xref: /openbmc/linux/drivers/pci/hotplug/cpqphp_pci.c (revision b627b4ed)
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/proc_fs.h>
35 #include <linux/pci.h>
36 #include <linux/pci_hotplug.h>
37 #include "../pci.h"
38 #include "cpqphp.h"
39 #include "cpqphp_nvram.h"
40 #include <asm/pci_x86.h>
41 
42 
43 u8 cpqhp_nic_irq;
44 u8 cpqhp_disk_irq;
45 
46 static u16 unused_IRQ;
47 
48 /*
49  * detect_HRT_floating_pointer
50  *
51  * find the Hot Plug Resource Table in the specified region of memory.
52  *
53  */
54 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
55 {
56 	void __iomem *fp;
57 	void __iomem *endp;
58 	u8 temp1, temp2, temp3, temp4;
59 	int status = 0;
60 
61 	endp = (end - sizeof(struct hrt) + 1);
62 
63 	for (fp = begin; fp <= endp; fp += 16) {
64 		temp1 = readb(fp + SIG0);
65 		temp2 = readb(fp + SIG1);
66 		temp3 = readb(fp + SIG2);
67 		temp4 = readb(fp + SIG3);
68 		if (temp1 == '$' &&
69 		    temp2 == 'H' &&
70 		    temp3 == 'R' &&
71 		    temp4 == 'T') {
72 			status = 1;
73 			break;
74 		}
75 	}
76 
77 	if (!status)
78 		fp = NULL;
79 
80 	dbg("Discovered Hotplug Resource Table at %p\n", fp);
81 	return fp;
82 }
83 
84 
85 int cpqhp_configure_device (struct controller* ctrl, struct pci_func* func)
86 {
87 	unsigned char bus;
88 	struct pci_bus *child;
89 	int num;
90 
91 	if (func->pci_dev == NULL)
92 		func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
93 
94 	/* No pci device, we need to create it then */
95 	if (func->pci_dev == NULL) {
96 		dbg("INFO: pci_dev still null\n");
97 
98 		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
99 		if (num)
100 			pci_bus_add_devices(ctrl->pci_dev->bus);
101 
102 		func->pci_dev = pci_find_slot(func->bus, PCI_DEVFN(func->device, func->function));
103 		if (func->pci_dev == NULL) {
104 			dbg("ERROR: pci_dev still null\n");
105 			return 0;
106 		}
107 	}
108 
109 	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
110 		pci_read_config_byte(func->pci_dev, PCI_SECONDARY_BUS, &bus);
111 		child = (struct pci_bus*) pci_add_new_bus(func->pci_dev->bus, (func->pci_dev), bus);
112 		pci_do_scan_bus(child);
113 	}
114 
115 	return 0;
116 }
117 
118 
119 int cpqhp_unconfigure_device(struct pci_func* func)
120 {
121 	int j;
122 
123 	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
124 
125 	for (j=0; j<8 ; j++) {
126 		struct pci_dev* temp = pci_find_slot(func->bus, PCI_DEVFN(func->device, j));
127 		if (temp)
128 			pci_remove_bus_device(temp);
129 	}
130 	return 0;
131 }
132 
133 static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
134 {
135 	u32 vendID = 0;
136 
137 	if (pci_bus_read_config_dword (bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
138 		return -1;
139 	if (vendID == 0xffffffff)
140 		return -1;
141 	return pci_bus_read_config_dword (bus, devfn, offset, value);
142 }
143 
144 
145 /*
146  * cpqhp_set_irq
147  *
148  * @bus_num: bus number of PCI device
149  * @dev_num: device number of PCI device
150  * @slot: pointer to u8 where slot number will be returned
151  */
152 int cpqhp_set_irq (u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
153 {
154 	int rc = 0;
155 
156 	if (cpqhp_legacy_mode) {
157 		struct pci_dev *fakedev;
158 		struct pci_bus *fakebus;
159 		u16 temp_word;
160 
161 		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
162 		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
163 		if (!fakedev || !fakebus) {
164 			kfree(fakedev);
165 			kfree(fakebus);
166 			return -ENOMEM;
167 		}
168 
169 		fakedev->devfn = dev_num << 3;
170 		fakedev->bus = fakebus;
171 		fakebus->number = bus_num;
172 		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
173 		    __func__, dev_num, bus_num, int_pin, irq_num);
174 		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
175 		kfree(fakedev);
176 		kfree(fakebus);
177 		dbg("%s: rc %d\n", __func__, rc);
178 		if (!rc)
179 			return !rc;
180 
181 		// set the Edge Level Control Register (ELCR)
182 		temp_word = inb(0x4d0);
183 		temp_word |= inb(0x4d1) << 8;
184 
185 		temp_word |= 0x01 << irq_num;
186 
187 		// This should only be for x86 as it sets the Edge Level Control Register
188 		outb((u8) (temp_word & 0xFF), 0x4d0);
189 		outb((u8) ((temp_word & 0xFF00) >> 8), 0x4d1);
190 		rc = 0;
191 	}
192 
193 	return rc;
194 }
195 
196 
197 /*
198  * WTF??? This function isn't in the code, yet a function calls it, but the
199  * compiler optimizes it away?  strange.  Here as a placeholder to keep the
200  * compiler happy.
201  */
202 static int PCI_ScanBusNonBridge (u8 bus, u8 device)
203 {
204 	return 0;
205 }
206 
207 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 * dev_num)
208 {
209 	u16 tdevice;
210 	u32 work;
211 	u8 tbus;
212 
213 	ctrl->pci_bus->number = bus_num;
214 
215 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
216 		//Scan for access first
217 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
218 			continue;
219 		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
220 		//Yep we got one. Not a bridge ?
221 		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
222 			*dev_num = tdevice;
223 			dbg("found it !\n");
224 			return 0;
225 		}
226 	}
227 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
228 		//Scan for access first
229 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
230 			continue;
231 		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
232 		//Yep we got one. bridge ?
233 		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
234 			pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
235 			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
236 			if (PCI_ScanBusNonBridge(tbus, tdevice) == 0)
237 				return 0;
238 		}
239 	}
240 
241 	return -1;
242 }
243 
244 
245 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
246 {
247 	struct irq_routing_table *PCIIRQRoutingInfoLength;
248 	long len;
249 	long loop;
250 	u32 work;
251 
252 	u8 tbus, tdevice, tslot;
253 
254 	PCIIRQRoutingInfoLength = pcibios_get_irq_routing_table();
255 	if (!PCIIRQRoutingInfoLength)
256 		return -1;
257 
258 	len = (PCIIRQRoutingInfoLength->size -
259 	       sizeof(struct irq_routing_table)) / sizeof(struct irq_info);
260 	// Make sure I got at least one entry
261 	if (len == 0) {
262 		kfree(PCIIRQRoutingInfoLength );
263 		return -1;
264 	}
265 
266 	for (loop = 0; loop < len; ++loop) {
267 		tbus = PCIIRQRoutingInfoLength->slots[loop].bus;
268 		tdevice = PCIIRQRoutingInfoLength->slots[loop].devfn;
269 		tslot = PCIIRQRoutingInfoLength->slots[loop].slot;
270 
271 		if (tslot == slot) {
272 			*bus_num = tbus;
273 			*dev_num = tdevice;
274 			ctrl->pci_bus->number = tbus;
275 			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
276 			if (!nobridge || (work == 0xffffffff)) {
277 				kfree(PCIIRQRoutingInfoLength );
278 				return 0;
279 			}
280 
281 			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
282 			pci_bus_read_config_dword (ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
283 			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
284 
285 			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
286 				pci_bus_read_config_byte (ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
287 				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
288 				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
289 					*bus_num = tbus;
290 					kfree(PCIIRQRoutingInfoLength );
291 					return 0;
292 				}
293 			} else {
294 				kfree(PCIIRQRoutingInfoLength );
295 				return 0;
296 			}
297 
298 		}
299 	}
300 	kfree(PCIIRQRoutingInfoLength );
301 	return -1;
302 }
303 
304 
305 int cpqhp_get_bus_dev (struct controller *ctrl, u8 * bus_num, u8 * dev_num, u8 slot)
306 {
307 	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);	//plain (bridges allowed)
308 }
309 
310 
311 /* More PCI configuration routines; this time centered around hotplug controller */
312 
313 
314 /*
315  * cpqhp_save_config
316  *
317  * Reads configuration for all slots in a PCI bus and saves info.
318  *
319  * Note:  For non-hot plug busses, the slot # saved is the device #
320  *
321  * returns 0 if success
322  */
323 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
324 {
325 	long rc;
326 	u8 class_code;
327 	u8 header_type;
328 	u32 ID;
329 	u8 secondary_bus;
330 	struct pci_func *new_slot;
331 	int sub_bus;
332 	int FirstSupported;
333 	int LastSupported;
334 	int max_functions;
335 	int function;
336 	u8 DevError;
337 	int device = 0;
338 	int cloop = 0;
339 	int stop_it;
340 	int index;
341 
342 	//              Decide which slots are supported
343 
344 	if (is_hot_plug) {
345 		//*********************************
346 		// is_hot_plug is the slot mask
347 		//*********************************
348 		FirstSupported = is_hot_plug >> 4;
349 		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
350 	} else {
351 		FirstSupported = 0;
352 		LastSupported = 0x1F;
353 	}
354 
355 	//     Save PCI configuration space for all devices in supported slots
356 	ctrl->pci_bus->number = busnumber;
357 	for (device = FirstSupported; device <= LastSupported; device++) {
358 		ID = 0xFFFFFFFF;
359 		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
360 
361 		if (ID != 0xFFFFFFFF) {	  //  device in slot
362 			rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
363 			if (rc)
364 				return rc;
365 
366 			rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
367 			if (rc)
368 				return rc;
369 
370 			// If multi-function device, set max_functions to 8
371 			if (header_type & 0x80)
372 				max_functions = 8;
373 			else
374 				max_functions = 1;
375 
376 			function = 0;
377 
378 			do {
379 				DevError = 0;
380 
381 				if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {   // P-P Bridge
382 					//  Recurse the subordinate bus
383 					//  get the subordinate bus number
384 					rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
385 					if (rc) {
386 						return rc;
387 					} else {
388 						sub_bus = (int) secondary_bus;
389 
390 						// Save secondary bus cfg spc
391 						// with this recursive call.
392 						rc = cpqhp_save_config(ctrl, sub_bus, 0);
393 						if (rc)
394 							return rc;
395 						ctrl->pci_bus->number = busnumber;
396 					}
397 				}
398 
399 				index = 0;
400 				new_slot = cpqhp_slot_find(busnumber, device, index++);
401 				while (new_slot &&
402 				       (new_slot->function != (u8) function))
403 					new_slot = cpqhp_slot_find(busnumber, device, index++);
404 
405 				if (!new_slot) {
406 					// Setup slot structure.
407 					new_slot = cpqhp_slot_create(busnumber);
408 
409 					if (new_slot == NULL)
410 						return(1);
411 				}
412 
413 				new_slot->bus = (u8) busnumber;
414 				new_slot->device = (u8) device;
415 				new_slot->function = (u8) function;
416 				new_slot->is_a_board = 1;
417 				new_slot->switch_save = 0x10;
418 				// In case of unsupported board
419 				new_slot->status = DevError;
420 				new_slot->pci_dev = pci_find_slot(new_slot->bus, (new_slot->device << 3) | new_slot->function);
421 
422 				for (cloop = 0; cloop < 0x20; cloop++) {
423 					rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
424 					if (rc)
425 						return rc;
426 				}
427 
428 				function++;
429 
430 				stop_it = 0;
431 
432 				//  this loop skips to the next present function
433 				//  reading in Class Code and Header type.
434 
435 				while ((function < max_functions)&&(!stop_it)) {
436 					rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
437 					if (ID == 0xFFFFFFFF) {	 // nothing there.
438 						function++;
439 					} else {  // Something there
440 						rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
441 						if (rc)
442 							return rc;
443 
444 						rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
445 						if (rc)
446 							return rc;
447 
448 						stop_it++;
449 					}
450 				}
451 
452 			} while (function < max_functions);
453 		}		// End of IF (device in slot?)
454 		else if (is_hot_plug) {
455 			// Setup slot structure with entry for empty slot
456 			new_slot = cpqhp_slot_create(busnumber);
457 
458 			if (new_slot == NULL) {
459 				return(1);
460 			}
461 
462 			new_slot->bus = (u8) busnumber;
463 			new_slot->device = (u8) device;
464 			new_slot->function = 0;
465 			new_slot->is_a_board = 0;
466 			new_slot->presence_save = 0;
467 			new_slot->switch_save = 0;
468 		}
469 	}			// End of FOR loop
470 
471 	return(0);
472 }
473 
474 
475 /*
476  * cpqhp_save_slot_config
477  *
478  * Saves configuration info for all PCI devices in a given slot
479  * including subordinate busses.
480  *
481  * returns 0 if success
482  */
483 int cpqhp_save_slot_config (struct controller *ctrl, struct pci_func * new_slot)
484 {
485 	long rc;
486 	u8 class_code;
487 	u8 header_type;
488 	u32 ID;
489 	u8 secondary_bus;
490 	int sub_bus;
491 	int max_functions;
492 	int function;
493 	int cloop = 0;
494 	int stop_it;
495 
496 	ID = 0xFFFFFFFF;
497 
498 	ctrl->pci_bus->number = new_slot->bus;
499 	pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
500 
501 	if (ID != 0xFFFFFFFF) {	  //  device in slot
502 		pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
503 		pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
504 
505 		if (header_type & 0x80)	// Multi-function device
506 			max_functions = 8;
507 		else
508 			max_functions = 1;
509 
510 		function = 0;
511 
512 		do {
513 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
514 				//  Recurse the subordinate bus
515 				pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
516 
517 				sub_bus = (int) secondary_bus;
518 
519 				// Save the config headers for the secondary bus.
520 				rc = cpqhp_save_config(ctrl, sub_bus, 0);
521 				if (rc)
522 					return(rc);
523 				ctrl->pci_bus->number = new_slot->bus;
524 
525 			}	// End of IF
526 
527 			new_slot->status = 0;
528 
529 			for (cloop = 0; cloop < 0x20; cloop++) {
530 				pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) & (new_slot-> config_space [cloop]));
531 			}
532 
533 			function++;
534 
535 			stop_it = 0;
536 
537 			//  this loop skips to the next present function
538 			//  reading in the Class Code and the Header type.
539 
540 			while ((function < max_functions) && (!stop_it)) {
541 				pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
542 
543 				if (ID == 0xFFFFFFFF) {	 // nothing there.
544 					function++;
545 				} else {  // Something there
546 					pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
547 
548 					pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
549 
550 					stop_it++;
551 				}
552 			}
553 
554 		} while (function < max_functions);
555 	}			// End of IF (device in slot?)
556 	else {
557 		return 2;
558 	}
559 
560 	return 0;
561 }
562 
563 
564 /*
565  * cpqhp_save_base_addr_length
566  *
567  * Saves the length of all base address registers for the
568  * specified slot.  this is for hot plug REPLACE
569  *
570  * returns 0 if success
571  */
572 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func * func)
573 {
574 	u8 cloop;
575 	u8 header_type;
576 	u8 secondary_bus;
577 	u8 type;
578 	int sub_bus;
579 	u32 temp_register;
580 	u32 base;
581 	u32 rc;
582 	struct pci_func *next;
583 	int index = 0;
584 	struct pci_bus *pci_bus = ctrl->pci_bus;
585 	unsigned int devfn;
586 
587 	func = cpqhp_slot_find(func->bus, func->device, index++);
588 
589 	while (func != NULL) {
590 		pci_bus->number = func->bus;
591 		devfn = PCI_DEVFN(func->device, func->function);
592 
593 		// Check for Bridge
594 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
595 
596 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
597 			// PCI-PCI Bridge
598 			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
599 
600 			sub_bus = (int) secondary_bus;
601 
602 			next = cpqhp_slot_list[sub_bus];
603 
604 			while (next != NULL) {
605 				rc = cpqhp_save_base_addr_length(ctrl, next);
606 				if (rc)
607 					return rc;
608 
609 				next = next->next;
610 			}
611 			pci_bus->number = func->bus;
612 
613 			//FIXME: this loop is duplicated in the non-bridge case.  The two could be rolled together
614 			// Figure out IO and memory base lengths
615 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
616 				temp_register = 0xFFFFFFFF;
617 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
618 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
619 
620 				if (base) {  // If this register is implemented
621 					if (base & 0x01L) {
622 						// IO base
623 						// set base = amount of IO space requested
624 						base = base & 0xFFFFFFFE;
625 						base = (~base) + 1;
626 
627 						type = 1;
628 					} else {
629 						// memory base
630 						base = base & 0xFFFFFFF0;
631 						base = (~base) + 1;
632 
633 						type = 0;
634 					}
635 				} else {
636 					base = 0x0L;
637 					type = 0;
638 				}
639 
640 				// Save information in slot structure
641 				func->base_length[(cloop - 0x10) >> 2] =
642 				base;
643 				func->base_type[(cloop - 0x10) >> 2] = type;
644 
645 			}	// End of base register loop
646 
647 
648 		} else if ((header_type & 0x7F) == 0x00) {	  // PCI-PCI Bridge
649 			// Figure out IO and memory base lengths
650 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
651 				temp_register = 0xFFFFFFFF;
652 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
653 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
654 
655 				if (base) {  // If this register is implemented
656 					if (base & 0x01L) {
657 						// IO base
658 						// base = amount of IO space requested
659 						base = base & 0xFFFFFFFE;
660 						base = (~base) + 1;
661 
662 						type = 1;
663 					} else {
664 						// memory base
665 						// base = amount of memory space requested
666 						base = base & 0xFFFFFFF0;
667 						base = (~base) + 1;
668 
669 						type = 0;
670 					}
671 				} else {
672 					base = 0x0L;
673 					type = 0;
674 				}
675 
676 				// Save information in slot structure
677 				func->base_length[(cloop - 0x10) >> 2] = base;
678 				func->base_type[(cloop - 0x10) >> 2] = type;
679 
680 			}	// End of base register loop
681 
682 		} else {	  // Some other unknown header type
683 		}
684 
685 		// find the next device in this slot
686 		func = cpqhp_slot_find(func->bus, func->device, index++);
687 	}
688 
689 	return(0);
690 }
691 
692 
693 /*
694  * cpqhp_save_used_resources
695  *
696  * Stores used resource information for existing boards.  this is
697  * for boards that were in the system when this driver was loaded.
698  * this function is for hot plug ADD
699  *
700  * returns 0 if success
701  */
702 int cpqhp_save_used_resources (struct controller *ctrl, struct pci_func * func)
703 {
704 	u8 cloop;
705 	u8 header_type;
706 	u8 secondary_bus;
707 	u8 temp_byte;
708 	u8 b_base;
709 	u8 b_length;
710 	u16 command;
711 	u16 save_command;
712 	u16 w_base;
713 	u16 w_length;
714 	u32 temp_register;
715 	u32 save_base;
716 	u32 base;
717 	int index = 0;
718 	struct pci_resource *mem_node;
719 	struct pci_resource *p_mem_node;
720 	struct pci_resource *io_node;
721 	struct pci_resource *bus_node;
722 	struct pci_bus *pci_bus = ctrl->pci_bus;
723 	unsigned int devfn;
724 
725 	func = cpqhp_slot_find(func->bus, func->device, index++);
726 
727 	while ((func != NULL) && func->is_a_board) {
728 		pci_bus->number = func->bus;
729 		devfn = PCI_DEVFN(func->device, func->function);
730 
731 		// Save the command register
732 		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
733 
734 		// disable card
735 		command = 0x00;
736 		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
737 
738 		// Check for Bridge
739 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
740 
741 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
742 			// Clear Bridge Control Register
743 			command = 0x00;
744 			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
745 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
746 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
747 
748 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
749 			if (!bus_node)
750 				return -ENOMEM;
751 
752 			bus_node->base = secondary_bus;
753 			bus_node->length = temp_byte - secondary_bus + 1;
754 
755 			bus_node->next = func->bus_head;
756 			func->bus_head = bus_node;
757 
758 			// Save IO base and Limit registers
759 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
760 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
761 
762 			if ((b_base <= b_length) && (save_command & 0x01)) {
763 				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
764 				if (!io_node)
765 					return -ENOMEM;
766 
767 				io_node->base = (b_base & 0xF0) << 8;
768 				io_node->length = (b_length - b_base + 0x10) << 8;
769 
770 				io_node->next = func->io_head;
771 				func->io_head = io_node;
772 			}
773 
774 			// Save memory base and Limit registers
775 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
776 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
777 
778 			if ((w_base <= w_length) && (save_command & 0x02)) {
779 				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
780 				if (!mem_node)
781 					return -ENOMEM;
782 
783 				mem_node->base = w_base << 16;
784 				mem_node->length = (w_length - w_base + 0x10) << 16;
785 
786 				mem_node->next = func->mem_head;
787 				func->mem_head = mem_node;
788 			}
789 
790 			// Save prefetchable memory base and Limit registers
791 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
792 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
793 
794 			if ((w_base <= w_length) && (save_command & 0x02)) {
795 				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
796 				if (!p_mem_node)
797 					return -ENOMEM;
798 
799 				p_mem_node->base = w_base << 16;
800 				p_mem_node->length = (w_length - w_base + 0x10) << 16;
801 
802 				p_mem_node->next = func->p_mem_head;
803 				func->p_mem_head = p_mem_node;
804 			}
805 			// Figure out IO and memory base lengths
806 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
807 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &save_base);
808 
809 				temp_register = 0xFFFFFFFF;
810 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
811 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
812 
813 				temp_register = base;
814 
815 				if (base) {  // If this register is implemented
816 					if (((base & 0x03L) == 0x01)
817 					    && (save_command & 0x01)) {
818 						// IO base
819 						// set temp_register = amount of IO space requested
820 						temp_register = base & 0xFFFFFFFE;
821 						temp_register = (~temp_register) + 1;
822 
823 						io_node = kmalloc(sizeof(*io_node),
824 								GFP_KERNEL);
825 						if (!io_node)
826 							return -ENOMEM;
827 
828 						io_node->base =
829 						save_base & (~0x03L);
830 						io_node->length = temp_register;
831 
832 						io_node->next = func->io_head;
833 						func->io_head = io_node;
834 					} else
835 						if (((base & 0x0BL) == 0x08)
836 						    && (save_command & 0x02)) {
837 						// prefetchable memory base
838 						temp_register = base & 0xFFFFFFF0;
839 						temp_register = (~temp_register) + 1;
840 
841 						p_mem_node = kmalloc(sizeof(*p_mem_node),
842 								GFP_KERNEL);
843 						if (!p_mem_node)
844 							return -ENOMEM;
845 
846 						p_mem_node->base = save_base & (~0x0FL);
847 						p_mem_node->length = temp_register;
848 
849 						p_mem_node->next = func->p_mem_head;
850 						func->p_mem_head = p_mem_node;
851 					} else
852 						if (((base & 0x0BL) == 0x00)
853 						    && (save_command & 0x02)) {
854 						// prefetchable memory base
855 						temp_register = base & 0xFFFFFFF0;
856 						temp_register = (~temp_register) + 1;
857 
858 						mem_node = kmalloc(sizeof(*mem_node),
859 								GFP_KERNEL);
860 						if (!mem_node)
861 							return -ENOMEM;
862 
863 						mem_node->base = save_base & (~0x0FL);
864 						mem_node->length = temp_register;
865 
866 						mem_node->next = func->mem_head;
867 						func->mem_head = mem_node;
868 					} else
869 						return(1);
870 				}
871 			}	// End of base register loop
872 		} else if ((header_type & 0x7F) == 0x00) {	  // Standard header
873 			// Figure out IO and memory base lengths
874 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
875 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
876 
877 				temp_register = 0xFFFFFFFF;
878 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
879 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
880 
881 				temp_register = base;
882 
883 				if (base) {	  // If this register is implemented
884 					if (((base & 0x03L) == 0x01)
885 					    && (save_command & 0x01)) {
886 						// IO base
887 						// set temp_register = amount of IO space requested
888 						temp_register = base & 0xFFFFFFFE;
889 						temp_register = (~temp_register) + 1;
890 
891 						io_node = kmalloc(sizeof(*io_node),
892 								GFP_KERNEL);
893 						if (!io_node)
894 							return -ENOMEM;
895 
896 						io_node->base = save_base & (~0x01L);
897 						io_node->length = temp_register;
898 
899 						io_node->next = func->io_head;
900 						func->io_head = io_node;
901 					} else
902 						if (((base & 0x0BL) == 0x08)
903 						    && (save_command & 0x02)) {
904 						// prefetchable memory base
905 						temp_register = base & 0xFFFFFFF0;
906 						temp_register = (~temp_register) + 1;
907 
908 						p_mem_node = kmalloc(sizeof(*p_mem_node),
909 								GFP_KERNEL);
910 						if (!p_mem_node)
911 							return -ENOMEM;
912 
913 						p_mem_node->base = save_base & (~0x0FL);
914 						p_mem_node->length = temp_register;
915 
916 						p_mem_node->next = func->p_mem_head;
917 						func->p_mem_head = p_mem_node;
918 					} else
919 						if (((base & 0x0BL) == 0x00)
920 						    && (save_command & 0x02)) {
921 						// prefetchable memory base
922 						temp_register = base & 0xFFFFFFF0;
923 						temp_register = (~temp_register) + 1;
924 
925 						mem_node = kmalloc(sizeof(*mem_node),
926 								GFP_KERNEL);
927 						if (!mem_node)
928 							return -ENOMEM;
929 
930 						mem_node->base = save_base & (~0x0FL);
931 						mem_node->length = temp_register;
932 
933 						mem_node->next = func->mem_head;
934 						func->mem_head = mem_node;
935 					} else
936 						return(1);
937 				}
938 			}	// End of base register loop
939 		} else {	  // Some other unknown header type
940 		}
941 
942 		// find the next device in this slot
943 		func = cpqhp_slot_find(func->bus, func->device, index++);
944 	}
945 
946 	return(0);
947 }
948 
949 
950 /*
951  * cpqhp_configure_board
952  *
953  * Copies saved configuration information to one slot.
954  * this is called recursively for bridge devices.
955  * this is for hot plug REPLACE!
956  *
957  * returns 0 if success
958  */
959 int cpqhp_configure_board(struct controller *ctrl, struct pci_func * func)
960 {
961 	int cloop;
962 	u8 header_type;
963 	u8 secondary_bus;
964 	int sub_bus;
965 	struct pci_func *next;
966 	u32 temp;
967 	u32 rc;
968 	int index = 0;
969 	struct pci_bus *pci_bus = ctrl->pci_bus;
970 	unsigned int devfn;
971 
972 	func = cpqhp_slot_find(func->bus, func->device, index++);
973 
974 	while (func != NULL) {
975 		pci_bus->number = func->bus;
976 		devfn = PCI_DEVFN(func->device, func->function);
977 
978 		// Start at the top of config space so that the control
979 		// registers are programmed last
980 		for (cloop = 0x3C; cloop > 0; cloop -= 4) {
981 			pci_bus_write_config_dword (pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
982 		}
983 
984 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
985 
986 		// If this is a bridge device, restore subordinate devices
987 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
988 			pci_bus_read_config_byte (pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
989 
990 			sub_bus = (int) secondary_bus;
991 
992 			next = cpqhp_slot_list[sub_bus];
993 
994 			while (next != NULL) {
995 				rc = cpqhp_configure_board(ctrl, next);
996 				if (rc)
997 					return rc;
998 
999 				next = next->next;
1000 			}
1001 		} else {
1002 
1003 			// Check all the base Address Registers to make sure
1004 			// they are the same.  If not, the board is different.
1005 
1006 			for (cloop = 16; cloop < 40; cloop += 4) {
1007 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp);
1008 
1009 				if (temp != func->config_space[cloop >> 2]) {
1010 					dbg("Config space compare failure!!! offset = %x\n", cloop);
1011 					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1012 					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1013 					return 1;
1014 				}
1015 			}
1016 		}
1017 
1018 		func->configured = 1;
1019 
1020 		func = cpqhp_slot_find(func->bus, func->device, index++);
1021 	}
1022 
1023 	return 0;
1024 }
1025 
1026 
1027 /*
1028  * cpqhp_valid_replace
1029  *
1030  * this function checks to see if a board is the same as the
1031  * one it is replacing.  this check will detect if the device's
1032  * vendor or device id's are the same
1033  *
1034  * returns 0 if the board is the same nonzero otherwise
1035  */
1036 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func * func)
1037 {
1038 	u8 cloop;
1039 	u8 header_type;
1040 	u8 secondary_bus;
1041 	u8 type;
1042 	u32 temp_register = 0;
1043 	u32 base;
1044 	u32 rc;
1045 	struct pci_func *next;
1046 	int index = 0;
1047 	struct pci_bus *pci_bus = ctrl->pci_bus;
1048 	unsigned int devfn;
1049 
1050 	if (!func->is_a_board)
1051 		return(ADD_NOT_SUPPORTED);
1052 
1053 	func = cpqhp_slot_find(func->bus, func->device, index++);
1054 
1055 	while (func != NULL) {
1056 		pci_bus->number = func->bus;
1057 		devfn = PCI_DEVFN(func->device, func->function);
1058 
1059 		pci_bus_read_config_dword (pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1060 
1061 		// No adapter present
1062 		if (temp_register == 0xFFFFFFFF)
1063 			return(NO_ADAPTER_PRESENT);
1064 
1065 		if (temp_register != func->config_space[0])
1066 			return(ADAPTER_NOT_SAME);
1067 
1068 		// Check for same revision number and class code
1069 		pci_bus_read_config_dword (pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1070 
1071 		// Adapter not the same
1072 		if (temp_register != func->config_space[0x08 >> 2])
1073 			return(ADAPTER_NOT_SAME);
1074 
1075 		// Check for Bridge
1076 		pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1077 
1078 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {	  // PCI-PCI Bridge
1079 			// In order to continue checking, we must program the
1080 			// bus registers in the bridge to respond to accesses
1081 			// for it's subordinate bus(es)
1082 
1083 			temp_register = func->config_space[0x18 >> 2];
1084 			pci_bus_write_config_dword (pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1085 
1086 			secondary_bus = (temp_register >> 8) & 0xFF;
1087 
1088 			next = cpqhp_slot_list[secondary_bus];
1089 
1090 			while (next != NULL) {
1091 				rc = cpqhp_valid_replace(ctrl, next);
1092 				if (rc)
1093 					return rc;
1094 
1095 				next = next->next;
1096 			}
1097 
1098 		}
1099 		// Check to see if it is a standard config header
1100 		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1101 			// Check subsystem vendor and ID
1102 			pci_bus_read_config_dword (pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1103 
1104 			if (temp_register != func->config_space[0x2C >> 2]) {
1105 				// If it's a SMART-2 and the register isn't filled
1106 				// in, ignore the difference because
1107 				// they just have an old rev of the firmware
1108 
1109 				if (!((func->config_space[0] == 0xAE100E11)
1110 				      && (temp_register == 0x00L)))
1111 					return(ADAPTER_NOT_SAME);
1112 			}
1113 			// Figure out IO and memory base lengths
1114 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1115 				temp_register = 0xFFFFFFFF;
1116 				pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
1117 				pci_bus_read_config_dword (pci_bus, devfn, cloop, &base);
1118 				if (base) {	  // If this register is implemented
1119 					if (base & 0x01L) {
1120 						// IO base
1121 						// set base = amount of IO space requested
1122 						base = base & 0xFFFFFFFE;
1123 						base = (~base) + 1;
1124 
1125 						type = 1;
1126 					} else {
1127 						// memory base
1128 						base = base & 0xFFFFFFF0;
1129 						base = (~base) + 1;
1130 
1131 						type = 0;
1132 					}
1133 				} else {
1134 					base = 0x0L;
1135 					type = 0;
1136 				}
1137 
1138 				// Check information in slot structure
1139 				if (func->base_length[(cloop - 0x10) >> 2] != base)
1140 					return(ADAPTER_NOT_SAME);
1141 
1142 				if (func->base_type[(cloop - 0x10) >> 2] != type)
1143 					return(ADAPTER_NOT_SAME);
1144 
1145 			}	// End of base register loop
1146 
1147 		}		// End of (type 0 config space) else
1148 		else {
1149 			// this is not a type 0 or 1 config space header so
1150 			// we don't know how to do it
1151 			return(DEVICE_TYPE_NOT_SUPPORTED);
1152 		}
1153 
1154 		// Get the next function
1155 		func = cpqhp_slot_find(func->bus, func->device, index++);
1156 	}
1157 
1158 
1159 	return 0;
1160 }
1161 
1162 
1163 /*
1164  * cpqhp_find_available_resources
1165  *
1166  * Finds available memory, IO, and IRQ resources for programming
1167  * devices which may be added to the system
1168  * this function is for hot plug ADD!
1169  *
1170  * returns 0 if success
1171  */
1172 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1173 {
1174 	u8 temp;
1175 	u8 populated_slot;
1176 	u8 bridged_slot;
1177 	void __iomem *one_slot;
1178 	void __iomem *rom_resource_table;
1179 	struct pci_func *func = NULL;
1180 	int i = 10, index;
1181 	u32 temp_dword, rc;
1182 	struct pci_resource *mem_node;
1183 	struct pci_resource *p_mem_node;
1184 	struct pci_resource *io_node;
1185 	struct pci_resource *bus_node;
1186 
1187 	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1188 	dbg("rom_resource_table = %p\n", rom_resource_table);
1189 
1190 	if (rom_resource_table == NULL) {
1191 		return -ENODEV;
1192 	}
1193 	// Sum all resources and setup resource maps
1194 	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1195 	dbg("unused_IRQ = %x\n", unused_IRQ);
1196 
1197 	temp = 0;
1198 	while (unused_IRQ) {
1199 		if (unused_IRQ & 1) {
1200 			cpqhp_disk_irq = temp;
1201 			break;
1202 		}
1203 		unused_IRQ = unused_IRQ >> 1;
1204 		temp++;
1205 	}
1206 
1207 	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1208 	unused_IRQ = unused_IRQ >> 1;
1209 	temp++;
1210 
1211 	while (unused_IRQ) {
1212 		if (unused_IRQ & 1) {
1213 			cpqhp_nic_irq = temp;
1214 			break;
1215 		}
1216 		unused_IRQ = unused_IRQ >> 1;
1217 		temp++;
1218 	}
1219 
1220 	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1221 	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1222 
1223 	temp = 0;
1224 
1225 	if (!cpqhp_nic_irq) {
1226 		cpqhp_nic_irq = ctrl->cfgspc_irq;
1227 	}
1228 
1229 	if (!cpqhp_disk_irq) {
1230 		cpqhp_disk_irq = ctrl->cfgspc_irq;
1231 	}
1232 
1233 	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1234 
1235 	rc = compaq_nvram_load(rom_start, ctrl);
1236 	if (rc)
1237 		return rc;
1238 
1239 	one_slot = rom_resource_table + sizeof (struct hrt);
1240 
1241 	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1242 	dbg("number_of_entries = %d\n", i);
1243 
1244 	if (!readb(one_slot + SECONDARY_BUS))
1245 		return 1;
1246 
1247 	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1248 
1249 	while (i && readb(one_slot + SECONDARY_BUS)) {
1250 		u8 dev_func = readb(one_slot + DEV_FUNC);
1251 		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1252 		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1253 		u8 max_bus = readb(one_slot + MAX_BUS);
1254 		u16 io_base = readw(one_slot + IO_BASE);
1255 		u16 io_length = readw(one_slot + IO_LENGTH);
1256 		u16 mem_base = readw(one_slot + MEM_BASE);
1257 		u16 mem_length = readw(one_slot + MEM_LENGTH);
1258 		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1259 		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1260 
1261 		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1262 		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1263 		    primary_bus, secondary_bus, max_bus);
1264 
1265 		// If this entry isn't for our controller's bus, ignore it
1266 		if (primary_bus != ctrl->bus) {
1267 			i--;
1268 			one_slot += sizeof (struct slot_rt);
1269 			continue;
1270 		}
1271 		// find out if this entry is for an occupied slot
1272 		ctrl->pci_bus->number = primary_bus;
1273 		pci_bus_read_config_dword (ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1274 		dbg("temp_D_word = %x\n", temp_dword);
1275 
1276 		if (temp_dword != 0xFFFFFFFF) {
1277 			index = 0;
1278 			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1279 
1280 			while (func && (func->function != (dev_func & 0x07))) {
1281 				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1282 				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1283 			}
1284 
1285 			// If we can't find a match, skip this table entry
1286 			if (!func) {
1287 				i--;
1288 				one_slot += sizeof (struct slot_rt);
1289 				continue;
1290 			}
1291 			// this may not work and shouldn't be used
1292 			if (secondary_bus != primary_bus)
1293 				bridged_slot = 1;
1294 			else
1295 				bridged_slot = 0;
1296 
1297 			populated_slot = 1;
1298 		} else {
1299 			populated_slot = 0;
1300 			bridged_slot = 0;
1301 		}
1302 
1303 
1304 		// If we've got a valid IO base, use it
1305 
1306 		temp_dword = io_base + io_length;
1307 
1308 		if ((io_base) && (temp_dword < 0x10000)) {
1309 			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1310 			if (!io_node)
1311 				return -ENOMEM;
1312 
1313 			io_node->base = io_base;
1314 			io_node->length = io_length;
1315 
1316 			dbg("found io_node(base, length) = %x, %x\n",
1317 					io_node->base, io_node->length);
1318 			dbg("populated slot =%d \n", populated_slot);
1319 			if (!populated_slot) {
1320 				io_node->next = ctrl->io_head;
1321 				ctrl->io_head = io_node;
1322 			} else {
1323 				io_node->next = func->io_head;
1324 				func->io_head = io_node;
1325 			}
1326 		}
1327 
1328 		// If we've got a valid memory base, use it
1329 		temp_dword = mem_base + mem_length;
1330 		if ((mem_base) && (temp_dword < 0x10000)) {
1331 			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1332 			if (!mem_node)
1333 				return -ENOMEM;
1334 
1335 			mem_node->base = mem_base << 16;
1336 
1337 			mem_node->length = mem_length << 16;
1338 
1339 			dbg("found mem_node(base, length) = %x, %x\n",
1340 					mem_node->base, mem_node->length);
1341 			dbg("populated slot =%d \n", populated_slot);
1342 			if (!populated_slot) {
1343 				mem_node->next = ctrl->mem_head;
1344 				ctrl->mem_head = mem_node;
1345 			} else {
1346 				mem_node->next = func->mem_head;
1347 				func->mem_head = mem_node;
1348 			}
1349 		}
1350 
1351 		// If we've got a valid prefetchable memory base, and
1352 		// the base + length isn't greater than 0xFFFF
1353 		temp_dword = pre_mem_base + pre_mem_length;
1354 		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1355 			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1356 			if (!p_mem_node)
1357 				return -ENOMEM;
1358 
1359 			p_mem_node->base = pre_mem_base << 16;
1360 
1361 			p_mem_node->length = pre_mem_length << 16;
1362 			dbg("found p_mem_node(base, length) = %x, %x\n",
1363 					p_mem_node->base, p_mem_node->length);
1364 			dbg("populated slot =%d \n", populated_slot);
1365 
1366 			if (!populated_slot) {
1367 				p_mem_node->next = ctrl->p_mem_head;
1368 				ctrl->p_mem_head = p_mem_node;
1369 			} else {
1370 				p_mem_node->next = func->p_mem_head;
1371 				func->p_mem_head = p_mem_node;
1372 			}
1373 		}
1374 
1375 		// If we've got a valid bus number, use it
1376 		// The second condition is to ignore bus numbers on
1377 		// populated slots that don't have PCI-PCI bridges
1378 		if (secondary_bus && (secondary_bus != primary_bus)) {
1379 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1380 			if (!bus_node)
1381 				return -ENOMEM;
1382 
1383 			bus_node->base = secondary_bus;
1384 			bus_node->length = max_bus - secondary_bus + 1;
1385 			dbg("found bus_node(base, length) = %x, %x\n",
1386 					bus_node->base, bus_node->length);
1387 			dbg("populated slot =%d \n", populated_slot);
1388 			if (!populated_slot) {
1389 				bus_node->next = ctrl->bus_head;
1390 				ctrl->bus_head = bus_node;
1391 			} else {
1392 				bus_node->next = func->bus_head;
1393 				func->bus_head = bus_node;
1394 			}
1395 		}
1396 
1397 		i--;
1398 		one_slot += sizeof (struct slot_rt);
1399 	}
1400 
1401 	// If all of the following fail, we don't have any resources for
1402 	// hot plug add
1403 	rc = 1;
1404 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1405 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1406 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1407 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1408 
1409 	return rc;
1410 }
1411 
1412 
1413 /*
1414  * cpqhp_return_board_resources
1415  *
1416  * this routine returns all resources allocated to a board to
1417  * the available pool.
1418  *
1419  * returns 0 if success
1420  */
1421 int cpqhp_return_board_resources(struct pci_func * func, struct resource_lists * resources)
1422 {
1423 	int rc = 0;
1424 	struct pci_resource *node;
1425 	struct pci_resource *t_node;
1426 	dbg("%s\n", __func__);
1427 
1428 	if (!func)
1429 		return 1;
1430 
1431 	node = func->io_head;
1432 	func->io_head = NULL;
1433 	while (node) {
1434 		t_node = node->next;
1435 		return_resource(&(resources->io_head), node);
1436 		node = t_node;
1437 	}
1438 
1439 	node = func->mem_head;
1440 	func->mem_head = NULL;
1441 	while (node) {
1442 		t_node = node->next;
1443 		return_resource(&(resources->mem_head), node);
1444 		node = t_node;
1445 	}
1446 
1447 	node = func->p_mem_head;
1448 	func->p_mem_head = NULL;
1449 	while (node) {
1450 		t_node = node->next;
1451 		return_resource(&(resources->p_mem_head), node);
1452 		node = t_node;
1453 	}
1454 
1455 	node = func->bus_head;
1456 	func->bus_head = NULL;
1457 	while (node) {
1458 		t_node = node->next;
1459 		return_resource(&(resources->bus_head), node);
1460 		node = t_node;
1461 	}
1462 
1463 	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1464 	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1465 	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1466 	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1467 
1468 	return rc;
1469 }
1470 
1471 
1472 /*
1473  * cpqhp_destroy_resource_list
1474  *
1475  * Puts node back in the resource list pointed to by head
1476  */
1477 void cpqhp_destroy_resource_list (struct resource_lists * resources)
1478 {
1479 	struct pci_resource *res, *tres;
1480 
1481 	res = resources->io_head;
1482 	resources->io_head = NULL;
1483 
1484 	while (res) {
1485 		tres = res;
1486 		res = res->next;
1487 		kfree(tres);
1488 	}
1489 
1490 	res = resources->mem_head;
1491 	resources->mem_head = NULL;
1492 
1493 	while (res) {
1494 		tres = res;
1495 		res = res->next;
1496 		kfree(tres);
1497 	}
1498 
1499 	res = resources->p_mem_head;
1500 	resources->p_mem_head = NULL;
1501 
1502 	while (res) {
1503 		tres = res;
1504 		res = res->next;
1505 		kfree(tres);
1506 	}
1507 
1508 	res = resources->bus_head;
1509 	resources->bus_head = NULL;
1510 
1511 	while (res) {
1512 		tres = res;
1513 		res = res->next;
1514 		kfree(tres);
1515 	}
1516 }
1517 
1518 
1519 /*
1520  * cpqhp_destroy_board_resources
1521  *
1522  * Puts node back in the resource list pointed to by head
1523  */
1524 void cpqhp_destroy_board_resources (struct pci_func * func)
1525 {
1526 	struct pci_resource *res, *tres;
1527 
1528 	res = func->io_head;
1529 	func->io_head = NULL;
1530 
1531 	while (res) {
1532 		tres = res;
1533 		res = res->next;
1534 		kfree(tres);
1535 	}
1536 
1537 	res = func->mem_head;
1538 	func->mem_head = NULL;
1539 
1540 	while (res) {
1541 		tres = res;
1542 		res = res->next;
1543 		kfree(tres);
1544 	}
1545 
1546 	res = func->p_mem_head;
1547 	func->p_mem_head = NULL;
1548 
1549 	while (res) {
1550 		tres = res;
1551 		res = res->next;
1552 		kfree(tres);
1553 	}
1554 
1555 	res = func->bus_head;
1556 	func->bus_head = NULL;
1557 
1558 	while (res) {
1559 		tres = res;
1560 		res = res->next;
1561 		kfree(tres);
1562 	}
1563 }
1564 
1565