1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 #include <linux/iommu.h> 22 23 struct pci_p2pdma { 24 struct gen_pool *pool; 25 bool p2pmem_published; 26 }; 27 28 struct p2pdma_pagemap { 29 struct dev_pagemap pgmap; 30 struct percpu_ref ref; 31 struct completion ref_done; 32 }; 33 34 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 35 char *buf) 36 { 37 struct pci_dev *pdev = to_pci_dev(dev); 38 size_t size = 0; 39 40 if (pdev->p2pdma->pool) 41 size = gen_pool_size(pdev->p2pdma->pool); 42 43 return snprintf(buf, PAGE_SIZE, "%zd\n", size); 44 } 45 static DEVICE_ATTR_RO(size); 46 47 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 48 char *buf) 49 { 50 struct pci_dev *pdev = to_pci_dev(dev); 51 size_t avail = 0; 52 53 if (pdev->p2pdma->pool) 54 avail = gen_pool_avail(pdev->p2pdma->pool); 55 56 return snprintf(buf, PAGE_SIZE, "%zd\n", avail); 57 } 58 static DEVICE_ATTR_RO(available); 59 60 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 61 char *buf) 62 { 63 struct pci_dev *pdev = to_pci_dev(dev); 64 65 return snprintf(buf, PAGE_SIZE, "%d\n", 66 pdev->p2pdma->p2pmem_published); 67 } 68 static DEVICE_ATTR_RO(published); 69 70 static struct attribute *p2pmem_attrs[] = { 71 &dev_attr_size.attr, 72 &dev_attr_available.attr, 73 &dev_attr_published.attr, 74 NULL, 75 }; 76 77 static const struct attribute_group p2pmem_group = { 78 .attrs = p2pmem_attrs, 79 .name = "p2pmem", 80 }; 81 82 static struct p2pdma_pagemap *to_p2p_pgmap(struct percpu_ref *ref) 83 { 84 return container_of(ref, struct p2pdma_pagemap, ref); 85 } 86 87 static void pci_p2pdma_percpu_release(struct percpu_ref *ref) 88 { 89 struct p2pdma_pagemap *p2p_pgmap = to_p2p_pgmap(ref); 90 91 complete(&p2p_pgmap->ref_done); 92 } 93 94 static void pci_p2pdma_percpu_kill(struct percpu_ref *ref) 95 { 96 percpu_ref_kill(ref); 97 } 98 99 static void pci_p2pdma_percpu_cleanup(struct percpu_ref *ref) 100 { 101 struct p2pdma_pagemap *p2p_pgmap = to_p2p_pgmap(ref); 102 103 wait_for_completion(&p2p_pgmap->ref_done); 104 percpu_ref_exit(&p2p_pgmap->ref); 105 } 106 107 static void pci_p2pdma_release(void *data) 108 { 109 struct pci_dev *pdev = data; 110 struct pci_p2pdma *p2pdma = pdev->p2pdma; 111 112 if (!p2pdma) 113 return; 114 115 /* Flush and disable pci_alloc_p2p_mem() */ 116 pdev->p2pdma = NULL; 117 synchronize_rcu(); 118 119 gen_pool_destroy(p2pdma->pool); 120 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 121 } 122 123 static int pci_p2pdma_setup(struct pci_dev *pdev) 124 { 125 int error = -ENOMEM; 126 struct pci_p2pdma *p2p; 127 128 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 129 if (!p2p) 130 return -ENOMEM; 131 132 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 133 if (!p2p->pool) 134 goto out; 135 136 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 137 if (error) 138 goto out_pool_destroy; 139 140 pdev->p2pdma = p2p; 141 142 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 143 if (error) 144 goto out_pool_destroy; 145 146 return 0; 147 148 out_pool_destroy: 149 pdev->p2pdma = NULL; 150 gen_pool_destroy(p2p->pool); 151 out: 152 devm_kfree(&pdev->dev, p2p); 153 return error; 154 } 155 156 /** 157 * pci_p2pdma_add_resource - add memory for use as p2p memory 158 * @pdev: the device to add the memory to 159 * @bar: PCI BAR to add 160 * @size: size of the memory to add, may be zero to use the whole BAR 161 * @offset: offset into the PCI BAR 162 * 163 * The memory will be given ZONE_DEVICE struct pages so that it may 164 * be used with any DMA request. 165 */ 166 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 167 u64 offset) 168 { 169 struct p2pdma_pagemap *p2p_pgmap; 170 struct dev_pagemap *pgmap; 171 void *addr; 172 int error; 173 174 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 175 return -EINVAL; 176 177 if (offset >= pci_resource_len(pdev, bar)) 178 return -EINVAL; 179 180 if (!size) 181 size = pci_resource_len(pdev, bar) - offset; 182 183 if (size + offset > pci_resource_len(pdev, bar)) 184 return -EINVAL; 185 186 if (!pdev->p2pdma) { 187 error = pci_p2pdma_setup(pdev); 188 if (error) 189 return error; 190 } 191 192 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 193 if (!p2p_pgmap) 194 return -ENOMEM; 195 196 init_completion(&p2p_pgmap->ref_done); 197 error = percpu_ref_init(&p2p_pgmap->ref, 198 pci_p2pdma_percpu_release, 0, GFP_KERNEL); 199 if (error) 200 goto pgmap_free; 201 202 pgmap = &p2p_pgmap->pgmap; 203 204 pgmap->res.start = pci_resource_start(pdev, bar) + offset; 205 pgmap->res.end = pgmap->res.start + size - 1; 206 pgmap->res.flags = pci_resource_flags(pdev, bar); 207 pgmap->ref = &p2p_pgmap->ref; 208 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 209 pgmap->pci_p2pdma_bus_offset = pci_bus_address(pdev, bar) - 210 pci_resource_start(pdev, bar); 211 pgmap->kill = pci_p2pdma_percpu_kill; 212 pgmap->cleanup = pci_p2pdma_percpu_cleanup; 213 214 addr = devm_memremap_pages(&pdev->dev, pgmap); 215 if (IS_ERR(addr)) { 216 error = PTR_ERR(addr); 217 goto pgmap_free; 218 } 219 220 error = gen_pool_add_owner(pdev->p2pdma->pool, (unsigned long)addr, 221 pci_bus_address(pdev, bar) + offset, 222 resource_size(&pgmap->res), dev_to_node(&pdev->dev), 223 &p2p_pgmap->ref); 224 if (error) 225 goto pages_free; 226 227 pci_info(pdev, "added peer-to-peer DMA memory %pR\n", 228 &pgmap->res); 229 230 return 0; 231 232 pages_free: 233 devm_memunmap_pages(&pdev->dev, pgmap); 234 pgmap_free: 235 devm_kfree(&pdev->dev, p2p_pgmap); 236 return error; 237 } 238 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 239 240 /* 241 * Note this function returns the parent PCI device with a 242 * reference taken. It is the caller's responsibily to drop 243 * the reference. 244 */ 245 static struct pci_dev *find_parent_pci_dev(struct device *dev) 246 { 247 struct device *parent; 248 249 dev = get_device(dev); 250 251 while (dev) { 252 if (dev_is_pci(dev)) 253 return to_pci_dev(dev); 254 255 parent = get_device(dev->parent); 256 put_device(dev); 257 dev = parent; 258 } 259 260 return NULL; 261 } 262 263 /* 264 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 265 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 266 * upstream, 0 otherwise. 267 */ 268 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 269 { 270 int pos; 271 u16 ctrl; 272 273 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ACS); 274 if (!pos) 275 return 0; 276 277 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 278 279 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 280 return 1; 281 282 return 0; 283 } 284 285 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 286 { 287 if (!buf) 288 return; 289 290 seq_buf_printf(buf, "%s;", pci_name(pdev)); 291 } 292 293 /* 294 * If we can't find a common upstream bridge take a look at the root 295 * complex and compare it to a whitelist of known good hardware. 296 */ 297 static bool root_complex_whitelist(struct pci_dev *dev) 298 { 299 struct pci_host_bridge *host = pci_find_host_bridge(dev->bus); 300 struct pci_dev *root = pci_get_slot(host->bus, PCI_DEVFN(0, 0)); 301 unsigned short vendor, device; 302 303 if (iommu_present(dev->dev.bus)) 304 return false; 305 306 if (!root) 307 return false; 308 309 vendor = root->vendor; 310 device = root->device; 311 pci_dev_put(root); 312 313 /* AMD ZEN host bridges can do peer to peer */ 314 if (vendor == PCI_VENDOR_ID_AMD && device == 0x1450) 315 return true; 316 317 return false; 318 } 319 320 /* 321 * Find the distance through the nearest common upstream bridge between 322 * two PCI devices. 323 * 324 * If the two devices are the same device then 0 will be returned. 325 * 326 * If there are two virtual functions of the same device behind the same 327 * bridge port then 2 will be returned (one step down to the PCIe switch, 328 * then one step back to the same device). 329 * 330 * In the case where two devices are connected to the same PCIe switch, the 331 * value 4 will be returned. This corresponds to the following PCI tree: 332 * 333 * -+ Root Port 334 * \+ Switch Upstream Port 335 * +-+ Switch Downstream Port 336 * + \- Device A 337 * \-+ Switch Downstream Port 338 * \- Device B 339 * 340 * The distance is 4 because we traverse from Device A through the downstream 341 * port of the switch, to the common upstream port, back up to the second 342 * downstream port and then to Device B. 343 * 344 * Any two devices that don't have a common upstream bridge will return -1. 345 * In this way devices on separate PCIe root ports will be rejected, which 346 * is what we want for peer-to-peer seeing each PCIe root port defines a 347 * separate hierarchy domain and there's no way to determine whether the root 348 * complex supports forwarding between them. 349 * 350 * In the case where two devices are connected to different PCIe switches, 351 * this function will still return a positive distance as long as both 352 * switches eventually have a common upstream bridge. Note this covers 353 * the case of using multiple PCIe switches to achieve a desired level of 354 * fan-out from a root port. The exact distance will be a function of the 355 * number of switches between Device A and Device B. 356 * 357 * If a bridge which has any ACS redirection bits set is in the path 358 * then this functions will return -2. This is so we reject any 359 * cases where the TLPs are forwarded up into the root complex. 360 * In this case, a list of all infringing bridge addresses will be 361 * populated in acs_list (assuming it's non-null) for printk purposes. 362 */ 363 static int upstream_bridge_distance(struct pci_dev *provider, 364 struct pci_dev *client, 365 struct seq_buf *acs_list) 366 { 367 struct pci_dev *a = provider, *b = client, *bb; 368 int dist_a = 0; 369 int dist_b = 0; 370 int acs_cnt = 0; 371 372 /* 373 * Note, we don't need to take references to devices returned by 374 * pci_upstream_bridge() seeing we hold a reference to a child 375 * device which will already hold a reference to the upstream bridge. 376 */ 377 378 while (a) { 379 dist_b = 0; 380 381 if (pci_bridge_has_acs_redir(a)) { 382 seq_buf_print_bus_devfn(acs_list, a); 383 acs_cnt++; 384 } 385 386 bb = b; 387 388 while (bb) { 389 if (a == bb) 390 goto check_b_path_acs; 391 392 bb = pci_upstream_bridge(bb); 393 dist_b++; 394 } 395 396 a = pci_upstream_bridge(a); 397 dist_a++; 398 } 399 400 /* 401 * Allow the connection if both devices are on a whitelisted root 402 * complex, but add an arbitary large value to the distance. 403 */ 404 if (root_complex_whitelist(provider) && 405 root_complex_whitelist(client)) 406 return 0x1000 + dist_a + dist_b; 407 408 return -1; 409 410 check_b_path_acs: 411 bb = b; 412 413 while (bb) { 414 if (a == bb) 415 break; 416 417 if (pci_bridge_has_acs_redir(bb)) { 418 seq_buf_print_bus_devfn(acs_list, bb); 419 acs_cnt++; 420 } 421 422 bb = pci_upstream_bridge(bb); 423 } 424 425 if (acs_cnt) 426 return -2; 427 428 return dist_a + dist_b; 429 } 430 431 static int upstream_bridge_distance_warn(struct pci_dev *provider, 432 struct pci_dev *client) 433 { 434 struct seq_buf acs_list; 435 int ret; 436 437 seq_buf_init(&acs_list, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE); 438 if (!acs_list.buffer) 439 return -ENOMEM; 440 441 ret = upstream_bridge_distance(provider, client, &acs_list); 442 if (ret == -2) { 443 pci_warn(client, "cannot be used for peer-to-peer DMA as ACS redirect is set between the client and provider (%s)\n", 444 pci_name(provider)); 445 /* Drop final semicolon */ 446 acs_list.buffer[acs_list.len-1] = 0; 447 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 448 acs_list.buffer); 449 450 } else if (ret < 0) { 451 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge\n", 452 pci_name(provider)); 453 } 454 455 kfree(acs_list.buffer); 456 457 return ret; 458 } 459 460 /** 461 * pci_p2pdma_distance_many - Determive the cumulative distance between 462 * a p2pdma provider and the clients in use. 463 * @provider: p2pdma provider to check against the client list 464 * @clients: array of devices to check (NULL-terminated) 465 * @num_clients: number of clients in the array 466 * @verbose: if true, print warnings for devices when we return -1 467 * 468 * Returns -1 if any of the clients are not compatible (behind the same 469 * root port as the provider), otherwise returns a positive number where 470 * a lower number is the preferable choice. (If there's one client 471 * that's the same as the provider it will return 0, which is best choice). 472 * 473 * For now, "compatible" means the provider and the clients are all behind 474 * the same PCI root port. This cuts out cases that may work but is safest 475 * for the user. Future work can expand this to white-list root complexes that 476 * can safely forward between each ports. 477 */ 478 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 479 int num_clients, bool verbose) 480 { 481 bool not_supported = false; 482 struct pci_dev *pci_client; 483 int distance = 0; 484 int i, ret; 485 486 if (num_clients == 0) 487 return -1; 488 489 for (i = 0; i < num_clients; i++) { 490 pci_client = find_parent_pci_dev(clients[i]); 491 if (!pci_client) { 492 if (verbose) 493 dev_warn(clients[i], 494 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 495 return -1; 496 } 497 498 if (verbose) 499 ret = upstream_bridge_distance_warn(provider, 500 pci_client); 501 else 502 ret = upstream_bridge_distance(provider, pci_client, 503 NULL); 504 505 pci_dev_put(pci_client); 506 507 if (ret < 0) 508 not_supported = true; 509 510 if (not_supported && !verbose) 511 break; 512 513 distance += ret; 514 } 515 516 if (not_supported) 517 return -1; 518 519 return distance; 520 } 521 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 522 523 /** 524 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 525 * @pdev: PCI device to check 526 */ 527 bool pci_has_p2pmem(struct pci_dev *pdev) 528 { 529 return pdev->p2pdma && pdev->p2pdma->p2pmem_published; 530 } 531 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 532 533 /** 534 * pci_p2pmem_find - find a peer-to-peer DMA memory device compatible with 535 * the specified list of clients and shortest distance (as determined 536 * by pci_p2pmem_dma()) 537 * @clients: array of devices to check (NULL-terminated) 538 * @num_clients: number of client devices in the list 539 * 540 * If multiple devices are behind the same switch, the one "closest" to the 541 * client devices in use will be chosen first. (So if one of the providers is 542 * the same as one of the clients, that provider will be used ahead of any 543 * other providers that are unrelated). If multiple providers are an equal 544 * distance away, one will be chosen at random. 545 * 546 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 547 * to return the reference) or NULL if no compatible device is found. The 548 * found provider will also be assigned to the client list. 549 */ 550 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 551 { 552 struct pci_dev *pdev = NULL; 553 int distance; 554 int closest_distance = INT_MAX; 555 struct pci_dev **closest_pdevs; 556 int dev_cnt = 0; 557 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 558 int i; 559 560 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 561 if (!closest_pdevs) 562 return NULL; 563 564 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 565 if (!pci_has_p2pmem(pdev)) 566 continue; 567 568 distance = pci_p2pdma_distance_many(pdev, clients, 569 num_clients, false); 570 if (distance < 0 || distance > closest_distance) 571 continue; 572 573 if (distance == closest_distance && dev_cnt >= max_devs) 574 continue; 575 576 if (distance < closest_distance) { 577 for (i = 0; i < dev_cnt; i++) 578 pci_dev_put(closest_pdevs[i]); 579 580 dev_cnt = 0; 581 closest_distance = distance; 582 } 583 584 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 585 } 586 587 if (dev_cnt) 588 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 589 590 for (i = 0; i < dev_cnt; i++) 591 pci_dev_put(closest_pdevs[i]); 592 593 kfree(closest_pdevs); 594 return pdev; 595 } 596 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 597 598 /** 599 * pci_alloc_p2p_mem - allocate peer-to-peer DMA memory 600 * @pdev: the device to allocate memory from 601 * @size: number of bytes to allocate 602 * 603 * Returns the allocated memory or NULL on error. 604 */ 605 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 606 { 607 void *ret = NULL; 608 struct percpu_ref *ref; 609 610 /* 611 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 612 * ensure pdev->p2pdma is non-NULL for the duration of the 613 * read-lock. 614 */ 615 rcu_read_lock(); 616 if (unlikely(!pdev->p2pdma)) 617 goto out; 618 619 ret = (void *)gen_pool_alloc_owner(pdev->p2pdma->pool, size, 620 (void **) &ref); 621 if (!ret) 622 goto out; 623 624 if (unlikely(!percpu_ref_tryget_live(ref))) { 625 gen_pool_free(pdev->p2pdma->pool, (unsigned long) ret, size); 626 ret = NULL; 627 goto out; 628 } 629 out: 630 rcu_read_unlock(); 631 return ret; 632 } 633 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 634 635 /** 636 * pci_free_p2pmem - free peer-to-peer DMA memory 637 * @pdev: the device the memory was allocated from 638 * @addr: address of the memory that was allocated 639 * @size: number of bytes that were allocated 640 */ 641 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 642 { 643 struct percpu_ref *ref; 644 645 gen_pool_free_owner(pdev->p2pdma->pool, (uintptr_t)addr, size, 646 (void **) &ref); 647 percpu_ref_put(ref); 648 } 649 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 650 651 /** 652 * pci_virt_to_bus - return the PCI bus address for a given virtual 653 * address obtained with pci_alloc_p2pmem() 654 * @pdev: the device the memory was allocated from 655 * @addr: address of the memory that was allocated 656 */ 657 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 658 { 659 if (!addr) 660 return 0; 661 if (!pdev->p2pdma) 662 return 0; 663 664 /* 665 * Note: when we added the memory to the pool we used the PCI 666 * bus address as the physical address. So gen_pool_virt_to_phys() 667 * actually returns the bus address despite the misleading name. 668 */ 669 return gen_pool_virt_to_phys(pdev->p2pdma->pool, (unsigned long)addr); 670 } 671 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 672 673 /** 674 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 675 * @pdev: the device to allocate memory from 676 * @nents: the number of SG entries in the list 677 * @length: number of bytes to allocate 678 * 679 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 680 */ 681 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 682 unsigned int *nents, u32 length) 683 { 684 struct scatterlist *sg; 685 void *addr; 686 687 sg = kzalloc(sizeof(*sg), GFP_KERNEL); 688 if (!sg) 689 return NULL; 690 691 sg_init_table(sg, 1); 692 693 addr = pci_alloc_p2pmem(pdev, length); 694 if (!addr) 695 goto out_free_sg; 696 697 sg_set_buf(sg, addr, length); 698 *nents = 1; 699 return sg; 700 701 out_free_sg: 702 kfree(sg); 703 return NULL; 704 } 705 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 706 707 /** 708 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 709 * @pdev: the device to allocate memory from 710 * @sgl: the allocated scatterlist 711 */ 712 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 713 { 714 struct scatterlist *sg; 715 int count; 716 717 for_each_sg(sgl, sg, INT_MAX, count) { 718 if (!sg) 719 break; 720 721 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 722 } 723 kfree(sgl); 724 } 725 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 726 727 /** 728 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 729 * other devices with pci_p2pmem_find() 730 * @pdev: the device with peer-to-peer DMA memory to publish 731 * @publish: set to true to publish the memory, false to unpublish it 732 * 733 * Published memory can be used by other PCI device drivers for 734 * peer-2-peer DMA operations. Non-published memory is reserved for 735 * exclusive use of the device driver that registers the peer-to-peer 736 * memory. 737 */ 738 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 739 { 740 if (pdev->p2pdma) 741 pdev->p2pdma->p2pmem_published = publish; 742 } 743 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 744 745 /** 746 * pci_p2pdma_map_sg - map a PCI peer-to-peer scatterlist for DMA 747 * @dev: device doing the DMA request 748 * @sg: scatter list to map 749 * @nents: elements in the scatterlist 750 * @dir: DMA direction 751 * 752 * Scatterlists mapped with this function should not be unmapped in any way. 753 * 754 * Returns the number of SG entries mapped or 0 on error. 755 */ 756 int pci_p2pdma_map_sg(struct device *dev, struct scatterlist *sg, int nents, 757 enum dma_data_direction dir) 758 { 759 struct dev_pagemap *pgmap; 760 struct scatterlist *s; 761 phys_addr_t paddr; 762 int i; 763 764 /* 765 * p2pdma mappings are not compatible with devices that use 766 * dma_virt_ops. If the upper layers do the right thing 767 * this should never happen because it will be prevented 768 * by the check in pci_p2pdma_add_client() 769 */ 770 if (WARN_ON_ONCE(IS_ENABLED(CONFIG_DMA_VIRT_OPS) && 771 dev->dma_ops == &dma_virt_ops)) 772 return 0; 773 774 for_each_sg(sg, s, nents, i) { 775 pgmap = sg_page(s)->pgmap; 776 paddr = sg_phys(s); 777 778 s->dma_address = paddr - pgmap->pci_p2pdma_bus_offset; 779 sg_dma_len(s) = s->length; 780 } 781 782 return nents; 783 } 784 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg); 785 786 /** 787 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 788 * to enable p2pdma 789 * @page: contents of the value to be stored 790 * @p2p_dev: returns the PCI device that was selected to be used 791 * (if one was specified in the stored value) 792 * @use_p2pdma: returns whether to enable p2pdma or not 793 * 794 * Parses an attribute value to decide whether to enable p2pdma. 795 * The value can select a PCI device (using its full BDF device 796 * name) or a boolean (in any format strtobool() accepts). A false 797 * value disables p2pdma, a true value expects the caller 798 * to automatically find a compatible device and specifying a PCI device 799 * expects the caller to use the specific provider. 800 * 801 * pci_p2pdma_enable_show() should be used as the show operation for 802 * the attribute. 803 * 804 * Returns 0 on success 805 */ 806 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 807 bool *use_p2pdma) 808 { 809 struct device *dev; 810 811 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 812 if (dev) { 813 *use_p2pdma = true; 814 *p2p_dev = to_pci_dev(dev); 815 816 if (!pci_has_p2pmem(*p2p_dev)) { 817 pci_err(*p2p_dev, 818 "PCI device has no peer-to-peer memory: %s\n", 819 page); 820 pci_dev_put(*p2p_dev); 821 return -ENODEV; 822 } 823 824 return 0; 825 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 826 /* 827 * If the user enters a PCI device that doesn't exist 828 * like "0000:01:00.1", we don't want strtobool to think 829 * it's a '0' when it's clearly not what the user wanted. 830 * So we require 0's and 1's to be exactly one character. 831 */ 832 } else if (!strtobool(page, use_p2pdma)) { 833 return 0; 834 } 835 836 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 837 return -ENODEV; 838 } 839 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 840 841 /** 842 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 843 * whether p2pdma is enabled 844 * @page: contents of the stored value 845 * @p2p_dev: the selected p2p device (NULL if no device is selected) 846 * @use_p2pdma: whether p2pdma has been enabled 847 * 848 * Attributes that use pci_p2pdma_enable_store() should use this function 849 * to show the value of the attribute. 850 * 851 * Returns 0 on success 852 */ 853 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 854 bool use_p2pdma) 855 { 856 if (!use_p2pdma) 857 return sprintf(page, "0\n"); 858 859 if (!p2p_dev) 860 return sprintf(page, "1\n"); 861 862 return sprintf(page, "%s\n", pci_name(p2p_dev)); 863 } 864 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 865