xref: /openbmc/linux/drivers/pci/hotplug/cpqphp_pci.c (revision 71a15258f3c92eb1c4ae98bbfca9459f4723d5d3)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pci.h>
22 #include <linux/pci_hotplug.h>
23 #include "../pci.h"
24 #include "cpqphp.h"
25 #include "cpqphp_nvram.h"
26 
27 
28 u8 cpqhp_nic_irq;
29 u8 cpqhp_disk_irq;
30 
31 static u16 unused_IRQ;
32 
33 /*
34  * detect_HRT_floating_pointer
35  *
36  * find the Hot Plug Resource Table in the specified region of memory.
37  *
38  */
39 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
40 {
41 	void __iomem *fp;
42 	void __iomem *endp;
43 	u8 temp1, temp2, temp3, temp4;
44 	int status = 0;
45 
46 	endp = (end - sizeof(struct hrt) + 1);
47 
48 	for (fp = begin; fp <= endp; fp += 16) {
49 		temp1 = readb(fp + SIG0);
50 		temp2 = readb(fp + SIG1);
51 		temp3 = readb(fp + SIG2);
52 		temp4 = readb(fp + SIG3);
53 		if (temp1 == '$' &&
54 		    temp2 == 'H' &&
55 		    temp3 == 'R' &&
56 		    temp4 == 'T') {
57 			status = 1;
58 			break;
59 		}
60 	}
61 
62 	if (!status)
63 		fp = NULL;
64 
65 	dbg("Discovered Hotplug Resource Table at %p\n", fp);
66 	return fp;
67 }
68 
69 
70 int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
71 {
72 	struct pci_bus *child;
73 	int num;
74 
75 	pci_lock_rescan_remove();
76 
77 	if (func->pci_dev == NULL)
78 		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
79 							PCI_DEVFN(func->device,
80 							func->function));
81 
82 	/* No pci device, we need to create it then */
83 	if (func->pci_dev == NULL) {
84 		dbg("INFO: pci_dev still null\n");
85 
86 		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
87 		if (num)
88 			pci_bus_add_devices(ctrl->pci_dev->bus);
89 
90 		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
91 							PCI_DEVFN(func->device,
92 							func->function));
93 		if (func->pci_dev == NULL) {
94 			dbg("ERROR: pci_dev still null\n");
95 			goto out;
96 		}
97 	}
98 
99 	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
100 		pci_hp_add_bridge(func->pci_dev);
101 		child = func->pci_dev->subordinate;
102 		if (child)
103 			pci_bus_add_devices(child);
104 	}
105 
106 	pci_dev_put(func->pci_dev);
107 
108  out:
109 	pci_unlock_rescan_remove();
110 	return 0;
111 }
112 
113 
114 int cpqhp_unconfigure_device(struct pci_func *func)
115 {
116 	int j;
117 
118 	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
119 
120 	pci_lock_rescan_remove();
121 	for (j = 0; j < 8 ; j++) {
122 		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
123 							func->bus,
124 							PCI_DEVFN(func->device,
125 							j));
126 		if (temp) {
127 			pci_dev_put(temp);
128 			pci_stop_and_remove_bus_device(temp);
129 		}
130 	}
131 	pci_unlock_rescan_remove();
132 	return 0;
133 }
134 
135 static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
136 {
137 	u32 vendID = 0;
138 	int ret;
139 
140 	ret = pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID);
141 	if (ret != PCIBIOS_SUCCESSFUL)
142 		return PCIBIOS_DEVICE_NOT_FOUND;
143 	if (PCI_POSSIBLE_ERROR(vendID))
144 		return PCIBIOS_DEVICE_NOT_FOUND;
145 	return pci_bus_read_config_dword(bus, devfn, offset, value);
146 }
147 
148 
149 /*
150  * cpqhp_set_irq
151  *
152  * @bus_num: bus number of PCI device
153  * @dev_num: device number of PCI device
154  * @slot: pointer to u8 where slot number will be returned
155  */
156 int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
157 {
158 	int rc = 0;
159 
160 	if (cpqhp_legacy_mode) {
161 		struct pci_dev *fakedev;
162 		struct pci_bus *fakebus;
163 		u16 temp_word;
164 
165 		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
166 		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
167 		if (!fakedev || !fakebus) {
168 			kfree(fakedev);
169 			kfree(fakebus);
170 			return -ENOMEM;
171 		}
172 
173 		fakedev->devfn = dev_num << 3;
174 		fakedev->bus = fakebus;
175 		fakebus->number = bus_num;
176 		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
177 		    __func__, dev_num, bus_num, int_pin, irq_num);
178 		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
179 		kfree(fakedev);
180 		kfree(fakebus);
181 		dbg("%s: rc %d\n", __func__, rc);
182 		if (!rc)
183 			return !rc;
184 
185 		/* set the Edge Level Control Register (ELCR) */
186 		temp_word = inb(0x4d0);
187 		temp_word |= inb(0x4d1) << 8;
188 
189 		temp_word |= 0x01 << irq_num;
190 
191 		/* This should only be for x86 as it sets the Edge Level
192 		 * Control Register
193 		 */
194 		outb((u8)(temp_word & 0xFF), 0x4d0);
195 		outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
196 		rc = 0;
197 	}
198 
199 	return rc;
200 }
201 
202 
203 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
204 {
205 	u16 tdevice;
206 	u32 work;
207 	int ret;
208 	u8 tbus;
209 
210 	ctrl->pci_bus->number = bus_num;
211 
212 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
213 		/* Scan for access first */
214 		ret = PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work);
215 		if (ret)
216 			continue;
217 		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
218 		/* Yep we got one. Not a bridge ? */
219 		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
220 			*dev_num = tdevice;
221 			dbg("found it !\n");
222 			return 0;
223 		}
224 	}
225 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
226 		/* Scan for access first */
227 		ret = PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work);
228 		if (ret)
229 			continue;
230 		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
231 		/* Yep we got one. bridge ? */
232 		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
233 			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
234 			/* XXX: no recursion, wtf? */
235 			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
236 			return 0;
237 		}
238 	}
239 
240 	return -1;
241 }
242 
243 
244 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
245 {
246 	int loop, len;
247 	u32 work;
248 	u8 tbus, tdevice, tslot;
249 
250 	len = cpqhp_routing_table_length();
251 	for (loop = 0; loop < len; ++loop) {
252 		tbus = cpqhp_routing_table->slots[loop].bus;
253 		tdevice = cpqhp_routing_table->slots[loop].devfn;
254 		tslot = cpqhp_routing_table->slots[loop].slot;
255 
256 		if (tslot == slot) {
257 			*bus_num = tbus;
258 			*dev_num = tdevice;
259 			ctrl->pci_bus->number = tbus;
260 			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
261 			if (!nobridge || PCI_POSSIBLE_ERROR(work))
262 				return 0;
263 
264 			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
265 			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
266 			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
267 
268 			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
269 				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
270 				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
271 				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
272 					*bus_num = tbus;
273 					return 0;
274 				}
275 			} else
276 				return 0;
277 		}
278 	}
279 	return -1;
280 }
281 
282 
283 int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
284 {
285 	/* plain (bridges allowed) */
286 	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
287 }
288 
289 
290 /* More PCI configuration routines; this time centered around hotplug
291  * controller
292  */
293 
294 
295 /*
296  * cpqhp_save_config
297  *
298  * Reads configuration for all slots in a PCI bus and saves info.
299  *
300  * Note:  For non-hot plug buses, the slot # saved is the device #
301  *
302  * returns 0 if success
303  */
304 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
305 {
306 	long rc;
307 	u8 class_code;
308 	u8 header_type;
309 	u32 ID;
310 	u8 secondary_bus;
311 	struct pci_func *new_slot;
312 	int sub_bus;
313 	int FirstSupported;
314 	int LastSupported;
315 	int max_functions;
316 	int function;
317 	u8 DevError;
318 	int device = 0;
319 	int cloop = 0;
320 	int stop_it;
321 	int index;
322 	u16 devfn;
323 
324 	/* Decide which slots are supported */
325 
326 	if (is_hot_plug) {
327 		/*
328 		 * is_hot_plug is the slot mask
329 		 */
330 		FirstSupported = is_hot_plug >> 4;
331 		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
332 	} else {
333 		FirstSupported = 0;
334 		LastSupported = 0x1F;
335 	}
336 
337 	/* Save PCI configuration space for all devices in supported slots */
338 	ctrl->pci_bus->number = busnumber;
339 	for (device = FirstSupported; device <= LastSupported; device++) {
340 		ID = 0xFFFFFFFF;
341 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
342 
343 		if (ID == 0xFFFFFFFF) {
344 			if (is_hot_plug) {
345 				/* Setup slot structure with entry for empty
346 				 * slot
347 				 */
348 				new_slot = cpqhp_slot_create(busnumber);
349 				if (new_slot == NULL)
350 					return 1;
351 
352 				new_slot->bus = (u8) busnumber;
353 				new_slot->device = (u8) device;
354 				new_slot->function = 0;
355 				new_slot->is_a_board = 0;
356 				new_slot->presence_save = 0;
357 				new_slot->switch_save = 0;
358 			}
359 			continue;
360 		}
361 
362 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
363 		if (rc)
364 			return rc;
365 
366 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
367 		if (rc)
368 			return rc;
369 
370 		/* If multi-function device, set max_functions to 8 */
371 		if (header_type & 0x80)
372 			max_functions = 8;
373 		else
374 			max_functions = 1;
375 
376 		function = 0;
377 
378 		do {
379 			DevError = 0;
380 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
381 				/* Recurse the subordinate bus
382 				 * get the subordinate bus number
383 				 */
384 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
385 				if (rc) {
386 					return rc;
387 				} else {
388 					sub_bus = (int) secondary_bus;
389 
390 					/* Save secondary bus cfg spc
391 					 * with this recursive call.
392 					 */
393 					rc = cpqhp_save_config(ctrl, sub_bus, 0);
394 					if (rc)
395 						return rc;
396 					ctrl->pci_bus->number = busnumber;
397 				}
398 			}
399 
400 			index = 0;
401 			new_slot = cpqhp_slot_find(busnumber, device, index++);
402 			while (new_slot &&
403 			       (new_slot->function != (u8) function))
404 				new_slot = cpqhp_slot_find(busnumber, device, index++);
405 
406 			if (!new_slot) {
407 				/* Setup slot structure. */
408 				new_slot = cpqhp_slot_create(busnumber);
409 				if (new_slot == NULL)
410 					return 1;
411 			}
412 
413 			new_slot->bus = (u8) busnumber;
414 			new_slot->device = (u8) device;
415 			new_slot->function = (u8) function;
416 			new_slot->is_a_board = 1;
417 			new_slot->switch_save = 0x10;
418 			/* In case of unsupported board */
419 			new_slot->status = DevError;
420 			devfn = (new_slot->device << 3) | new_slot->function;
421 			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
422 							new_slot->bus, devfn);
423 
424 			for (cloop = 0; cloop < 0x20; cloop++) {
425 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
426 				if (rc)
427 					return rc;
428 			}
429 
430 			pci_dev_put(new_slot->pci_dev);
431 
432 			function++;
433 
434 			stop_it = 0;
435 
436 			/* this loop skips to the next present function
437 			 * reading in Class Code and Header type.
438 			 */
439 			while ((function < max_functions) && (!stop_it)) {
440 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
441 				if (ID == 0xFFFFFFFF) {
442 					function++;
443 					continue;
444 				}
445 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
446 				if (rc)
447 					return rc;
448 
449 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
450 				if (rc)
451 					return rc;
452 
453 				stop_it++;
454 			}
455 
456 		} while (function < max_functions);
457 	}			/* End of FOR loop */
458 
459 	return 0;
460 }
461 
462 
463 /*
464  * cpqhp_save_slot_config
465  *
466  * Saves configuration info for all PCI devices in a given slot
467  * including subordinate buses.
468  *
469  * returns 0 if success
470  */
471 int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
472 {
473 	long rc;
474 	u8 class_code;
475 	u8 header_type;
476 	u32 ID;
477 	u8 secondary_bus;
478 	int sub_bus;
479 	int max_functions;
480 	int function = 0;
481 	int cloop;
482 	int stop_it;
483 
484 	ID = 0xFFFFFFFF;
485 
486 	ctrl->pci_bus->number = new_slot->bus;
487 	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
488 
489 	if (ID == 0xFFFFFFFF)
490 		return 2;
491 
492 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
493 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
494 
495 	if (header_type & 0x80)	/* Multi-function device */
496 		max_functions = 8;
497 	else
498 		max_functions = 1;
499 
500 	while (function < max_functions) {
501 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
502 			/*  Recurse the subordinate bus */
503 			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
504 
505 			sub_bus = (int) secondary_bus;
506 
507 			/* Save the config headers for the secondary
508 			 * bus.
509 			 */
510 			rc = cpqhp_save_config(ctrl, sub_bus, 0);
511 			if (rc)
512 				return(rc);
513 			ctrl->pci_bus->number = new_slot->bus;
514 
515 		}
516 
517 		new_slot->status = 0;
518 
519 		for (cloop = 0; cloop < 0x20; cloop++)
520 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
521 
522 		function++;
523 
524 		stop_it = 0;
525 
526 		/* this loop skips to the next present function
527 		 * reading in the Class Code and the Header type.
528 		 */
529 		while ((function < max_functions) && (!stop_it)) {
530 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
531 
532 			if (ID == 0xFFFFFFFF)
533 				function++;
534 			else {
535 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
536 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
537 				stop_it++;
538 			}
539 		}
540 
541 	}
542 
543 	return 0;
544 }
545 
546 
547 /*
548  * cpqhp_save_base_addr_length
549  *
550  * Saves the length of all base address registers for the
551  * specified slot.  this is for hot plug REPLACE
552  *
553  * returns 0 if success
554  */
555 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
556 {
557 	u8 cloop;
558 	u8 header_type;
559 	u8 secondary_bus;
560 	u8 type;
561 	int sub_bus;
562 	u32 temp_register;
563 	u32 base;
564 	u32 rc;
565 	struct pci_func *next;
566 	int index = 0;
567 	struct pci_bus *pci_bus = ctrl->pci_bus;
568 	unsigned int devfn;
569 
570 	func = cpqhp_slot_find(func->bus, func->device, index++);
571 
572 	while (func != NULL) {
573 		pci_bus->number = func->bus;
574 		devfn = PCI_DEVFN(func->device, func->function);
575 
576 		/* Check for Bridge */
577 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
578 
579 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
580 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
581 
582 			sub_bus = (int) secondary_bus;
583 
584 			next = cpqhp_slot_list[sub_bus];
585 
586 			while (next != NULL) {
587 				rc = cpqhp_save_base_addr_length(ctrl, next);
588 				if (rc)
589 					return rc;
590 
591 				next = next->next;
592 			}
593 			pci_bus->number = func->bus;
594 
595 			/* FIXME: this loop is duplicated in the non-bridge
596 			 * case.  The two could be rolled together Figure out
597 			 * IO and memory base lengths
598 			 */
599 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
600 				temp_register = 0xFFFFFFFF;
601 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
602 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
603 				/* If this register is implemented */
604 				if (base) {
605 					if (base & 0x01L) {
606 						/* IO base
607 						 * set base = amount of IO space
608 						 * requested
609 						 */
610 						base = base & 0xFFFFFFFE;
611 						base = (~base) + 1;
612 
613 						type = 1;
614 					} else {
615 						/* memory base */
616 						base = base & 0xFFFFFFF0;
617 						base = (~base) + 1;
618 
619 						type = 0;
620 					}
621 				} else {
622 					base = 0x0L;
623 					type = 0;
624 				}
625 
626 				/* Save information in slot structure */
627 				func->base_length[(cloop - 0x10) >> 2] =
628 				base;
629 				func->base_type[(cloop - 0x10) >> 2] = type;
630 
631 			}	/* End of base register loop */
632 
633 		} else if ((header_type & 0x7F) == 0x00) {
634 			/* Figure out IO and memory base lengths */
635 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
636 				temp_register = 0xFFFFFFFF;
637 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
638 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
639 
640 				/* If this register is implemented */
641 				if (base) {
642 					if (base & 0x01L) {
643 						/* IO base
644 						 * base = amount of IO space
645 						 * requested
646 						 */
647 						base = base & 0xFFFFFFFE;
648 						base = (~base) + 1;
649 
650 						type = 1;
651 					} else {
652 						/* memory base
653 						 * base = amount of memory
654 						 * space requested
655 						 */
656 						base = base & 0xFFFFFFF0;
657 						base = (~base) + 1;
658 
659 						type = 0;
660 					}
661 				} else {
662 					base = 0x0L;
663 					type = 0;
664 				}
665 
666 				/* Save information in slot structure */
667 				func->base_length[(cloop - 0x10) >> 2] = base;
668 				func->base_type[(cloop - 0x10) >> 2] = type;
669 
670 			}	/* End of base register loop */
671 
672 		} else {	  /* Some other unknown header type */
673 		}
674 
675 		/* find the next device in this slot */
676 		func = cpqhp_slot_find(func->bus, func->device, index++);
677 	}
678 
679 	return(0);
680 }
681 
682 
683 /*
684  * cpqhp_save_used_resources
685  *
686  * Stores used resource information for existing boards.  this is
687  * for boards that were in the system when this driver was loaded.
688  * this function is for hot plug ADD
689  *
690  * returns 0 if success
691  */
692 int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
693 {
694 	u8 cloop;
695 	u8 header_type;
696 	u8 secondary_bus;
697 	u8 temp_byte;
698 	u8 b_base;
699 	u8 b_length;
700 	u16 command;
701 	u16 save_command;
702 	u16 w_base;
703 	u16 w_length;
704 	u32 temp_register;
705 	u32 save_base;
706 	u32 base;
707 	int index = 0;
708 	struct pci_resource *mem_node;
709 	struct pci_resource *p_mem_node;
710 	struct pci_resource *io_node;
711 	struct pci_resource *bus_node;
712 	struct pci_bus *pci_bus = ctrl->pci_bus;
713 	unsigned int devfn;
714 
715 	func = cpqhp_slot_find(func->bus, func->device, index++);
716 
717 	while ((func != NULL) && func->is_a_board) {
718 		pci_bus->number = func->bus;
719 		devfn = PCI_DEVFN(func->device, func->function);
720 
721 		/* Save the command register */
722 		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
723 
724 		/* disable card */
725 		command = 0x00;
726 		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
727 
728 		/* Check for Bridge */
729 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
730 
731 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
732 			/* Clear Bridge Control Register */
733 			command = 0x00;
734 			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
735 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
736 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
737 
738 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
739 			if (!bus_node)
740 				return -ENOMEM;
741 
742 			bus_node->base = secondary_bus;
743 			bus_node->length = temp_byte - secondary_bus + 1;
744 
745 			bus_node->next = func->bus_head;
746 			func->bus_head = bus_node;
747 
748 			/* Save IO base and Limit registers */
749 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
750 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
751 
752 			if ((b_base <= b_length) && (save_command & 0x01)) {
753 				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
754 				if (!io_node)
755 					return -ENOMEM;
756 
757 				io_node->base = (b_base & 0xF0) << 8;
758 				io_node->length = (b_length - b_base + 0x10) << 8;
759 
760 				io_node->next = func->io_head;
761 				func->io_head = io_node;
762 			}
763 
764 			/* Save memory base and Limit registers */
765 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
766 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
767 
768 			if ((w_base <= w_length) && (save_command & 0x02)) {
769 				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
770 				if (!mem_node)
771 					return -ENOMEM;
772 
773 				mem_node->base = w_base << 16;
774 				mem_node->length = (w_length - w_base + 0x10) << 16;
775 
776 				mem_node->next = func->mem_head;
777 				func->mem_head = mem_node;
778 			}
779 
780 			/* Save prefetchable memory base and Limit registers */
781 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
782 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
783 
784 			if ((w_base <= w_length) && (save_command & 0x02)) {
785 				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
786 				if (!p_mem_node)
787 					return -ENOMEM;
788 
789 				p_mem_node->base = w_base << 16;
790 				p_mem_node->length = (w_length - w_base + 0x10) << 16;
791 
792 				p_mem_node->next = func->p_mem_head;
793 				func->p_mem_head = p_mem_node;
794 			}
795 			/* Figure out IO and memory base lengths */
796 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
797 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
798 
799 				temp_register = 0xFFFFFFFF;
800 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
801 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
802 
803 				temp_register = base;
804 
805 				/* If this register is implemented */
806 				if (base) {
807 					if (((base & 0x03L) == 0x01)
808 					    && (save_command & 0x01)) {
809 						/* IO base
810 						 * set temp_register = amount
811 						 * of IO space requested
812 						 */
813 						temp_register = base & 0xFFFFFFFE;
814 						temp_register = (~temp_register) + 1;
815 
816 						io_node = kmalloc(sizeof(*io_node),
817 								GFP_KERNEL);
818 						if (!io_node)
819 							return -ENOMEM;
820 
821 						io_node->base =
822 						save_base & (~0x03L);
823 						io_node->length = temp_register;
824 
825 						io_node->next = func->io_head;
826 						func->io_head = io_node;
827 					} else
828 						if (((base & 0x0BL) == 0x08)
829 						    && (save_command & 0x02)) {
830 						/* prefetchable memory base */
831 						temp_register = base & 0xFFFFFFF0;
832 						temp_register = (~temp_register) + 1;
833 
834 						p_mem_node = kmalloc(sizeof(*p_mem_node),
835 								GFP_KERNEL);
836 						if (!p_mem_node)
837 							return -ENOMEM;
838 
839 						p_mem_node->base = save_base & (~0x0FL);
840 						p_mem_node->length = temp_register;
841 
842 						p_mem_node->next = func->p_mem_head;
843 						func->p_mem_head = p_mem_node;
844 					} else
845 						if (((base & 0x0BL) == 0x00)
846 						    && (save_command & 0x02)) {
847 						/* prefetchable memory base */
848 						temp_register = base & 0xFFFFFFF0;
849 						temp_register = (~temp_register) + 1;
850 
851 						mem_node = kmalloc(sizeof(*mem_node),
852 								GFP_KERNEL);
853 						if (!mem_node)
854 							return -ENOMEM;
855 
856 						mem_node->base = save_base & (~0x0FL);
857 						mem_node->length = temp_register;
858 
859 						mem_node->next = func->mem_head;
860 						func->mem_head = mem_node;
861 					} else
862 						return(1);
863 				}
864 			}	/* End of base register loop */
865 		/* Standard header */
866 		} else if ((header_type & 0x7F) == 0x00) {
867 			/* Figure out IO and memory base lengths */
868 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
869 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
870 
871 				temp_register = 0xFFFFFFFF;
872 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
873 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
874 
875 				temp_register = base;
876 
877 				/* If this register is implemented */
878 				if (base) {
879 					if (((base & 0x03L) == 0x01)
880 					    && (save_command & 0x01)) {
881 						/* IO base
882 						 * set temp_register = amount
883 						 * of IO space requested
884 						 */
885 						temp_register = base & 0xFFFFFFFE;
886 						temp_register = (~temp_register) + 1;
887 
888 						io_node = kmalloc(sizeof(*io_node),
889 								GFP_KERNEL);
890 						if (!io_node)
891 							return -ENOMEM;
892 
893 						io_node->base = save_base & (~0x01L);
894 						io_node->length = temp_register;
895 
896 						io_node->next = func->io_head;
897 						func->io_head = io_node;
898 					} else
899 						if (((base & 0x0BL) == 0x08)
900 						    && (save_command & 0x02)) {
901 						/* prefetchable memory base */
902 						temp_register = base & 0xFFFFFFF0;
903 						temp_register = (~temp_register) + 1;
904 
905 						p_mem_node = kmalloc(sizeof(*p_mem_node),
906 								GFP_KERNEL);
907 						if (!p_mem_node)
908 							return -ENOMEM;
909 
910 						p_mem_node->base = save_base & (~0x0FL);
911 						p_mem_node->length = temp_register;
912 
913 						p_mem_node->next = func->p_mem_head;
914 						func->p_mem_head = p_mem_node;
915 					} else
916 						if (((base & 0x0BL) == 0x00)
917 						    && (save_command & 0x02)) {
918 						/* prefetchable memory base */
919 						temp_register = base & 0xFFFFFFF0;
920 						temp_register = (~temp_register) + 1;
921 
922 						mem_node = kmalloc(sizeof(*mem_node),
923 								GFP_KERNEL);
924 						if (!mem_node)
925 							return -ENOMEM;
926 
927 						mem_node->base = save_base & (~0x0FL);
928 						mem_node->length = temp_register;
929 
930 						mem_node->next = func->mem_head;
931 						func->mem_head = mem_node;
932 					} else
933 						return(1);
934 				}
935 			}	/* End of base register loop */
936 		}
937 
938 		/* find the next device in this slot */
939 		func = cpqhp_slot_find(func->bus, func->device, index++);
940 	}
941 
942 	return 0;
943 }
944 
945 
946 /*
947  * cpqhp_configure_board
948  *
949  * Copies saved configuration information to one slot.
950  * this is called recursively for bridge devices.
951  * this is for hot plug REPLACE!
952  *
953  * returns 0 if success
954  */
955 int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
956 {
957 	int cloop;
958 	u8 header_type;
959 	u8 secondary_bus;
960 	int sub_bus;
961 	struct pci_func *next;
962 	u32 temp;
963 	u32 rc;
964 	int index = 0;
965 	struct pci_bus *pci_bus = ctrl->pci_bus;
966 	unsigned int devfn;
967 
968 	func = cpqhp_slot_find(func->bus, func->device, index++);
969 
970 	while (func != NULL) {
971 		pci_bus->number = func->bus;
972 		devfn = PCI_DEVFN(func->device, func->function);
973 
974 		/* Start at the top of config space so that the control
975 		 * registers are programmed last
976 		 */
977 		for (cloop = 0x3C; cloop > 0; cloop -= 4)
978 			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
979 
980 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
981 
982 		/* If this is a bridge device, restore subordinate devices */
983 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
984 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
985 
986 			sub_bus = (int) secondary_bus;
987 
988 			next = cpqhp_slot_list[sub_bus];
989 
990 			while (next != NULL) {
991 				rc = cpqhp_configure_board(ctrl, next);
992 				if (rc)
993 					return rc;
994 
995 				next = next->next;
996 			}
997 		} else {
998 
999 			/* Check all the base Address Registers to make sure
1000 			 * they are the same.  If not, the board is different.
1001 			 */
1002 
1003 			for (cloop = 16; cloop < 40; cloop += 4) {
1004 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1005 
1006 				if (temp != func->config_space[cloop >> 2]) {
1007 					dbg("Config space compare failure!!! offset = %x\n", cloop);
1008 					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1009 					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1010 					return 1;
1011 				}
1012 			}
1013 		}
1014 
1015 		func->configured = 1;
1016 
1017 		func = cpqhp_slot_find(func->bus, func->device, index++);
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 
1024 /*
1025  * cpqhp_valid_replace
1026  *
1027  * this function checks to see if a board is the same as the
1028  * one it is replacing.  this check will detect if the device's
1029  * vendor or device id's are the same
1030  *
1031  * returns 0 if the board is the same nonzero otherwise
1032  */
1033 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1034 {
1035 	u8 cloop;
1036 	u8 header_type;
1037 	u8 secondary_bus;
1038 	u8 type;
1039 	u32 temp_register = 0;
1040 	u32 base;
1041 	u32 rc;
1042 	struct pci_func *next;
1043 	int index = 0;
1044 	struct pci_bus *pci_bus = ctrl->pci_bus;
1045 	unsigned int devfn;
1046 
1047 	if (!func->is_a_board)
1048 		return(ADD_NOT_SUPPORTED);
1049 
1050 	func = cpqhp_slot_find(func->bus, func->device, index++);
1051 
1052 	while (func != NULL) {
1053 		pci_bus->number = func->bus;
1054 		devfn = PCI_DEVFN(func->device, func->function);
1055 
1056 		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1057 
1058 		/* No adapter present */
1059 		if (temp_register == 0xFFFFFFFF)
1060 			return(NO_ADAPTER_PRESENT);
1061 
1062 		if (temp_register != func->config_space[0])
1063 			return(ADAPTER_NOT_SAME);
1064 
1065 		/* Check for same revision number and class code */
1066 		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1067 
1068 		/* Adapter not the same */
1069 		if (temp_register != func->config_space[0x08 >> 2])
1070 			return(ADAPTER_NOT_SAME);
1071 
1072 		/* Check for Bridge */
1073 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1074 
1075 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1076 			/* In order to continue checking, we must program the
1077 			 * bus registers in the bridge to respond to accesses
1078 			 * for its subordinate bus(es)
1079 			 */
1080 
1081 			temp_register = func->config_space[0x18 >> 2];
1082 			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1083 
1084 			secondary_bus = (temp_register >> 8) & 0xFF;
1085 
1086 			next = cpqhp_slot_list[secondary_bus];
1087 
1088 			while (next != NULL) {
1089 				rc = cpqhp_valid_replace(ctrl, next);
1090 				if (rc)
1091 					return rc;
1092 
1093 				next = next->next;
1094 			}
1095 
1096 		}
1097 		/* Check to see if it is a standard config header */
1098 		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1099 			/* Check subsystem vendor and ID */
1100 			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1101 
1102 			if (temp_register != func->config_space[0x2C >> 2]) {
1103 				/* If it's a SMART-2 and the register isn't
1104 				 * filled in, ignore the difference because
1105 				 * they just have an old rev of the firmware
1106 				 */
1107 				if (!((func->config_space[0] == 0xAE100E11)
1108 				      && (temp_register == 0x00L)))
1109 					return(ADAPTER_NOT_SAME);
1110 			}
1111 			/* Figure out IO and memory base lengths */
1112 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1113 				temp_register = 0xFFFFFFFF;
1114 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1115 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1116 
1117 				/* If this register is implemented */
1118 				if (base) {
1119 					if (base & 0x01L) {
1120 						/* IO base
1121 						 * set base = amount of IO
1122 						 * space requested
1123 						 */
1124 						base = base & 0xFFFFFFFE;
1125 						base = (~base) + 1;
1126 
1127 						type = 1;
1128 					} else {
1129 						/* memory base */
1130 						base = base & 0xFFFFFFF0;
1131 						base = (~base) + 1;
1132 
1133 						type = 0;
1134 					}
1135 				} else {
1136 					base = 0x0L;
1137 					type = 0;
1138 				}
1139 
1140 				/* Check information in slot structure */
1141 				if (func->base_length[(cloop - 0x10) >> 2] != base)
1142 					return(ADAPTER_NOT_SAME);
1143 
1144 				if (func->base_type[(cloop - 0x10) >> 2] != type)
1145 					return(ADAPTER_NOT_SAME);
1146 
1147 			}	/* End of base register loop */
1148 
1149 		}		/* End of (type 0 config space) else */
1150 		else {
1151 			/* this is not a type 0 or 1 config space header so
1152 			 * we don't know how to do it
1153 			 */
1154 			return(DEVICE_TYPE_NOT_SUPPORTED);
1155 		}
1156 
1157 		/* Get the next function */
1158 		func = cpqhp_slot_find(func->bus, func->device, index++);
1159 	}
1160 
1161 
1162 	return 0;
1163 }
1164 
1165 
1166 /*
1167  * cpqhp_find_available_resources
1168  *
1169  * Finds available memory, IO, and IRQ resources for programming
1170  * devices which may be added to the system
1171  * this function is for hot plug ADD!
1172  *
1173  * returns 0 if success
1174  */
1175 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1176 {
1177 	u8 temp;
1178 	u8 populated_slot;
1179 	u8 bridged_slot;
1180 	void __iomem *one_slot;
1181 	void __iomem *rom_resource_table;
1182 	struct pci_func *func = NULL;
1183 	int i = 10, index;
1184 	u32 temp_dword, rc;
1185 	struct pci_resource *mem_node;
1186 	struct pci_resource *p_mem_node;
1187 	struct pci_resource *io_node;
1188 	struct pci_resource *bus_node;
1189 
1190 	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1191 	dbg("rom_resource_table = %p\n", rom_resource_table);
1192 
1193 	if (rom_resource_table == NULL)
1194 		return -ENODEV;
1195 
1196 	/* Sum all resources and setup resource maps */
1197 	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1198 	dbg("unused_IRQ = %x\n", unused_IRQ);
1199 
1200 	temp = 0;
1201 	while (unused_IRQ) {
1202 		if (unused_IRQ & 1) {
1203 			cpqhp_disk_irq = temp;
1204 			break;
1205 		}
1206 		unused_IRQ = unused_IRQ >> 1;
1207 		temp++;
1208 	}
1209 
1210 	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1211 	unused_IRQ = unused_IRQ >> 1;
1212 	temp++;
1213 
1214 	while (unused_IRQ) {
1215 		if (unused_IRQ & 1) {
1216 			cpqhp_nic_irq = temp;
1217 			break;
1218 		}
1219 		unused_IRQ = unused_IRQ >> 1;
1220 		temp++;
1221 	}
1222 
1223 	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1224 	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1225 
1226 	temp = 0;
1227 
1228 	if (!cpqhp_nic_irq)
1229 		cpqhp_nic_irq = ctrl->cfgspc_irq;
1230 
1231 	if (!cpqhp_disk_irq)
1232 		cpqhp_disk_irq = ctrl->cfgspc_irq;
1233 
1234 	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1235 
1236 	rc = compaq_nvram_load(rom_start, ctrl);
1237 	if (rc)
1238 		return rc;
1239 
1240 	one_slot = rom_resource_table + sizeof(struct hrt);
1241 
1242 	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1243 	dbg("number_of_entries = %d\n", i);
1244 
1245 	if (!readb(one_slot + SECONDARY_BUS))
1246 		return 1;
1247 
1248 	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1249 
1250 	while (i && readb(one_slot + SECONDARY_BUS)) {
1251 		u8 dev_func = readb(one_slot + DEV_FUNC);
1252 		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1253 		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1254 		u8 max_bus = readb(one_slot + MAX_BUS);
1255 		u16 io_base = readw(one_slot + IO_BASE);
1256 		u16 io_length = readw(one_slot + IO_LENGTH);
1257 		u16 mem_base = readw(one_slot + MEM_BASE);
1258 		u16 mem_length = readw(one_slot + MEM_LENGTH);
1259 		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1260 		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1261 
1262 		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1263 		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1264 		    primary_bus, secondary_bus, max_bus);
1265 
1266 		/* If this entry isn't for our controller's bus, ignore it */
1267 		if (primary_bus != ctrl->bus) {
1268 			i--;
1269 			one_slot += sizeof(struct slot_rt);
1270 			continue;
1271 		}
1272 		/* find out if this entry is for an occupied slot */
1273 		ctrl->pci_bus->number = primary_bus;
1274 		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1275 		dbg("temp_D_word = %x\n", temp_dword);
1276 
1277 		if (temp_dword != 0xFFFFFFFF) {
1278 			index = 0;
1279 			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1280 
1281 			while (func && (func->function != (dev_func & 0x07))) {
1282 				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1283 				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1284 			}
1285 
1286 			/* If we can't find a match, skip this table entry */
1287 			if (!func) {
1288 				i--;
1289 				one_slot += sizeof(struct slot_rt);
1290 				continue;
1291 			}
1292 			/* this may not work and shouldn't be used */
1293 			if (secondary_bus != primary_bus)
1294 				bridged_slot = 1;
1295 			else
1296 				bridged_slot = 0;
1297 
1298 			populated_slot = 1;
1299 		} else {
1300 			populated_slot = 0;
1301 			bridged_slot = 0;
1302 		}
1303 
1304 
1305 		/* If we've got a valid IO base, use it */
1306 
1307 		temp_dword = io_base + io_length;
1308 
1309 		if ((io_base) && (temp_dword < 0x10000)) {
1310 			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1311 			if (!io_node)
1312 				return -ENOMEM;
1313 
1314 			io_node->base = io_base;
1315 			io_node->length = io_length;
1316 
1317 			dbg("found io_node(base, length) = %x, %x\n",
1318 					io_node->base, io_node->length);
1319 			dbg("populated slot =%d \n", populated_slot);
1320 			if (!populated_slot) {
1321 				io_node->next = ctrl->io_head;
1322 				ctrl->io_head = io_node;
1323 			} else {
1324 				io_node->next = func->io_head;
1325 				func->io_head = io_node;
1326 			}
1327 		}
1328 
1329 		/* If we've got a valid memory base, use it */
1330 		temp_dword = mem_base + mem_length;
1331 		if ((mem_base) && (temp_dword < 0x10000)) {
1332 			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1333 			if (!mem_node)
1334 				return -ENOMEM;
1335 
1336 			mem_node->base = mem_base << 16;
1337 
1338 			mem_node->length = mem_length << 16;
1339 
1340 			dbg("found mem_node(base, length) = %x, %x\n",
1341 					mem_node->base, mem_node->length);
1342 			dbg("populated slot =%d \n", populated_slot);
1343 			if (!populated_slot) {
1344 				mem_node->next = ctrl->mem_head;
1345 				ctrl->mem_head = mem_node;
1346 			} else {
1347 				mem_node->next = func->mem_head;
1348 				func->mem_head = mem_node;
1349 			}
1350 		}
1351 
1352 		/* If we've got a valid prefetchable memory base, and
1353 		 * the base + length isn't greater than 0xFFFF
1354 		 */
1355 		temp_dword = pre_mem_base + pre_mem_length;
1356 		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1357 			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1358 			if (!p_mem_node)
1359 				return -ENOMEM;
1360 
1361 			p_mem_node->base = pre_mem_base << 16;
1362 
1363 			p_mem_node->length = pre_mem_length << 16;
1364 			dbg("found p_mem_node(base, length) = %x, %x\n",
1365 					p_mem_node->base, p_mem_node->length);
1366 			dbg("populated slot =%d \n", populated_slot);
1367 
1368 			if (!populated_slot) {
1369 				p_mem_node->next = ctrl->p_mem_head;
1370 				ctrl->p_mem_head = p_mem_node;
1371 			} else {
1372 				p_mem_node->next = func->p_mem_head;
1373 				func->p_mem_head = p_mem_node;
1374 			}
1375 		}
1376 
1377 		/* If we've got a valid bus number, use it
1378 		 * The second condition is to ignore bus numbers on
1379 		 * populated slots that don't have PCI-PCI bridges
1380 		 */
1381 		if (secondary_bus && (secondary_bus != primary_bus)) {
1382 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1383 			if (!bus_node)
1384 				return -ENOMEM;
1385 
1386 			bus_node->base = secondary_bus;
1387 			bus_node->length = max_bus - secondary_bus + 1;
1388 			dbg("found bus_node(base, length) = %x, %x\n",
1389 					bus_node->base, bus_node->length);
1390 			dbg("populated slot =%d \n", populated_slot);
1391 			if (!populated_slot) {
1392 				bus_node->next = ctrl->bus_head;
1393 				ctrl->bus_head = bus_node;
1394 			} else {
1395 				bus_node->next = func->bus_head;
1396 				func->bus_head = bus_node;
1397 			}
1398 		}
1399 
1400 		i--;
1401 		one_slot += sizeof(struct slot_rt);
1402 	}
1403 
1404 	/* If all of the following fail, we don't have any resources for
1405 	 * hot plug add
1406 	 */
1407 	rc = 1;
1408 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1409 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1410 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1411 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1412 
1413 	return rc;
1414 }
1415 
1416 
1417 /*
1418  * cpqhp_return_board_resources
1419  *
1420  * this routine returns all resources allocated to a board to
1421  * the available pool.
1422  *
1423  * returns 0 if success
1424  */
1425 int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1426 {
1427 	int rc = 0;
1428 	struct pci_resource *node;
1429 	struct pci_resource *t_node;
1430 	dbg("%s\n", __func__);
1431 
1432 	if (!func)
1433 		return 1;
1434 
1435 	node = func->io_head;
1436 	func->io_head = NULL;
1437 	while (node) {
1438 		t_node = node->next;
1439 		return_resource(&(resources->io_head), node);
1440 		node = t_node;
1441 	}
1442 
1443 	node = func->mem_head;
1444 	func->mem_head = NULL;
1445 	while (node) {
1446 		t_node = node->next;
1447 		return_resource(&(resources->mem_head), node);
1448 		node = t_node;
1449 	}
1450 
1451 	node = func->p_mem_head;
1452 	func->p_mem_head = NULL;
1453 	while (node) {
1454 		t_node = node->next;
1455 		return_resource(&(resources->p_mem_head), node);
1456 		node = t_node;
1457 	}
1458 
1459 	node = func->bus_head;
1460 	func->bus_head = NULL;
1461 	while (node) {
1462 		t_node = node->next;
1463 		return_resource(&(resources->bus_head), node);
1464 		node = t_node;
1465 	}
1466 
1467 	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1468 	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1469 	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1470 	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1471 
1472 	return rc;
1473 }
1474 
1475 
1476 /*
1477  * cpqhp_destroy_resource_list
1478  *
1479  * Puts node back in the resource list pointed to by head
1480  */
1481 void cpqhp_destroy_resource_list(struct resource_lists *resources)
1482 {
1483 	struct pci_resource *res, *tres;
1484 
1485 	res = resources->io_head;
1486 	resources->io_head = NULL;
1487 
1488 	while (res) {
1489 		tres = res;
1490 		res = res->next;
1491 		kfree(tres);
1492 	}
1493 
1494 	res = resources->mem_head;
1495 	resources->mem_head = NULL;
1496 
1497 	while (res) {
1498 		tres = res;
1499 		res = res->next;
1500 		kfree(tres);
1501 	}
1502 
1503 	res = resources->p_mem_head;
1504 	resources->p_mem_head = NULL;
1505 
1506 	while (res) {
1507 		tres = res;
1508 		res = res->next;
1509 		kfree(tres);
1510 	}
1511 
1512 	res = resources->bus_head;
1513 	resources->bus_head = NULL;
1514 
1515 	while (res) {
1516 		tres = res;
1517 		res = res->next;
1518 		kfree(tres);
1519 	}
1520 }
1521 
1522 
1523 /*
1524  * cpqhp_destroy_board_resources
1525  *
1526  * Puts node back in the resource list pointed to by head
1527  */
1528 void cpqhp_destroy_board_resources(struct pci_func *func)
1529 {
1530 	struct pci_resource *res, *tres;
1531 
1532 	res = func->io_head;
1533 	func->io_head = NULL;
1534 
1535 	while (res) {
1536 		tres = res;
1537 		res = res->next;
1538 		kfree(tres);
1539 	}
1540 
1541 	res = func->mem_head;
1542 	func->mem_head = NULL;
1543 
1544 	while (res) {
1545 		tres = res;
1546 		res = res->next;
1547 		kfree(tres);
1548 	}
1549 
1550 	res = func->p_mem_head;
1551 	func->p_mem_head = NULL;
1552 
1553 	while (res) {
1554 		tres = res;
1555 		res = res->next;
1556 		kfree(tres);
1557 	}
1558 
1559 	res = func->bus_head;
1560 	func->bus_head = NULL;
1561 
1562 	while (res) {
1563 		tres = res;
1564 		res = res->next;
1565 		kfree(tres);
1566 	}
1567 }
1568