1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/pci-p2pdma.h> 14 #include <linux/module.h> 15 #include <linux/slab.h> 16 #include <linux/genalloc.h> 17 #include <linux/memremap.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/random.h> 20 #include <linux/seq_buf.h> 21 #include <linux/xarray.h> 22 23 enum pci_p2pdma_map_type { 24 PCI_P2PDMA_MAP_UNKNOWN = 0, 25 PCI_P2PDMA_MAP_NOT_SUPPORTED, 26 PCI_P2PDMA_MAP_BUS_ADDR, 27 PCI_P2PDMA_MAP_THRU_HOST_BRIDGE, 28 }; 29 30 struct pci_p2pdma { 31 struct gen_pool *pool; 32 bool p2pmem_published; 33 struct xarray map_types; 34 }; 35 36 struct pci_p2pdma_pagemap { 37 struct dev_pagemap pgmap; 38 struct pci_dev *provider; 39 u64 bus_offset; 40 }; 41 42 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 43 { 44 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 45 } 46 47 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 48 char *buf) 49 { 50 struct pci_dev *pdev = to_pci_dev(dev); 51 struct pci_p2pdma *p2pdma; 52 size_t size = 0; 53 54 rcu_read_lock(); 55 p2pdma = rcu_dereference(pdev->p2pdma); 56 if (p2pdma && p2pdma->pool) 57 size = gen_pool_size(p2pdma->pool); 58 rcu_read_unlock(); 59 60 return sysfs_emit(buf, "%zd\n", size); 61 } 62 static DEVICE_ATTR_RO(size); 63 64 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 65 char *buf) 66 { 67 struct pci_dev *pdev = to_pci_dev(dev); 68 struct pci_p2pdma *p2pdma; 69 size_t avail = 0; 70 71 rcu_read_lock(); 72 p2pdma = rcu_dereference(pdev->p2pdma); 73 if (p2pdma && p2pdma->pool) 74 avail = gen_pool_avail(p2pdma->pool); 75 rcu_read_unlock(); 76 77 return sysfs_emit(buf, "%zd\n", avail); 78 } 79 static DEVICE_ATTR_RO(available); 80 81 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 82 char *buf) 83 { 84 struct pci_dev *pdev = to_pci_dev(dev); 85 struct pci_p2pdma *p2pdma; 86 bool published = false; 87 88 rcu_read_lock(); 89 p2pdma = rcu_dereference(pdev->p2pdma); 90 if (p2pdma) 91 published = p2pdma->p2pmem_published; 92 rcu_read_unlock(); 93 94 return sysfs_emit(buf, "%d\n", published); 95 } 96 static DEVICE_ATTR_RO(published); 97 98 static struct attribute *p2pmem_attrs[] = { 99 &dev_attr_size.attr, 100 &dev_attr_available.attr, 101 &dev_attr_published.attr, 102 NULL, 103 }; 104 105 static const struct attribute_group p2pmem_group = { 106 .attrs = p2pmem_attrs, 107 .name = "p2pmem", 108 }; 109 110 static void pci_p2pdma_release(void *data) 111 { 112 struct pci_dev *pdev = data; 113 struct pci_p2pdma *p2pdma; 114 115 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 116 if (!p2pdma) 117 return; 118 119 /* Flush and disable pci_alloc_p2p_mem() */ 120 pdev->p2pdma = NULL; 121 synchronize_rcu(); 122 123 gen_pool_destroy(p2pdma->pool); 124 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 125 xa_destroy(&p2pdma->map_types); 126 } 127 128 static int pci_p2pdma_setup(struct pci_dev *pdev) 129 { 130 int error = -ENOMEM; 131 struct pci_p2pdma *p2p; 132 133 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 134 if (!p2p) 135 return -ENOMEM; 136 137 xa_init(&p2p->map_types); 138 139 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 140 if (!p2p->pool) 141 goto out; 142 143 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 144 if (error) 145 goto out_pool_destroy; 146 147 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 148 if (error) 149 goto out_pool_destroy; 150 151 rcu_assign_pointer(pdev->p2pdma, p2p); 152 return 0; 153 154 out_pool_destroy: 155 gen_pool_destroy(p2p->pool); 156 out: 157 devm_kfree(&pdev->dev, p2p); 158 return error; 159 } 160 161 /** 162 * pci_p2pdma_add_resource - add memory for use as p2p memory 163 * @pdev: the device to add the memory to 164 * @bar: PCI BAR to add 165 * @size: size of the memory to add, may be zero to use the whole BAR 166 * @offset: offset into the PCI BAR 167 * 168 * The memory will be given ZONE_DEVICE struct pages so that it may 169 * be used with any DMA request. 170 */ 171 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 172 u64 offset) 173 { 174 struct pci_p2pdma_pagemap *p2p_pgmap; 175 struct dev_pagemap *pgmap; 176 struct pci_p2pdma *p2pdma; 177 void *addr; 178 int error; 179 180 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 181 return -EINVAL; 182 183 if (offset >= pci_resource_len(pdev, bar)) 184 return -EINVAL; 185 186 if (!size) 187 size = pci_resource_len(pdev, bar) - offset; 188 189 if (size + offset > pci_resource_len(pdev, bar)) 190 return -EINVAL; 191 192 if (!pdev->p2pdma) { 193 error = pci_p2pdma_setup(pdev); 194 if (error) 195 return error; 196 } 197 198 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 199 if (!p2p_pgmap) 200 return -ENOMEM; 201 202 pgmap = &p2p_pgmap->pgmap; 203 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 204 pgmap->range.end = pgmap->range.start + size - 1; 205 pgmap->nr_range = 1; 206 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 207 208 p2p_pgmap->provider = pdev; 209 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 210 pci_resource_start(pdev, bar); 211 212 addr = devm_memremap_pages(&pdev->dev, pgmap); 213 if (IS_ERR(addr)) { 214 error = PTR_ERR(addr); 215 goto pgmap_free; 216 } 217 218 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 219 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, 220 pci_bus_address(pdev, bar) + offset, 221 range_len(&pgmap->range), dev_to_node(&pdev->dev), 222 &pgmap->ref); 223 if (error) 224 goto pages_free; 225 226 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 227 pgmap->range.start, pgmap->range.end); 228 229 return 0; 230 231 pages_free: 232 devm_memunmap_pages(&pdev->dev, pgmap); 233 pgmap_free: 234 devm_kfree(&pdev->dev, pgmap); 235 return error; 236 } 237 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 238 239 /* 240 * Note this function returns the parent PCI device with a 241 * reference taken. It is the caller's responsibility to drop 242 * the reference. 243 */ 244 static struct pci_dev *find_parent_pci_dev(struct device *dev) 245 { 246 struct device *parent; 247 248 dev = get_device(dev); 249 250 while (dev) { 251 if (dev_is_pci(dev)) 252 return to_pci_dev(dev); 253 254 parent = get_device(dev->parent); 255 put_device(dev); 256 dev = parent; 257 } 258 259 return NULL; 260 } 261 262 /* 263 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 264 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 265 * upstream, 0 otherwise. 266 */ 267 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 268 { 269 int pos; 270 u16 ctrl; 271 272 pos = pdev->acs_cap; 273 if (!pos) 274 return 0; 275 276 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 277 278 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 279 return 1; 280 281 return 0; 282 } 283 284 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 285 { 286 if (!buf) 287 return; 288 289 seq_buf_printf(buf, "%s;", pci_name(pdev)); 290 } 291 292 static bool cpu_supports_p2pdma(void) 293 { 294 #ifdef CONFIG_X86 295 struct cpuinfo_x86 *c = &cpu_data(0); 296 297 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 298 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 299 return true; 300 #endif 301 302 return false; 303 } 304 305 static const struct pci_p2pdma_whitelist_entry { 306 unsigned short vendor; 307 unsigned short device; 308 enum { 309 REQ_SAME_HOST_BRIDGE = 1 << 0, 310 } flags; 311 } pci_p2pdma_whitelist[] = { 312 /* Intel Xeon E5/Core i7 */ 313 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 314 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 315 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 316 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 317 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 318 /* Intel SkyLake-E */ 319 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 320 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 321 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 322 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 323 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 324 {PCI_VENDOR_ID_INTEL, 0x09a2, 0}, 325 {} 326 }; 327 328 /* 329 * If the first device on host's root bus is either devfn 00.0 or a PCIe 330 * Root Port, return it. Otherwise return NULL. 331 * 332 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[] 333 * (though there is no PCI/PCIe requirement for such a device). On some 334 * platforms, e.g., Intel Skylake, there is no such host bridge device, and 335 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn. 336 * 337 * This function is similar to pci_get_slot(host->bus, 0), but it does 338 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not 339 * sleep. 340 * 341 * For this to be safe, the caller should hold a reference to a device on the 342 * bridge, which should ensure the host_bridge device will not be freed 343 * or removed from the head of the devices list. 344 */ 345 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) 346 { 347 struct pci_dev *root; 348 349 root = list_first_entry_or_null(&host->bus->devices, 350 struct pci_dev, bus_list); 351 352 if (!root) 353 return NULL; 354 355 if (root->devfn == PCI_DEVFN(0, 0)) 356 return root; 357 358 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT) 359 return root; 360 361 return NULL; 362 } 363 364 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 365 bool same_host_bridge, bool warn) 366 { 367 struct pci_dev *root = pci_host_bridge_dev(host); 368 const struct pci_p2pdma_whitelist_entry *entry; 369 unsigned short vendor, device; 370 371 if (!root) 372 return false; 373 374 vendor = root->vendor; 375 device = root->device; 376 377 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 378 if (vendor != entry->vendor || device != entry->device) 379 continue; 380 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 381 return false; 382 383 return true; 384 } 385 386 if (warn) 387 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", 388 vendor, device); 389 390 return false; 391 } 392 393 /* 394 * If we can't find a common upstream bridge take a look at the root 395 * complex and compare it to a whitelist of known good hardware. 396 */ 397 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, 398 bool warn) 399 { 400 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 401 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 402 403 if (host_a == host_b) 404 return __host_bridge_whitelist(host_a, true, warn); 405 406 if (__host_bridge_whitelist(host_a, false, warn) && 407 __host_bridge_whitelist(host_b, false, warn)) 408 return true; 409 410 return false; 411 } 412 413 static unsigned long map_types_idx(struct pci_dev *client) 414 { 415 return (pci_domain_nr(client->bus) << 16) | 416 (client->bus->number << 8) | client->devfn; 417 } 418 419 /* 420 * Calculate the P2PDMA mapping type and distance between two PCI devices. 421 * 422 * If the two devices are the same PCI function, return 423 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. 424 * 425 * If they are two functions of the same device, return 426 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, 427 * then one hop back down to another function of the same device). 428 * 429 * In the case where two devices are connected to the same PCIe switch, 430 * return a distance of 4. This corresponds to the following PCI tree: 431 * 432 * -+ Root Port 433 * \+ Switch Upstream Port 434 * +-+ Switch Downstream Port 0 435 * + \- Device A 436 * \-+ Switch Downstream Port 1 437 * \- Device B 438 * 439 * The distance is 4 because we traverse from Device A to Downstream Port 0 440 * to the common Switch Upstream Port, back down to Downstream Port 1 and 441 * then to Device B. The mapping type returned depends on the ACS 442 * redirection setting of the ports along the path. 443 * 444 * If ACS redirect is set on any port in the path, traffic between the 445 * devices will go through the host bridge, so return 446 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return 447 * PCI_P2PDMA_MAP_BUS_ADDR. 448 * 449 * Any two devices that have a data path that goes through the host bridge 450 * will consult a whitelist. If the host bridge is in the whitelist, return 451 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of 452 * ports per above. If the device is not in the whitelist, return 453 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 454 */ 455 static enum pci_p2pdma_map_type 456 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, 457 int *dist, bool verbose) 458 { 459 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 460 struct pci_dev *a = provider, *b = client, *bb; 461 bool acs_redirects = false; 462 struct pci_p2pdma *p2pdma; 463 struct seq_buf acs_list; 464 int acs_cnt = 0; 465 int dist_a = 0; 466 int dist_b = 0; 467 char buf[128]; 468 469 seq_buf_init(&acs_list, buf, sizeof(buf)); 470 471 /* 472 * Note, we don't need to take references to devices returned by 473 * pci_upstream_bridge() seeing we hold a reference to a child 474 * device which will already hold a reference to the upstream bridge. 475 */ 476 while (a) { 477 dist_b = 0; 478 479 if (pci_bridge_has_acs_redir(a)) { 480 seq_buf_print_bus_devfn(&acs_list, a); 481 acs_cnt++; 482 } 483 484 bb = b; 485 486 while (bb) { 487 if (a == bb) 488 goto check_b_path_acs; 489 490 bb = pci_upstream_bridge(bb); 491 dist_b++; 492 } 493 494 a = pci_upstream_bridge(a); 495 dist_a++; 496 } 497 498 *dist = dist_a + dist_b; 499 goto map_through_host_bridge; 500 501 check_b_path_acs: 502 bb = b; 503 504 while (bb) { 505 if (a == bb) 506 break; 507 508 if (pci_bridge_has_acs_redir(bb)) { 509 seq_buf_print_bus_devfn(&acs_list, bb); 510 acs_cnt++; 511 } 512 513 bb = pci_upstream_bridge(bb); 514 } 515 516 *dist = dist_a + dist_b; 517 518 if (!acs_cnt) { 519 map_type = PCI_P2PDMA_MAP_BUS_ADDR; 520 goto done; 521 } 522 523 if (verbose) { 524 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ 525 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 526 pci_name(provider)); 527 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 528 acs_list.buffer); 529 } 530 acs_redirects = true; 531 532 map_through_host_bridge: 533 if (!cpu_supports_p2pdma() && 534 !host_bridge_whitelist(provider, client, acs_redirects)) { 535 if (verbose) 536 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 537 pci_name(provider)); 538 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 539 } 540 done: 541 rcu_read_lock(); 542 p2pdma = rcu_dereference(provider->p2pdma); 543 if (p2pdma) 544 xa_store(&p2pdma->map_types, map_types_idx(client), 545 xa_mk_value(map_type), GFP_KERNEL); 546 rcu_read_unlock(); 547 return map_type; 548 } 549 550 /** 551 * pci_p2pdma_distance_many - Determine the cumulative distance between 552 * a p2pdma provider and the clients in use. 553 * @provider: p2pdma provider to check against the client list 554 * @clients: array of devices to check (NULL-terminated) 555 * @num_clients: number of clients in the array 556 * @verbose: if true, print warnings for devices when we return -1 557 * 558 * Returns -1 if any of the clients are not compatible, otherwise returns a 559 * positive number where a lower number is the preferable choice. (If there's 560 * one client that's the same as the provider it will return 0, which is best 561 * choice). 562 * 563 * "compatible" means the provider and the clients are either all behind 564 * the same PCI root port or the host bridges connected to each of the devices 565 * are listed in the 'pci_p2pdma_whitelist'. 566 */ 567 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 568 int num_clients, bool verbose) 569 { 570 enum pci_p2pdma_map_type map; 571 bool not_supported = false; 572 struct pci_dev *pci_client; 573 int total_dist = 0; 574 int i, distance; 575 576 if (num_clients == 0) 577 return -1; 578 579 for (i = 0; i < num_clients; i++) { 580 pci_client = find_parent_pci_dev(clients[i]); 581 if (!pci_client) { 582 if (verbose) 583 dev_warn(clients[i], 584 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 585 return -1; 586 } 587 588 map = calc_map_type_and_dist(provider, pci_client, &distance, 589 verbose); 590 591 pci_dev_put(pci_client); 592 593 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) 594 not_supported = true; 595 596 if (not_supported && !verbose) 597 break; 598 599 total_dist += distance; 600 } 601 602 if (not_supported) 603 return -1; 604 605 return total_dist; 606 } 607 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 608 609 /** 610 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 611 * @pdev: PCI device to check 612 */ 613 bool pci_has_p2pmem(struct pci_dev *pdev) 614 { 615 struct pci_p2pdma *p2pdma; 616 bool res; 617 618 rcu_read_lock(); 619 p2pdma = rcu_dereference(pdev->p2pdma); 620 res = p2pdma && p2pdma->p2pmem_published; 621 rcu_read_unlock(); 622 623 return res; 624 } 625 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 626 627 /** 628 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 629 * the specified list of clients and shortest distance (as determined 630 * by pci_p2pmem_dma()) 631 * @clients: array of devices to check (NULL-terminated) 632 * @num_clients: number of client devices in the list 633 * 634 * If multiple devices are behind the same switch, the one "closest" to the 635 * client devices in use will be chosen first. (So if one of the providers is 636 * the same as one of the clients, that provider will be used ahead of any 637 * other providers that are unrelated). If multiple providers are an equal 638 * distance away, one will be chosen at random. 639 * 640 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 641 * to return the reference) or NULL if no compatible device is found. The 642 * found provider will also be assigned to the client list. 643 */ 644 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 645 { 646 struct pci_dev *pdev = NULL; 647 int distance; 648 int closest_distance = INT_MAX; 649 struct pci_dev **closest_pdevs; 650 int dev_cnt = 0; 651 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 652 int i; 653 654 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 655 if (!closest_pdevs) 656 return NULL; 657 658 while ((pdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, pdev))) { 659 if (!pci_has_p2pmem(pdev)) 660 continue; 661 662 distance = pci_p2pdma_distance_many(pdev, clients, 663 num_clients, false); 664 if (distance < 0 || distance > closest_distance) 665 continue; 666 667 if (distance == closest_distance && dev_cnt >= max_devs) 668 continue; 669 670 if (distance < closest_distance) { 671 for (i = 0; i < dev_cnt; i++) 672 pci_dev_put(closest_pdevs[i]); 673 674 dev_cnt = 0; 675 closest_distance = distance; 676 } 677 678 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 679 } 680 681 if (dev_cnt) 682 pdev = pci_dev_get(closest_pdevs[prandom_u32_max(dev_cnt)]); 683 684 for (i = 0; i < dev_cnt; i++) 685 pci_dev_put(closest_pdevs[i]); 686 687 kfree(closest_pdevs); 688 return pdev; 689 } 690 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 691 692 /** 693 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 694 * @pdev: the device to allocate memory from 695 * @size: number of bytes to allocate 696 * 697 * Returns the allocated memory or NULL on error. 698 */ 699 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 700 { 701 void *ret = NULL; 702 struct percpu_ref *ref; 703 struct pci_p2pdma *p2pdma; 704 705 /* 706 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 707 * ensure pdev->p2pdma is non-NULL for the duration of the 708 * read-lock. 709 */ 710 rcu_read_lock(); 711 p2pdma = rcu_dereference(pdev->p2pdma); 712 if (unlikely(!p2pdma)) 713 goto out; 714 715 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); 716 if (!ret) 717 goto out; 718 719 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 720 gen_pool_free(p2pdma->pool, (unsigned long) ret, size); 721 ret = NULL; 722 goto out; 723 } 724 out: 725 rcu_read_unlock(); 726 return ret; 727 } 728 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 729 730 /** 731 * pci_free_p2pmem - free peer-to-peer DMA memory 732 * @pdev: the device the memory was allocated from 733 * @addr: address of the memory that was allocated 734 * @size: number of bytes that were allocated 735 */ 736 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 737 { 738 struct percpu_ref *ref; 739 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 740 741 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, 742 (void **) &ref); 743 percpu_ref_put(ref); 744 } 745 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 746 747 /** 748 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 749 * address obtained with pci_alloc_p2pmem() 750 * @pdev: the device the memory was allocated from 751 * @addr: address of the memory that was allocated 752 */ 753 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 754 { 755 struct pci_p2pdma *p2pdma; 756 757 if (!addr) 758 return 0; 759 760 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 761 if (!p2pdma) 762 return 0; 763 764 /* 765 * Note: when we added the memory to the pool we used the PCI 766 * bus address as the physical address. So gen_pool_virt_to_phys() 767 * actually returns the bus address despite the misleading name. 768 */ 769 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); 770 } 771 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 772 773 /** 774 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 775 * @pdev: the device to allocate memory from 776 * @nents: the number of SG entries in the list 777 * @length: number of bytes to allocate 778 * 779 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 780 */ 781 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 782 unsigned int *nents, u32 length) 783 { 784 struct scatterlist *sg; 785 void *addr; 786 787 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 788 if (!sg) 789 return NULL; 790 791 sg_init_table(sg, 1); 792 793 addr = pci_alloc_p2pmem(pdev, length); 794 if (!addr) 795 goto out_free_sg; 796 797 sg_set_buf(sg, addr, length); 798 *nents = 1; 799 return sg; 800 801 out_free_sg: 802 kfree(sg); 803 return NULL; 804 } 805 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 806 807 /** 808 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 809 * @pdev: the device to allocate memory from 810 * @sgl: the allocated scatterlist 811 */ 812 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 813 { 814 struct scatterlist *sg; 815 int count; 816 817 for_each_sg(sgl, sg, INT_MAX, count) { 818 if (!sg) 819 break; 820 821 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 822 } 823 kfree(sgl); 824 } 825 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 826 827 /** 828 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 829 * other devices with pci_p2pmem_find() 830 * @pdev: the device with peer-to-peer DMA memory to publish 831 * @publish: set to true to publish the memory, false to unpublish it 832 * 833 * Published memory can be used by other PCI device drivers for 834 * peer-2-peer DMA operations. Non-published memory is reserved for 835 * exclusive use of the device driver that registers the peer-to-peer 836 * memory. 837 */ 838 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 839 { 840 struct pci_p2pdma *p2pdma; 841 842 rcu_read_lock(); 843 p2pdma = rcu_dereference(pdev->p2pdma); 844 if (p2pdma) 845 p2pdma->p2pmem_published = publish; 846 rcu_read_unlock(); 847 } 848 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 849 850 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap, 851 struct device *dev) 852 { 853 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 854 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider; 855 struct pci_dev *client; 856 struct pci_p2pdma *p2pdma; 857 858 if (!provider->p2pdma) 859 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 860 861 if (!dev_is_pci(dev)) 862 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 863 864 client = to_pci_dev(dev); 865 866 rcu_read_lock(); 867 p2pdma = rcu_dereference(provider->p2pdma); 868 869 if (p2pdma) 870 type = xa_to_value(xa_load(&p2pdma->map_types, 871 map_types_idx(client))); 872 rcu_read_unlock(); 873 return type; 874 } 875 876 static int __pci_p2pdma_map_sg(struct pci_p2pdma_pagemap *p2p_pgmap, 877 struct device *dev, struct scatterlist *sg, int nents) 878 { 879 struct scatterlist *s; 880 int i; 881 882 for_each_sg(sg, s, nents, i) { 883 s->dma_address = sg_phys(s) + p2p_pgmap->bus_offset; 884 sg_dma_len(s) = s->length; 885 } 886 887 return nents; 888 } 889 890 /** 891 * pci_p2pdma_map_sg_attrs - map a PCI peer-to-peer scatterlist for DMA 892 * @dev: device doing the DMA request 893 * @sg: scatter list to map 894 * @nents: elements in the scatterlist 895 * @dir: DMA direction 896 * @attrs: DMA attributes passed to dma_map_sg() (if called) 897 * 898 * Scatterlists mapped with this function should be unmapped using 899 * pci_p2pdma_unmap_sg_attrs(). 900 * 901 * Returns the number of SG entries mapped or 0 on error. 902 */ 903 int pci_p2pdma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 904 int nents, enum dma_data_direction dir, unsigned long attrs) 905 { 906 struct pci_p2pdma_pagemap *p2p_pgmap = 907 to_p2p_pgmap(sg_page(sg)->pgmap); 908 909 switch (pci_p2pdma_map_type(sg_page(sg)->pgmap, dev)) { 910 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE: 911 return dma_map_sg_attrs(dev, sg, nents, dir, attrs); 912 case PCI_P2PDMA_MAP_BUS_ADDR: 913 return __pci_p2pdma_map_sg(p2p_pgmap, dev, sg, nents); 914 default: 915 WARN_ON_ONCE(1); 916 return 0; 917 } 918 } 919 EXPORT_SYMBOL_GPL(pci_p2pdma_map_sg_attrs); 920 921 /** 922 * pci_p2pdma_unmap_sg_attrs - unmap a PCI peer-to-peer scatterlist that was 923 * mapped with pci_p2pdma_map_sg() 924 * @dev: device doing the DMA request 925 * @sg: scatter list to map 926 * @nents: number of elements returned by pci_p2pdma_map_sg() 927 * @dir: DMA direction 928 * @attrs: DMA attributes passed to dma_unmap_sg() (if called) 929 */ 930 void pci_p2pdma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 931 int nents, enum dma_data_direction dir, unsigned long attrs) 932 { 933 enum pci_p2pdma_map_type map_type; 934 935 map_type = pci_p2pdma_map_type(sg_page(sg)->pgmap, dev); 936 937 if (map_type == PCI_P2PDMA_MAP_THRU_HOST_BRIDGE) 938 dma_unmap_sg_attrs(dev, sg, nents, dir, attrs); 939 } 940 EXPORT_SYMBOL_GPL(pci_p2pdma_unmap_sg_attrs); 941 942 /** 943 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 944 * to enable p2pdma 945 * @page: contents of the value to be stored 946 * @p2p_dev: returns the PCI device that was selected to be used 947 * (if one was specified in the stored value) 948 * @use_p2pdma: returns whether to enable p2pdma or not 949 * 950 * Parses an attribute value to decide whether to enable p2pdma. 951 * The value can select a PCI device (using its full BDF device 952 * name) or a boolean (in any format kstrtobool() accepts). A false 953 * value disables p2pdma, a true value expects the caller 954 * to automatically find a compatible device and specifying a PCI device 955 * expects the caller to use the specific provider. 956 * 957 * pci_p2pdma_enable_show() should be used as the show operation for 958 * the attribute. 959 * 960 * Returns 0 on success 961 */ 962 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 963 bool *use_p2pdma) 964 { 965 struct device *dev; 966 967 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 968 if (dev) { 969 *use_p2pdma = true; 970 *p2p_dev = to_pci_dev(dev); 971 972 if (!pci_has_p2pmem(*p2p_dev)) { 973 pci_err(*p2p_dev, 974 "PCI device has no peer-to-peer memory: %s\n", 975 page); 976 pci_dev_put(*p2p_dev); 977 return -ENODEV; 978 } 979 980 return 0; 981 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 982 /* 983 * If the user enters a PCI device that doesn't exist 984 * like "0000:01:00.1", we don't want kstrtobool to think 985 * it's a '0' when it's clearly not what the user wanted. 986 * So we require 0's and 1's to be exactly one character. 987 */ 988 } else if (!kstrtobool(page, use_p2pdma)) { 989 return 0; 990 } 991 992 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 993 return -ENODEV; 994 } 995 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 996 997 /** 998 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 999 * whether p2pdma is enabled 1000 * @page: contents of the stored value 1001 * @p2p_dev: the selected p2p device (NULL if no device is selected) 1002 * @use_p2pdma: whether p2pdma has been enabled 1003 * 1004 * Attributes that use pci_p2pdma_enable_store() should use this function 1005 * to show the value of the attribute. 1006 * 1007 * Returns 0 on success 1008 */ 1009 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 1010 bool use_p2pdma) 1011 { 1012 if (!use_p2pdma) 1013 return sprintf(page, "0\n"); 1014 1015 if (!p2p_dev) 1016 return sprintf(page, "1\n"); 1017 1018 return sprintf(page, "%s\n", pci_name(p2p_dev)); 1019 } 1020 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 1021