1 /*
2  * PCI Express Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  * Copyright (C) 2003-2004 Intel Corporation
8  *
9  * All rights reserved.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or (at
14  * your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful, but
17  * WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
19  * NON INFRINGEMENT.  See the GNU General Public License for more
20  * details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Send feedback to <greg@kroah.com>, <dely.l.sy@intel.com>
27  *
28  */
29 
30 #include <linux/config.h>
31 #include <linux/module.h>
32 #include <linux/kernel.h>
33 #include <linux/types.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/interrupt.h>
37 #include <linux/delay.h>
38 #include <linux/wait.h>
39 #include <linux/smp_lock.h>
40 #include <linux/pci.h>
41 #include "../pci.h"
42 #include "pciehp.h"
43 #include "pciehprm.h"
44 
45 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
46 	u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev);
47 static int configure_new_function( struct controller *ctrl, struct pci_func *func,
48 	u8 behind_bridge, struct resource_lists *resources, u8 bridge_bus, u8 bridge_dev);
49 static void interrupt_event_handler(struct controller *ctrl);
50 
51 static struct semaphore event_semaphore;	/* mutex for process loop (up if something to process) */
52 static struct semaphore event_exit;		/* guard ensure thread has exited before calling it quits */
53 static int event_finished;
54 static unsigned long pushbutton_pending;	/* = 0 */
55 static unsigned long surprise_rm_pending;	/* = 0 */
56 
57 u8 pciehp_handle_attention_button(u8 hp_slot, void *inst_id)
58 {
59 	struct controller *ctrl = (struct controller *) inst_id;
60 	struct slot *p_slot;
61 	u8 rc = 0;
62 	u8 getstatus;
63 	struct pci_func *func;
64 	struct event_info *taskInfo;
65 
66 	/* Attention Button Change */
67 	dbg("pciehp:  Attention button interrupt received.\n");
68 
69 	func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
70 
71 	/* This is the structure that tells the worker thread what to do */
72 	taskInfo = &(ctrl->event_queue[ctrl->next_event]);
73 	p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
74 
75 	p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
76 	p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
77 
78 	ctrl->next_event = (ctrl->next_event + 1) % 10;
79 	taskInfo->hp_slot = hp_slot;
80 
81 	rc++;
82 
83 	/*
84 	 *  Button pressed - See if need to TAKE ACTION!!!
85 	 */
86 	info("Button pressed on Slot(%d)\n", ctrl->first_slot + hp_slot);
87 	taskInfo->event_type = INT_BUTTON_PRESS;
88 
89 	if ((p_slot->state == BLINKINGON_STATE)
90 	    || (p_slot->state == BLINKINGOFF_STATE)) {
91 		/* Cancel if we are still blinking; this means that we press the
92 		 * attention again before the 5 sec. limit expires to cancel hot-add
93 		 * or hot-remove
94 		 */
95 		taskInfo->event_type = INT_BUTTON_CANCEL;
96 		info("Button cancel on Slot(%d)\n", ctrl->first_slot + hp_slot);
97 	} else if ((p_slot->state == POWERON_STATE)
98 		   || (p_slot->state == POWEROFF_STATE)) {
99 		/* Ignore if the slot is on power-on or power-off state; this
100 		 * means that the previous attention button action to hot-add or
101 		 * hot-remove is undergoing
102 		 */
103 		taskInfo->event_type = INT_BUTTON_IGNORE;
104 		info("Button ignore on Slot(%d)\n", ctrl->first_slot + hp_slot);
105 	}
106 
107 	if (rc)
108 		up(&event_semaphore);	/* signal event thread that new event is posted */
109 
110 	return 0;
111 
112 }
113 
114 u8 pciehp_handle_switch_change(u8 hp_slot, void *inst_id)
115 {
116 	struct controller *ctrl = (struct controller *) inst_id;
117 	struct slot *p_slot;
118 	u8 rc = 0;
119 	u8 getstatus;
120 	struct pci_func *func;
121 	struct event_info *taskInfo;
122 
123 	/* Switch Change */
124 	dbg("pciehp:  Switch interrupt received.\n");
125 
126 	func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
127 
128 	/* This is the structure that tells the worker thread
129 	 * what to do
130 	 */
131 	taskInfo = &(ctrl->event_queue[ctrl->next_event]);
132 	ctrl->next_event = (ctrl->next_event + 1) % 10;
133 	taskInfo->hp_slot = hp_slot;
134 
135 	rc++;
136 	p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
137 	p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
138 	p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
139 
140 	if (getstatus) {
141 		/*
142 		 * Switch opened
143 		 */
144 		info("Latch open on Slot(%d)\n", ctrl->first_slot + hp_slot);
145 		func->switch_save = 0;
146 		taskInfo->event_type = INT_SWITCH_OPEN;
147 	} else {
148 		/*
149 		 *  Switch closed
150 		 */
151 		info("Latch close on Slot(%d)\n", ctrl->first_slot + hp_slot);
152 		func->switch_save = 0x10;
153 		taskInfo->event_type = INT_SWITCH_CLOSE;
154 	}
155 
156 	if (rc)
157 		up(&event_semaphore);	/* signal event thread that new event is posted */
158 
159 	return rc;
160 }
161 
162 u8 pciehp_handle_presence_change(u8 hp_slot, void *inst_id)
163 {
164 	struct controller *ctrl = (struct controller *) inst_id;
165 	struct slot *p_slot;
166 	u8 rc = 0;
167 	struct pci_func *func;
168 	struct event_info *taskInfo;
169 
170 	/* Presence Change */
171 	dbg("pciehp:  Presence/Notify input change.\n");
172 
173 	func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
174 
175 	/* This is the structure that tells the worker thread
176 	 * what to do
177 	 */
178 	taskInfo = &(ctrl->event_queue[ctrl->next_event]);
179 	ctrl->next_event = (ctrl->next_event + 1) % 10;
180 	taskInfo->hp_slot = hp_slot;
181 
182 	rc++;
183 	p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
184 
185 	/* Switch is open, assume a presence change
186 	 * Save the presence state
187 	 */
188 	p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
189 	if (func->presence_save) {
190 		/*
191 		 * Card Present
192 		 */
193 		info("Card present on Slot(%d)\n", ctrl->first_slot + hp_slot);
194 		taskInfo->event_type = INT_PRESENCE_ON;
195 	} else {
196 		/*
197 		 * Not Present
198 		 */
199 		info("Card not present on Slot(%d)\n", ctrl->first_slot + hp_slot);
200 		taskInfo->event_type = INT_PRESENCE_OFF;
201 	}
202 
203 	if (rc)
204 		up(&event_semaphore);	/* signal event thread that new event is posted */
205 
206 	return rc;
207 }
208 
209 u8 pciehp_handle_power_fault(u8 hp_slot, void *inst_id)
210 {
211 	struct controller *ctrl = (struct controller *) inst_id;
212 	struct slot *p_slot;
213 	u8 rc = 0;
214 	struct pci_func *func;
215 	struct event_info *taskInfo;
216 
217 	/* power fault */
218 	dbg("pciehp:  Power fault interrupt received.\n");
219 
220 	func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
221 
222 	/* this is the structure that tells the worker thread
223 	 * what to do
224 	 */
225 	taskInfo = &(ctrl->event_queue[ctrl->next_event]);
226 	ctrl->next_event = (ctrl->next_event + 1) % 10;
227 	taskInfo->hp_slot = hp_slot;
228 
229 	rc++;
230 	p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
231 
232 	if ( !(p_slot->hpc_ops->query_power_fault(p_slot))) {
233 		/*
234 		 * power fault Cleared
235 		 */
236 		info("Power fault cleared on Slot(%d)\n", ctrl->first_slot + hp_slot);
237 		func->status = 0x00;
238 		taskInfo->event_type = INT_POWER_FAULT_CLEAR;
239 	} else {
240 		/*
241 		 *   power fault
242 		 */
243 		info("Power fault on Slot(%d)\n", ctrl->first_slot + hp_slot);
244 		taskInfo->event_type = INT_POWER_FAULT;
245 		/* set power fault status for this board */
246 		func->status = 0xFF;
247 		info("power fault bit %x set\n", hp_slot);
248 	}
249 	if (rc)
250 		up(&event_semaphore);	/* signal event thread that new event is posted */
251 
252 	return rc;
253 }
254 
255 
256 /**
257  * sort_by_size: sort nodes by their length, smallest first.
258  *
259  * @head: list to sort
260  */
261 static int sort_by_size(struct pci_resource **head)
262 {
263 	struct pci_resource *current_res;
264 	struct pci_resource *next_res;
265 	int out_of_order = 1;
266 
267 	if (!(*head))
268 		return 1;
269 
270 	if (!((*head)->next))
271 		return 0;
272 
273 	while (out_of_order) {
274 		out_of_order = 0;
275 
276 		/* Special case for swapping list head */
277 		if (((*head)->next) &&
278 		    ((*head)->length > (*head)->next->length)) {
279 			out_of_order++;
280 			current_res = *head;
281 			*head = (*head)->next;
282 			current_res->next = (*head)->next;
283 			(*head)->next = current_res;
284 		}
285 
286 		current_res = *head;
287 
288 		while (current_res->next && current_res->next->next) {
289 			if (current_res->next->length > current_res->next->next->length) {
290 				out_of_order++;
291 				next_res = current_res->next;
292 				current_res->next = current_res->next->next;
293 				current_res = current_res->next;
294 				next_res->next = current_res->next;
295 				current_res->next = next_res;
296 			} else
297 				current_res = current_res->next;
298 		}
299 	}  /* End of out_of_order loop */
300 
301 	return 0;
302 }
303 
304 
305 /*
306  * sort_by_max_size
307  *
308  * Sorts nodes on the list by their length.
309  * Largest first.
310  *
311  */
312 static int sort_by_max_size(struct pci_resource **head)
313 {
314 	struct pci_resource *current_res;
315 	struct pci_resource *next_res;
316 	int out_of_order = 1;
317 
318 	if (!(*head))
319 		return 1;
320 
321 	if (!((*head)->next))
322 		return 0;
323 
324 	while (out_of_order) {
325 		out_of_order = 0;
326 
327 		/* Special case for swapping list head */
328 		if (((*head)->next) &&
329 		    ((*head)->length < (*head)->next->length)) {
330 			out_of_order++;
331 			current_res = *head;
332 			*head = (*head)->next;
333 			current_res->next = (*head)->next;
334 			(*head)->next = current_res;
335 		}
336 
337 		current_res = *head;
338 
339 		while (current_res->next && current_res->next->next) {
340 			if (current_res->next->length < current_res->next->next->length) {
341 				out_of_order++;
342 				next_res = current_res->next;
343 				current_res->next = current_res->next->next;
344 				current_res = current_res->next;
345 				next_res->next = current_res->next;
346 				current_res->next = next_res;
347 			} else
348 				current_res = current_res->next;
349 		}
350 	}  /* End of out_of_order loop */
351 
352 	return 0;
353 }
354 
355 
356 /**
357  * do_pre_bridge_resource_split: return one unused resource node
358  * @head: list to scan
359  *
360  */
361 static struct pci_resource *
362 do_pre_bridge_resource_split(struct pci_resource **head,
363 				struct pci_resource **orig_head, u32 alignment)
364 {
365 	struct pci_resource *prevnode = NULL;
366 	struct pci_resource *node;
367 	struct pci_resource *split_node;
368 	u32 rc;
369 	u32 temp_dword;
370 	dbg("do_pre_bridge_resource_split\n");
371 
372 	if (!(*head) || !(*orig_head))
373 		return NULL;
374 
375 	rc = pciehp_resource_sort_and_combine(head);
376 
377 	if (rc)
378 		return NULL;
379 
380 	if ((*head)->base != (*orig_head)->base)
381 		return NULL;
382 
383 	if ((*head)->length == (*orig_head)->length)
384 		return NULL;
385 
386 
387 	/* If we got here, there the bridge requires some of the resource, but
388 	 *  we may be able to split some off of the front
389 	 */
390 	node = *head;
391 
392 	if (node->length & (alignment -1)) {
393 		/* this one isn't an aligned length, so we'll make a new entry
394 		 * and split it up.
395 		 */
396 		split_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
397 
398 		if (!split_node)
399 			return NULL;
400 
401 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
402 
403 		split_node->base = node->base;
404 		split_node->length = temp_dword;
405 
406 		node->length -= temp_dword;
407 		node->base += split_node->length;
408 
409 		/* Put it in the list */
410 		*head = split_node;
411 		split_node->next = node;
412 	}
413 
414 	if (node->length < alignment)
415 		return NULL;
416 
417 	/* Now unlink it */
418 	if (*head == node) {
419 		*head = node->next;
420 	} else {
421 		prevnode = *head;
422 		while (prevnode->next != node)
423 			prevnode = prevnode->next;
424 
425 		prevnode->next = node->next;
426 	}
427 	node->next = NULL;
428 
429 	return node;
430 }
431 
432 
433 /**
434  * do_bridge_resource_split: return one unused resource node
435  * @head: list to scan
436  *
437  */
438 static struct pci_resource *
439 do_bridge_resource_split(struct pci_resource **head, u32 alignment)
440 {
441 	struct pci_resource *prevnode = NULL;
442 	struct pci_resource *node;
443 	u32 rc;
444 	u32 temp_dword;
445 
446 	if (!(*head))
447 		return NULL;
448 
449 	rc = pciehp_resource_sort_and_combine(head);
450 
451 	if (rc)
452 		return NULL;
453 
454 	node = *head;
455 
456 	while (node->next) {
457 		prevnode = node;
458 		node = node->next;
459 		kfree(prevnode);
460 	}
461 
462 	if (node->length < alignment) {
463 		kfree(node);
464 		return NULL;
465 	}
466 
467 	if (node->base & (alignment - 1)) {
468 		/* Short circuit if adjusted size is too small */
469 		temp_dword = (node->base | (alignment-1)) + 1;
470 		if ((node->length - (temp_dword - node->base)) < alignment) {
471 			kfree(node);
472 			return NULL;
473 		}
474 
475 		node->length -= (temp_dword - node->base);
476 		node->base = temp_dword;
477 	}
478 
479 	if (node->length & (alignment - 1)) {
480 		/* There's stuff in use after this node */
481 		kfree(node);
482 		return NULL;
483 	}
484 
485 	return node;
486 }
487 
488 
489 /*
490  * get_io_resource
491  *
492  * this function sorts the resource list by size and then
493  * returns the first node of "size" length that is not in the
494  * ISA aliasing window.  If it finds a node larger than "size"
495  * it will split it up.
496  *
497  * size must be a power of two.
498  */
499 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
500 {
501 	struct pci_resource *prevnode;
502 	struct pci_resource *node;
503 	struct pci_resource *split_node = NULL;
504 	u32 temp_dword;
505 
506 	if (!(*head))
507 		return NULL;
508 
509 	if ( pciehp_resource_sort_and_combine(head) )
510 		return NULL;
511 
512 	if ( sort_by_size(head) )
513 		return NULL;
514 
515 	for (node = *head; node; node = node->next) {
516 		if (node->length < size)
517 			continue;
518 
519 		if (node->base & (size - 1)) {
520 			/* this one isn't base aligned properly
521 			   so we'll make a new entry and split it up */
522 			temp_dword = (node->base | (size-1)) + 1;
523 
524 			/*/ Short circuit if adjusted size is too small */
525 			if ((node->length - (temp_dword - node->base)) < size)
526 				continue;
527 
528 			split_node = kmalloc(sizeof(struct pci_resource),
529 						GFP_KERNEL);
530 
531 			if (!split_node)
532 				return NULL;
533 
534 			split_node->base = node->base;
535 			split_node->length = temp_dword - node->base;
536 			node->base = temp_dword;
537 			node->length -= split_node->length;
538 
539 			/* Put it in the list */
540 			split_node->next = node->next;
541 			node->next = split_node;
542 		} /* End of non-aligned base */
543 
544 		/* Don't need to check if too small since we already did */
545 		if (node->length > size) {
546 			/* this one is longer than we need
547 			   so we'll make a new entry and split it up */
548 			split_node = kmalloc(sizeof(struct pci_resource),
549 						GFP_KERNEL);
550 
551 			if (!split_node)
552 				return NULL;
553 
554 			split_node->base = node->base + size;
555 			split_node->length = node->length - size;
556 			node->length = size;
557 
558 			/* Put it in the list */
559 			split_node->next = node->next;
560 			node->next = split_node;
561 		}  /* End of too big on top end */
562 
563 		/* For IO make sure it's not in the ISA aliasing space */
564 		if (node->base & 0x300L)
565 			continue;
566 
567 		/* If we got here, then it is the right size
568 		   Now take it out of the list */
569 		if (*head == node) {
570 			*head = node->next;
571 		} else {
572 			prevnode = *head;
573 			while (prevnode->next != node)
574 				prevnode = prevnode->next;
575 
576 			prevnode->next = node->next;
577 		}
578 		node->next = NULL;
579 		/* Stop looping */
580 		break;
581 	}
582 
583 	return node;
584 }
585 
586 
587 /*
588  * get_max_resource
589  *
590  * Gets the largest node that is at least "size" big from the
591  * list pointed to by head.  It aligns the node on top and bottom
592  * to "size" alignment before returning it.
593  * J.I. modified to put max size limits of; 64M->32M->16M->8M->4M->1M
594  *  This is needed to avoid allocating entire ACPI _CRS res to one child bridge/slot.
595  */
596 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
597 {
598 	struct pci_resource *max;
599 	struct pci_resource *temp;
600 	struct pci_resource *split_node;
601 	u32 temp_dword;
602 	u32 max_size[] = { 0x4000000, 0x2000000, 0x1000000, 0x0800000, 0x0400000, 0x0200000, 0x0100000, 0x00 };
603 	int i;
604 
605 	if (!(*head))
606 		return NULL;
607 
608 	if (pciehp_resource_sort_and_combine(head))
609 		return NULL;
610 
611 	if (sort_by_max_size(head))
612 		return NULL;
613 
614 	for (max = *head;max; max = max->next) {
615 
616 		/* If not big enough we could probably just bail,
617 		   instead we'll continue to the next. */
618 		if (max->length < size)
619 			continue;
620 
621 		if (max->base & (size - 1)) {
622 			/* this one isn't base aligned properly
623 			   so we'll make a new entry and split it up */
624 			temp_dword = (max->base | (size-1)) + 1;
625 
626 			/* Short circuit if adjusted size is too small */
627 			if ((max->length - (temp_dword - max->base)) < size)
628 				continue;
629 
630 			split_node = kmalloc(sizeof(struct pci_resource),
631 						GFP_KERNEL);
632 
633 			if (!split_node)
634 				return NULL;
635 
636 			split_node->base = max->base;
637 			split_node->length = temp_dword - max->base;
638 			max->base = temp_dword;
639 			max->length -= split_node->length;
640 
641 			/* Put it next in the list */
642 			split_node->next = max->next;
643 			max->next = split_node;
644 		}
645 
646 		if ((max->base + max->length) & (size - 1)) {
647 			/* this one isn't end aligned properly at the top
648 			   so we'll make a new entry and split it up */
649 			split_node = kmalloc(sizeof(struct pci_resource),
650 						GFP_KERNEL);
651 
652 			if (!split_node)
653 				return NULL;
654 			temp_dword = ((max->base + max->length) & ~(size - 1));
655 			split_node->base = temp_dword;
656 			split_node->length = max->length + max->base
657 					     - split_node->base;
658 			max->length -= split_node->length;
659 
660 			/* Put it in the list */
661 			split_node->next = max->next;
662 			max->next = split_node;
663 		}
664 
665 		/* Make sure it didn't shrink too much when we aligned it */
666 		if (max->length < size)
667 			continue;
668 
669 		for ( i = 0; max_size[i] > size; i++) {
670 			if (max->length > max_size[i]) {
671 				split_node = kmalloc(sizeof(struct pci_resource),
672 							GFP_KERNEL);
673 				if (!split_node)
674 					break;	/* return NULL; */
675 				split_node->base = max->base + max_size[i];
676 				split_node->length = max->length - max_size[i];
677 				max->length = max_size[i];
678 				/* Put it next in the list */
679 				split_node->next = max->next;
680 				max->next = split_node;
681 				break;
682 			}
683 		}
684 
685 		/* Now take it out of the list */
686 		temp = (struct pci_resource*) *head;
687 		if (temp == max) {
688 			*head = max->next;
689 		} else {
690 			while (temp && temp->next != max) {
691 				temp = temp->next;
692 			}
693 
694 			temp->next = max->next;
695 		}
696 
697 		max->next = NULL;
698 		return max;
699 	}
700 
701 	/* If we get here, we couldn't find one */
702 	return NULL;
703 }
704 
705 
706 /*
707  * get_resource
708  *
709  * this function sorts the resource list by size and then
710  * returns the first node of "size" length.  If it finds a node
711  * larger than "size" it will split it up.
712  *
713  * size must be a power of two.
714  */
715 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
716 {
717 	struct pci_resource *prevnode;
718 	struct pci_resource *node;
719 	struct pci_resource *split_node;
720 	u32 temp_dword;
721 
722 	if (!(*head))
723 		return NULL;
724 
725 	if ( pciehp_resource_sort_and_combine(head) )
726 		return NULL;
727 
728 	if ( sort_by_size(head) )
729 		return NULL;
730 
731 	for (node = *head; node; node = node->next) {
732 		dbg("%s: req_size =0x%x node=%p, base=0x%x, length=0x%x\n",
733 		    __FUNCTION__, size, node, node->base, node->length);
734 		if (node->length < size)
735 			continue;
736 
737 		if (node->base & (size - 1)) {
738 			dbg("%s: not aligned\n", __FUNCTION__);
739 			/* this one isn't base aligned properly
740 			   so we'll make a new entry and split it up */
741 			temp_dword = (node->base | (size-1)) + 1;
742 
743 			/* Short circuit if adjusted size is too small */
744 			if ((node->length - (temp_dword - node->base)) < size)
745 				continue;
746 
747 			split_node = kmalloc(sizeof(struct pci_resource),
748 						GFP_KERNEL);
749 
750 			if (!split_node)
751 				return NULL;
752 
753 			split_node->base = node->base;
754 			split_node->length = temp_dword - node->base;
755 			node->base = temp_dword;
756 			node->length -= split_node->length;
757 
758 			/* Put it in the list */
759 			split_node->next = node->next;
760 			node->next = split_node;
761 		} /* End of non-aligned base */
762 
763 		/* Don't need to check if too small since we already did */
764 		if (node->length > size) {
765 			dbg("%s: too big\n", __FUNCTION__);
766 			/* this one is longer than we need
767 			   so we'll make a new entry and split it up */
768 			split_node = kmalloc(sizeof(struct pci_resource),
769 						GFP_KERNEL);
770 
771 			if (!split_node)
772 				return NULL;
773 
774 			split_node->base = node->base + size;
775 			split_node->length = node->length - size;
776 			node->length = size;
777 
778 			/* Put it in the list */
779 			split_node->next = node->next;
780 			node->next = split_node;
781 		}  /* End of too big on top end */
782 
783 		dbg("%s: got one!!!\n", __FUNCTION__);
784 		/* If we got here, then it is the right size
785 		   Now take it out of the list */
786 		if (*head == node) {
787 			*head = node->next;
788 		} else {
789 			prevnode = *head;
790 			while (prevnode->next != node)
791 				prevnode = prevnode->next;
792 
793 			prevnode->next = node->next;
794 		}
795 		node->next = NULL;
796 		/* Stop looping */
797 		break;
798 	}
799 	return node;
800 }
801 
802 
803 /*
804  * pciehp_resource_sort_and_combine
805  *
806  * Sorts all of the nodes in the list in ascending order by
807  * their base addresses.  Also does garbage collection by
808  * combining adjacent nodes.
809  *
810  * returns 0 if success
811  */
812 int pciehp_resource_sort_and_combine(struct pci_resource **head)
813 {
814 	struct pci_resource *node1;
815 	struct pci_resource *node2;
816 	int out_of_order = 1;
817 
818 	dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
819 
820 	if (!(*head))
821 		return 1;
822 
823 	dbg("*head->next = %p\n",(*head)->next);
824 
825 	if (!(*head)->next)
826 		return 0;	/* only one item on the list, already sorted! */
827 
828 	dbg("*head->base = 0x%x\n",(*head)->base);
829 	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
830 	while (out_of_order) {
831 		out_of_order = 0;
832 
833 		/* Special case for swapping list head */
834 		if (((*head)->next) &&
835 		    ((*head)->base > (*head)->next->base)) {
836 			node1 = *head;
837 			(*head) = (*head)->next;
838 			node1->next = (*head)->next;
839 			(*head)->next = node1;
840 			out_of_order++;
841 		}
842 
843 		node1 = (*head);
844 
845 		while (node1->next && node1->next->next) {
846 			if (node1->next->base > node1->next->next->base) {
847 				out_of_order++;
848 				node2 = node1->next;
849 				node1->next = node1->next->next;
850 				node1 = node1->next;
851 				node2->next = node1->next;
852 				node1->next = node2;
853 			} else
854 				node1 = node1->next;
855 		}
856 	}  /* End of out_of_order loop */
857 
858 	node1 = *head;
859 
860 	while (node1 && node1->next) {
861 		if ((node1->base + node1->length) == node1->next->base) {
862 			/* Combine */
863 			dbg("8..\n");
864 			node1->length += node1->next->length;
865 			node2 = node1->next;
866 			node1->next = node1->next->next;
867 			kfree(node2);
868 		} else
869 			node1 = node1->next;
870 	}
871 
872 	return 0;
873 }
874 
875 
876 /**
877  * pciehp_slot_create - Creates a node and adds it to the proper bus.
878  * @busnumber - bus where new node is to be located
879  *
880  * Returns pointer to the new node or NULL if unsuccessful
881  */
882 struct pci_func *pciehp_slot_create(u8 busnumber)
883 {
884 	struct pci_func *new_slot;
885 	struct pci_func *next;
886 	dbg("%s: busnumber %x\n", __FUNCTION__, busnumber);
887 	new_slot = kmalloc(sizeof(struct pci_func), GFP_KERNEL);
888 
889 	if (new_slot == NULL)
890 		return new_slot;
891 
892 	memset(new_slot, 0, sizeof(struct pci_func));
893 
894 	new_slot->next = NULL;
895 	new_slot->configured = 1;
896 
897 	if (pciehp_slot_list[busnumber] == NULL) {
898 		pciehp_slot_list[busnumber] = new_slot;
899 	} else {
900 		next = pciehp_slot_list[busnumber];
901 		while (next->next != NULL)
902 			next = next->next;
903 		next->next = new_slot;
904 	}
905 	return new_slot;
906 }
907 
908 
909 /**
910  * slot_remove - Removes a node from the linked list of slots.
911  * @old_slot: slot to remove
912  *
913  * Returns 0 if successful, !0 otherwise.
914  */
915 static int slot_remove(struct pci_func * old_slot)
916 {
917 	struct pci_func *next;
918 
919 	if (old_slot == NULL)
920 		return 1;
921 
922 	next = pciehp_slot_list[old_slot->bus];
923 
924 	if (next == NULL)
925 		return 1;
926 
927 	if (next == old_slot) {
928 		pciehp_slot_list[old_slot->bus] = old_slot->next;
929 		pciehp_destroy_board_resources(old_slot);
930 		kfree(old_slot);
931 		return 0;
932 	}
933 
934 	while ((next->next != old_slot) && (next->next != NULL)) {
935 		next = next->next;
936 	}
937 
938 	if (next->next == old_slot) {
939 		next->next = old_slot->next;
940 		pciehp_destroy_board_resources(old_slot);
941 		kfree(old_slot);
942 		return 0;
943 	} else
944 		return 2;
945 }
946 
947 
948 /**
949  * bridge_slot_remove - Removes a node from the linked list of slots.
950  * @bridge: bridge to remove
951  *
952  * Returns 0 if successful, !0 otherwise.
953  */
954 static int bridge_slot_remove(struct pci_func *bridge)
955 {
956 	u8 subordinateBus, secondaryBus;
957 	u8 tempBus;
958 	struct pci_func *next;
959 
960 	if (bridge == NULL)
961 		return 1;
962 
963 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
964 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
965 
966 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
967 		next = pciehp_slot_list[tempBus];
968 
969 		while (!slot_remove(next)) {
970 			next = pciehp_slot_list[tempBus];
971 		}
972 	}
973 
974 	next = pciehp_slot_list[bridge->bus];
975 
976 	if (next == NULL) {
977 		return 1;
978 	}
979 
980 	if (next == bridge) {
981 		pciehp_slot_list[bridge->bus] = bridge->next;
982 		kfree(bridge);
983 		return 0;
984 	}
985 
986 	while ((next->next != bridge) && (next->next != NULL)) {
987 		next = next->next;
988 	}
989 
990 	if (next->next == bridge) {
991 		next->next = bridge->next;
992 		kfree(bridge);
993 		return 0;
994 	} else
995 		return 2;
996 }
997 
998 
999 /**
1000  * pciehp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1001  * @bus: bus to find
1002  * @device: device to find
1003  * @index: is 0 for first function found, 1 for the second...
1004  *
1005  * Returns pointer to the node if successful, %NULL otherwise.
1006  */
1007 struct pci_func *pciehp_slot_find(u8 bus, u8 device, u8 index)
1008 {
1009 	int found = -1;
1010 	struct pci_func *func;
1011 
1012 	func = pciehp_slot_list[bus];
1013 	dbg("%s: bus %x device %x index %x\n",
1014 		__FUNCTION__, bus, device, index);
1015 	if (func != NULL) {
1016 		dbg("%s: func-> bus %x device %x function %x pci_dev %p\n",
1017 			__FUNCTION__, func->bus, func->device, func->function,
1018 			func->pci_dev);
1019 	} else
1020 		dbg("%s: func == NULL\n", __FUNCTION__);
1021 
1022 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1023 		return func;
1024 
1025 	if (func->device == device)
1026 		found++;
1027 
1028 	while (func->next != NULL) {
1029 		func = func->next;
1030 
1031 		dbg("%s: In while loop, func-> bus %x device %x function %x pci_dev %p\n",
1032 			__FUNCTION__, func->bus, func->device, func->function,
1033 			func->pci_dev);
1034 		if (func->device == device)
1035 			found++;
1036 		dbg("%s: while loop, found %d, index %d\n", __FUNCTION__,
1037 			found, index);
1038 
1039 		if ((found == index) || (func->function == index)) {
1040 			dbg("%s: Found bus %x dev %x func %x\n", __FUNCTION__,
1041 					func->bus, func->device, func->function);
1042 			return func;
1043 		}
1044 	}
1045 
1046 	return NULL;
1047 }
1048 
1049 static int is_bridge(struct pci_func * func)
1050 {
1051 	/* Check the header type */
1052 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1053 		return 1;
1054 	else
1055 		return 0;
1056 }
1057 
1058 
1059 /* The following routines constitute the bulk of the
1060    hotplug controller logic
1061  */
1062 
1063 static void set_slot_off(struct controller *ctrl, struct slot * pslot)
1064 {
1065 	/* Wait for exclusive access to hardware */
1066 	down(&ctrl->crit_sect);
1067 
1068 	/* turn off slot, turn on Amber LED, turn off Green LED if supported*/
1069 	if (POWER_CTRL(ctrl->ctrlcap)) {
1070 		if (pslot->hpc_ops->power_off_slot(pslot)) {
1071 			err("%s: Issue of Slot Power Off command failed\n", __FUNCTION__);
1072 			up(&ctrl->crit_sect);
1073 			return;
1074 		}
1075 		wait_for_ctrl_irq (ctrl);
1076 	}
1077 
1078 	if (PWR_LED(ctrl->ctrlcap)) {
1079 		pslot->hpc_ops->green_led_off(pslot);
1080 		wait_for_ctrl_irq (ctrl);
1081 	}
1082 
1083 	if (ATTN_LED(ctrl->ctrlcap)) {
1084 		if (pslot->hpc_ops->set_attention_status(pslot, 1)) {
1085 			err("%s: Issue of Set Attention Led command failed\n", __FUNCTION__);
1086 			up(&ctrl->crit_sect);
1087 			return;
1088 		}
1089 		wait_for_ctrl_irq (ctrl);
1090 	}
1091 
1092 	/* Done with exclusive hardware access */
1093 	up(&ctrl->crit_sect);
1094 }
1095 
1096 /**
1097  * board_added - Called after a board has been added to the system.
1098  *
1099  * Turns power on for the board
1100  * Configures board
1101  *
1102  */
1103 static u32 board_added(struct pci_func * func, struct controller * ctrl)
1104 {
1105 	u8 hp_slot;
1106 	int index;
1107 	u32 temp_register = 0xFFFFFFFF;
1108 	u32 rc = 0;
1109 	struct pci_func *new_func = NULL;
1110 	struct slot *p_slot;
1111 	struct resource_lists res_lists;
1112 
1113 	p_slot = pciehp_find_slot(ctrl, func->device);
1114 	hp_slot = func->device - ctrl->slot_device_offset;
1115 
1116 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1117 
1118 	/* Wait for exclusive access to hardware */
1119 	down(&ctrl->crit_sect);
1120 
1121 	if (POWER_CTRL(ctrl->ctrlcap)) {
1122 		/* Power on slot */
1123 		rc = p_slot->hpc_ops->power_on_slot(p_slot);
1124 		if (rc) {
1125 			up(&ctrl->crit_sect);
1126 			return -1;
1127 		}
1128 
1129 		/* Wait for the command to complete */
1130 		wait_for_ctrl_irq (ctrl);
1131 	}
1132 
1133 	if (PWR_LED(ctrl->ctrlcap)) {
1134 		p_slot->hpc_ops->green_led_blink(p_slot);
1135 
1136 		/* Wait for the command to complete */
1137 		wait_for_ctrl_irq (ctrl);
1138 	}
1139 
1140 	/* Done with exclusive hardware access */
1141 	up(&ctrl->crit_sect);
1142 
1143 	/* Wait for ~1 second */
1144 	dbg("%s: before long_delay\n", __FUNCTION__);
1145 	wait_for_ctrl_irq (ctrl);
1146 	dbg("%s: afterlong_delay\n", __FUNCTION__);
1147 
1148 	/*  Check link training status */
1149 	rc = p_slot->hpc_ops->check_lnk_status(ctrl);
1150 	if (rc) {
1151 		err("%s: Failed to check link status\n", __FUNCTION__);
1152 		set_slot_off(ctrl, p_slot);
1153 		return rc;
1154 	}
1155 
1156 	dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1157 
1158 	/* Check for a power fault */
1159 	if (func->status == 0xFF) {
1160 		/* power fault occurred, but it was benign */
1161 		temp_register = 0xFFFFFFFF;
1162 		dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1163 		rc = POWER_FAILURE;
1164 		func->status = 0;
1165 	} else {
1166 		/* Get vendor/device ID u32 */
1167 		rc = pci_bus_read_config_dword (ctrl->pci_dev->subordinate, PCI_DEVFN(func->device, func->function),
1168 			PCI_VENDOR_ID, &temp_register);
1169 		dbg("%s: pci_bus_read_config_dword returns %d\n", __FUNCTION__, rc);
1170 		dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1171 
1172 		if (rc != 0) {
1173 			/* Something's wrong here */
1174 			temp_register = 0xFFFFFFFF;
1175 			dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1176 		}
1177 		/* Preset return code.  It will be changed later if things go okay. */
1178 		rc = NO_ADAPTER_PRESENT;
1179 	}
1180 
1181 	/* All F's is an empty slot or an invalid board */
1182 	if (temp_register != 0xFFFFFFFF) {	  /* Check for a board in the slot */
1183 		res_lists.io_head = ctrl->io_head;
1184 		res_lists.mem_head = ctrl->mem_head;
1185 		res_lists.p_mem_head = ctrl->p_mem_head;
1186 		res_lists.bus_head = ctrl->bus_head;
1187 		res_lists.irqs = NULL;
1188 
1189 		rc = configure_new_device(ctrl, func, 0, &res_lists, 0, 0);
1190 		dbg("%s: back from configure_new_device\n", __FUNCTION__);
1191 
1192 		ctrl->io_head = res_lists.io_head;
1193 		ctrl->mem_head = res_lists.mem_head;
1194 		ctrl->p_mem_head = res_lists.p_mem_head;
1195 		ctrl->bus_head = res_lists.bus_head;
1196 
1197 		pciehp_resource_sort_and_combine(&(ctrl->mem_head));
1198 		pciehp_resource_sort_and_combine(&(ctrl->p_mem_head));
1199 		pciehp_resource_sort_and_combine(&(ctrl->io_head));
1200 		pciehp_resource_sort_and_combine(&(ctrl->bus_head));
1201 
1202 		if (rc) {
1203 			set_slot_off(ctrl, p_slot);
1204 			return rc;
1205 		}
1206 		pciehp_save_slot_config(ctrl, func);
1207 
1208 		func->status = 0;
1209 		func->switch_save = 0x10;
1210 		func->is_a_board = 0x01;
1211 
1212 		/* next, we will instantiate the linux pci_dev structures
1213 		 * (with appropriate driver notification, if already present)
1214 		 */
1215 		index = 0;
1216 		do {
1217 			new_func = pciehp_slot_find(ctrl->slot_bus, func->device, index++);
1218 			if (new_func && !new_func->pci_dev) {
1219 				dbg("%s:call pci_hp_configure_dev, func %x\n",
1220 					__FUNCTION__, index);
1221 				pciehp_configure_device(ctrl, new_func);
1222 			}
1223 		} while (new_func);
1224 
1225  		/*
1226  		 * Some PCI Express root ports require fixup after hot-plug operation.
1227  		 */
1228  		if (pcie_mch_quirk)
1229  			pci_fixup_device(pci_fixup_final, ctrl->pci_dev);
1230 
1231   		if (PWR_LED(ctrl->ctrlcap)) {
1232   			/* Wait for exclusive access to hardware */
1233   			down(&ctrl->crit_sect);
1234 
1235   			p_slot->hpc_ops->green_led_on(p_slot);
1236 
1237   			/* Wait for the command to complete */
1238   			wait_for_ctrl_irq (ctrl);
1239 
1240   			/* Done with exclusive hardware access */
1241   			up(&ctrl->crit_sect);
1242   		}
1243 	} else {
1244 		set_slot_off(ctrl, p_slot);
1245 		return -1;
1246 	}
1247 	return 0;
1248 }
1249 
1250 
1251 /**
1252  * remove_board - Turns off slot and LED's
1253  *
1254  */
1255 static u32 remove_board(struct pci_func *func, struct controller *ctrl)
1256 {
1257 	int index;
1258 	u8 skip = 0;
1259 	u8 device;
1260 	u8 hp_slot;
1261 	u32 rc;
1262 	struct resource_lists res_lists;
1263 	struct pci_func *temp_func;
1264 	struct slot *p_slot;
1265 
1266 	if (func == NULL)
1267 		return 1;
1268 
1269 	if (pciehp_unconfigure_device(func))
1270 		return 1;
1271 
1272 	device = func->device;
1273 
1274 	hp_slot = func->device - ctrl->slot_device_offset;
1275 	p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1276 
1277 	dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1278 
1279 	if ((ctrl->add_support) &&
1280 		!(func->bus_head || func->mem_head || func->p_mem_head || func->io_head)) {
1281 		/* Here we check to see if we've saved any of the board's
1282 		 * resources already.  If so, we'll skip the attempt to
1283 		 * determine what's being used.
1284 		 */
1285 		index = 0;
1286 
1287 		temp_func = func;
1288 
1289 		while ((temp_func = pciehp_slot_find(temp_func->bus, temp_func->device, index++))) {
1290 			if (temp_func->bus_head || temp_func->mem_head
1291 			    || temp_func->p_mem_head || temp_func->io_head) {
1292 				skip = 1;
1293 				break;
1294 			}
1295 		}
1296 
1297 		if (!skip)
1298 			rc = pciehp_save_used_resources(ctrl, func, DISABLE_CARD);
1299 	}
1300 	/* Change status to shutdown */
1301 	if (func->is_a_board)
1302 		func->status = 0x01;
1303 	func->configured = 0;
1304 
1305 	/* Wait for exclusive access to hardware */
1306 	down(&ctrl->crit_sect);
1307 
1308 	if (POWER_CTRL(ctrl->ctrlcap)) {
1309 		/* power off slot */
1310 		rc = p_slot->hpc_ops->power_off_slot(p_slot);
1311 		if (rc) {
1312 			err("%s: Issue of Slot Disable command failed\n", __FUNCTION__);
1313 			up(&ctrl->crit_sect);
1314 			return rc;
1315 		}
1316 		/* Wait for the command to complete */
1317 		wait_for_ctrl_irq (ctrl);
1318 	}
1319 
1320 	if (PWR_LED(ctrl->ctrlcap)) {
1321 		/* turn off Green LED */
1322 		p_slot->hpc_ops->green_led_off(p_slot);
1323 
1324 		/* Wait for the command to complete */
1325 		wait_for_ctrl_irq (ctrl);
1326 	}
1327 
1328 	/* Done with exclusive hardware access */
1329 	up(&ctrl->crit_sect);
1330 
1331 	if (ctrl->add_support) {
1332 		while (func) {
1333 			res_lists.io_head = ctrl->io_head;
1334 			res_lists.mem_head = ctrl->mem_head;
1335 			res_lists.p_mem_head = ctrl->p_mem_head;
1336 			res_lists.bus_head = ctrl->bus_head;
1337 
1338 			dbg("Returning resources to ctlr lists for (B/D/F) = (%#x/%#x/%#x)\n",
1339 				func->bus, func->device, func->function);
1340 
1341 			pciehp_return_board_resources(func, &res_lists);
1342 
1343 			ctrl->io_head = res_lists.io_head;
1344 			ctrl->mem_head = res_lists.mem_head;
1345 			ctrl->p_mem_head = res_lists.p_mem_head;
1346 			ctrl->bus_head = res_lists.bus_head;
1347 
1348 			pciehp_resource_sort_and_combine(&(ctrl->mem_head));
1349 			pciehp_resource_sort_and_combine(&(ctrl->p_mem_head));
1350 			pciehp_resource_sort_and_combine(&(ctrl->io_head));
1351 			pciehp_resource_sort_and_combine(&(ctrl->bus_head));
1352 
1353 			if (is_bridge(func)) {
1354 				dbg("PCI Bridge Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n",
1355 					ctrl->seg, func->bus, func->device, func->function);
1356 				bridge_slot_remove(func);
1357 			} else {
1358 				dbg("PCI Function Hot-Remove s:b:d:f(%02x:%02x:%02x:%02x)\n",
1359 					ctrl->seg, func->bus, func->device, func->function);
1360 				slot_remove(func);
1361 			}
1362 
1363 			func = pciehp_slot_find(ctrl->slot_bus, device, 0);
1364 		}
1365 
1366 		/* Setup slot structure with entry for empty slot */
1367 		func = pciehp_slot_create(ctrl->slot_bus);
1368 
1369 		if (func == NULL) {
1370 			return 1;
1371 		}
1372 
1373 		func->bus = ctrl->slot_bus;
1374 		func->device = device;
1375 		func->function = 0;
1376 		func->configured = 0;
1377 		func->switch_save = 0x10;
1378 		func->is_a_board = 0;
1379 	}
1380 
1381 	return 0;
1382 }
1383 
1384 
1385 static void pushbutton_helper_thread(unsigned long data)
1386 {
1387 	pushbutton_pending = data;
1388 
1389 	up(&event_semaphore);
1390 }
1391 
1392 /**
1393  * pciehp_pushbutton_thread
1394  *
1395  * Scheduled procedure to handle blocking stuff for the pushbuttons
1396  * Handles all pending events and exits.
1397  *
1398  */
1399 static void pciehp_pushbutton_thread(unsigned long slot)
1400 {
1401 	struct slot *p_slot = (struct slot *) slot;
1402 	u8 getstatus;
1403 
1404 	pushbutton_pending = 0;
1405 
1406 	if (!p_slot) {
1407 		dbg("%s: Error! slot NULL\n", __FUNCTION__);
1408 		return;
1409 	}
1410 
1411 	p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
1412 	if (getstatus) {
1413 		p_slot->state = POWEROFF_STATE;
1414 		dbg("In power_down_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
1415 
1416 		pciehp_disable_slot(p_slot);
1417 		p_slot->state = STATIC_STATE;
1418 	} else {
1419 		p_slot->state = POWERON_STATE;
1420 		dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
1421 
1422 		if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) {
1423 			/* Wait for exclusive access to hardware */
1424 			down(&p_slot->ctrl->crit_sect);
1425 
1426 			p_slot->hpc_ops->green_led_off(p_slot);
1427 
1428 			/* Wait for the command to complete */
1429 			wait_for_ctrl_irq (p_slot->ctrl);
1430 
1431 			/* Done with exclusive hardware access */
1432 			up(&p_slot->ctrl->crit_sect);
1433 		}
1434 		p_slot->state = STATIC_STATE;
1435 	}
1436 
1437 	return;
1438 }
1439 
1440 /**
1441  * pciehp_surprise_rm_thread
1442  *
1443  * Scheduled procedure to handle blocking stuff for the surprise removal
1444  * Handles all pending events and exits.
1445  *
1446  */
1447 static void pciehp_surprise_rm_thread(unsigned long slot)
1448 {
1449 	struct slot *p_slot = (struct slot *) slot;
1450 	u8 getstatus;
1451 
1452 	surprise_rm_pending = 0;
1453 
1454 	if (!p_slot) {
1455 		dbg("%s: Error! slot NULL\n", __FUNCTION__);
1456 		return;
1457 	}
1458 
1459 	p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus);
1460 	if (!getstatus) {
1461 		p_slot->state = POWEROFF_STATE;
1462 		dbg("In removing board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
1463 
1464 		pciehp_disable_slot(p_slot);
1465 		p_slot->state = STATIC_STATE;
1466 	} else {
1467 		p_slot->state = POWERON_STATE;
1468 		dbg("In add_board, b:d(%x:%x)\n", p_slot->bus, p_slot->device);
1469 
1470 		if (pciehp_enable_slot(p_slot) && PWR_LED(p_slot->ctrl->ctrlcap)) {
1471 			/* Wait for exclusive access to hardware */
1472 			down(&p_slot->ctrl->crit_sect);
1473 
1474 			p_slot->hpc_ops->green_led_off(p_slot);
1475 
1476 			/* Wait for the command to complete */
1477 			wait_for_ctrl_irq (p_slot->ctrl);
1478 
1479 			/* Done with exclusive hardware access */
1480 			up(&p_slot->ctrl->crit_sect);
1481 		}
1482 		p_slot->state = STATIC_STATE;
1483 	}
1484 
1485 	return;
1486 }
1487 
1488 
1489 
1490 /* this is the main worker thread */
1491 static int event_thread(void* data)
1492 {
1493 	struct controller *ctrl;
1494 	lock_kernel();
1495 	daemonize("pciehpd_event");
1496 
1497 	unlock_kernel();
1498 
1499 	while (1) {
1500 		dbg("!!!!event_thread sleeping\n");
1501 		down_interruptible (&event_semaphore);
1502 		dbg("event_thread woken finished = %d\n", event_finished);
1503 		if (event_finished || signal_pending(current))
1504 			break;
1505 		/* Do stuff here */
1506 		if (pushbutton_pending)
1507 			pciehp_pushbutton_thread(pushbutton_pending);
1508 		else if (surprise_rm_pending)
1509 			pciehp_surprise_rm_thread(surprise_rm_pending);
1510 		else
1511 			for (ctrl = pciehp_ctrl_list; ctrl; ctrl=ctrl->next)
1512 				interrupt_event_handler(ctrl);
1513 	}
1514 	dbg("event_thread signals exit\n");
1515 	up(&event_exit);
1516 	return 0;
1517 }
1518 
1519 int pciehp_event_start_thread(void)
1520 {
1521 	int pid;
1522 
1523 	/* initialize our semaphores */
1524 	init_MUTEX_LOCKED(&event_exit);
1525 	event_finished=0;
1526 
1527 	init_MUTEX_LOCKED(&event_semaphore);
1528 	pid = kernel_thread(event_thread, NULL, 0);
1529 
1530 	if (pid < 0) {
1531 		err ("Can't start up our event thread\n");
1532 		return -1;
1533 	}
1534 	dbg("Our event thread pid = %d\n", pid);
1535 	return 0;
1536 }
1537 
1538 
1539 void pciehp_event_stop_thread(void)
1540 {
1541 	event_finished = 1;
1542 	dbg("event_thread finish command given\n");
1543 	up(&event_semaphore);
1544 	dbg("wait for event_thread to exit\n");
1545 	down(&event_exit);
1546 }
1547 
1548 
1549 static int update_slot_info(struct slot *slot)
1550 {
1551 	struct hotplug_slot_info *info;
1552 	/* char buffer[SLOT_NAME_SIZE]; */
1553 	int result;
1554 
1555 	info = kmalloc(sizeof(struct hotplug_slot_info), GFP_KERNEL);
1556 	if (!info)
1557 		return -ENOMEM;
1558 
1559 	/* make_slot_name (&buffer[0], SLOT_NAME_SIZE, slot); */
1560 
1561 	slot->hpc_ops->get_power_status(slot, &(info->power_status));
1562 	slot->hpc_ops->get_attention_status(slot, &(info->attention_status));
1563 	slot->hpc_ops->get_latch_status(slot, &(info->latch_status));
1564 	slot->hpc_ops->get_adapter_status(slot, &(info->adapter_status));
1565 
1566 	/* result = pci_hp_change_slot_info(buffer, info); */
1567 	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1568 	kfree (info);
1569 	return result;
1570 }
1571 
1572 static void interrupt_event_handler(struct controller *ctrl)
1573 {
1574 	int loop = 0;
1575 	int change = 1;
1576 	struct pci_func *func;
1577 	u8 hp_slot;
1578 	u8 getstatus;
1579 	struct slot *p_slot;
1580 
1581 	while (change) {
1582 		change = 0;
1583 
1584 		for (loop = 0; loop < 10; loop++) {
1585 			if (ctrl->event_queue[loop].event_type != 0) {
1586 				hp_slot = ctrl->event_queue[loop].hp_slot;
1587 
1588 				func = pciehp_slot_find(ctrl->slot_bus, (hp_slot + ctrl->slot_device_offset), 0);
1589 
1590 				p_slot = pciehp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1591 
1592 				dbg("hp_slot %d, func %p, p_slot %p\n", hp_slot, func, p_slot);
1593 
1594 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_CANCEL) {
1595 					dbg("button cancel\n");
1596 					del_timer(&p_slot->task_event);
1597 
1598 					switch (p_slot->state) {
1599 					case BLINKINGOFF_STATE:
1600 						/* Wait for exclusive access to hardware */
1601 						down(&ctrl->crit_sect);
1602 
1603 						if (PWR_LED(ctrl->ctrlcap)) {
1604 							p_slot->hpc_ops->green_led_on(p_slot);
1605 							/* Wait for the command to complete */
1606 							wait_for_ctrl_irq (ctrl);
1607 						}
1608 						if (ATTN_LED(ctrl->ctrlcap)) {
1609 							p_slot->hpc_ops->set_attention_status(p_slot, 0);
1610 
1611 							/* Wait for the command to complete */
1612 							wait_for_ctrl_irq (ctrl);
1613 						}
1614 						/* Done with exclusive hardware access */
1615 						up(&ctrl->crit_sect);
1616 						break;
1617 					case BLINKINGON_STATE:
1618 						/* Wait for exclusive access to hardware */
1619 						down(&ctrl->crit_sect);
1620 
1621 						if (PWR_LED(ctrl->ctrlcap)) {
1622 							p_slot->hpc_ops->green_led_off(p_slot);
1623 							/* Wait for the command to complete */
1624 							wait_for_ctrl_irq (ctrl);
1625 						}
1626 						if (ATTN_LED(ctrl->ctrlcap)){
1627 							p_slot->hpc_ops->set_attention_status(p_slot, 0);
1628 							/* Wait for the command to complete */
1629 							wait_for_ctrl_irq (ctrl);
1630 						}
1631 						/* Done with exclusive hardware access */
1632 						up(&ctrl->crit_sect);
1633 
1634 						break;
1635 					default:
1636 						warn("Not a valid state\n");
1637 						return;
1638 					}
1639 					info(msg_button_cancel, p_slot->number);
1640 					p_slot->state = STATIC_STATE;
1641 				}
1642 				/* ***********Button Pressed (No action on 1st press...) */
1643 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1644 
1645 					if (ATTN_BUTTN(ctrl->ctrlcap)) {
1646 						dbg("Button pressed\n");
1647 						p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
1648 						if (getstatus) {
1649 							/* slot is on */
1650 							dbg("slot is on\n");
1651 							p_slot->state = BLINKINGOFF_STATE;
1652 							info(msg_button_off, p_slot->number);
1653 						} else {
1654 							/* slot is off */
1655 							dbg("slot is off\n");
1656 							p_slot->state = BLINKINGON_STATE;
1657 							info(msg_button_on, p_slot->number);
1658 						}
1659 
1660 						/* Wait for exclusive access to hardware */
1661 						down(&ctrl->crit_sect);
1662 
1663 						/* blink green LED and turn off amber */
1664 						if (PWR_LED(ctrl->ctrlcap)) {
1665 							p_slot->hpc_ops->green_led_blink(p_slot);
1666 							/* Wait for the command to complete */
1667 							wait_for_ctrl_irq (ctrl);
1668 						}
1669 
1670 						if (ATTN_LED(ctrl->ctrlcap)) {
1671 							p_slot->hpc_ops->set_attention_status(p_slot, 0);
1672 
1673 							/* Wait for the command to complete */
1674 							wait_for_ctrl_irq (ctrl);
1675 						}
1676 
1677 						/* Done with exclusive hardware access */
1678 						up(&ctrl->crit_sect);
1679 
1680 						init_timer(&p_slot->task_event);
1681 						p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1682 						p_slot->task_event.function = (void (*)(unsigned long)) pushbutton_helper_thread;
1683 						p_slot->task_event.data = (unsigned long) p_slot;
1684 
1685 						dbg("add_timer p_slot = %p\n", (void *) p_slot);
1686 						add_timer(&p_slot->task_event);
1687 					}
1688 				}
1689 				/***********POWER FAULT********************/
1690 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1691 					if (POWER_CTRL(ctrl->ctrlcap)) {
1692 						dbg("power fault\n");
1693 						/* Wait for exclusive access to hardware */
1694 						down(&ctrl->crit_sect);
1695 
1696 						if (ATTN_LED(ctrl->ctrlcap)) {
1697 							p_slot->hpc_ops->set_attention_status(p_slot, 1);
1698 							wait_for_ctrl_irq (ctrl);
1699 						}
1700 
1701 						if (PWR_LED(ctrl->ctrlcap)) {
1702 							p_slot->hpc_ops->green_led_off(p_slot);
1703 							wait_for_ctrl_irq (ctrl);
1704 						}
1705 
1706 						/* Done with exclusive hardware access */
1707 						up(&ctrl->crit_sect);
1708 					}
1709 				}
1710 				/***********SURPRISE REMOVAL********************/
1711 				else if ((ctrl->event_queue[loop].event_type == INT_PRESENCE_ON) ||
1712 					(ctrl->event_queue[loop].event_type == INT_PRESENCE_OFF)) {
1713 					if (HP_SUPR_RM(ctrl->ctrlcap)) {
1714 						dbg("Surprise Removal\n");
1715 						if (p_slot) {
1716 							surprise_rm_pending = (unsigned long) p_slot;
1717 							up(&event_semaphore);
1718 							update_slot_info(p_slot);
1719 						}
1720 					}
1721 				} else {
1722 					/* refresh notification */
1723 					if (p_slot)
1724 						update_slot_info(p_slot);
1725 				}
1726 
1727 				ctrl->event_queue[loop].event_type = 0;
1728 
1729 				change = 1;
1730 			}
1731 		}		/* End of FOR loop */
1732 	}
1733 }
1734 
1735 
1736 int pciehp_enable_slot(struct slot *p_slot)
1737 {
1738 	u8 getstatus = 0;
1739 	int rc;
1740 	struct pci_func *func;
1741 
1742 	func = pciehp_slot_find(p_slot->bus, p_slot->device, 0);
1743 	if (!func) {
1744 		dbg("%s: Error! slot NULL\n", __FUNCTION__);
1745 		return 1;
1746 	}
1747 
1748 	/* Check to see if (latch closed, card present, power off) */
1749 	down(&p_slot->ctrl->crit_sect);
1750 
1751 	rc = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus);
1752 	if (rc || !getstatus) {
1753 		info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number);
1754 		up(&p_slot->ctrl->crit_sect);
1755 		return 1;
1756 	}
1757 	if (MRL_SENS(p_slot->ctrl->ctrlcap)) {
1758 		rc = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
1759 		if (rc || getstatus) {
1760 			info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number);
1761 			up(&p_slot->ctrl->crit_sect);
1762 			return 1;
1763 		}
1764 	}
1765 
1766 	if (POWER_CTRL(p_slot->ctrl->ctrlcap)) {
1767 		rc = p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
1768 		if (rc || getstatus) {
1769 			info("%s: already enabled on slot(%x)\n", __FUNCTION__, p_slot->number);
1770 			up(&p_slot->ctrl->crit_sect);
1771 			return 1;
1772 		}
1773 	}
1774 	up(&p_slot->ctrl->crit_sect);
1775 
1776 	slot_remove(func);
1777 
1778 	func = pciehp_slot_create(p_slot->bus);
1779 	if (func == NULL)
1780 		return 1;
1781 
1782 	func->bus = p_slot->bus;
1783 	func->device = p_slot->device;
1784 	func->function = 0;
1785 	func->configured = 0;
1786 	func->is_a_board = 1;
1787 
1788 	/* We have to save the presence info for these slots */
1789 	p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
1790 	p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
1791 	func->switch_save = !getstatus? 0x10:0;
1792 
1793 	rc = board_added(func, p_slot->ctrl);
1794 	if (rc) {
1795 		if (is_bridge(func))
1796 			bridge_slot_remove(func);
1797 		else
1798 			slot_remove(func);
1799 
1800 		/* Setup slot structure with entry for empty slot */
1801 		func = pciehp_slot_create(p_slot->bus);
1802 		if (func == NULL)
1803 			return 1;	/* Out of memory */
1804 
1805 		func->bus = p_slot->bus;
1806 		func->device = p_slot->device;
1807 		func->function = 0;
1808 		func->configured = 0;
1809 		func->is_a_board = 1;
1810 
1811 		/* We have to save the presence info for these slots */
1812 		p_slot->hpc_ops->get_adapter_status(p_slot, &(func->presence_save));
1813 		p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
1814 		func->switch_save = !getstatus? 0x10:0;
1815 	}
1816 
1817 	if (p_slot)
1818 		update_slot_info(p_slot);
1819 
1820 	return rc;
1821 }
1822 
1823 
1824 int pciehp_disable_slot(struct slot *p_slot)
1825 {
1826 	u8 class_code, header_type, BCR;
1827 	u8 index = 0;
1828 	u8 getstatus = 0;
1829 	u32 rc = 0;
1830 	int ret = 0;
1831 	unsigned int devfn;
1832 	struct pci_bus *pci_bus = p_slot->ctrl->pci_dev->subordinate;
1833 	struct pci_func *func;
1834 
1835 	if (!p_slot->ctrl)
1836 		return 1;
1837 
1838 	/* Check to see if (latch closed, card present, power on) */
1839 	down(&p_slot->ctrl->crit_sect);
1840 
1841 	if (!HP_SUPR_RM(p_slot->ctrl->ctrlcap)) {
1842 		ret = p_slot->hpc_ops->get_adapter_status(p_slot, &getstatus);
1843 		if (ret || !getstatus) {
1844 			info("%s: no adapter on slot(%x)\n", __FUNCTION__, p_slot->number);
1845 			up(&p_slot->ctrl->crit_sect);
1846 			return 1;
1847 		}
1848 	}
1849 
1850 	if (MRL_SENS(p_slot->ctrl->ctrlcap)) {
1851 		ret = p_slot->hpc_ops->get_latch_status(p_slot, &getstatus);
1852 		if (ret || getstatus) {
1853 			info("%s: latch open on slot(%x)\n", __FUNCTION__, p_slot->number);
1854 			up(&p_slot->ctrl->crit_sect);
1855 			return 1;
1856 		}
1857 	}
1858 
1859 	if (POWER_CTRL(p_slot->ctrl->ctrlcap)) {
1860 		ret = p_slot->hpc_ops->get_power_status(p_slot, &getstatus);
1861 		if (ret || !getstatus) {
1862 			info("%s: already disabled slot(%x)\n", __FUNCTION__, p_slot->number);
1863 			up(&p_slot->ctrl->crit_sect);
1864 			return 1;
1865 		}
1866 	}
1867 
1868 	up(&p_slot->ctrl->crit_sect);
1869 
1870 	func = pciehp_slot_find(p_slot->bus, p_slot->device, index++);
1871 
1872 	/* Make sure there are no video controllers here
1873 	 * for all func of p_slot
1874 	 */
1875 	while (func && !rc) {
1876 		pci_bus->number = func->bus;
1877 		devfn = PCI_DEVFN(func->device, func->function);
1878 
1879 		/* Check the Class Code */
1880 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
1881 		if (rc)
1882 			return rc;
1883 
1884 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
1885 			/* Display/Video adapter (not supported) */
1886 			rc = REMOVE_NOT_SUPPORTED;
1887 		} else {
1888 			/* See if it's a bridge */
1889 			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1890 			if (rc)
1891 				return rc;
1892 
1893 			/* If it's a bridge, check the VGA Enable bit */
1894 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1895 				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
1896 				if (rc)
1897 					return rc;
1898 
1899 				/* If the VGA Enable bit is set, remove isn't supported */
1900 				if (BCR & PCI_BRIDGE_CTL_VGA) {
1901 					rc = REMOVE_NOT_SUPPORTED;
1902 				}
1903 			}
1904 		}
1905 
1906 		func = pciehp_slot_find(p_slot->bus, p_slot->device, index++);
1907 	}
1908 
1909 	func = pciehp_slot_find(p_slot->bus, p_slot->device, 0);
1910 	if ((func != NULL) && !rc) {
1911 		rc = remove_board(func, p_slot->ctrl);
1912 	} else if (!rc)
1913 		rc = 1;
1914 
1915 	if (p_slot)
1916 		update_slot_info(p_slot);
1917 
1918 	return rc;
1919 }
1920 
1921 
1922 /**
1923  * configure_new_device - Configures the PCI header information of one board.
1924  *
1925  * @ctrl: pointer to controller structure
1926  * @func: pointer to function structure
1927  * @behind_bridge: 1 if this is a recursive call, 0 if not
1928  * @resources: pointer to set of resource lists
1929  *
1930  * Returns 0 if success
1931  *
1932  */
1933 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
1934 	u8 behind_bridge, struct resource_lists * resources, u8 bridge_bus, u8 bridge_dev)
1935 {
1936 	u8 temp_byte, function, max_functions, stop_it;
1937 	int rc;
1938 	u32 ID;
1939 	struct pci_func *new_slot;
1940 	struct pci_bus lpci_bus, *pci_bus;
1941 	int index;
1942 
1943 	new_slot = func;
1944 
1945 	dbg("%s\n", __FUNCTION__);
1946 	memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus));
1947 	pci_bus = &lpci_bus;
1948 	pci_bus->number = func->bus;
1949 
1950 	/* Check for Multi-function device */
1951 	rc = pci_bus_read_config_byte(pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
1952 	if (rc) {
1953 		dbg("%s: rc = %d\n", __FUNCTION__, rc);
1954 		return rc;
1955 	}
1956 
1957 	if (temp_byte & 0x80)	/* Multi-function device */
1958 		max_functions = 8;
1959 	else
1960 		max_functions = 1;
1961 
1962 	function = 0;
1963 
1964 	do {
1965 		rc = configure_new_function(ctrl, new_slot, behind_bridge,
1966 					resources, bridge_bus, bridge_dev);
1967 
1968 		if (rc) {
1969 			dbg("configure_new_function failed: %d\n", rc);
1970 			index = 0;
1971 
1972 			while (new_slot) {
1973 				new_slot = pciehp_slot_find(new_slot->bus,
1974 						new_slot->device, index++);
1975 
1976 				if (new_slot)
1977 					pciehp_return_board_resources(new_slot,
1978 						resources);
1979 			}
1980 
1981 			return rc;
1982 		}
1983 
1984 		function++;
1985 
1986 		stop_it = 0;
1987 
1988 		/*  The following loop skips to the next present function
1989 		 *  and creates a board structure
1990 		 */
1991 
1992 		while ((function < max_functions) && (!stop_it)) {
1993 			pci_bus_read_config_dword(pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
1994 
1995 			if (ID == 0xFFFFFFFF) {	  /* There's nothing there. */
1996 				function++;
1997 			} else {  /* There's something there */
1998 				/* Setup slot structure. */
1999 				new_slot = pciehp_slot_create(func->bus);
2000 
2001 				if (new_slot == NULL) {
2002 					/* Out of memory */
2003 					return 1;
2004 				}
2005 
2006 				new_slot->bus = func->bus;
2007 				new_slot->device = func->device;
2008 				new_slot->function = function;
2009 				new_slot->is_a_board = 1;
2010 				new_slot->status = 0;
2011 
2012 				stop_it++;
2013 			}
2014 		}
2015 
2016 	} while (function < max_functions);
2017 	dbg("returning from %s\n", __FUNCTION__);
2018 
2019 	return 0;
2020 }
2021 
2022 /*
2023  * Configuration logic that involves the hotplug data structures and
2024  * their bookkeeping
2025  */
2026 
2027 /**
2028  * configure_bridge: fill bridge's registers, either configure or disable it.
2029  */
2030 static int
2031 configure_bridge(struct pci_bus *pci_bus, unsigned int devfn,
2032 			struct pci_resource *mem_node,
2033 			struct pci_resource **hold_mem_node,
2034 			int base_addr, int limit_addr)
2035 {
2036 	u16 temp_word;
2037 	u32 rc;
2038 
2039 	if (mem_node) {
2040 		memcpy(*hold_mem_node, mem_node, sizeof(struct pci_resource));
2041 		mem_node->next = NULL;
2042 
2043 		/* set Mem base and Limit registers */
2044 		RES_CHECK(mem_node->base, 16);
2045 		temp_word = (u16)(mem_node->base >> 16);
2046 		rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word);
2047 
2048 		RES_CHECK(mem_node->base + mem_node->length - 1, 16);
2049 		temp_word = (u16)((mem_node->base + mem_node->length - 1) >> 16);
2050 		rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word);
2051 	} else {
2052 		temp_word = 0xFFFF;
2053 		rc = pci_bus_write_config_word(pci_bus, devfn, base_addr, temp_word);
2054 
2055 		temp_word = 0x0000;
2056 		rc = pci_bus_write_config_word(pci_bus, devfn, limit_addr, temp_word);
2057 
2058 		kfree(*hold_mem_node);
2059 		*hold_mem_node = NULL;
2060 	}
2061 	return rc;
2062 }
2063 
2064 static int
2065 configure_new_bridge(struct controller *ctrl, struct pci_func *func,
2066 		u8 behind_bridge, struct resource_lists *resources,
2067 		struct pci_bus *pci_bus)
2068 {
2069 	int cloop;
2070 	u8 temp_byte;
2071 	u8 device;
2072 	u16 temp_word;
2073 	u32 rc;
2074 	u32 ID;
2075 	unsigned int devfn;
2076 	struct pci_resource *mem_node;
2077 	struct pci_resource *p_mem_node;
2078 	struct pci_resource *io_node;
2079 	struct pci_resource *bus_node;
2080 	struct pci_resource *hold_mem_node;
2081 	struct pci_resource *hold_p_mem_node;
2082 	struct pci_resource *hold_IO_node;
2083 	struct pci_resource *hold_bus_node;
2084 	struct irq_mapping irqs;
2085 	struct pci_func *new_slot;
2086 	struct resource_lists temp_resources;
2087 
2088 	devfn = PCI_DEVFN(func->device, func->function);
2089 
2090 	/* set Primary bus */
2091 	dbg("set Primary bus = 0x%x\n", func->bus);
2092 	rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2093 	if (rc)
2094 		return rc;
2095 
2096 	/* find range of busses to use */
2097 	bus_node = get_max_resource(&resources->bus_head, 1L);
2098 
2099 	/* If we don't have any busses to allocate, we can't continue */
2100 	if (!bus_node) {
2101 		err("Got NO bus resource to use\n");
2102 		return -ENOMEM;
2103 	}
2104 	dbg("Got ranges of buses to use: base:len=0x%x:%x\n", bus_node->base, bus_node->length);
2105 
2106 	/* set Secondary bus */
2107 	temp_byte = (u8)bus_node->base;
2108 	dbg("set Secondary bus = 0x%x\n", temp_byte);
2109 	rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2110 	if (rc)
2111 		return rc;
2112 
2113 	/* set subordinate bus */
2114 	temp_byte = (u8)(bus_node->base + bus_node->length - 1);
2115 	dbg("set subordinate bus = 0x%x\n", temp_byte);
2116 	rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2117 	if (rc)
2118 		return rc;
2119 
2120 	/* Set HP parameters (Cache Line Size, Latency Timer) */
2121 	rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_BRIDGE);
2122 	if (rc)
2123 		return rc;
2124 
2125 	/* Setup the IO, memory, and prefetchable windows */
2126 
2127 	io_node = get_max_resource(&(resources->io_head), 0x1000L);
2128 	if (io_node) {
2129 		dbg("io_node(base, len, next) (%x, %x, %p)\n", io_node->base,
2130 				io_node->length, io_node->next);
2131 	}
2132 
2133 	mem_node = get_max_resource(&(resources->mem_head), 0x100000L);
2134 	if (mem_node) {
2135 		dbg("mem_node(base, len, next) (%x, %x, %p)\n", mem_node->base,
2136 				mem_node->length, mem_node->next);
2137 	}
2138 
2139 	if (resources->p_mem_head)
2140 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000L);
2141 	else {
2142 		/*
2143 		 * In some platform implementation, MEM and PMEM are not
2144 		 *  distinguished, and hence ACPI _CRS has only MEM entries
2145 		 *  for both MEM and PMEM.
2146 		 */
2147 		dbg("using MEM for PMEM\n");
2148 		p_mem_node = get_max_resource(&(resources->mem_head), 0x100000L);
2149 	}
2150 	if (p_mem_node) {
2151 		dbg("p_mem_node(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2152 				p_mem_node->length, p_mem_node->next);
2153 	}
2154 
2155 	/* set up the IRQ info */
2156 	if (!resources->irqs) {
2157 		irqs.barber_pole = 0;
2158 		irqs.interrupt[0] = 0;
2159 		irqs.interrupt[1] = 0;
2160 		irqs.interrupt[2] = 0;
2161 		irqs.interrupt[3] = 0;
2162 		irqs.valid_INT = 0;
2163 	} else {
2164 		irqs.barber_pole = resources->irqs->barber_pole;
2165 		irqs.interrupt[0] = resources->irqs->interrupt[0];
2166 		irqs.interrupt[1] = resources->irqs->interrupt[1];
2167 		irqs.interrupt[2] = resources->irqs->interrupt[2];
2168 		irqs.interrupt[3] = resources->irqs->interrupt[3];
2169 		irqs.valid_INT = resources->irqs->valid_INT;
2170 	}
2171 
2172 	/* set up resource lists that are now aligned on top and bottom
2173 	 * for anything behind the bridge.
2174 	 */
2175 	temp_resources.bus_head = bus_node;
2176 	temp_resources.io_head = io_node;
2177 	temp_resources.mem_head = mem_node;
2178 	temp_resources.p_mem_head = p_mem_node;
2179 	temp_resources.irqs = &irqs;
2180 
2181 	/* Make copies of the nodes we are going to pass down so that
2182 	 * if there is a problem,we can just use these to free resources
2183 	 */
2184 	hold_bus_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
2185 	hold_IO_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
2186 	hold_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
2187 	hold_p_mem_node = kmalloc(sizeof(struct pci_resource), GFP_KERNEL);
2188 
2189 	if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2190 		kfree(hold_bus_node);
2191 		kfree(hold_IO_node);
2192 		kfree(hold_mem_node);
2193 		kfree(hold_p_mem_node);
2194 
2195 		return 1;
2196 	}
2197 
2198 	memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2199 
2200 	bus_node->base += 1;
2201 	bus_node->length -= 1;
2202 	bus_node->next = NULL;
2203 
2204 	/* If we have IO resources copy them and fill in the bridge's
2205 	 * IO range registers
2206 	 */
2207 	if (io_node) {
2208 		memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2209 		io_node->next = NULL;
2210 
2211 		/* set IO base and Limit registers */
2212 		RES_CHECK(io_node->base, 8);
2213 		temp_byte = (u8)(io_node->base >> 8);
2214 		rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2215 
2216 		RES_CHECK(io_node->base + io_node->length - 1, 8);
2217 		temp_byte = (u8)((io_node->base + io_node->length - 1) >> 8);
2218 		rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2219 	} else {
2220 		kfree(hold_IO_node);
2221 		hold_IO_node = NULL;
2222 	}
2223 
2224 	/* If we have memory resources copy them and fill in the bridge's
2225 	 * memory range registers.  Otherwise, fill in the range
2226 	 * registers with values that disable them.
2227 	 */
2228 	rc = configure_bridge(pci_bus, devfn, mem_node, &hold_mem_node,
2229 				PCI_MEMORY_BASE, PCI_MEMORY_LIMIT);
2230 
2231 	/* If we have prefetchable memory resources copy them and
2232 	 * fill in the bridge's memory range registers.  Otherwise,
2233 	 * fill in the range registers with values that disable them.
2234 	 */
2235 	rc = configure_bridge(pci_bus, devfn, p_mem_node, &hold_p_mem_node,
2236 				PCI_PREF_MEMORY_BASE, PCI_PREF_MEMORY_LIMIT);
2237 
2238 	/* Adjust this to compensate for extra adjustment in first loop */
2239 	irqs.barber_pole--;
2240 
2241 	rc = 0;
2242 
2243 	/* Here we actually find the devices and configure them */
2244 	for (device = 0; (device <= 0x1F) && !rc; device++) {
2245 		irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2246 
2247 		ID = 0xFFFFFFFF;
2248 		pci_bus->number = hold_bus_node->base;
2249 		pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
2250 		pci_bus->number = func->bus;
2251 
2252 		if (ID != 0xFFFFFFFF) {	  /*  device Present */
2253 			/* Setup slot structure. */
2254 			new_slot = pciehp_slot_create(hold_bus_node->base);
2255 
2256 			if (new_slot == NULL) {
2257 				/* Out of memory */
2258 				rc = -ENOMEM;
2259 				continue;
2260 			}
2261 
2262 			new_slot->bus = hold_bus_node->base;
2263 			new_slot->device = device;
2264 			new_slot->function = 0;
2265 			new_slot->is_a_board = 1;
2266 			new_slot->status = 0;
2267 
2268 			rc = configure_new_device(ctrl, new_slot, 1,
2269 					&temp_resources, func->bus,
2270 					func->device);
2271 			dbg("configure_new_device rc=0x%x\n",rc);
2272 		}	/* End of IF (device in slot?) */
2273 	}		/* End of FOR loop */
2274 
2275 	if (rc) {
2276 		pciehp_destroy_resource_list(&temp_resources);
2277 
2278 		return_resource(&(resources->bus_head), hold_bus_node);
2279 		return_resource(&(resources->io_head), hold_IO_node);
2280 		return_resource(&(resources->mem_head), hold_mem_node);
2281 		return_resource(&(resources->p_mem_head), hold_p_mem_node);
2282 		return(rc);
2283 	}
2284 
2285 	/* save the interrupt routing information */
2286 	if (resources->irqs) {
2287 		resources->irqs->interrupt[0] = irqs.interrupt[0];
2288 		resources->irqs->interrupt[1] = irqs.interrupt[1];
2289 		resources->irqs->interrupt[2] = irqs.interrupt[2];
2290 		resources->irqs->interrupt[3] = irqs.interrupt[3];
2291 		resources->irqs->valid_INT = irqs.valid_INT;
2292 	} else if (!behind_bridge) {
2293 		/* We need to hook up the interrupts here */
2294 		for (cloop = 0; cloop < 4; cloop++) {
2295 			if (irqs.valid_INT & (0x01 << cloop)) {
2296 				rc = pciehp_set_irq(func->bus, func->device,
2297 							0x0A + cloop, irqs.interrupt[cloop]);
2298 				if (rc) {
2299 					pciehp_destroy_resource_list (&temp_resources);
2300 					return_resource(&(resources->bus_head), hold_bus_node);
2301 					return_resource(&(resources->io_head), hold_IO_node);
2302 					return_resource(&(resources->mem_head), hold_mem_node);
2303 					return_resource(&(resources->p_mem_head), hold_p_mem_node);
2304 					return rc;
2305 				}
2306 			}
2307 		}	/* end of for loop */
2308 	}
2309 
2310 	/* Return unused bus resources
2311 	 * First use the temporary node to store information for the board
2312 	 */
2313 	if (hold_bus_node && bus_node && temp_resources.bus_head) {
2314 		hold_bus_node->length = bus_node->base - hold_bus_node->base;
2315 
2316 		hold_bus_node->next = func->bus_head;
2317 		func->bus_head = hold_bus_node;
2318 
2319 		temp_byte = (u8)(temp_resources.bus_head->base - 1);
2320 
2321 		/* set subordinate bus */
2322 		dbg("re-set subordinate bus = 0x%x\n", temp_byte);
2323 		rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2324 
2325 		if (temp_resources.bus_head->length == 0) {
2326 			kfree(temp_resources.bus_head);
2327 			temp_resources.bus_head = NULL;
2328 		} else {
2329 			dbg("return bus res of b:d(0x%x:%x) base:len(0x%x:%x)\n",
2330 				func->bus, func->device, temp_resources.bus_head->base, temp_resources.bus_head->length);
2331 			return_resource(&(resources->bus_head), temp_resources.bus_head);
2332 		}
2333 	}
2334 
2335 	/* If we have IO space available and there is some left,
2336 	 * return the unused portion
2337 	 */
2338 	if (hold_IO_node && temp_resources.io_head) {
2339 		io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2340 							&hold_IO_node, 0x1000);
2341 
2342 		/* Check if we were able to split something off */
2343 		if (io_node) {
2344 			hold_IO_node->base = io_node->base + io_node->length;
2345 
2346 			RES_CHECK(hold_IO_node->base, 8);
2347 			temp_byte = (u8)((hold_IO_node->base) >> 8);
2348 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2349 
2350 			return_resource(&(resources->io_head), io_node);
2351 		}
2352 
2353 		io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2354 
2355 		/*  Check if we were able to split something off */
2356 		if (io_node) {
2357 			/* First use the temporary node to store information for the board */
2358 			hold_IO_node->length = io_node->base - hold_IO_node->base;
2359 
2360 			/* If we used any, add it to the board's list */
2361 			if (hold_IO_node->length) {
2362 				hold_IO_node->next = func->io_head;
2363 				func->io_head = hold_IO_node;
2364 
2365 				RES_CHECK(io_node->base - 1, 8);
2366 				temp_byte = (u8)((io_node->base - 1) >> 8);
2367 				rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2368 
2369 				return_resource(&(resources->io_head), io_node);
2370 			} else {
2371 				/* it doesn't need any IO */
2372 				temp_byte = 0x00;
2373 				rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2374 
2375 				return_resource(&(resources->io_head), io_node);
2376 				kfree(hold_IO_node);
2377 			}
2378 		} else {
2379 			/* it used most of the range */
2380 			hold_IO_node->next = func->io_head;
2381 			func->io_head = hold_IO_node;
2382 		}
2383 	} else if (hold_IO_node) {
2384 		/* it used the whole range */
2385 		hold_IO_node->next = func->io_head;
2386 		func->io_head = hold_IO_node;
2387 	}
2388 
2389 	/* If we have memory space available and there is some left,
2390 	 * return the unused portion
2391 	 */
2392 	if (hold_mem_node && temp_resources.mem_head) {
2393 		mem_node = do_pre_bridge_resource_split(&(temp_resources.mem_head), &hold_mem_node, 0x100000L);
2394 
2395 		/* Check if we were able to split something off */
2396 		if (mem_node) {
2397 			hold_mem_node->base = mem_node->base + mem_node->length;
2398 
2399 			RES_CHECK(hold_mem_node->base, 16);
2400 			temp_word = (u16)((hold_mem_node->base) >> 16);
2401 			rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2402 
2403 			return_resource(&(resources->mem_head), mem_node);
2404 		}
2405 
2406 		mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000L);
2407 
2408 		/* Check if we were able to split something off */
2409 		if (mem_node) {
2410 			/* First use the temporary node to store information for the board */
2411 			hold_mem_node->length = mem_node->base - hold_mem_node->base;
2412 
2413 			if (hold_mem_node->length) {
2414 				hold_mem_node->next = func->mem_head;
2415 				func->mem_head = hold_mem_node;
2416 
2417 				/* configure end address */
2418 				RES_CHECK(mem_node->base - 1, 16);
2419 				temp_word = (u16)((mem_node->base - 1) >> 16);
2420 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2421 
2422 				/* Return unused resources to the pool */
2423 				return_resource(&(resources->mem_head), mem_node);
2424 			} else {
2425 				/* it doesn't need any Mem */
2426 				temp_word = 0x0000;
2427 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2428 
2429 				return_resource(&(resources->mem_head), mem_node);
2430 				kfree(hold_mem_node);
2431 			}
2432 		} else {
2433 			/* it used most of the range */
2434 			hold_mem_node->next = func->mem_head;
2435 			func->mem_head = hold_mem_node;
2436 		}
2437 	} else if (hold_mem_node) {
2438 		/* it used the whole range */
2439 		hold_mem_node->next = func->mem_head;
2440 		func->mem_head = hold_mem_node;
2441 	}
2442 
2443 	/* If we have prefetchable memory space available and there is some
2444 	 * left at the end, return the unused portion
2445 	 */
2446 	if (hold_p_mem_node && temp_resources.p_mem_head) {
2447 		p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2448 								&hold_p_mem_node, 0x100000L);
2449 
2450 		/* Check if we were able to split something off */
2451 		if (p_mem_node) {
2452 			hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2453 
2454 			RES_CHECK(hold_p_mem_node->base, 16);
2455 			temp_word = (u16)((hold_p_mem_node->base) >> 16);
2456 			rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2457 
2458 			return_resource(&(resources->p_mem_head), p_mem_node);
2459 		}
2460 
2461 		p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000L);
2462 
2463 		/* Check if we were able to split something off */
2464 		if (p_mem_node) {
2465 			/* First use the temporary node to store information for the board */
2466 			hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2467 
2468 			/* If we used any, add it to the board's list */
2469 			if (hold_p_mem_node->length) {
2470 				hold_p_mem_node->next = func->p_mem_head;
2471 				func->p_mem_head = hold_p_mem_node;
2472 
2473 				RES_CHECK(p_mem_node->base - 1, 16);
2474 				temp_word = (u16)((p_mem_node->base - 1) >> 16);
2475 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2476 
2477 				return_resource(&(resources->p_mem_head), p_mem_node);
2478 			} else {
2479 				/* it doesn't need any PMem */
2480 				temp_word = 0x0000;
2481 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2482 
2483 				return_resource(&(resources->p_mem_head), p_mem_node);
2484 				kfree(hold_p_mem_node);
2485 			}
2486 		} else {
2487 			/* it used the most of the range */
2488 			hold_p_mem_node->next = func->p_mem_head;
2489 			func->p_mem_head = hold_p_mem_node;
2490 		}
2491 	} else if (hold_p_mem_node) {
2492 		/* it used the whole range */
2493 		hold_p_mem_node->next = func->p_mem_head;
2494 		func->p_mem_head = hold_p_mem_node;
2495 	}
2496 
2497 	/* We should be configuring an IRQ and the bridge's base address
2498 	 * registers if it needs them.  Although we have never seen such
2499 	 * a device
2500 	 */
2501 
2502 	pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_BRIDGE);
2503 
2504 	dbg("PCI Bridge Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device, func->function);
2505 
2506 	return rc;
2507 }
2508 
2509 /**
2510  * configure_new_function - Configures the PCI header information of one device
2511  *
2512  * @ctrl: pointer to controller structure
2513  * @func: pointer to function structure
2514  * @behind_bridge: 1 if this is a recursive call, 0 if not
2515  * @resources: pointer to set of resource lists
2516  *
2517  * Calls itself recursively for bridged devices.
2518  * Returns 0 if success
2519  *
2520  */
2521 static int
2522 configure_new_function(struct controller *ctrl, struct pci_func *func,
2523 		u8 behind_bridge, struct resource_lists *resources,
2524 		u8 bridge_bus, u8 bridge_dev)
2525 {
2526 	int cloop;
2527 	u8 temp_byte;
2528 	u8 class_code;
2529 	u16 temp_word;
2530 	u32 rc;
2531 	u32 temp_register;
2532 	u32 base;
2533 	unsigned int devfn;
2534 	struct pci_resource *mem_node;
2535 	struct pci_resource *io_node;
2536 	struct pci_bus lpci_bus, *pci_bus;
2537 
2538 	memcpy(&lpci_bus, ctrl->pci_dev->subordinate, sizeof(lpci_bus));
2539 	pci_bus = &lpci_bus;
2540 	pci_bus->number = func->bus;
2541 	devfn = PCI_DEVFN(func->device, func->function);
2542 
2543 	/* Check for Bridge */
2544 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2545 	if (rc)
2546 		return rc;
2547 	dbg("%s: bus %x dev %x func %x temp_byte = %x\n", __FUNCTION__,
2548 		func->bus, func->device, func->function, temp_byte);
2549 
2550 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2551 		rc = configure_new_bridge(ctrl, func, behind_bridge, resources,
2552 						pci_bus);
2553 
2554 		if (rc)
2555 			return rc;
2556 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2557 		/* Standard device */
2558 		u64	base64;
2559 		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2560 
2561 		if (class_code == PCI_BASE_CLASS_DISPLAY)
2562 			return DEVICE_TYPE_NOT_SUPPORTED;
2563 
2564 		/* Figure out IO and memory needs */
2565 		for (cloop = PCI_BASE_ADDRESS_0; cloop <= PCI_BASE_ADDRESS_5; cloop += 4) {
2566 			temp_register = 0xFFFFFFFF;
2567 
2568 			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2569 			rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2570 			dbg("Bar[%x]=0x%x on bus:dev:func(0x%x:%x:%x)\n", cloop, temp_register,
2571 				func->bus, func->device, func->function);
2572 
2573 			if (!temp_register)
2574 				continue;
2575 
2576 			base64 = 0L;
2577 			if (temp_register & PCI_BASE_ADDRESS_SPACE_IO) {
2578 				/* Map IO */
2579 
2580 				/* set base = amount of IO space */
2581 				base = temp_register & 0xFFFFFFFC;
2582 				base = ~base + 1;
2583 
2584 				dbg("NEED IO length(0x%x)\n", base);
2585 				io_node = get_io_resource(&(resources->io_head),(ulong)base);
2586 
2587 				/* allocate the resource to the board */
2588 				if (io_node) {
2589 					dbg("Got IO base=0x%x(length=0x%x)\n", io_node->base, io_node->length);
2590 					base = (u32)io_node->base;
2591 					io_node->next = func->io_head;
2592 					func->io_head = io_node;
2593 				} else {
2594 					err("Got NO IO resource(length=0x%x)\n", base);
2595 					return -ENOMEM;
2596 				}
2597 			} else {	/* map MEM */
2598 				int prefetchable = 1;
2599 				struct pci_resource **res_node = &func->p_mem_head;
2600 				char *res_type_str = "PMEM";
2601 				u32	temp_register2;
2602 
2603 				if (!(temp_register & PCI_BASE_ADDRESS_MEM_PREFETCH)) {
2604 					prefetchable = 0;
2605 					res_node = &func->mem_head;
2606 					res_type_str++;
2607 				}
2608 
2609 				base = temp_register & 0xFFFFFFF0;
2610 				base = ~base + 1;
2611 
2612 				switch (temp_register & PCI_BASE_ADDRESS_MEM_TYPE_MASK) {
2613 				case PCI_BASE_ADDRESS_MEM_TYPE_32:
2614 					dbg("NEED 32 %s bar=0x%x(length=0x%x)\n", res_type_str, temp_register, base);
2615 
2616 					if (prefetchable && resources->p_mem_head)
2617 						mem_node=get_resource(&(resources->p_mem_head), (ulong)base);
2618 					else {
2619 						if (prefetchable)
2620 							dbg("using MEM for PMEM\n");
2621 						mem_node = get_resource(&(resources->mem_head), (ulong)base);
2622 					}
2623 
2624 					/* allocate the resource to the board */
2625 					if (mem_node) {
2626 						base = (u32)mem_node->base;
2627 						mem_node->next = *res_node;
2628 						*res_node = mem_node;
2629 						dbg("Got 32 %s base=0x%x(length=0x%x)\n", res_type_str, mem_node->base,
2630 							mem_node->length);
2631 					} else {
2632 						err("Got NO 32 %s resource(length=0x%x)\n", res_type_str, base);
2633 						return -ENOMEM;
2634 					}
2635 					break;
2636 				case PCI_BASE_ADDRESS_MEM_TYPE_64:
2637 					rc = pci_bus_read_config_dword(pci_bus, devfn, cloop+4, &temp_register2);
2638 					dbg("NEED 64 %s bar=0x%x:%x(length=0x%x)\n", res_type_str, temp_register2,
2639 						temp_register, base);
2640 
2641 					if (prefetchable && resources->p_mem_head)
2642 						mem_node = get_resource(&(resources->p_mem_head), (ulong)base);
2643 					else {
2644 						if (prefetchable)
2645 							dbg("using MEM for PMEM\n");
2646 						mem_node = get_resource(&(resources->mem_head), (ulong)base);
2647 					}
2648 
2649 					/* allocate the resource to the board */
2650 					if (mem_node) {
2651 						base64 = mem_node->base;
2652 						mem_node->next = *res_node;
2653 						*res_node = mem_node;
2654 						dbg("Got 64 %s base=0x%x:%x(length=%x)\n", res_type_str, (u32)(base64 >> 32),
2655 							(u32)base64, mem_node->length);
2656 					} else {
2657 						err("Got NO 64 %s resource(length=0x%x)\n", res_type_str, base);
2658 						return -ENOMEM;
2659 					}
2660 					break;
2661 				default:
2662 					dbg("reserved BAR type=0x%x\n", temp_register);
2663 					break;
2664 				}
2665 
2666 			}
2667 
2668 			if (base64) {
2669 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64);
2670 				cloop += 4;
2671 				base64 >>= 32;
2672 
2673 				if (base64) {
2674 					dbg("%s: high dword of base64(0x%x) set to 0\n", __FUNCTION__, (u32)base64);
2675 					base64 = 0x0L;
2676 				}
2677 
2678 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, (u32)base64);
2679 			} else {
2680 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2681 			}
2682 		}		/* End of base register loop */
2683 
2684 		/* disable ROM base Address */
2685 		temp_word = 0x00L;
2686 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_ROM_ADDRESS, temp_word);
2687 
2688 		/* Set HP parameters (Cache Line Size, Latency Timer) */
2689 		rc = pciehprm_set_hpp(ctrl, func, PCI_HEADER_TYPE_NORMAL);
2690 		if (rc)
2691 			return rc;
2692 
2693 		pciehprm_enable_card(ctrl, func, PCI_HEADER_TYPE_NORMAL);
2694 
2695 		dbg("PCI function Hot-Added s:b:d:f(%02x:%02x:%02x:%02x)\n", ctrl->seg, func->bus, func->device,
2696 			func->function);
2697 	}  /* End of Not-A-Bridge else */
2698 	else {
2699 		/* It's some strange type of PCI adapter (Cardbus?) */
2700 		return DEVICE_TYPE_NOT_SUPPORTED;
2701 	}
2702 
2703 	func->configured = 1;
2704 
2705 	return 0;
2706 }
2707