xref: /openbmc/linux/drivers/pci/p2pdma.c (revision 4bf3bd0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Peer 2 Peer DMA support.
4  *
5  * Copyright (c) 2016-2018, Logan Gunthorpe
6  * Copyright (c) 2016-2017, Microsemi Corporation
7  * Copyright (c) 2017, Christoph Hellwig
8  * Copyright (c) 2018, Eideticom Inc.
9  */
10 
11 #define pr_fmt(fmt) "pci-p2pdma: " fmt
12 #include <linux/ctype.h>
13 #include <linux/pci-p2pdma.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/genalloc.h>
17 #include <linux/memremap.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/random.h>
20 #include <linux/seq_buf.h>
21 
22 struct pci_p2pdma {
23 	struct percpu_ref devmap_ref;
24 	struct completion devmap_ref_done;
25 	struct gen_pool *pool;
26 	bool p2pmem_published;
27 };
28 
29 static ssize_t size_show(struct device *dev, struct device_attribute *attr,
30 			 char *buf)
31 {
32 	struct pci_dev *pdev = to_pci_dev(dev);
33 	size_t size = 0;
34 
35 	if (pdev->p2pdma->pool)
36 		size = gen_pool_size(pdev->p2pdma->pool);
37 
38 	return snprintf(buf, PAGE_SIZE, "%zd\n", size);
39 }
40 static DEVICE_ATTR_RO(size);
41 
42 static ssize_t available_show(struct device *dev, struct device_attribute *attr,
43 			      char *buf)
44 {
45 	struct pci_dev *pdev = to_pci_dev(dev);
46 	size_t avail = 0;
47 
48 	if (pdev->p2pdma->pool)
49 		avail = gen_pool_avail(pdev->p2pdma->pool);
50 
51 	return snprintf(buf, PAGE_SIZE, "%zd\n", avail);
52 }
53 static DEVICE_ATTR_RO(available);
54 
55 static ssize_t published_show(struct device *dev, struct device_attribute *attr,
56 			      char *buf)
57 {
58 	struct pci_dev *pdev = to_pci_dev(dev);
59 
60 	return snprintf(buf, PAGE_SIZE, "%d\n",
61 			pdev->p2pdma->p2pmem_published);
62 }
63 static DEVICE_ATTR_RO(published);
64 
65 static struct attribute *p2pmem_attrs[] = {
66 	&dev_attr_size.attr,
67 	&dev_attr_available.attr,
68 	&dev_attr_published.attr,
69 	NULL,
70 };
71 
72 static const struct attribute_group p2pmem_group = {
73 	.attrs = p2pmem_attrs,
74 	.name = "p2pmem",
75 };
76 
77 static void pci_p2pdma_percpu_release(struct percpu_ref *ref)
78 {
79 	struct pci_p2pdma *p2p =
80 		container_of(ref, struct pci_p2pdma, devmap_ref);
81 
82 	complete_all(&p2p->devmap_ref_done);
83 }
84 
85 static void pci_p2pdma_percpu_kill(void *data)
86 {
87 	struct percpu_ref *ref = data;
88 
89 	/*
90 	 * pci_p2pdma_add_resource() may be called multiple times
91 	 * by a driver and may register the percpu_kill devm action multiple
92 	 * times. We only want the first action to actually kill the
93 	 * percpu_ref.
94 	 */
95 	if (percpu_ref_is_dying(ref))
96 		return;
97 
98 	percpu_ref_kill(ref);
99 }
100 
101 static void pci_p2pdma_release(void *data)
102 {
103 	struct pci_dev *pdev = data;
104 
105 	if (!pdev->p2pdma)
106 		return;
107 
108 	wait_for_completion(&pdev->p2pdma->devmap_ref_done);
109 	percpu_ref_exit(&pdev->p2pdma->devmap_ref);
110 
111 	gen_pool_destroy(pdev->p2pdma->pool);
112 	sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group);
113 	pdev->p2pdma = NULL;
114 }
115 
116 static int pci_p2pdma_setup(struct pci_dev *pdev)
117 {
118 	int error = -ENOMEM;
119 	struct pci_p2pdma *p2p;
120 
121 	p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL);
122 	if (!p2p)
123 		return -ENOMEM;
124 
125 	p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev));
126 	if (!p2p->pool)
127 		goto out;
128 
129 	init_completion(&p2p->devmap_ref_done);
130 	error = percpu_ref_init(&p2p->devmap_ref,
131 			pci_p2pdma_percpu_release, 0, GFP_KERNEL);
132 	if (error)
133 		goto out_pool_destroy;
134 
135 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev);
136 	if (error)
137 		goto out_pool_destroy;
138 
139 	pdev->p2pdma = p2p;
140 
141 	error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group);
142 	if (error)
143 		goto out_pool_destroy;
144 
145 	return 0;
146 
147 out_pool_destroy:
148 	pdev->p2pdma = NULL;
149 	gen_pool_destroy(p2p->pool);
150 out:
151 	devm_kfree(&pdev->dev, p2p);
152 	return error;
153 }
154 
155 /**
156  * pci_p2pdma_add_resource - add memory for use as p2p memory
157  * @pdev: the device to add the memory to
158  * @bar: PCI BAR to add
159  * @size: size of the memory to add, may be zero to use the whole BAR
160  * @offset: offset into the PCI BAR
161  *
162  * The memory will be given ZONE_DEVICE struct pages so that it may
163  * be used with any DMA request.
164  */
165 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size,
166 			    u64 offset)
167 {
168 	struct dev_pagemap *pgmap;
169 	void *addr;
170 	int error;
171 
172 	if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM))
173 		return -EINVAL;
174 
175 	if (offset >= pci_resource_len(pdev, bar))
176 		return -EINVAL;
177 
178 	if (!size)
179 		size = pci_resource_len(pdev, bar) - offset;
180 
181 	if (size + offset > pci_resource_len(pdev, bar))
182 		return -EINVAL;
183 
184 	if (!pdev->p2pdma) {
185 		error = pci_p2pdma_setup(pdev);
186 		if (error)
187 			return error;
188 	}
189 
190 	pgmap = devm_kzalloc(&pdev->dev, sizeof(*pgmap), GFP_KERNEL);
191 	if (!pgmap)
192 		return -ENOMEM;
193 
194 	pgmap->res.start = pci_resource_start(pdev, bar) + offset;
195 	pgmap->res.end = pgmap->res.start + size - 1;
196 	pgmap->res.flags = pci_resource_flags(pdev, bar);
197 	pgmap->ref = &pdev->p2pdma->devmap_ref;
198 	pgmap->type = MEMORY_DEVICE_PCI_P2PDMA;
199 	pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) -
200 		pci_resource_start(pdev, bar);
201 
202 	addr = devm_memremap_pages(&pdev->dev, pgmap);
203 	if (IS_ERR(addr)) {
204 		error = PTR_ERR(addr);
205 		goto pgmap_free;
206 	}
207 
208 	error = gen_pool_add_virt(pdev->p2pdma->pool, (unsigned long)addr,
209 			pci_bus_address(pdev, bar) + offset,
210 			resource_size(&pgmap->res), dev_to_node(&pdev->dev));
211 	if (error)
212 		goto pgmap_free;
213 
214 	error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_percpu_kill,
215 					  &pdev->p2pdma->devmap_ref);
216 	if (error)
217 		goto pgmap_free;
218 
219 	pci_info(pdev, "added peer-to-peer DMA memory %pR\n",
220 		 &pgmap->res);
221 
222 	return 0;
223 
224 pgmap_free:
225 	devm_kfree(&pdev->dev, pgmap);
226 	return error;
227 }
228 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource);
229 
230 /*
231  * Note this function returns the parent PCI device with a
232  * reference taken. It is the caller's responsibily to drop
233  * the reference.
234  */
235 static struct pci_dev *find_parent_pci_dev(struct device *dev)
236 {
237 	struct device *parent;
238 
239 	dev = get_device(dev);
240 
241 	while (dev) {
242 		if (dev_is_pci(dev))
243 			return to_pci_dev(dev);
244 
245 		parent = get_device(dev->parent);
246 		put_device(dev);
247 		dev = parent;
248 	}
249 
250 	return NULL;
251 }
252 
253 /*
254  * Check if a PCI bridge has its ACS redirection bits set to redirect P2P
255  * TLPs upstream via ACS. Returns 1 if the packets will be redirected
256  * upstream, 0 otherwise.
257  */
258 static int pci_bridge_has_acs_redir(struct pci_dev *pdev)
259 {
260 	int pos;
261 	u16 ctrl;
262 
263 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS);
264 	if (!pos)
265 		return 0;
266 
267 	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
268 
269 	if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC))
270 		return 1;
271 
272 	return 0;
273 }
274 
275 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev)
276 {
277 	if (!buf)
278 		return;
279 
280 	seq_buf_printf(buf, "%s;", pci_name(pdev));
281 }
282 
283 /*
284  * Find the distance through the nearest common upstream bridge between
285  * two PCI devices.
286  *
287  * If the two devices are the same device then 0 will be returned.
288  *
289  * If there are two virtual functions of the same device behind the same
290  * bridge port then 2 will be returned (one step down to the PCIe switch,
291  * then one step back to the same device).
292  *
293  * In the case where two devices are connected to the same PCIe switch, the
294  * value 4 will be returned. This corresponds to the following PCI tree:
295  *
296  *     -+  Root Port
297  *      \+ Switch Upstream Port
298  *       +-+ Switch Downstream Port
299  *       + \- Device A
300  *       \-+ Switch Downstream Port
301  *         \- Device B
302  *
303  * The distance is 4 because we traverse from Device A through the downstream
304  * port of the switch, to the common upstream port, back up to the second
305  * downstream port and then to Device B.
306  *
307  * Any two devices that don't have a common upstream bridge will return -1.
308  * In this way devices on separate PCIe root ports will be rejected, which
309  * is what we want for peer-to-peer seeing each PCIe root port defines a
310  * separate hierarchy domain and there's no way to determine whether the root
311  * complex supports forwarding between them.
312  *
313  * In the case where two devices are connected to different PCIe switches,
314  * this function will still return a positive distance as long as both
315  * switches eventually have a common upstream bridge. Note this covers
316  * the case of using multiple PCIe switches to achieve a desired level of
317  * fan-out from a root port. The exact distance will be a function of the
318  * number of switches between Device A and Device B.
319  *
320  * If a bridge which has any ACS redirection bits set is in the path
321  * then this functions will return -2. This is so we reject any
322  * cases where the TLPs are forwarded up into the root complex.
323  * In this case, a list of all infringing bridge addresses will be
324  * populated in acs_list (assuming it's non-null) for printk purposes.
325  */
326 static int upstream_bridge_distance(struct pci_dev *a,
327 				    struct pci_dev *b,
328 				    struct seq_buf *acs_list)
329 {
330 	int dist_a = 0;
331 	int dist_b = 0;
332 	struct pci_dev *bb = NULL;
333 	int acs_cnt = 0;
334 
335 	/*
336 	 * Note, we don't need to take references to devices returned by
337 	 * pci_upstream_bridge() seeing we hold a reference to a child
338 	 * device which will already hold a reference to the upstream bridge.
339 	 */
340 
341 	while (a) {
342 		dist_b = 0;
343 
344 		if (pci_bridge_has_acs_redir(a)) {
345 			seq_buf_print_bus_devfn(acs_list, a);
346 			acs_cnt++;
347 		}
348 
349 		bb = b;
350 
351 		while (bb) {
352 			if (a == bb)
353 				goto check_b_path_acs;
354 
355 			bb = pci_upstream_bridge(bb);
356 			dist_b++;
357 		}
358 
359 		a = pci_upstream_bridge(a);
360 		dist_a++;
361 	}
362 
363 	return -1;
364 
365 check_b_path_acs:
366 	bb = b;
367 
368 	while (bb) {
369 		if (a == bb)
370 			break;
371 
372 		if (pci_bridge_has_acs_redir(bb)) {
373 			seq_buf_print_bus_devfn(acs_list, bb);
374 			acs_cnt++;
375 		}
376 
377 		bb = pci_upstream_bridge(bb);
378 	}
379 
380 	if (acs_cnt)
381 		return -2;
382 
383 	return dist_a + dist_b;
384 }
385 
386 static int upstream_bridge_distance_warn(struct pci_dev *provider,
387 					 struct pci_dev *client)
388 {
389 	struct seq_buf acs_list;
390 	int ret;
391 
392 	seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
393 	if (!acs_list.buffer)
394 		return -ENOMEM;
395 
396 	ret = upstream_bridge_distance(provider, client, &acs_list);
397 	if (ret == -2) {
398 		pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n",
399 			 pci_name(provider));
400 		/* Drop final semicolon */
401 		acs_list.buffer[acs_list.len-1] = 0;
402 		pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n",
403 			 acs_list.buffer);
404 
405 	} else if (ret < 0) {
406 		pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n",
407 			 pci_name(provider));
408 	}
409 
410 	kfree(acs_list.buffer);
411 
412 	return ret;
413 }
414 
415 /**
416  * pci_p2pdma_distance_many - Determive the cumulative distance between
417  *	a p2pdma provider and the clients in use.
418  * @provider: p2pdma provider to check against the client list
419  * @clients: array of devices to check (NULL-terminated)
420  * @num_clients: number of clients in the array
421  * @verbose: if true, print warnings for devices when we return -1
422  *
423  * Returns -1 if any of the clients are not compatible (behind the same
424  * root port as the provider), otherwise returns a positive number where
425  * a lower number is the preferrable choice. (If there's one client
426  * that's the same as the provider it will return 0, which is best choice).
427  *
428  * For now, "compatible" means the provider and the clients are all behind
429  * the same PCI root port. This cuts out cases that may work but is safest
430  * for the user. Future work can expand this to white-list root complexes that
431  * can safely forward between each ports.
432  */
433 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients,
434 			     int num_clients, bool verbose)
435 {
436 	bool not_supported = false;
437 	struct pci_dev *pci_client;
438 	int distance = 0;
439 	int i, ret;
440 
441 	if (num_clients == 0)
442 		return -1;
443 
444 	for (i = 0; i < num_clients; i++) {
445 		pci_client = find_parent_pci_dev(clients[i]);
446 		if (!pci_client) {
447 			if (verbose)
448 				dev_warn(clients[i],
449 					 "cannot be used for peer-to-peer DMA as it is not a PCI device\n");
450 			return -1;
451 		}
452 
453 		if (verbose)
454 			ret = upstream_bridge_distance_warn(provider,
455 							    pci_client);
456 		else
457 			ret = upstream_bridge_distance(provider, pci_client,
458 						       NULL);
459 
460 		pci_dev_put(pci_client);
461 
462 		if (ret < 0)
463 			not_supported = true;
464 
465 		if (not_supported && !verbose)
466 			break;
467 
468 		distance += ret;
469 	}
470 
471 	if (not_supported)
472 		return -1;
473 
474 	return distance;
475 }
476 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many);
477 
478 /**
479  * pci_has_p2pmem - check if a given PCI device has published any p2pmem
480  * @pdev: PCI device to check
481  */
482 bool pci_has_p2pmem(struct pci_dev *pdev)
483 {
484 	return pdev->p2pdma && pdev->p2pdma->p2pmem_published;
485 }
486 EXPORT_SYMBOL_GPL(pci_has_p2pmem);
487 
488 /**
489  * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with
490  *	the specified list of clients and shortest distance (as determined
491  *	by pci_p2pmem_dma())
492  * @clients: array of devices to check (NULL-terminated)
493  * @num_clients: number of client devices in the list
494  *
495  * If multiple devices are behind the same switch, the one "closest" to the
496  * client devices in use will be chosen first. (So if one of the providers are
497  * the same as one of the clients, that provider will be used ahead of any
498  * other providers that are unrelated). If multiple providers are an equal
499  * distance away, one will be chosen at random.
500  *
501  * Returns a pointer to the PCI device with a reference taken (use pci_dev_put
502  * to return the reference) or NULL if no compatible device is found. The
503  * found provider will also be assigned to the client list.
504  */
505 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients)
506 {
507 	struct pci_dev *pdev = NULL;
508 	int distance;
509 	int closest_distance = INT_MAX;
510 	struct pci_dev **closest_pdevs;
511 	int dev_cnt = 0;
512 	const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs);
513 	int i;
514 
515 	closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL);
516 	if (!closest_pdevs)
517 		return NULL;
518 
519 	while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) {
520 		if (!pci_has_p2pmem(pdev))
521 			continue;
522 
523 		distance = pci_p2pdma_distance_many(pdev, clients,
524 						    num_clients, false);
525 		if (distance < 0 || distance > closest_distance)
526 			continue;
527 
528 		if (distance == closest_distance && dev_cnt >= max_devs)
529 			continue;
530 
531 		if (distance < closest_distance) {
532 			for (i = 0; i < dev_cnt; i++)
533 				pci_dev_put(closest_pdevs[i]);
534 
535 			dev_cnt = 0;
536 			closest_distance = distance;
537 		}
538 
539 		closest_pdevs[dev_cnt++] = pci_dev_get(pdev);
540 	}
541 
542 	if (dev_cnt)
543 		pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]);
544 
545 	for (i = 0; i < dev_cnt; i++)
546 		pci_dev_put(closest_pdevs[i]);
547 
548 	kfree(closest_pdevs);
549 	return pdev;
550 }
551 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many);
552 
553 /**
554  * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory
555  * @pdev: the device to allocate memory from
556  * @size: number of bytes to allocate
557  *
558  * Returns the allocated memory or NULL on error.
559  */
560 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size)
561 {
562 	void *ret;
563 
564 	if (unlikely(!pdev->p2pdma))
565 		return NULL;
566 
567 	if (unlikely(!percpu_ref_tryget_live(&pdev->p2pdma->devmap_ref)))
568 		return NULL;
569 
570 	ret = (void *)gen_pool_alloc(pdev->p2pdma->pool, size);
571 
572 	if (unlikely(!ret))
573 		percpu_ref_put(&pdev->p2pdma->devmap_ref);
574 
575 	return ret;
576 }
577 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem);
578 
579 /**
580  * pci_free_p2pmem - free peer-to-peer DMA memory
581  * @pdev: the device the memory was allocated from
582  * @addr: address of the memory that was allocated
583  * @size: number of bytes that was allocated
584  */
585 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size)
586 {
587 	gen_pool_free(pdev->p2pdma->pool, (uintptr_t)addr, size);
588 	percpu_ref_put(&pdev->p2pdma->devmap_ref);
589 }
590 EXPORT_SYMBOL_GPL(pci_free_p2pmem);
591 
592 /**
593  * pci_virt_to_bus - return the PCI bus address for a given virtual
594  *	address obtained with pci_alloc_p2pmem()
595  * @pdev: the device the memory was allocated from
596  * @addr: address of the memory that was allocated
597  */
598 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr)
599 {
600 	if (!addr)
601 		return 0;
602 	if (!pdev->p2pdma)
603 		return 0;
604 
605 	/*
606 	 * Note: when we added the memory to the pool we used the PCI
607 	 * bus address as the physical address. So gen_pool_virt_to_phys()
608 	 * actually returns the bus address despite the misleading name.
609 	 */
610 	return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr);
611 }
612 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus);
613 
614 /**
615  * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist
616  * @pdev: the device to allocate memory from
617  * @nents: the number of SG entries in the list
618  * @length: number of bytes to allocate
619  *
620  * Returns 0 on success
621  */
622 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev,
623 					 unsigned int *nents, u32 length)
624 {
625 	struct scatterlist *sg;
626 	void *addr;
627 
628 	sg = kzalloc(sizeof(*sg), GFP_KERNEL);
629 	if (!sg)
630 		return NULL;
631 
632 	sg_init_table(sg, 1);
633 
634 	addr = pci_alloc_p2pmem(pdev, length);
635 	if (!addr)
636 		goto out_free_sg;
637 
638 	sg_set_buf(sg, addr, length);
639 	*nents = 1;
640 	return sg;
641 
642 out_free_sg:
643 	kfree(sg);
644 	return NULL;
645 }
646 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl);
647 
648 /**
649  * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl()
650  * @pdev: the device to allocate memory from
651  * @sgl: the allocated scatterlist
652  */
653 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl)
654 {
655 	struct scatterlist *sg;
656 	int count;
657 
658 	for_each_sg(sgl, sg, INT_MAX, count) {
659 		if (!sg)
660 			break;
661 
662 		pci_free_p2pmem(pdev, sg_virt(sg), sg->length);
663 	}
664 	kfree(sgl);
665 }
666 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl);
667 
668 /**
669  * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by
670  *	other devices with pci_p2pmem_find()
671  * @pdev: the device with peer-to-peer DMA memory to publish
672  * @publish: set to true to publish the memory, false to unpublish it
673  *
674  * Published memory can be used by other PCI device drivers for
675  * peer-2-peer DMA operations. Non-published memory is reserved for
676  * exlusive use of the device driver that registers the peer-to-peer
677  * memory.
678  */
679 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish)
680 {
681 	if (pdev->p2pdma)
682 		pdev->p2pdma->p2pmem_published = publish;
683 }
684 EXPORT_SYMBOL_GPL(pci_p2pmem_publish);
685 
686 /**
687  * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA
688  * @dev: device doing the DMA request
689  * @sg: scatter list to map
690  * @nents: elements in the scatterlist
691  * @dir: DMA direction
692  *
693  * Scatterlists mapped with this function should not be unmapped in any way.
694  *
695  * Returns the number of SG entries mapped or 0 on error.
696  */
697 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
698 		      enum dma_data_direction dir)
699 {
700 	struct dev_pagemap *pgmap;
701 	struct scatterlist *s;
702 	phys_addr_t paddr;
703 	int i;
704 
705 	/*
706 	 * p2pdma mappings are not compatible with devices that use
707 	 * dma_virt_ops. If the upper layers do the right thing
708 	 * this should never happen because it will be prevented
709 	 * by the check in pci_p2pdma_add_client()
710 	 */
711 	if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) &&
712 			 dev->dma_ops == &dma_virt_ops))
713 		return 0;
714 
715 	for_each_sg(sg, s, nents, i) {
716 		pgmap = sg_page(s)->pgmap;
717 		paddr = sg_phys(s);
718 
719 		s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset;
720 		sg_dma_len(s) = s->length;
721 	}
722 
723 	return nents;
724 }
725 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg);
726 
727 /**
728  * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store
729  *		to enable p2pdma
730  * @page: contents of the value to be stored
731  * @p2p_dev: returns the PCI device that was selected to be used
732  *		(if one was specified in the stored value)
733  * @use_p2pdma: returns whether to enable p2pdma or not
734  *
735  * Parses an attribute value to decide whether to enable p2pdma.
736  * The value can select a PCI device (using it's full BDF device
737  * name) or a boolean (in any format strtobool() accepts). A false
738  * value disables p2pdma, a true value expects the caller
739  * to automatically find a compatible device and specifying a PCI device
740  * expects the caller to use the specific provider.
741  *
742  * pci_p2pdma_enable_show() should be used as the show operation for
743  * the attribute.
744  *
745  * Returns 0 on success
746  */
747 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev,
748 			    bool *use_p2pdma)
749 {
750 	struct device *dev;
751 
752 	dev = bus_find_device_by_name(&pci_bus_type, NULL, page);
753 	if (dev) {
754 		*use_p2pdma = true;
755 		*p2p_dev = to_pci_dev(dev);
756 
757 		if (!pci_has_p2pmem(*p2p_dev)) {
758 			pci_err(*p2p_dev,
759 				"PCI device has no peer-to-peer memory: %s\n",
760 				page);
761 			pci_dev_put(*p2p_dev);
762 			return -ENODEV;
763 		}
764 
765 		return 0;
766 	} else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) {
767 		/*
768 		 * If the user enters a PCI device that  doesn't exist
769 		 * like "0000:01:00.1", we don't want strtobool to think
770 		 * it's a '0' when it's clearly not what the user wanted.
771 		 * So we require 0's and 1's to be exactly one character.
772 		 */
773 	} else if (!strtobool(page, use_p2pdma)) {
774 		return 0;
775 	}
776 
777 	pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page);
778 	return -ENODEV;
779 }
780 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store);
781 
782 /**
783  * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating
784  *		whether p2pdma is enabled
785  * @page: contents of the stored value
786  * @p2p_dev: the selected p2p device (NULL if no device is selected)
787  * @use_p2pdma: whether p2pdme has been enabled
788  *
789  * Attributes that use pci_p2pdma_enable_store() should use this function
790  * to show the value of the attribute.
791  *
792  * Returns 0 on success
793  */
794 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev,
795 			       bool use_p2pdma)
796 {
797 	if (!use_p2pdma)
798 		return sprintf(page, "0\n");
799 
800 	if (!p2p_dev)
801 		return sprintf(page, "1\n");
802 
803 	return sprintf(page, "%s\n", pci_name(p2p_dev));
804 }
805 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show);
806