xref: /openbmc/linux/drivers/pci/hotplug/cpqphp_pci.c (revision eb3fcf00)
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/proc_fs.h>
35 #include <linux/pci.h>
36 #include <linux/pci_hotplug.h>
37 #include "../pci.h"
38 #include "cpqphp.h"
39 #include "cpqphp_nvram.h"
40 
41 
42 u8 cpqhp_nic_irq;
43 u8 cpqhp_disk_irq;
44 
45 static u16 unused_IRQ;
46 
47 /*
48  * detect_HRT_floating_pointer
49  *
50  * find the Hot Plug Resource Table in the specified region of memory.
51  *
52  */
53 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
54 {
55 	void __iomem *fp;
56 	void __iomem *endp;
57 	u8 temp1, temp2, temp3, temp4;
58 	int status = 0;
59 
60 	endp = (end - sizeof(struct hrt) + 1);
61 
62 	for (fp = begin; fp <= endp; fp += 16) {
63 		temp1 = readb(fp + SIG0);
64 		temp2 = readb(fp + SIG1);
65 		temp3 = readb(fp + SIG2);
66 		temp4 = readb(fp + SIG3);
67 		if (temp1 == '$' &&
68 		    temp2 == 'H' &&
69 		    temp3 == 'R' &&
70 		    temp4 == 'T') {
71 			status = 1;
72 			break;
73 		}
74 	}
75 
76 	if (!status)
77 		fp = NULL;
78 
79 	dbg("Discovered Hotplug Resource Table at %p\n", fp);
80 	return fp;
81 }
82 
83 
84 int cpqhp_configure_device (struct controller *ctrl, struct pci_func *func)
85 {
86 	struct pci_bus *child;
87 	int num;
88 
89 	pci_lock_rescan_remove();
90 
91 	if (func->pci_dev == NULL)
92 		func->pci_dev = pci_get_bus_and_slot(func->bus,PCI_DEVFN(func->device, func->function));
93 
94 	/* No pci device, we need to create it then */
95 	if (func->pci_dev == NULL) {
96 		dbg("INFO: pci_dev still null\n");
97 
98 		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
99 		if (num)
100 			pci_bus_add_devices(ctrl->pci_dev->bus);
101 
102 		func->pci_dev = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, func->function));
103 		if (func->pci_dev == NULL) {
104 			dbg("ERROR: pci_dev still null\n");
105 			goto out;
106 		}
107 	}
108 
109 	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
110 		pci_hp_add_bridge(func->pci_dev);
111 		child = func->pci_dev->subordinate;
112 		if (child)
113 			pci_bus_add_devices(child);
114 	}
115 
116 	pci_dev_put(func->pci_dev);
117 
118  out:
119 	pci_unlock_rescan_remove();
120 	return 0;
121 }
122 
123 
124 int cpqhp_unconfigure_device(struct pci_func *func)
125 {
126 	int j;
127 
128 	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
129 
130 	pci_lock_rescan_remove();
131 	for (j=0; j<8 ; j++) {
132 		struct pci_dev *temp = pci_get_bus_and_slot(func->bus, PCI_DEVFN(func->device, j));
133 		if (temp) {
134 			pci_dev_put(temp);
135 			pci_stop_and_remove_bus_device(temp);
136 		}
137 	}
138 	pci_unlock_rescan_remove();
139 	return 0;
140 }
141 
142 static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
143 {
144 	u32 vendID = 0;
145 
146 	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
147 		return -1;
148 	if (vendID == 0xffffffff)
149 		return -1;
150 	return pci_bus_read_config_dword (bus, devfn, offset, value);
151 }
152 
153 
154 /*
155  * cpqhp_set_irq
156  *
157  * @bus_num: bus number of PCI device
158  * @dev_num: device number of PCI device
159  * @slot: pointer to u8 where slot number will be returned
160  */
161 int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
162 {
163 	int rc = 0;
164 
165 	if (cpqhp_legacy_mode) {
166 		struct pci_dev *fakedev;
167 		struct pci_bus *fakebus;
168 		u16 temp_word;
169 
170 		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
171 		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
172 		if (!fakedev || !fakebus) {
173 			kfree(fakedev);
174 			kfree(fakebus);
175 			return -ENOMEM;
176 		}
177 
178 		fakedev->devfn = dev_num << 3;
179 		fakedev->bus = fakebus;
180 		fakebus->number = bus_num;
181 		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
182 		    __func__, dev_num, bus_num, int_pin, irq_num);
183 		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
184 		kfree(fakedev);
185 		kfree(fakebus);
186 		dbg("%s: rc %d\n", __func__, rc);
187 		if (!rc)
188 			return !rc;
189 
190 		/* set the Edge Level Control Register (ELCR) */
191 		temp_word = inb(0x4d0);
192 		temp_word |= inb(0x4d1) << 8;
193 
194 		temp_word |= 0x01 << irq_num;
195 
196 		/* This should only be for x86 as it sets the Edge Level
197 		 * Control Register
198 		 */
199 		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
200 		0xFF00) >> 8), 0x4d1); rc = 0; }
201 
202 	return rc;
203 }
204 
205 
206 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
207 {
208 	u16 tdevice;
209 	u32 work;
210 	u8 tbus;
211 
212 	ctrl->pci_bus->number = bus_num;
213 
214 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
215 		/* Scan for access first */
216 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
217 			continue;
218 		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
219 		/* Yep we got one. Not a bridge ? */
220 		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
221 			*dev_num = tdevice;
222 			dbg("found it !\n");
223 			return 0;
224 		}
225 	}
226 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
227 		/* Scan for access first */
228 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
229 			continue;
230 		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
231 		/* Yep we got one. bridge ? */
232 		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
233 			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
234 			/* XXX: no recursion, wtf? */
235 			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
236 			return 0;
237 		}
238 	}
239 
240 	return -1;
241 }
242 
243 
244 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
245 {
246 	int loop, len;
247 	u32 work;
248 	u8 tbus, tdevice, tslot;
249 
250 	len = cpqhp_routing_table_length();
251 	for (loop = 0; loop < len; ++loop) {
252 		tbus = cpqhp_routing_table->slots[loop].bus;
253 		tdevice = cpqhp_routing_table->slots[loop].devfn;
254 		tslot = cpqhp_routing_table->slots[loop].slot;
255 
256 		if (tslot == slot) {
257 			*bus_num = tbus;
258 			*dev_num = tdevice;
259 			ctrl->pci_bus->number = tbus;
260 			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
261 			if (!nobridge || (work == 0xffffffff))
262 				return 0;
263 
264 			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
265 			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
266 			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
267 
268 			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
269 				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
270 				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
271 				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
272 					*bus_num = tbus;
273 					return 0;
274 				}
275 			} else
276 				return 0;
277 		}
278 	}
279 	return -1;
280 }
281 
282 
283 int cpqhp_get_bus_dev (struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
284 {
285 	/* plain (bridges allowed) */
286 	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
287 }
288 
289 
290 /* More PCI configuration routines; this time centered around hotplug
291  * controller
292  */
293 
294 
295 /*
296  * cpqhp_save_config
297  *
298  * Reads configuration for all slots in a PCI bus and saves info.
299  *
300  * Note:  For non-hot plug buses, the slot # saved is the device #
301  *
302  * returns 0 if success
303  */
304 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
305 {
306 	long rc;
307 	u8 class_code;
308 	u8 header_type;
309 	u32 ID;
310 	u8 secondary_bus;
311 	struct pci_func *new_slot;
312 	int sub_bus;
313 	int FirstSupported;
314 	int LastSupported;
315 	int max_functions;
316 	int function;
317 	u8 DevError;
318 	int device = 0;
319 	int cloop = 0;
320 	int stop_it;
321 	int index;
322 
323 	/* Decide which slots are supported */
324 
325 	if (is_hot_plug) {
326 		/*
327 		 * is_hot_plug is the slot mask
328 		 */
329 		FirstSupported = is_hot_plug >> 4;
330 		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
331 	} else {
332 		FirstSupported = 0;
333 		LastSupported = 0x1F;
334 	}
335 
336 	/* Save PCI configuration space for all devices in supported slots */
337 	ctrl->pci_bus->number = busnumber;
338 	for (device = FirstSupported; device <= LastSupported; device++) {
339 		ID = 0xFFFFFFFF;
340 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
341 
342 		if (ID == 0xFFFFFFFF) {
343 			if (is_hot_plug) {
344 				/* Setup slot structure with entry for empty
345 				 * slot
346 				 */
347 				new_slot = cpqhp_slot_create(busnumber);
348 				if (new_slot == NULL)
349 					return 1;
350 
351 				new_slot->bus = (u8) busnumber;
352 				new_slot->device = (u8) device;
353 				new_slot->function = 0;
354 				new_slot->is_a_board = 0;
355 				new_slot->presence_save = 0;
356 				new_slot->switch_save = 0;
357 			}
358 			continue;
359 		}
360 
361 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
362 		if (rc)
363 			return rc;
364 
365 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
366 		if (rc)
367 			return rc;
368 
369 		/* If multi-function device, set max_functions to 8 */
370 		if (header_type & 0x80)
371 			max_functions = 8;
372 		else
373 			max_functions = 1;
374 
375 		function = 0;
376 
377 		do {
378 			DevError = 0;
379 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
380 				/* Recurse the subordinate bus
381 				 * get the subordinate bus number
382 				 */
383 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
384 				if (rc) {
385 					return rc;
386 				} else {
387 					sub_bus = (int) secondary_bus;
388 
389 					/* Save secondary bus cfg spc
390 					 * with this recursive call.
391 					 */
392 					rc = cpqhp_save_config(ctrl, sub_bus, 0);
393 					if (rc)
394 						return rc;
395 					ctrl->pci_bus->number = busnumber;
396 				}
397 			}
398 
399 			index = 0;
400 			new_slot = cpqhp_slot_find(busnumber, device, index++);
401 			while (new_slot &&
402 			       (new_slot->function != (u8) function))
403 				new_slot = cpqhp_slot_find(busnumber, device, index++);
404 
405 			if (!new_slot) {
406 				/* Setup slot structure. */
407 				new_slot = cpqhp_slot_create(busnumber);
408 				if (new_slot == NULL)
409 					return 1;
410 			}
411 
412 			new_slot->bus = (u8) busnumber;
413 			new_slot->device = (u8) device;
414 			new_slot->function = (u8) function;
415 			new_slot->is_a_board = 1;
416 			new_slot->switch_save = 0x10;
417 			/* In case of unsupported board */
418 			new_slot->status = DevError;
419 			new_slot->pci_dev = pci_get_bus_and_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
420 
421 			for (cloop = 0; cloop < 0x20; cloop++) {
422 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
423 				if (rc)
424 					return rc;
425 			}
426 
427 			pci_dev_put(new_slot->pci_dev);
428 
429 			function++;
430 
431 			stop_it = 0;
432 
433 			/* this loop skips to the next present function
434 			 * reading in Class Code and Header type.
435 			 */
436 			while ((function < max_functions) && (!stop_it)) {
437 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
438 				if (ID == 0xFFFFFFFF) {
439 					function++;
440 					continue;
441 				}
442 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
443 				if (rc)
444 					return rc;
445 
446 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
447 				if (rc)
448 					return rc;
449 
450 				stop_it++;
451 			}
452 
453 		} while (function < max_functions);
454 	}			/* End of FOR loop */
455 
456 	return 0;
457 }
458 
459 
460 /*
461  * cpqhp_save_slot_config
462  *
463  * Saves configuration info for all PCI devices in a given slot
464  * including subordinate buses.
465  *
466  * returns 0 if success
467  */
468 int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func *new_slot)
469 {
470 	long rc;
471 	u8 class_code;
472 	u8 header_type;
473 	u32 ID;
474 	u8 secondary_bus;
475 	int sub_bus;
476 	int max_functions;
477 	int function = 0;
478 	int cloop = 0;
479 	int stop_it;
480 
481 	ID = 0xFFFFFFFF;
482 
483 	ctrl->pci_bus->number = new_slot->bus;
484 	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
485 
486 	if (ID == 0xFFFFFFFF)
487 		return 2;
488 
489 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
490 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
491 
492 	if (header_type & 0x80)	/* Multi-function device */
493 		max_functions = 8;
494 	else
495 		max_functions = 1;
496 
497 	while (function < max_functions) {
498 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
499 			/*  Recurse the subordinate bus */
500 			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
501 
502 			sub_bus = (int) secondary_bus;
503 
504 			/* Save the config headers for the secondary
505 			 * bus.
506 			 */
507 			rc = cpqhp_save_config(ctrl, sub_bus, 0);
508 			if (rc)
509 				return(rc);
510 			ctrl->pci_bus->number = new_slot->bus;
511 
512 		}
513 
514 		new_slot->status = 0;
515 
516 		for (cloop = 0; cloop < 0x20; cloop++)
517 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
518 
519 		function++;
520 
521 		stop_it = 0;
522 
523 		/* this loop skips to the next present function
524 		 * reading in the Class Code and the Header type.
525 		 */
526 		while ((function < max_functions) && (!stop_it)) {
527 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
528 
529 			if (ID == 0xFFFFFFFF)
530 				function++;
531 			else {
532 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
533 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
534 				stop_it++;
535 			}
536 		}
537 
538 	}
539 
540 	return 0;
541 }
542 
543 
544 /*
545  * cpqhp_save_base_addr_length
546  *
547  * Saves the length of all base address registers for the
548  * specified slot.  this is for hot plug REPLACE
549  *
550  * returns 0 if success
551  */
552 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
553 {
554 	u8 cloop;
555 	u8 header_type;
556 	u8 secondary_bus;
557 	u8 type;
558 	int sub_bus;
559 	u32 temp_register;
560 	u32 base;
561 	u32 rc;
562 	struct pci_func *next;
563 	int index = 0;
564 	struct pci_bus *pci_bus = ctrl->pci_bus;
565 	unsigned int devfn;
566 
567 	func = cpqhp_slot_find(func->bus, func->device, index++);
568 
569 	while (func != NULL) {
570 		pci_bus->number = func->bus;
571 		devfn = PCI_DEVFN(func->device, func->function);
572 
573 		/* Check for Bridge */
574 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
575 
576 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
577 			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
578 
579 			sub_bus = (int) secondary_bus;
580 
581 			next = cpqhp_slot_list[sub_bus];
582 
583 			while (next != NULL) {
584 				rc = cpqhp_save_base_addr_length(ctrl, next);
585 				if (rc)
586 					return rc;
587 
588 				next = next->next;
589 			}
590 			pci_bus->number = func->bus;
591 
592 			/* FIXME: this loop is duplicated in the non-bridge
593 			 * case.  The two could be rolled together Figure out
594 			 * IO and memory base lengths
595 			 */
596 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
597 				temp_register = 0xFFFFFFFF;
598 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
599 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
600 				/* If this register is implemented */
601 				if (base) {
602 					if (base & 0x01L) {
603 						/* IO base
604 						 * set base = amount of IO space
605 						 * requested
606 						 */
607 						base = base & 0xFFFFFFFE;
608 						base = (~base) + 1;
609 
610 						type = 1;
611 					} else {
612 						/* memory base */
613 						base = base & 0xFFFFFFF0;
614 						base = (~base) + 1;
615 
616 						type = 0;
617 					}
618 				} else {
619 					base = 0x0L;
620 					type = 0;
621 				}
622 
623 				/* Save information in slot structure */
624 				func->base_length[(cloop - 0x10) >> 2] =
625 				base;
626 				func->base_type[(cloop - 0x10) >> 2] = type;
627 
628 			}	/* End of base register loop */
629 
630 		} else if ((header_type & 0x7F) == 0x00) {
631 			/* Figure out IO and memory base lengths */
632 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
633 				temp_register = 0xFFFFFFFF;
634 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
635 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
636 
637 				/* If this register is implemented */
638 				if (base) {
639 					if (base & 0x01L) {
640 						/* IO base
641 						 * base = amount of IO space
642 						 * requested
643 						 */
644 						base = base & 0xFFFFFFFE;
645 						base = (~base) + 1;
646 
647 						type = 1;
648 					} else {
649 						/* memory base
650 						 * base = amount of memory
651 						 * space requested
652 						 */
653 						base = base & 0xFFFFFFF0;
654 						base = (~base) + 1;
655 
656 						type = 0;
657 					}
658 				} else {
659 					base = 0x0L;
660 					type = 0;
661 				}
662 
663 				/* Save information in slot structure */
664 				func->base_length[(cloop - 0x10) >> 2] = base;
665 				func->base_type[(cloop - 0x10) >> 2] = type;
666 
667 			}	/* End of base register loop */
668 
669 		} else {	  /* Some other unknown header type */
670 		}
671 
672 		/* find the next device in this slot */
673 		func = cpqhp_slot_find(func->bus, func->device, index++);
674 	}
675 
676 	return(0);
677 }
678 
679 
680 /*
681  * cpqhp_save_used_resources
682  *
683  * Stores used resource information for existing boards.  this is
684  * for boards that were in the system when this driver was loaded.
685  * this function is for hot plug ADD
686  *
687  * returns 0 if success
688  */
689 int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func *func)
690 {
691 	u8 cloop;
692 	u8 header_type;
693 	u8 secondary_bus;
694 	u8 temp_byte;
695 	u8 b_base;
696 	u8 b_length;
697 	u16 command;
698 	u16 save_command;
699 	u16 w_base;
700 	u16 w_length;
701 	u32 temp_register;
702 	u32 save_base;
703 	u32 base;
704 	int index = 0;
705 	struct pci_resource *mem_node;
706 	struct pci_resource *p_mem_node;
707 	struct pci_resource *io_node;
708 	struct pci_resource *bus_node;
709 	struct pci_bus *pci_bus = ctrl->pci_bus;
710 	unsigned int devfn;
711 
712 	func = cpqhp_slot_find(func->bus, func->device, index++);
713 
714 	while ((func != NULL) && func->is_a_board) {
715 		pci_bus->number = func->bus;
716 		devfn = PCI_DEVFN(func->device, func->function);
717 
718 		/* Save the command register */
719 		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
720 
721 		/* disable card */
722 		command = 0x00;
723 		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
724 
725 		/* Check for Bridge */
726 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
727 
728 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
729 			/* Clear Bridge Control Register */
730 			command = 0x00;
731 			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
732 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
733 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
734 
735 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
736 			if (!bus_node)
737 				return -ENOMEM;
738 
739 			bus_node->base = secondary_bus;
740 			bus_node->length = temp_byte - secondary_bus + 1;
741 
742 			bus_node->next = func->bus_head;
743 			func->bus_head = bus_node;
744 
745 			/* Save IO base and Limit registers */
746 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
747 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
748 
749 			if ((b_base <= b_length) && (save_command & 0x01)) {
750 				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
751 				if (!io_node)
752 					return -ENOMEM;
753 
754 				io_node->base = (b_base & 0xF0) << 8;
755 				io_node->length = (b_length - b_base + 0x10) << 8;
756 
757 				io_node->next = func->io_head;
758 				func->io_head = io_node;
759 			}
760 
761 			/* Save memory base and Limit registers */
762 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
763 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
764 
765 			if ((w_base <= w_length) && (save_command & 0x02)) {
766 				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
767 				if (!mem_node)
768 					return -ENOMEM;
769 
770 				mem_node->base = w_base << 16;
771 				mem_node->length = (w_length - w_base + 0x10) << 16;
772 
773 				mem_node->next = func->mem_head;
774 				func->mem_head = mem_node;
775 			}
776 
777 			/* Save prefetchable memory base and Limit registers */
778 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
779 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
780 
781 			if ((w_base <= w_length) && (save_command & 0x02)) {
782 				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
783 				if (!p_mem_node)
784 					return -ENOMEM;
785 
786 				p_mem_node->base = w_base << 16;
787 				p_mem_node->length = (w_length - w_base + 0x10) << 16;
788 
789 				p_mem_node->next = func->p_mem_head;
790 				func->p_mem_head = p_mem_node;
791 			}
792 			/* Figure out IO and memory base lengths */
793 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
794 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
795 
796 				temp_register = 0xFFFFFFFF;
797 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
798 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
799 
800 				temp_register = base;
801 
802 				/* If this register is implemented */
803 				if (base) {
804 					if (((base & 0x03L) == 0x01)
805 					    && (save_command & 0x01)) {
806 						/* IO base
807 						 * set temp_register = amount
808 						 * of IO space requested
809 						 */
810 						temp_register = base & 0xFFFFFFFE;
811 						temp_register = (~temp_register) + 1;
812 
813 						io_node = kmalloc(sizeof(*io_node),
814 								GFP_KERNEL);
815 						if (!io_node)
816 							return -ENOMEM;
817 
818 						io_node->base =
819 						save_base & (~0x03L);
820 						io_node->length = temp_register;
821 
822 						io_node->next = func->io_head;
823 						func->io_head = io_node;
824 					} else
825 						if (((base & 0x0BL) == 0x08)
826 						    && (save_command & 0x02)) {
827 						/* prefetchable memory base */
828 						temp_register = base & 0xFFFFFFF0;
829 						temp_register = (~temp_register) + 1;
830 
831 						p_mem_node = kmalloc(sizeof(*p_mem_node),
832 								GFP_KERNEL);
833 						if (!p_mem_node)
834 							return -ENOMEM;
835 
836 						p_mem_node->base = save_base & (~0x0FL);
837 						p_mem_node->length = temp_register;
838 
839 						p_mem_node->next = func->p_mem_head;
840 						func->p_mem_head = p_mem_node;
841 					} else
842 						if (((base & 0x0BL) == 0x00)
843 						    && (save_command & 0x02)) {
844 						/* prefetchable memory base */
845 						temp_register = base & 0xFFFFFFF0;
846 						temp_register = (~temp_register) + 1;
847 
848 						mem_node = kmalloc(sizeof(*mem_node),
849 								GFP_KERNEL);
850 						if (!mem_node)
851 							return -ENOMEM;
852 
853 						mem_node->base = save_base & (~0x0FL);
854 						mem_node->length = temp_register;
855 
856 						mem_node->next = func->mem_head;
857 						func->mem_head = mem_node;
858 					} else
859 						return(1);
860 				}
861 			}	/* End of base register loop */
862 		/* Standard header */
863 		} else if ((header_type & 0x7F) == 0x00) {
864 			/* Figure out IO and memory base lengths */
865 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
866 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
867 
868 				temp_register = 0xFFFFFFFF;
869 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
870 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
871 
872 				temp_register = base;
873 
874 				/* If this register is implemented */
875 				if (base) {
876 					if (((base & 0x03L) == 0x01)
877 					    && (save_command & 0x01)) {
878 						/* IO base
879 						 * set temp_register = amount
880 						 * of IO space requested
881 						 */
882 						temp_register = base & 0xFFFFFFFE;
883 						temp_register = (~temp_register) + 1;
884 
885 						io_node = kmalloc(sizeof(*io_node),
886 								GFP_KERNEL);
887 						if (!io_node)
888 							return -ENOMEM;
889 
890 						io_node->base = save_base & (~0x01L);
891 						io_node->length = temp_register;
892 
893 						io_node->next = func->io_head;
894 						func->io_head = io_node;
895 					} else
896 						if (((base & 0x0BL) == 0x08)
897 						    && (save_command & 0x02)) {
898 						/* prefetchable memory base */
899 						temp_register = base & 0xFFFFFFF0;
900 						temp_register = (~temp_register) + 1;
901 
902 						p_mem_node = kmalloc(sizeof(*p_mem_node),
903 								GFP_KERNEL);
904 						if (!p_mem_node)
905 							return -ENOMEM;
906 
907 						p_mem_node->base = save_base & (~0x0FL);
908 						p_mem_node->length = temp_register;
909 
910 						p_mem_node->next = func->p_mem_head;
911 						func->p_mem_head = p_mem_node;
912 					} else
913 						if (((base & 0x0BL) == 0x00)
914 						    && (save_command & 0x02)) {
915 						/* prefetchable memory base */
916 						temp_register = base & 0xFFFFFFF0;
917 						temp_register = (~temp_register) + 1;
918 
919 						mem_node = kmalloc(sizeof(*mem_node),
920 								GFP_KERNEL);
921 						if (!mem_node)
922 							return -ENOMEM;
923 
924 						mem_node->base = save_base & (~0x0FL);
925 						mem_node->length = temp_register;
926 
927 						mem_node->next = func->mem_head;
928 						func->mem_head = mem_node;
929 					} else
930 						return(1);
931 				}
932 			}	/* End of base register loop */
933 		}
934 
935 		/* find the next device in this slot */
936 		func = cpqhp_slot_find(func->bus, func->device, index++);
937 	}
938 
939 	return 0;
940 }
941 
942 
943 /*
944  * cpqhp_configure_board
945  *
946  * Copies saved configuration information to one slot.
947  * this is called recursively for bridge devices.
948  * this is for hot plug REPLACE!
949  *
950  * returns 0 if success
951  */
952 int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
953 {
954 	int cloop;
955 	u8 header_type;
956 	u8 secondary_bus;
957 	int sub_bus;
958 	struct pci_func *next;
959 	u32 temp;
960 	u32 rc;
961 	int index = 0;
962 	struct pci_bus *pci_bus = ctrl->pci_bus;
963 	unsigned int devfn;
964 
965 	func = cpqhp_slot_find(func->bus, func->device, index++);
966 
967 	while (func != NULL) {
968 		pci_bus->number = func->bus;
969 		devfn = PCI_DEVFN(func->device, func->function);
970 
971 		/* Start at the top of config space so that the control
972 		 * registers are programmed last
973 		 */
974 		for (cloop = 0x3C; cloop > 0; cloop -= 4)
975 			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
976 
977 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
978 
979 		/* If this is a bridge device, restore subordinate devices */
980 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
981 			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
982 
983 			sub_bus = (int) secondary_bus;
984 
985 			next = cpqhp_slot_list[sub_bus];
986 
987 			while (next != NULL) {
988 				rc = cpqhp_configure_board(ctrl, next);
989 				if (rc)
990 					return rc;
991 
992 				next = next->next;
993 			}
994 		} else {
995 
996 			/* Check all the base Address Registers to make sure
997 			 * they are the same.  If not, the board is different.
998 			 */
999 
1000 			for (cloop = 16; cloop < 40; cloop += 4) {
1001 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
1002 
1003 				if (temp != func->config_space[cloop >> 2]) {
1004 					dbg("Config space compare failure!!! offset = %x\n", cloop);
1005 					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1006 					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1007 					return 1;
1008 				}
1009 			}
1010 		}
1011 
1012 		func->configured = 1;
1013 
1014 		func = cpqhp_slot_find(func->bus, func->device, index++);
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 
1021 /*
1022  * cpqhp_valid_replace
1023  *
1024  * this function checks to see if a board is the same as the
1025  * one it is replacing.  this check will detect if the device's
1026  * vendor or device id's are the same
1027  *
1028  * returns 0 if the board is the same nonzero otherwise
1029  */
1030 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1031 {
1032 	u8 cloop;
1033 	u8 header_type;
1034 	u8 secondary_bus;
1035 	u8 type;
1036 	u32 temp_register = 0;
1037 	u32 base;
1038 	u32 rc;
1039 	struct pci_func *next;
1040 	int index = 0;
1041 	struct pci_bus *pci_bus = ctrl->pci_bus;
1042 	unsigned int devfn;
1043 
1044 	if (!func->is_a_board)
1045 		return(ADD_NOT_SUPPORTED);
1046 
1047 	func = cpqhp_slot_find(func->bus, func->device, index++);
1048 
1049 	while (func != NULL) {
1050 		pci_bus->number = func->bus;
1051 		devfn = PCI_DEVFN(func->device, func->function);
1052 
1053 		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1054 
1055 		/* No adapter present */
1056 		if (temp_register == 0xFFFFFFFF)
1057 			return(NO_ADAPTER_PRESENT);
1058 
1059 		if (temp_register != func->config_space[0])
1060 			return(ADAPTER_NOT_SAME);
1061 
1062 		/* Check for same revision number and class code */
1063 		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1064 
1065 		/* Adapter not the same */
1066 		if (temp_register != func->config_space[0x08 >> 2])
1067 			return(ADAPTER_NOT_SAME);
1068 
1069 		/* Check for Bridge */
1070 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1071 
1072 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1073 			/* In order to continue checking, we must program the
1074 			 * bus registers in the bridge to respond to accesses
1075 			 * for its subordinate bus(es)
1076 			 */
1077 
1078 			temp_register = func->config_space[0x18 >> 2];
1079 			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1080 
1081 			secondary_bus = (temp_register >> 8) & 0xFF;
1082 
1083 			next = cpqhp_slot_list[secondary_bus];
1084 
1085 			while (next != NULL) {
1086 				rc = cpqhp_valid_replace(ctrl, next);
1087 				if (rc)
1088 					return rc;
1089 
1090 				next = next->next;
1091 			}
1092 
1093 		}
1094 		/* Check to see if it is a standard config header */
1095 		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1096 			/* Check subsystem vendor and ID */
1097 			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1098 
1099 			if (temp_register != func->config_space[0x2C >> 2]) {
1100 				/* If it's a SMART-2 and the register isn't
1101 				 * filled in, ignore the difference because
1102 				 * they just have an old rev of the firmware
1103 				 */
1104 				if (!((func->config_space[0] == 0xAE100E11)
1105 				      && (temp_register == 0x00L)))
1106 					return(ADAPTER_NOT_SAME);
1107 			}
1108 			/* Figure out IO and memory base lengths */
1109 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1110 				temp_register = 0xFFFFFFFF;
1111 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1112 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1113 
1114 				/* If this register is implemented */
1115 				if (base) {
1116 					if (base & 0x01L) {
1117 						/* IO base
1118 						 * set base = amount of IO
1119 						 * space requested
1120 						 */
1121 						base = base & 0xFFFFFFFE;
1122 						base = (~base) + 1;
1123 
1124 						type = 1;
1125 					} else {
1126 						/* memory base */
1127 						base = base & 0xFFFFFFF0;
1128 						base = (~base) + 1;
1129 
1130 						type = 0;
1131 					}
1132 				} else {
1133 					base = 0x0L;
1134 					type = 0;
1135 				}
1136 
1137 				/* Check information in slot structure */
1138 				if (func->base_length[(cloop - 0x10) >> 2] != base)
1139 					return(ADAPTER_NOT_SAME);
1140 
1141 				if (func->base_type[(cloop - 0x10) >> 2] != type)
1142 					return(ADAPTER_NOT_SAME);
1143 
1144 			}	/* End of base register loop */
1145 
1146 		}		/* End of (type 0 config space) else */
1147 		else {
1148 			/* this is not a type 0 or 1 config space header so
1149 			 * we don't know how to do it
1150 			 */
1151 			return(DEVICE_TYPE_NOT_SUPPORTED);
1152 		}
1153 
1154 		/* Get the next function */
1155 		func = cpqhp_slot_find(func->bus, func->device, index++);
1156 	}
1157 
1158 
1159 	return 0;
1160 }
1161 
1162 
1163 /*
1164  * cpqhp_find_available_resources
1165  *
1166  * Finds available memory, IO, and IRQ resources for programming
1167  * devices which may be added to the system
1168  * this function is for hot plug ADD!
1169  *
1170  * returns 0 if success
1171  */
1172 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1173 {
1174 	u8 temp;
1175 	u8 populated_slot;
1176 	u8 bridged_slot;
1177 	void __iomem *one_slot;
1178 	void __iomem *rom_resource_table;
1179 	struct pci_func *func = NULL;
1180 	int i = 10, index;
1181 	u32 temp_dword, rc;
1182 	struct pci_resource *mem_node;
1183 	struct pci_resource *p_mem_node;
1184 	struct pci_resource *io_node;
1185 	struct pci_resource *bus_node;
1186 
1187 	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1188 	dbg("rom_resource_table = %p\n", rom_resource_table);
1189 
1190 	if (rom_resource_table == NULL)
1191 		return -ENODEV;
1192 
1193 	/* Sum all resources and setup resource maps */
1194 	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1195 	dbg("unused_IRQ = %x\n", unused_IRQ);
1196 
1197 	temp = 0;
1198 	while (unused_IRQ) {
1199 		if (unused_IRQ & 1) {
1200 			cpqhp_disk_irq = temp;
1201 			break;
1202 		}
1203 		unused_IRQ = unused_IRQ >> 1;
1204 		temp++;
1205 	}
1206 
1207 	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1208 	unused_IRQ = unused_IRQ >> 1;
1209 	temp++;
1210 
1211 	while (unused_IRQ) {
1212 		if (unused_IRQ & 1) {
1213 			cpqhp_nic_irq = temp;
1214 			break;
1215 		}
1216 		unused_IRQ = unused_IRQ >> 1;
1217 		temp++;
1218 	}
1219 
1220 	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1221 	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1222 
1223 	temp = 0;
1224 
1225 	if (!cpqhp_nic_irq)
1226 		cpqhp_nic_irq = ctrl->cfgspc_irq;
1227 
1228 	if (!cpqhp_disk_irq)
1229 		cpqhp_disk_irq = ctrl->cfgspc_irq;
1230 
1231 	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1232 
1233 	rc = compaq_nvram_load(rom_start, ctrl);
1234 	if (rc)
1235 		return rc;
1236 
1237 	one_slot = rom_resource_table + sizeof (struct hrt);
1238 
1239 	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1240 	dbg("number_of_entries = %d\n", i);
1241 
1242 	if (!readb(one_slot + SECONDARY_BUS))
1243 		return 1;
1244 
1245 	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1246 
1247 	while (i && readb(one_slot + SECONDARY_BUS)) {
1248 		u8 dev_func = readb(one_slot + DEV_FUNC);
1249 		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1250 		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1251 		u8 max_bus = readb(one_slot + MAX_BUS);
1252 		u16 io_base = readw(one_slot + IO_BASE);
1253 		u16 io_length = readw(one_slot + IO_LENGTH);
1254 		u16 mem_base = readw(one_slot + MEM_BASE);
1255 		u16 mem_length = readw(one_slot + MEM_LENGTH);
1256 		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1257 		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1258 
1259 		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1260 		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1261 		    primary_bus, secondary_bus, max_bus);
1262 
1263 		/* If this entry isn't for our controller's bus, ignore it */
1264 		if (primary_bus != ctrl->bus) {
1265 			i--;
1266 			one_slot += sizeof (struct slot_rt);
1267 			continue;
1268 		}
1269 		/* find out if this entry is for an occupied slot */
1270 		ctrl->pci_bus->number = primary_bus;
1271 		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1272 		dbg("temp_D_word = %x\n", temp_dword);
1273 
1274 		if (temp_dword != 0xFFFFFFFF) {
1275 			index = 0;
1276 			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1277 
1278 			while (func && (func->function != (dev_func & 0x07))) {
1279 				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1280 				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1281 			}
1282 
1283 			/* If we can't find a match, skip this table entry */
1284 			if (!func) {
1285 				i--;
1286 				one_slot += sizeof (struct slot_rt);
1287 				continue;
1288 			}
1289 			/* this may not work and shouldn't be used */
1290 			if (secondary_bus != primary_bus)
1291 				bridged_slot = 1;
1292 			else
1293 				bridged_slot = 0;
1294 
1295 			populated_slot = 1;
1296 		} else {
1297 			populated_slot = 0;
1298 			bridged_slot = 0;
1299 		}
1300 
1301 
1302 		/* If we've got a valid IO base, use it */
1303 
1304 		temp_dword = io_base + io_length;
1305 
1306 		if ((io_base) && (temp_dword < 0x10000)) {
1307 			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1308 			if (!io_node)
1309 				return -ENOMEM;
1310 
1311 			io_node->base = io_base;
1312 			io_node->length = io_length;
1313 
1314 			dbg("found io_node(base, length) = %x, %x\n",
1315 					io_node->base, io_node->length);
1316 			dbg("populated slot =%d \n", populated_slot);
1317 			if (!populated_slot) {
1318 				io_node->next = ctrl->io_head;
1319 				ctrl->io_head = io_node;
1320 			} else {
1321 				io_node->next = func->io_head;
1322 				func->io_head = io_node;
1323 			}
1324 		}
1325 
1326 		/* If we've got a valid memory base, use it */
1327 		temp_dword = mem_base + mem_length;
1328 		if ((mem_base) && (temp_dword < 0x10000)) {
1329 			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1330 			if (!mem_node)
1331 				return -ENOMEM;
1332 
1333 			mem_node->base = mem_base << 16;
1334 
1335 			mem_node->length = mem_length << 16;
1336 
1337 			dbg("found mem_node(base, length) = %x, %x\n",
1338 					mem_node->base, mem_node->length);
1339 			dbg("populated slot =%d \n", populated_slot);
1340 			if (!populated_slot) {
1341 				mem_node->next = ctrl->mem_head;
1342 				ctrl->mem_head = mem_node;
1343 			} else {
1344 				mem_node->next = func->mem_head;
1345 				func->mem_head = mem_node;
1346 			}
1347 		}
1348 
1349 		/* If we've got a valid prefetchable memory base, and
1350 		 * the base + length isn't greater than 0xFFFF
1351 		 */
1352 		temp_dword = pre_mem_base + pre_mem_length;
1353 		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1354 			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1355 			if (!p_mem_node)
1356 				return -ENOMEM;
1357 
1358 			p_mem_node->base = pre_mem_base << 16;
1359 
1360 			p_mem_node->length = pre_mem_length << 16;
1361 			dbg("found p_mem_node(base, length) = %x, %x\n",
1362 					p_mem_node->base, p_mem_node->length);
1363 			dbg("populated slot =%d \n", populated_slot);
1364 
1365 			if (!populated_slot) {
1366 				p_mem_node->next = ctrl->p_mem_head;
1367 				ctrl->p_mem_head = p_mem_node;
1368 			} else {
1369 				p_mem_node->next = func->p_mem_head;
1370 				func->p_mem_head = p_mem_node;
1371 			}
1372 		}
1373 
1374 		/* If we've got a valid bus number, use it
1375 		 * The second condition is to ignore bus numbers on
1376 		 * populated slots that don't have PCI-PCI bridges
1377 		 */
1378 		if (secondary_bus && (secondary_bus != primary_bus)) {
1379 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1380 			if (!bus_node)
1381 				return -ENOMEM;
1382 
1383 			bus_node->base = secondary_bus;
1384 			bus_node->length = max_bus - secondary_bus + 1;
1385 			dbg("found bus_node(base, length) = %x, %x\n",
1386 					bus_node->base, bus_node->length);
1387 			dbg("populated slot =%d \n", populated_slot);
1388 			if (!populated_slot) {
1389 				bus_node->next = ctrl->bus_head;
1390 				ctrl->bus_head = bus_node;
1391 			} else {
1392 				bus_node->next = func->bus_head;
1393 				func->bus_head = bus_node;
1394 			}
1395 		}
1396 
1397 		i--;
1398 		one_slot += sizeof (struct slot_rt);
1399 	}
1400 
1401 	/* If all of the following fail, we don't have any resources for
1402 	 * hot plug add
1403 	 */
1404 	rc = 1;
1405 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1406 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1407 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1408 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1409 
1410 	return rc;
1411 }
1412 
1413 
1414 /*
1415  * cpqhp_return_board_resources
1416  *
1417  * this routine returns all resources allocated to a board to
1418  * the available pool.
1419  *
1420  * returns 0 if success
1421  */
1422 int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1423 {
1424 	int rc = 0;
1425 	struct pci_resource *node;
1426 	struct pci_resource *t_node;
1427 	dbg("%s\n", __func__);
1428 
1429 	if (!func)
1430 		return 1;
1431 
1432 	node = func->io_head;
1433 	func->io_head = NULL;
1434 	while (node) {
1435 		t_node = node->next;
1436 		return_resource(&(resources->io_head), node);
1437 		node = t_node;
1438 	}
1439 
1440 	node = func->mem_head;
1441 	func->mem_head = NULL;
1442 	while (node) {
1443 		t_node = node->next;
1444 		return_resource(&(resources->mem_head), node);
1445 		node = t_node;
1446 	}
1447 
1448 	node = func->p_mem_head;
1449 	func->p_mem_head = NULL;
1450 	while (node) {
1451 		t_node = node->next;
1452 		return_resource(&(resources->p_mem_head), node);
1453 		node = t_node;
1454 	}
1455 
1456 	node = func->bus_head;
1457 	func->bus_head = NULL;
1458 	while (node) {
1459 		t_node = node->next;
1460 		return_resource(&(resources->bus_head), node);
1461 		node = t_node;
1462 	}
1463 
1464 	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1465 	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1466 	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1467 	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1468 
1469 	return rc;
1470 }
1471 
1472 
1473 /*
1474  * cpqhp_destroy_resource_list
1475  *
1476  * Puts node back in the resource list pointed to by head
1477  */
1478 void cpqhp_destroy_resource_list (struct resource_lists *resources)
1479 {
1480 	struct pci_resource *res, *tres;
1481 
1482 	res = resources->io_head;
1483 	resources->io_head = NULL;
1484 
1485 	while (res) {
1486 		tres = res;
1487 		res = res->next;
1488 		kfree(tres);
1489 	}
1490 
1491 	res = resources->mem_head;
1492 	resources->mem_head = NULL;
1493 
1494 	while (res) {
1495 		tres = res;
1496 		res = res->next;
1497 		kfree(tres);
1498 	}
1499 
1500 	res = resources->p_mem_head;
1501 	resources->p_mem_head = NULL;
1502 
1503 	while (res) {
1504 		tres = res;
1505 		res = res->next;
1506 		kfree(tres);
1507 	}
1508 
1509 	res = resources->bus_head;
1510 	resources->bus_head = NULL;
1511 
1512 	while (res) {
1513 		tres = res;
1514 		res = res->next;
1515 		kfree(tres);
1516 	}
1517 }
1518 
1519 
1520 /*
1521  * cpqhp_destroy_board_resources
1522  *
1523  * Puts node back in the resource list pointed to by head
1524  */
1525 void cpqhp_destroy_board_resources (struct pci_func *func)
1526 {
1527 	struct pci_resource *res, *tres;
1528 
1529 	res = func->io_head;
1530 	func->io_head = NULL;
1531 
1532 	while (res) {
1533 		tres = res;
1534 		res = res->next;
1535 		kfree(tres);
1536 	}
1537 
1538 	res = func->mem_head;
1539 	func->mem_head = NULL;
1540 
1541 	while (res) {
1542 		tres = res;
1543 		res = res->next;
1544 		kfree(tres);
1545 	}
1546 
1547 	res = func->p_mem_head;
1548 	func->p_mem_head = NULL;
1549 
1550 	while (res) {
1551 		tres = res;
1552 		res = res->next;
1553 		kfree(tres);
1554 	}
1555 
1556 	res = func->bus_head;
1557 	func->bus_head = NULL;
1558 
1559 	while (res) {
1560 		tres = res;
1561 		res = res->next;
1562 		kfree(tres);
1563 	}
1564 }
1565