1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Peer 2 Peer DMA support. 4 * 5 * Copyright (c) 2016-2018, Logan Gunthorpe 6 * Copyright (c) 2016-2017, Microsemi Corporation 7 * Copyright (c) 2017, Christoph Hellwig 8 * Copyright (c) 2018, Eideticom Inc. 9 */ 10 11 #define pr_fmt(fmt) "pci-p2pdma: " fmt 12 #include <linux/ctype.h> 13 #include <linux/dma-map-ops.h> 14 #include <linux/pci-p2pdma.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/genalloc.h> 18 #include <linux/memremap.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/random.h> 21 #include <linux/seq_buf.h> 22 #include <linux/xarray.h> 23 24 struct pci_p2pdma { 25 struct gen_pool *pool; 26 bool p2pmem_published; 27 struct xarray map_types; 28 }; 29 30 struct pci_p2pdma_pagemap { 31 struct dev_pagemap pgmap; 32 struct pci_dev *provider; 33 u64 bus_offset; 34 }; 35 36 static struct pci_p2pdma_pagemap *to_p2p_pgmap(struct dev_pagemap *pgmap) 37 { 38 return container_of(pgmap, struct pci_p2pdma_pagemap, pgmap); 39 } 40 41 static ssize_t size_show(struct device *dev, struct device_attribute *attr, 42 char *buf) 43 { 44 struct pci_dev *pdev = to_pci_dev(dev); 45 struct pci_p2pdma *p2pdma; 46 size_t size = 0; 47 48 rcu_read_lock(); 49 p2pdma = rcu_dereference(pdev->p2pdma); 50 if (p2pdma && p2pdma->pool) 51 size = gen_pool_size(p2pdma->pool); 52 rcu_read_unlock(); 53 54 return sysfs_emit(buf, "%zd\n", size); 55 } 56 static DEVICE_ATTR_RO(size); 57 58 static ssize_t available_show(struct device *dev, struct device_attribute *attr, 59 char *buf) 60 { 61 struct pci_dev *pdev = to_pci_dev(dev); 62 struct pci_p2pdma *p2pdma; 63 size_t avail = 0; 64 65 rcu_read_lock(); 66 p2pdma = rcu_dereference(pdev->p2pdma); 67 if (p2pdma && p2pdma->pool) 68 avail = gen_pool_avail(p2pdma->pool); 69 rcu_read_unlock(); 70 71 return sysfs_emit(buf, "%zd\n", avail); 72 } 73 static DEVICE_ATTR_RO(available); 74 75 static ssize_t published_show(struct device *dev, struct device_attribute *attr, 76 char *buf) 77 { 78 struct pci_dev *pdev = to_pci_dev(dev); 79 struct pci_p2pdma *p2pdma; 80 bool published = false; 81 82 rcu_read_lock(); 83 p2pdma = rcu_dereference(pdev->p2pdma); 84 if (p2pdma) 85 published = p2pdma->p2pmem_published; 86 rcu_read_unlock(); 87 88 return sysfs_emit(buf, "%d\n", published); 89 } 90 static DEVICE_ATTR_RO(published); 91 92 static int p2pmem_alloc_mmap(struct file *filp, struct kobject *kobj, 93 struct bin_attribute *attr, struct vm_area_struct *vma) 94 { 95 struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj)); 96 size_t len = vma->vm_end - vma->vm_start; 97 struct pci_p2pdma *p2pdma; 98 struct percpu_ref *ref; 99 unsigned long vaddr; 100 void *kaddr; 101 int ret; 102 103 /* prevent private mappings from being established */ 104 if ((vma->vm_flags & VM_MAYSHARE) != VM_MAYSHARE) { 105 pci_info_ratelimited(pdev, 106 "%s: fail, attempted private mapping\n", 107 current->comm); 108 return -EINVAL; 109 } 110 111 if (vma->vm_pgoff) { 112 pci_info_ratelimited(pdev, 113 "%s: fail, attempted mapping with non-zero offset\n", 114 current->comm); 115 return -EINVAL; 116 } 117 118 rcu_read_lock(); 119 p2pdma = rcu_dereference(pdev->p2pdma); 120 if (!p2pdma) { 121 ret = -ENODEV; 122 goto out; 123 } 124 125 kaddr = (void *)gen_pool_alloc_owner(p2pdma->pool, len, (void **)&ref); 126 if (!kaddr) { 127 ret = -ENOMEM; 128 goto out; 129 } 130 131 /* 132 * vm_insert_page() can sleep, so a reference is taken to mapping 133 * such that rcu_read_unlock() can be done before inserting the 134 * pages 135 */ 136 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 137 ret = -ENODEV; 138 goto out_free_mem; 139 } 140 rcu_read_unlock(); 141 142 for (vaddr = vma->vm_start; vaddr < vma->vm_end; vaddr += PAGE_SIZE) { 143 ret = vm_insert_page(vma, vaddr, virt_to_page(kaddr)); 144 if (ret) { 145 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); 146 return ret; 147 } 148 percpu_ref_get(ref); 149 put_page(virt_to_page(kaddr)); 150 kaddr += PAGE_SIZE; 151 len -= PAGE_SIZE; 152 } 153 154 percpu_ref_put(ref); 155 156 return 0; 157 out_free_mem: 158 gen_pool_free(p2pdma->pool, (uintptr_t)kaddr, len); 159 out: 160 rcu_read_unlock(); 161 return ret; 162 } 163 164 static struct bin_attribute p2pmem_alloc_attr = { 165 .attr = { .name = "allocate", .mode = 0660 }, 166 .mmap = p2pmem_alloc_mmap, 167 /* 168 * Some places where we want to call mmap (ie. python) will check 169 * that the file size is greater than the mmap size before allowing 170 * the mmap to continue. To work around this, just set the size 171 * to be very large. 172 */ 173 .size = SZ_1T, 174 }; 175 176 static struct attribute *p2pmem_attrs[] = { 177 &dev_attr_size.attr, 178 &dev_attr_available.attr, 179 &dev_attr_published.attr, 180 NULL, 181 }; 182 183 static struct bin_attribute *p2pmem_bin_attrs[] = { 184 &p2pmem_alloc_attr, 185 NULL, 186 }; 187 188 static const struct attribute_group p2pmem_group = { 189 .attrs = p2pmem_attrs, 190 .bin_attrs = p2pmem_bin_attrs, 191 .name = "p2pmem", 192 }; 193 194 static void p2pdma_page_free(struct page *page) 195 { 196 struct pci_p2pdma_pagemap *pgmap = to_p2p_pgmap(page->pgmap); 197 struct percpu_ref *ref; 198 199 gen_pool_free_owner(pgmap->provider->p2pdma->pool, 200 (uintptr_t)page_to_virt(page), PAGE_SIZE, 201 (void **)&ref); 202 percpu_ref_put(ref); 203 } 204 205 static const struct dev_pagemap_ops p2pdma_pgmap_ops = { 206 .page_free = p2pdma_page_free, 207 }; 208 209 static void pci_p2pdma_release(void *data) 210 { 211 struct pci_dev *pdev = data; 212 struct pci_p2pdma *p2pdma; 213 214 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 215 if (!p2pdma) 216 return; 217 218 /* Flush and disable pci_alloc_p2p_mem() */ 219 pdev->p2pdma = NULL; 220 synchronize_rcu(); 221 222 gen_pool_destroy(p2pdma->pool); 223 sysfs_remove_group(&pdev->dev.kobj, &p2pmem_group); 224 xa_destroy(&p2pdma->map_types); 225 } 226 227 static int pci_p2pdma_setup(struct pci_dev *pdev) 228 { 229 int error = -ENOMEM; 230 struct pci_p2pdma *p2p; 231 232 p2p = devm_kzalloc(&pdev->dev, sizeof(*p2p), GFP_KERNEL); 233 if (!p2p) 234 return -ENOMEM; 235 236 xa_init(&p2p->map_types); 237 238 p2p->pool = gen_pool_create(PAGE_SHIFT, dev_to_node(&pdev->dev)); 239 if (!p2p->pool) 240 goto out; 241 242 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_release, pdev); 243 if (error) 244 goto out_pool_destroy; 245 246 error = sysfs_create_group(&pdev->dev.kobj, &p2pmem_group); 247 if (error) 248 goto out_pool_destroy; 249 250 rcu_assign_pointer(pdev->p2pdma, p2p); 251 return 0; 252 253 out_pool_destroy: 254 gen_pool_destroy(p2p->pool); 255 out: 256 devm_kfree(&pdev->dev, p2p); 257 return error; 258 } 259 260 static void pci_p2pdma_unmap_mappings(void *data) 261 { 262 struct pci_dev *pdev = data; 263 264 /* 265 * Removing the alloc attribute from sysfs will call 266 * unmap_mapping_range() on the inode, teardown any existing userspace 267 * mappings and prevent new ones from being created. 268 */ 269 sysfs_remove_file_from_group(&pdev->dev.kobj, &p2pmem_alloc_attr.attr, 270 p2pmem_group.name); 271 } 272 273 /** 274 * pci_p2pdma_add_resource - add memory for use as p2p memory 275 * @pdev: the device to add the memory to 276 * @bar: PCI BAR to add 277 * @size: size of the memory to add, may be zero to use the whole BAR 278 * @offset: offset into the PCI BAR 279 * 280 * The memory will be given ZONE_DEVICE struct pages so that it may 281 * be used with any DMA request. 282 */ 283 int pci_p2pdma_add_resource(struct pci_dev *pdev, int bar, size_t size, 284 u64 offset) 285 { 286 struct pci_p2pdma_pagemap *p2p_pgmap; 287 struct dev_pagemap *pgmap; 288 struct pci_p2pdma *p2pdma; 289 void *addr; 290 int error; 291 292 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) 293 return -EINVAL; 294 295 if (offset >= pci_resource_len(pdev, bar)) 296 return -EINVAL; 297 298 if (!size) 299 size = pci_resource_len(pdev, bar) - offset; 300 301 if (size + offset > pci_resource_len(pdev, bar)) 302 return -EINVAL; 303 304 if (!pdev->p2pdma) { 305 error = pci_p2pdma_setup(pdev); 306 if (error) 307 return error; 308 } 309 310 p2p_pgmap = devm_kzalloc(&pdev->dev, sizeof(*p2p_pgmap), GFP_KERNEL); 311 if (!p2p_pgmap) 312 return -ENOMEM; 313 314 pgmap = &p2p_pgmap->pgmap; 315 pgmap->range.start = pci_resource_start(pdev, bar) + offset; 316 pgmap->range.end = pgmap->range.start + size - 1; 317 pgmap->nr_range = 1; 318 pgmap->type = MEMORY_DEVICE_PCI_P2PDMA; 319 pgmap->ops = &p2pdma_pgmap_ops; 320 321 p2p_pgmap->provider = pdev; 322 p2p_pgmap->bus_offset = pci_bus_address(pdev, bar) - 323 pci_resource_start(pdev, bar); 324 325 addr = devm_memremap_pages(&pdev->dev, pgmap); 326 if (IS_ERR(addr)) { 327 error = PTR_ERR(addr); 328 goto pgmap_free; 329 } 330 331 error = devm_add_action_or_reset(&pdev->dev, pci_p2pdma_unmap_mappings, 332 pdev); 333 if (error) 334 goto pages_free; 335 336 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 337 error = gen_pool_add_owner(p2pdma->pool, (unsigned long)addr, 338 pci_bus_address(pdev, bar) + offset, 339 range_len(&pgmap->range), dev_to_node(&pdev->dev), 340 &pgmap->ref); 341 if (error) 342 goto pages_free; 343 344 pci_info(pdev, "added peer-to-peer DMA memory %#llx-%#llx\n", 345 pgmap->range.start, pgmap->range.end); 346 347 return 0; 348 349 pages_free: 350 devm_memunmap_pages(&pdev->dev, pgmap); 351 pgmap_free: 352 devm_kfree(&pdev->dev, pgmap); 353 return error; 354 } 355 EXPORT_SYMBOL_GPL(pci_p2pdma_add_resource); 356 357 /* 358 * Note this function returns the parent PCI device with a 359 * reference taken. It is the caller's responsibility to drop 360 * the reference. 361 */ 362 static struct pci_dev *find_parent_pci_dev(struct device *dev) 363 { 364 struct device *parent; 365 366 dev = get_device(dev); 367 368 while (dev) { 369 if (dev_is_pci(dev)) 370 return to_pci_dev(dev); 371 372 parent = get_device(dev->parent); 373 put_device(dev); 374 dev = parent; 375 } 376 377 return NULL; 378 } 379 380 /* 381 * Check if a PCI bridge has its ACS redirection bits set to redirect P2P 382 * TLPs upstream via ACS. Returns 1 if the packets will be redirected 383 * upstream, 0 otherwise. 384 */ 385 static int pci_bridge_has_acs_redir(struct pci_dev *pdev) 386 { 387 int pos; 388 u16 ctrl; 389 390 pos = pdev->acs_cap; 391 if (!pos) 392 return 0; 393 394 pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl); 395 396 if (ctrl & (PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC)) 397 return 1; 398 399 return 0; 400 } 401 402 static void seq_buf_print_bus_devfn(struct seq_buf *buf, struct pci_dev *pdev) 403 { 404 if (!buf) 405 return; 406 407 seq_buf_printf(buf, "%s;", pci_name(pdev)); 408 } 409 410 static bool cpu_supports_p2pdma(void) 411 { 412 #ifdef CONFIG_X86 413 struct cpuinfo_x86 *c = &cpu_data(0); 414 415 /* Any AMD CPU whose family ID is Zen or newer supports p2pdma */ 416 if (c->x86_vendor == X86_VENDOR_AMD && c->x86 >= 0x17) 417 return true; 418 #endif 419 420 return false; 421 } 422 423 static const struct pci_p2pdma_whitelist_entry { 424 unsigned short vendor; 425 unsigned short device; 426 enum { 427 REQ_SAME_HOST_BRIDGE = 1 << 0, 428 } flags; 429 } pci_p2pdma_whitelist[] = { 430 /* Intel Xeon E5/Core i7 */ 431 {PCI_VENDOR_ID_INTEL, 0x3c00, REQ_SAME_HOST_BRIDGE}, 432 {PCI_VENDOR_ID_INTEL, 0x3c01, REQ_SAME_HOST_BRIDGE}, 433 /* Intel Xeon E7 v3/Xeon E5 v3/Core i7 */ 434 {PCI_VENDOR_ID_INTEL, 0x2f00, REQ_SAME_HOST_BRIDGE}, 435 {PCI_VENDOR_ID_INTEL, 0x2f01, REQ_SAME_HOST_BRIDGE}, 436 /* Intel SkyLake-E */ 437 {PCI_VENDOR_ID_INTEL, 0x2030, 0}, 438 {PCI_VENDOR_ID_INTEL, 0x2031, 0}, 439 {PCI_VENDOR_ID_INTEL, 0x2032, 0}, 440 {PCI_VENDOR_ID_INTEL, 0x2033, 0}, 441 {PCI_VENDOR_ID_INTEL, 0x2020, 0}, 442 {PCI_VENDOR_ID_INTEL, 0x09a2, 0}, 443 {} 444 }; 445 446 /* 447 * If the first device on host's root bus is either devfn 00.0 or a PCIe 448 * Root Port, return it. Otherwise return NULL. 449 * 450 * We often use a devfn 00.0 "host bridge" in the pci_p2pdma_whitelist[] 451 * (though there is no PCI/PCIe requirement for such a device). On some 452 * platforms, e.g., Intel Skylake, there is no such host bridge device, and 453 * pci_p2pdma_whitelist[] may contain a Root Port at any devfn. 454 * 455 * This function is similar to pci_get_slot(host->bus, 0), but it does 456 * not take the pci_bus_sem lock since __host_bridge_whitelist() must not 457 * sleep. 458 * 459 * For this to be safe, the caller should hold a reference to a device on the 460 * bridge, which should ensure the host_bridge device will not be freed 461 * or removed from the head of the devices list. 462 */ 463 static struct pci_dev *pci_host_bridge_dev(struct pci_host_bridge *host) 464 { 465 struct pci_dev *root; 466 467 root = list_first_entry_or_null(&host->bus->devices, 468 struct pci_dev, bus_list); 469 470 if (!root) 471 return NULL; 472 473 if (root->devfn == PCI_DEVFN(0, 0)) 474 return root; 475 476 if (pci_pcie_type(root) == PCI_EXP_TYPE_ROOT_PORT) 477 return root; 478 479 return NULL; 480 } 481 482 static bool __host_bridge_whitelist(struct pci_host_bridge *host, 483 bool same_host_bridge, bool warn) 484 { 485 struct pci_dev *root = pci_host_bridge_dev(host); 486 const struct pci_p2pdma_whitelist_entry *entry; 487 unsigned short vendor, device; 488 489 if (!root) 490 return false; 491 492 vendor = root->vendor; 493 device = root->device; 494 495 for (entry = pci_p2pdma_whitelist; entry->vendor; entry++) { 496 if (vendor != entry->vendor || device != entry->device) 497 continue; 498 if (entry->flags & REQ_SAME_HOST_BRIDGE && !same_host_bridge) 499 return false; 500 501 return true; 502 } 503 504 if (warn) 505 pci_warn(root, "Host bridge not in P2PDMA whitelist: %04x:%04x\n", 506 vendor, device); 507 508 return false; 509 } 510 511 /* 512 * If we can't find a common upstream bridge take a look at the root 513 * complex and compare it to a whitelist of known good hardware. 514 */ 515 static bool host_bridge_whitelist(struct pci_dev *a, struct pci_dev *b, 516 bool warn) 517 { 518 struct pci_host_bridge *host_a = pci_find_host_bridge(a->bus); 519 struct pci_host_bridge *host_b = pci_find_host_bridge(b->bus); 520 521 if (host_a == host_b) 522 return __host_bridge_whitelist(host_a, true, warn); 523 524 if (__host_bridge_whitelist(host_a, false, warn) && 525 __host_bridge_whitelist(host_b, false, warn)) 526 return true; 527 528 return false; 529 } 530 531 static unsigned long map_types_idx(struct pci_dev *client) 532 { 533 return (pci_domain_nr(client->bus) << 16) | 534 (client->bus->number << 8) | client->devfn; 535 } 536 537 /* 538 * Calculate the P2PDMA mapping type and distance between two PCI devices. 539 * 540 * If the two devices are the same PCI function, return 541 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 0. 542 * 543 * If they are two functions of the same device, return 544 * PCI_P2PDMA_MAP_BUS_ADDR and a distance of 2 (one hop up to the bridge, 545 * then one hop back down to another function of the same device). 546 * 547 * In the case where two devices are connected to the same PCIe switch, 548 * return a distance of 4. This corresponds to the following PCI tree: 549 * 550 * -+ Root Port 551 * \+ Switch Upstream Port 552 * +-+ Switch Downstream Port 0 553 * + \- Device A 554 * \-+ Switch Downstream Port 1 555 * \- Device B 556 * 557 * The distance is 4 because we traverse from Device A to Downstream Port 0 558 * to the common Switch Upstream Port, back down to Downstream Port 1 and 559 * then to Device B. The mapping type returned depends on the ACS 560 * redirection setting of the ports along the path. 561 * 562 * If ACS redirect is set on any port in the path, traffic between the 563 * devices will go through the host bridge, so return 564 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; otherwise return 565 * PCI_P2PDMA_MAP_BUS_ADDR. 566 * 567 * Any two devices that have a data path that goes through the host bridge 568 * will consult a whitelist. If the host bridge is in the whitelist, return 569 * PCI_P2PDMA_MAP_THRU_HOST_BRIDGE with the distance set to the number of 570 * ports per above. If the device is not in the whitelist, return 571 * PCI_P2PDMA_MAP_NOT_SUPPORTED. 572 */ 573 static enum pci_p2pdma_map_type 574 calc_map_type_and_dist(struct pci_dev *provider, struct pci_dev *client, 575 int *dist, bool verbose) 576 { 577 enum pci_p2pdma_map_type map_type = PCI_P2PDMA_MAP_THRU_HOST_BRIDGE; 578 struct pci_dev *a = provider, *b = client, *bb; 579 bool acs_redirects = false; 580 struct pci_p2pdma *p2pdma; 581 struct seq_buf acs_list; 582 int acs_cnt = 0; 583 int dist_a = 0; 584 int dist_b = 0; 585 char buf[128]; 586 587 seq_buf_init(&acs_list, buf, sizeof(buf)); 588 589 /* 590 * Note, we don't need to take references to devices returned by 591 * pci_upstream_bridge() seeing we hold a reference to a child 592 * device which will already hold a reference to the upstream bridge. 593 */ 594 while (a) { 595 dist_b = 0; 596 597 if (pci_bridge_has_acs_redir(a)) { 598 seq_buf_print_bus_devfn(&acs_list, a); 599 acs_cnt++; 600 } 601 602 bb = b; 603 604 while (bb) { 605 if (a == bb) 606 goto check_b_path_acs; 607 608 bb = pci_upstream_bridge(bb); 609 dist_b++; 610 } 611 612 a = pci_upstream_bridge(a); 613 dist_a++; 614 } 615 616 *dist = dist_a + dist_b; 617 goto map_through_host_bridge; 618 619 check_b_path_acs: 620 bb = b; 621 622 while (bb) { 623 if (a == bb) 624 break; 625 626 if (pci_bridge_has_acs_redir(bb)) { 627 seq_buf_print_bus_devfn(&acs_list, bb); 628 acs_cnt++; 629 } 630 631 bb = pci_upstream_bridge(bb); 632 } 633 634 *dist = dist_a + dist_b; 635 636 if (!acs_cnt) { 637 map_type = PCI_P2PDMA_MAP_BUS_ADDR; 638 goto done; 639 } 640 641 if (verbose) { 642 acs_list.buffer[acs_list.len-1] = 0; /* drop final semicolon */ 643 pci_warn(client, "ACS redirect is set between the client and provider (%s)\n", 644 pci_name(provider)); 645 pci_warn(client, "to disable ACS redirect for this path, add the kernel parameter: pci=disable_acs_redir=%s\n", 646 acs_list.buffer); 647 } 648 acs_redirects = true; 649 650 map_through_host_bridge: 651 if (!cpu_supports_p2pdma() && 652 !host_bridge_whitelist(provider, client, acs_redirects)) { 653 if (verbose) 654 pci_warn(client, "cannot be used for peer-to-peer DMA as the client and provider (%s) do not share an upstream bridge or whitelisted host bridge\n", 655 pci_name(provider)); 656 map_type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 657 } 658 done: 659 rcu_read_lock(); 660 p2pdma = rcu_dereference(provider->p2pdma); 661 if (p2pdma) 662 xa_store(&p2pdma->map_types, map_types_idx(client), 663 xa_mk_value(map_type), GFP_KERNEL); 664 rcu_read_unlock(); 665 return map_type; 666 } 667 668 /** 669 * pci_p2pdma_distance_many - Determine the cumulative distance between 670 * a p2pdma provider and the clients in use. 671 * @provider: p2pdma provider to check against the client list 672 * @clients: array of devices to check (NULL-terminated) 673 * @num_clients: number of clients in the array 674 * @verbose: if true, print warnings for devices when we return -1 675 * 676 * Returns -1 if any of the clients are not compatible, otherwise returns a 677 * positive number where a lower number is the preferable choice. (If there's 678 * one client that's the same as the provider it will return 0, which is best 679 * choice). 680 * 681 * "compatible" means the provider and the clients are either all behind 682 * the same PCI root port or the host bridges connected to each of the devices 683 * are listed in the 'pci_p2pdma_whitelist'. 684 */ 685 int pci_p2pdma_distance_many(struct pci_dev *provider, struct device **clients, 686 int num_clients, bool verbose) 687 { 688 enum pci_p2pdma_map_type map; 689 bool not_supported = false; 690 struct pci_dev *pci_client; 691 int total_dist = 0; 692 int i, distance; 693 694 if (num_clients == 0) 695 return -1; 696 697 for (i = 0; i < num_clients; i++) { 698 pci_client = find_parent_pci_dev(clients[i]); 699 if (!pci_client) { 700 if (verbose) 701 dev_warn(clients[i], 702 "cannot be used for peer-to-peer DMA as it is not a PCI device\n"); 703 return -1; 704 } 705 706 map = calc_map_type_and_dist(provider, pci_client, &distance, 707 verbose); 708 709 pci_dev_put(pci_client); 710 711 if (map == PCI_P2PDMA_MAP_NOT_SUPPORTED) 712 not_supported = true; 713 714 if (not_supported && !verbose) 715 break; 716 717 total_dist += distance; 718 } 719 720 if (not_supported) 721 return -1; 722 723 return total_dist; 724 } 725 EXPORT_SYMBOL_GPL(pci_p2pdma_distance_many); 726 727 /** 728 * pci_has_p2pmem - check if a given PCI device has published any p2pmem 729 * @pdev: PCI device to check 730 */ 731 bool pci_has_p2pmem(struct pci_dev *pdev) 732 { 733 struct pci_p2pdma *p2pdma; 734 bool res; 735 736 rcu_read_lock(); 737 p2pdma = rcu_dereference(pdev->p2pdma); 738 res = p2pdma && p2pdma->p2pmem_published; 739 rcu_read_unlock(); 740 741 return res; 742 } 743 EXPORT_SYMBOL_GPL(pci_has_p2pmem); 744 745 /** 746 * pci_p2pmem_find_many - find a peer-to-peer DMA memory device compatible with 747 * the specified list of clients and shortest distance (as determined 748 * by pci_p2pmem_dma()) 749 * @clients: array of devices to check (NULL-terminated) 750 * @num_clients: number of client devices in the list 751 * 752 * If multiple devices are behind the same switch, the one "closest" to the 753 * client devices in use will be chosen first. (So if one of the providers is 754 * the same as one of the clients, that provider will be used ahead of any 755 * other providers that are unrelated). If multiple providers are an equal 756 * distance away, one will be chosen at random. 757 * 758 * Returns a pointer to the PCI device with a reference taken (use pci_dev_put 759 * to return the reference) or NULL if no compatible device is found. The 760 * found provider will also be assigned to the client list. 761 */ 762 struct pci_dev *pci_p2pmem_find_many(struct device **clients, int num_clients) 763 { 764 struct pci_dev *pdev = NULL; 765 int distance; 766 int closest_distance = INT_MAX; 767 struct pci_dev **closest_pdevs; 768 int dev_cnt = 0; 769 const int max_devs = PAGE_SIZE / sizeof(*closest_pdevs); 770 int i; 771 772 closest_pdevs = kmalloc(PAGE_SIZE, GFP_KERNEL); 773 if (!closest_pdevs) 774 return NULL; 775 776 for_each_pci_dev(pdev) { 777 if (!pci_has_p2pmem(pdev)) 778 continue; 779 780 distance = pci_p2pdma_distance_many(pdev, clients, 781 num_clients, false); 782 if (distance < 0 || distance > closest_distance) 783 continue; 784 785 if (distance == closest_distance && dev_cnt >= max_devs) 786 continue; 787 788 if (distance < closest_distance) { 789 for (i = 0; i < dev_cnt; i++) 790 pci_dev_put(closest_pdevs[i]); 791 792 dev_cnt = 0; 793 closest_distance = distance; 794 } 795 796 closest_pdevs[dev_cnt++] = pci_dev_get(pdev); 797 } 798 799 if (dev_cnt) 800 pdev = pci_dev_get(closest_pdevs[get_random_u32_below(dev_cnt)]); 801 802 for (i = 0; i < dev_cnt; i++) 803 pci_dev_put(closest_pdevs[i]); 804 805 kfree(closest_pdevs); 806 return pdev; 807 } 808 EXPORT_SYMBOL_GPL(pci_p2pmem_find_many); 809 810 /** 811 * pci_alloc_p2pmem - allocate peer-to-peer DMA memory 812 * @pdev: the device to allocate memory from 813 * @size: number of bytes to allocate 814 * 815 * Returns the allocated memory or NULL on error. 816 */ 817 void *pci_alloc_p2pmem(struct pci_dev *pdev, size_t size) 818 { 819 void *ret = NULL; 820 struct percpu_ref *ref; 821 struct pci_p2pdma *p2pdma; 822 823 /* 824 * Pairs with synchronize_rcu() in pci_p2pdma_release() to 825 * ensure pdev->p2pdma is non-NULL for the duration of the 826 * read-lock. 827 */ 828 rcu_read_lock(); 829 p2pdma = rcu_dereference(pdev->p2pdma); 830 if (unlikely(!p2pdma)) 831 goto out; 832 833 ret = (void *)gen_pool_alloc_owner(p2pdma->pool, size, (void **) &ref); 834 if (!ret) 835 goto out; 836 837 if (unlikely(!percpu_ref_tryget_live_rcu(ref))) { 838 gen_pool_free(p2pdma->pool, (unsigned long) ret, size); 839 ret = NULL; 840 goto out; 841 } 842 out: 843 rcu_read_unlock(); 844 return ret; 845 } 846 EXPORT_SYMBOL_GPL(pci_alloc_p2pmem); 847 848 /** 849 * pci_free_p2pmem - free peer-to-peer DMA memory 850 * @pdev: the device the memory was allocated from 851 * @addr: address of the memory that was allocated 852 * @size: number of bytes that were allocated 853 */ 854 void pci_free_p2pmem(struct pci_dev *pdev, void *addr, size_t size) 855 { 856 struct percpu_ref *ref; 857 struct pci_p2pdma *p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 858 859 gen_pool_free_owner(p2pdma->pool, (uintptr_t)addr, size, 860 (void **) &ref); 861 percpu_ref_put(ref); 862 } 863 EXPORT_SYMBOL_GPL(pci_free_p2pmem); 864 865 /** 866 * pci_p2pmem_virt_to_bus - return the PCI bus address for a given virtual 867 * address obtained with pci_alloc_p2pmem() 868 * @pdev: the device the memory was allocated from 869 * @addr: address of the memory that was allocated 870 */ 871 pci_bus_addr_t pci_p2pmem_virt_to_bus(struct pci_dev *pdev, void *addr) 872 { 873 struct pci_p2pdma *p2pdma; 874 875 if (!addr) 876 return 0; 877 878 p2pdma = rcu_dereference_protected(pdev->p2pdma, 1); 879 if (!p2pdma) 880 return 0; 881 882 /* 883 * Note: when we added the memory to the pool we used the PCI 884 * bus address as the physical address. So gen_pool_virt_to_phys() 885 * actually returns the bus address despite the misleading name. 886 */ 887 return gen_pool_virt_to_phys(p2pdma->pool, (unsigned long)addr); 888 } 889 EXPORT_SYMBOL_GPL(pci_p2pmem_virt_to_bus); 890 891 /** 892 * pci_p2pmem_alloc_sgl - allocate peer-to-peer DMA memory in a scatterlist 893 * @pdev: the device to allocate memory from 894 * @nents: the number of SG entries in the list 895 * @length: number of bytes to allocate 896 * 897 * Return: %NULL on error or &struct scatterlist pointer and @nents on success 898 */ 899 struct scatterlist *pci_p2pmem_alloc_sgl(struct pci_dev *pdev, 900 unsigned int *nents, u32 length) 901 { 902 struct scatterlist *sg; 903 void *addr; 904 905 sg = kmalloc(sizeof(*sg), GFP_KERNEL); 906 if (!sg) 907 return NULL; 908 909 sg_init_table(sg, 1); 910 911 addr = pci_alloc_p2pmem(pdev, length); 912 if (!addr) 913 goto out_free_sg; 914 915 sg_set_buf(sg, addr, length); 916 *nents = 1; 917 return sg; 918 919 out_free_sg: 920 kfree(sg); 921 return NULL; 922 } 923 EXPORT_SYMBOL_GPL(pci_p2pmem_alloc_sgl); 924 925 /** 926 * pci_p2pmem_free_sgl - free a scatterlist allocated by pci_p2pmem_alloc_sgl() 927 * @pdev: the device to allocate memory from 928 * @sgl: the allocated scatterlist 929 */ 930 void pci_p2pmem_free_sgl(struct pci_dev *pdev, struct scatterlist *sgl) 931 { 932 struct scatterlist *sg; 933 int count; 934 935 for_each_sg(sgl, sg, INT_MAX, count) { 936 if (!sg) 937 break; 938 939 pci_free_p2pmem(pdev, sg_virt(sg), sg->length); 940 } 941 kfree(sgl); 942 } 943 EXPORT_SYMBOL_GPL(pci_p2pmem_free_sgl); 944 945 /** 946 * pci_p2pmem_publish - publish the peer-to-peer DMA memory for use by 947 * other devices with pci_p2pmem_find() 948 * @pdev: the device with peer-to-peer DMA memory to publish 949 * @publish: set to true to publish the memory, false to unpublish it 950 * 951 * Published memory can be used by other PCI device drivers for 952 * peer-2-peer DMA operations. Non-published memory is reserved for 953 * exclusive use of the device driver that registers the peer-to-peer 954 * memory. 955 */ 956 void pci_p2pmem_publish(struct pci_dev *pdev, bool publish) 957 { 958 struct pci_p2pdma *p2pdma; 959 960 rcu_read_lock(); 961 p2pdma = rcu_dereference(pdev->p2pdma); 962 if (p2pdma) 963 p2pdma->p2pmem_published = publish; 964 rcu_read_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(pci_p2pmem_publish); 967 968 static enum pci_p2pdma_map_type pci_p2pdma_map_type(struct dev_pagemap *pgmap, 969 struct device *dev) 970 { 971 enum pci_p2pdma_map_type type = PCI_P2PDMA_MAP_NOT_SUPPORTED; 972 struct pci_dev *provider = to_p2p_pgmap(pgmap)->provider; 973 struct pci_dev *client; 974 struct pci_p2pdma *p2pdma; 975 int dist; 976 977 if (!provider->p2pdma) 978 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 979 980 if (!dev_is_pci(dev)) 981 return PCI_P2PDMA_MAP_NOT_SUPPORTED; 982 983 client = to_pci_dev(dev); 984 985 rcu_read_lock(); 986 p2pdma = rcu_dereference(provider->p2pdma); 987 988 if (p2pdma) 989 type = xa_to_value(xa_load(&p2pdma->map_types, 990 map_types_idx(client))); 991 rcu_read_unlock(); 992 993 if (type == PCI_P2PDMA_MAP_UNKNOWN) 994 return calc_map_type_and_dist(provider, client, &dist, true); 995 996 return type; 997 } 998 999 /** 1000 * pci_p2pdma_map_segment - map an sg segment determining the mapping type 1001 * @state: State structure that should be declared outside of the for_each_sg() 1002 * loop and initialized to zero. 1003 * @dev: DMA device that's doing the mapping operation 1004 * @sg: scatterlist segment to map 1005 * 1006 * This is a helper to be used by non-IOMMU dma_map_sg() implementations where 1007 * the sg segment is the same for the page_link and the dma_address. 1008 * 1009 * Attempt to map a single segment in an SGL with the PCI bus address. 1010 * The segment must point to a PCI P2PDMA page and thus must be 1011 * wrapped in a is_pci_p2pdma_page(sg_page(sg)) check. 1012 * 1013 * Returns the type of mapping used and maps the page if the type is 1014 * PCI_P2PDMA_MAP_BUS_ADDR. 1015 */ 1016 enum pci_p2pdma_map_type 1017 pci_p2pdma_map_segment(struct pci_p2pdma_map_state *state, struct device *dev, 1018 struct scatterlist *sg) 1019 { 1020 if (state->pgmap != sg_page(sg)->pgmap) { 1021 state->pgmap = sg_page(sg)->pgmap; 1022 state->map = pci_p2pdma_map_type(state->pgmap, dev); 1023 state->bus_off = to_p2p_pgmap(state->pgmap)->bus_offset; 1024 } 1025 1026 if (state->map == PCI_P2PDMA_MAP_BUS_ADDR) { 1027 sg->dma_address = sg_phys(sg) + state->bus_off; 1028 sg_dma_len(sg) = sg->length; 1029 sg_dma_mark_bus_address(sg); 1030 } 1031 1032 return state->map; 1033 } 1034 1035 /** 1036 * pci_p2pdma_enable_store - parse a configfs/sysfs attribute store 1037 * to enable p2pdma 1038 * @page: contents of the value to be stored 1039 * @p2p_dev: returns the PCI device that was selected to be used 1040 * (if one was specified in the stored value) 1041 * @use_p2pdma: returns whether to enable p2pdma or not 1042 * 1043 * Parses an attribute value to decide whether to enable p2pdma. 1044 * The value can select a PCI device (using its full BDF device 1045 * name) or a boolean (in any format kstrtobool() accepts). A false 1046 * value disables p2pdma, a true value expects the caller 1047 * to automatically find a compatible device and specifying a PCI device 1048 * expects the caller to use the specific provider. 1049 * 1050 * pci_p2pdma_enable_show() should be used as the show operation for 1051 * the attribute. 1052 * 1053 * Returns 0 on success 1054 */ 1055 int pci_p2pdma_enable_store(const char *page, struct pci_dev **p2p_dev, 1056 bool *use_p2pdma) 1057 { 1058 struct device *dev; 1059 1060 dev = bus_find_device_by_name(&pci_bus_type, NULL, page); 1061 if (dev) { 1062 *use_p2pdma = true; 1063 *p2p_dev = to_pci_dev(dev); 1064 1065 if (!pci_has_p2pmem(*p2p_dev)) { 1066 pci_err(*p2p_dev, 1067 "PCI device has no peer-to-peer memory: %s\n", 1068 page); 1069 pci_dev_put(*p2p_dev); 1070 return -ENODEV; 1071 } 1072 1073 return 0; 1074 } else if ((page[0] == '0' || page[0] == '1') && !iscntrl(page[1])) { 1075 /* 1076 * If the user enters a PCI device that doesn't exist 1077 * like "0000:01:00.1", we don't want kstrtobool to think 1078 * it's a '0' when it's clearly not what the user wanted. 1079 * So we require 0's and 1's to be exactly one character. 1080 */ 1081 } else if (!kstrtobool(page, use_p2pdma)) { 1082 return 0; 1083 } 1084 1085 pr_err("No such PCI device: %.*s\n", (int)strcspn(page, "\n"), page); 1086 return -ENODEV; 1087 } 1088 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_store); 1089 1090 /** 1091 * pci_p2pdma_enable_show - show a configfs/sysfs attribute indicating 1092 * whether p2pdma is enabled 1093 * @page: contents of the stored value 1094 * @p2p_dev: the selected p2p device (NULL if no device is selected) 1095 * @use_p2pdma: whether p2pdma has been enabled 1096 * 1097 * Attributes that use pci_p2pdma_enable_store() should use this function 1098 * to show the value of the attribute. 1099 * 1100 * Returns 0 on success 1101 */ 1102 ssize_t pci_p2pdma_enable_show(char *page, struct pci_dev *p2p_dev, 1103 bool use_p2pdma) 1104 { 1105 if (!use_p2pdma) 1106 return sprintf(page, "0\n"); 1107 1108 if (!p2p_dev) 1109 return sprintf(page, "1\n"); 1110 1111 return sprintf(page, "%s\n", pci_name(p2p_dev)); 1112 } 1113 EXPORT_SYMBOL_GPL(pci_p2pdma_enable_show); 1114