exclusive use of the device driver that registers the peer-to-peer
799  * memory.
800  */
801 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
802 {
803 	if (pdev->p2pdma)
804 		pdev->p2pdma->p2pmem_published = publish;
805 }
806 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
807 
808 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct pci_dev *provider,
809 						    struct pci_dev *client)
810 {
811 	if (!provider->p2pdma)
812 		return PCI_P2PDMA_MAP_NOT_SUPPORTED;
813 
814 	return xa_to_value(xa_load(&provider->p2pdma->map_types,
815 				   map_types_idx(client)));
816 }
817 
818 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap,
819 		struct device *dev, struct scatterlist *sg, int nents)
820 {
821 	struct scatterlist *s;
822 	phys_addr_t paddr;
823 	int i;
824 
825 	/*
826 	 * p2pdma mappings are not compatible with devices that use
827 	 * dma_virt_ops. If the upper layers do the right thing
828 	 * this should never happen because it will be prevented
829 	 * by the check in pci_p2pdma_distance_many()
830 	 */
831 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
832 			 dev->dma_ops == &dma_virt_ops))
833 		return 0;
834 
835 	for_each_sg(sg, s, nents, i) {
836 		paddr = sg_phys(s);
837 
838 		s->dma_address = paddr - p2p_pgmap->bus_offset;
839 		sg_dma_len(s) = s->length;
840 	}
841 
842 	return nents;
843 }
844 
845 /**
846  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
847  * @dev: device doing the DMA request
848  * @sg: scatter list to map
849  * @nents: elements in the scatterlist
850  * @dir: DMA direction
851  * @attrs: DMA attributes passed to dma_map_sg() (if called)
852  *
853  * Scatterlists mapped with this function should be unmapped using
854  * pci_p2pdma_unmap_sg_attrs().
855  *
856  * Returns the number of SG entries mapped or 0 on error.
857  */
858 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
859 		int nents, enum dma_data_direction dir, unsigned long attrs)
860 {
861 	struct pci_p2pdma_pagemap *p2p_pgmap =
862 		to_p2p_pgmap(sg_page(sg)->pgmap);
863 	struct pci_dev *client;
864 
865 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
866 		return 0;
867 
868 	client = to_pci_dev(dev);
869 
870 	switch (pci_p2pdma_map_type(p2p_pgmap->provider, client)) {
871 	case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
872 		return dma_map_sg_attrs(dev, sg, nents, dir, attrs);
873 	case PCI_P2PDMA_MAP_BUS_ADDR:
874 		return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents);
875 	default:
876 		WARN_ON_ONCE(1);
877 		return 0;
878 	}
879 }
880 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs);
881 
882 /**
883  * pci_p2pdma_unmap_sg - unmap a PCI peer-to-peer scatterlist that was
884  *	mapped with pci_p2pdma_map_sg()
885  * @dev: device doing the DMA request
886  * @sg: scatter list to map
887  * @nents: number of elements returned by pci_p2pdma_map_sg()
888  * @dir: DMA direction
889  * @attrs: DMA attributes passed to dma_unmap_sg() (if called)
890  */
891 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
892 		int nents, enum dma_data_direction dir, unsigned long attrs)
893 {
894 	struct pci_p2pdma_pagemap *p2p_pgmap =
895 		to_p2p_pgmap(sg_page(sg)->pgmap);
896 	enum pci_p2pdma_map_type map_type;
897 	struct pci_dev *client;
898 
899 	if (WARN_ON_ONCE(!dev_is_pci(dev)))
900 		return;
901 
902 	client = to_pci_dev(dev);
903 
904 	map_type = pci_p2pdma_map_type(p2p_pgmap->provider, client);
905 
906 	if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE)
907 		dma_unmap_sg_attrs(dev, sg, nents, dir, attrs);
908 }
909 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs);
910 
911 /**
912  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
913  *		to enable p2pdma
914  * @page: contents of the value to be stored
915  * @p2p_dev: returns the PCI device that was selected to be used
916  *		(if one was specified in the stored value)
917  * @use_p2pdma: returns whether to enable p2pdma or not
918  *
919  * Parses an attribute value to decide whether to enable p2pdma.
920  * The value can select a PCI device (using its full BDF device
921  * name) or a boolean (in any format strtobool() accepts). A false
922  * value disables p2pdma, a true value expects the caller
923  * to automatically find a compatible device and specifying a PCI device
924  * expects the caller to use the specific provider.
925  *
926  * pci_p2pdma_enable_show() should be used as the show operation for
927  * the attribute.
928  *
929  * Returns 0 on success
930  */
931 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
932 			    bool *use_p2pdma)
933 {
934 	struct device *dev;
935 
936 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
937 	if (dev) {
938 		*use_p2pdma = true;
939 		*p2p_dev = to_pci_dev(dev);
940 
941 		if (!pci_has_p2pmem(*p2p_dev)) {
942 			pci_err(*p2p_dev,
943 				"PCI device has no peer-to-peer memory: %s\n",
944 				page);
945 			pci_dev_put(*p2p_dev);
946 			return -ENODEV;
947 		}
948 
949 		return 0;
950 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
951 		/*
952 		 * If the user enters a PCI device that  doesn't exist
953 		 * like "0000:01:00.1", we don't want strtobool to think
954 		 * it's a '0' when it's clearly not what the user wanted.
955 		 * So we require 0's and 1's to be exactly one character.
956 		 */
957 	} else if (!strtobool(page, use_p2pdma)) {
958 		return 0;
959 	}
960 
961 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
962 	return -ENODEV;
963 }
964 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
965 
966 /**
967  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
968  *		whether p2pdma is enabled
969  * @page: contents of the stored value
970  * @p2p_dev: the selected p2p device (NULL if no device is selected)
971  * @use_p2pdma: whether p2pdma has been enabled
972  *
973  * Attributes that use pci_p2pdma_enable_store() should use this function
974  * to show the value of the attribute.
975  *
976  * Returns 0 on success
977  */
978 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
979 			       bool use_p2pdma)
980 {
981 	if (!use_p2pdma)
982 		return sprintf(page, "0\n");
983 
984 	if (!p2p_dev)
985 		return sprintf(page, "1\n");
986 
987 	return sprintf(page, "%s\n", pci_name(p2p_dev));
988 }
989 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
990