xref: /openbmc/linux/drivers/pci/hotplug/cpqphp_pci.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pci.h>
22 #include <linux/pci_hotplug.h>
23 #include "../pci.h"
24 #include "cpqphp.h"
25 #include "cpqphp_nvram.h"
26 
27 
28 u8 cpqhp_nic_irq;
29 u8 cpqhp_disk_irq;
30 
31 static u16 unused_IRQ;
32 
33 /*
34  * detect_HRT_floating_pointer
35  *
36  * find the Hot Plug Resource Table in the specified region of memory.
37  *
38  */
39 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
40 {
41 	void __iomem *fp;
42 	void __iomem *endp;
43 	u8 temp1, temp2, temp3, temp4;
44 	int status = 0;
45 
46 	endp = (end - sizeof(struct hrt) + 1);
47 
48 	for (fp = begin; fp <= endp; fp += 16) {
49 		temp1 = readb(fp + SIG0);
50 		temp2 = readb(fp + SIG1);
51 		temp3 = readb(fp + SIG2);
52 		temp4 = readb(fp + SIG3);
53 		if (temp1 == '$' &&
54 		    temp2 == 'H' &&
55 		    temp3 == 'R' &&
56 		    temp4 == 'T') {
57 			status = 1;
58 			break;
59 		}
60 	}
61 
62 	if (!status)
63 		fp = NULL;
64 
65 	dbg("Discovered Hotplug Resource Table at %p\n", fp);
66 	return fp;
67 }
68 
69 
70 int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
71 {
72 	struct pci_bus *child;
73 	int num;
74 
75 	pci_lock_rescan_remove();
76 
77 	if (func->pci_dev == NULL)
78 		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
79 							PCI_DEVFN(func->device,
80 							func->function));
81 
82 	/* No pci device, we need to create it then */
83 	if (func->pci_dev == NULL) {
84 		dbg("INFO: pci_dev still null\n");
85 
86 		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
87 		if (num)
88 			pci_bus_add_devices(ctrl->pci_dev->bus);
89 
90 		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
91 							PCI_DEVFN(func->device,
92 							func->function));
93 		if (func->pci_dev == NULL) {
94 			dbg("ERROR: pci_dev still null\n");
95 			goto out;
96 		}
97 	}
98 
99 	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
100 		pci_hp_add_bridge(func->pci_dev);
101 		child = func->pci_dev->subordinate;
102 		if (child)
103 			pci_bus_add_devices(child);
104 	}
105 
106 	pci_dev_put(func->pci_dev);
107 
108  out:
109 	pci_unlock_rescan_remove();
110 	return 0;
111 }
112 
113 
114 int cpqhp_unconfigure_device(struct pci_func *func)
115 {
116 	int j;
117 
118 	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
119 
120 	pci_lock_rescan_remove();
121 	for (j = 0; j < 8 ; j++) {
122 		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
123 							func->bus,
124 							PCI_DEVFN(func->device,
125 							j));
126 		if (temp) {
127 			pci_dev_put(temp);
128 			pci_stop_and_remove_bus_device(temp);
129 		}
130 	}
131 	pci_unlock_rescan_remove();
132 	return 0;
133 }
134 
135 static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
136 {
137 	u32 vendID = 0;
138 
139 	if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
140 		return -1;
141 	if (vendID == 0xffffffff)
142 		return -1;
143 	return pci_bus_read_config_dword(bus, devfn, offset, value);
144 }
145 
146 
147 /*
148  * cpqhp_set_irq
149  *
150  * @bus_num: bus number of PCI device
151  * @dev_num: device number of PCI device
152  * @slot: pointer to u8 where slot number will be returned
153  */
154 int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
155 {
156 	int rc = 0;
157 
158 	if (cpqhp_legacy_mode) {
159 		struct pci_dev *fakedev;
160 		struct pci_bus *fakebus;
161 		u16 temp_word;
162 
163 		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
164 		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
165 		if (!fakedev || !fakebus) {
166 			kfree(fakedev);
167 			kfree(fakebus);
168 			return -ENOMEM;
169 		}
170 
171 		fakedev->devfn = dev_num << 3;
172 		fakedev->bus = fakebus;
173 		fakebus->number = bus_num;
174 		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
175 		    __func__, dev_num, bus_num, int_pin, irq_num);
176 		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
177 		kfree(fakedev);
178 		kfree(fakebus);
179 		dbg("%s: rc %d\n", __func__, rc);
180 		if (!rc)
181 			return !rc;
182 
183 		/* set the Edge Level Control Register (ELCR) */
184 		temp_word = inb(0x4d0);
185 		temp_word |= inb(0x4d1) << 8;
186 
187 		temp_word |= 0x01 << irq_num;
188 
189 		/* This should only be for x86 as it sets the Edge Level
190 		 * Control Register
191 		 */
192 		outb((u8) (temp_word & 0xFF), 0x4d0); outb((u8) ((temp_word &
193 		0xFF00) >> 8), 0x4d1); rc = 0; }
194 
195 	return rc;
196 }
197 
198 
199 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
200 {
201 	u16 tdevice;
202 	u32 work;
203 	u8 tbus;
204 
205 	ctrl->pci_bus->number = bus_num;
206 
207 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
208 		/* Scan for access first */
209 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
210 			continue;
211 		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
212 		/* Yep we got one. Not a bridge ? */
213 		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
214 			*dev_num = tdevice;
215 			dbg("found it !\n");
216 			return 0;
217 		}
218 	}
219 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
220 		/* Scan for access first */
221 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
222 			continue;
223 		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
224 		/* Yep we got one. bridge ? */
225 		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
226 			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
227 			/* XXX: no recursion, wtf? */
228 			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
229 			return 0;
230 		}
231 	}
232 
233 	return -1;
234 }
235 
236 
237 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
238 {
239 	int loop, len;
240 	u32 work;
241 	u8 tbus, tdevice, tslot;
242 
243 	len = cpqhp_routing_table_length();
244 	for (loop = 0; loop < len; ++loop) {
245 		tbus = cpqhp_routing_table->slots[loop].bus;
246 		tdevice = cpqhp_routing_table->slots[loop].devfn;
247 		tslot = cpqhp_routing_table->slots[loop].slot;
248 
249 		if (tslot == slot) {
250 			*bus_num = tbus;
251 			*dev_num = tdevice;
252 			ctrl->pci_bus->number = tbus;
253 			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
254 			if (!nobridge || (work == 0xffffffff))
255 				return 0;
256 
257 			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
258 			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
259 			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
260 
261 			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
262 				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
263 				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
264 				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
265 					*bus_num = tbus;
266 					return 0;
267 				}
268 			} else
269 				return 0;
270 		}
271 	}
272 	return -1;
273 }
274 
275 
276 int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
277 {
278 	/* plain (bridges allowed) */
279 	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
280 }
281 
282 
283 /* More PCI configuration routines; this time centered around hotplug
284  * controller
285  */
286 
287 
288 /*
289  * cpqhp_save_config
290  *
291  * Reads configuration for all slots in a PCI bus and saves info.
292  *
293  * Note:  For non-hot plug buses, the slot # saved is the device #
294  *
295  * returns 0 if success
296  */
297 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
298 {
299 	long rc;
300 	u8 class_code;
301 	u8 header_type;
302 	u32 ID;
303 	u8 secondary_bus;
304 	struct pci_func *new_slot;
305 	int sub_bus;
306 	int FirstSupported;
307 	int LastSupported;
308 	int max_functions;
309 	int function;
310 	u8 DevError;
311 	int device = 0;
312 	int cloop = 0;
313 	int stop_it;
314 	int index;
315 	u16 devfn;
316 
317 	/* Decide which slots are supported */
318 
319 	if (is_hot_plug) {
320 		/*
321 		 * is_hot_plug is the slot mask
322 		 */
323 		FirstSupported = is_hot_plug >> 4;
324 		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
325 	} else {
326 		FirstSupported = 0;
327 		LastSupported = 0x1F;
328 	}
329 
330 	/* Save PCI configuration space for all devices in supported slots */
331 	ctrl->pci_bus->number = busnumber;
332 	for (device = FirstSupported; device <= LastSupported; device++) {
333 		ID = 0xFFFFFFFF;
334 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
335 
336 		if (ID == 0xFFFFFFFF) {
337 			if (is_hot_plug) {
338 				/* Setup slot structure with entry for empty
339 				 * slot
340 				 */
341 				new_slot = cpqhp_slot_create(busnumber);
342 				if (new_slot == NULL)
343 					return 1;
344 
345 				new_slot->bus = (u8) busnumber;
346 				new_slot->device = (u8) device;
347 				new_slot->function = 0;
348 				new_slot->is_a_board = 0;
349 				new_slot->presence_save = 0;
350 				new_slot->switch_save = 0;
351 			}
352 			continue;
353 		}
354 
355 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
356 		if (rc)
357 			return rc;
358 
359 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
360 		if (rc)
361 			return rc;
362 
363 		/* If multi-function device, set max_functions to 8 */
364 		if (header_type & 0x80)
365 			max_functions = 8;
366 		else
367 			max_functions = 1;
368 
369 		function = 0;
370 
371 		do {
372 			DevError = 0;
373 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
374 				/* Recurse the subordinate bus
375 				 * get the subordinate bus number
376 				 */
377 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
378 				if (rc) {
379 					return rc;
380 				} else {
381 					sub_bus = (int) secondary_bus;
382 
383 					/* Save secondary bus cfg spc
384 					 * with this recursive call.
385 					 */
386 					rc = cpqhp_save_config(ctrl, sub_bus, 0);
387 					if (rc)
388 						return rc;
389 					ctrl->pci_bus->number = busnumber;
390 				}
391 			}
392 
393 			index = 0;
394 			new_slot = cpqhp_slot_find(busnumber, device, index++);
395 			while (new_slot &&
396 			       (new_slot->function != (u8) function))
397 				new_slot = cpqhp_slot_find(busnumber, device, index++);
398 
399 			if (!new_slot) {
400 				/* Setup slot structure. */
401 				new_slot = cpqhp_slot_create(busnumber);
402 				if (new_slot == NULL)
403 					return 1;
404 			}
405 
406 			new_slot->bus = (u8) busnumber;
407 			new_slot->device = (u8) device;
408 			new_slot->function = (u8) function;
409 			new_slot->is_a_board = 1;
410 			new_slot->switch_save = 0x10;
411 			/* In case of unsupported board */
412 			new_slot->status = DevError;
413 			devfn = (new_slot->device << 3) | new_slot->function;
414 			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
415 							new_slot->bus, devfn);
416 
417 			for (cloop = 0; cloop < 0x20; cloop++) {
418 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
419 				if (rc)
420 					return rc;
421 			}
422 
423 			pci_dev_put(new_slot->pci_dev);
424 
425 			function++;
426 
427 			stop_it = 0;
428 
429 			/* this loop skips to the next present function
430 			 * reading in Class Code and Header type.
431 			 */
432 			while ((function < max_functions) && (!stop_it)) {
433 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
434 				if (ID == 0xFFFFFFFF) {
435 					function++;
436 					continue;
437 				}
438 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
439 				if (rc)
440 					return rc;
441 
442 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
443 				if (rc)
444 					return rc;
445 
446 				stop_it++;
447 			}
448 
449 		} while (function < max_functions);
450 	}			/* End of FOR loop */
451 
452 	return 0;
453 }
454 
455 
456 /*
457  * cpqhp_save_slot_config
458  *
459  * Saves configuration info for all PCI devices in a given slot
460  * including subordinate buses.
461  *
462  * returns 0 if success
463  */
464 int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
465 {
466 	long rc;
467 	u8 class_code;
468 	u8 header_type;
469 	u32 ID;
470 	u8 secondary_bus;
471 	int sub_bus;
472 	int max_functions;
473 	int function = 0;
474 	int cloop = 0;
475 	int stop_it;
476 
477 	ID = 0xFFFFFFFF;
478 
479 	ctrl->pci_bus->number = new_slot->bus;
480 	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
481 
482 	if (ID == 0xFFFFFFFF)
483 		return 2;
484 
485 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
486 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
487 
488 	if (header_type & 0x80)	/* Multi-function device */
489 		max_functions = 8;
490 	else
491 		max_functions = 1;
492 
493 	while (function < max_functions) {
494 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
495 			/*  Recurse the subordinate bus */
496 			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
497 
498 			sub_bus = (int) secondary_bus;
499 
500 			/* Save the config headers for the secondary
501 			 * bus.
502 			 */
503 			rc = cpqhp_save_config(ctrl, sub_bus, 0);
504 			if (rc)
505 				return(rc);
506 			ctrl->pci_bus->number = new_slot->bus;
507 
508 		}
509 
510 		new_slot->status = 0;
511 
512 		for (cloop = 0; cloop < 0x20; cloop++)
513 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
514 
515 		function++;
516 
517 		stop_it = 0;
518 
519 		/* this loop skips to the next present function
520 		 * reading in the Class Code and the Header type.
521 		 */
522 		while ((function < max_functions) && (!stop_it)) {
523 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
524 
525 			if (ID == 0xFFFFFFFF)
526 				function++;
527 			else {
528 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
529 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
530 				stop_it++;
531 			}
532 		}
533 
534 	}
535 
536 	return 0;
537 }
538 
539 
540 /*
541  * cpqhp_save_base_addr_length
542  *
543  * Saves the length of all base address registers for the
544  * specified slot.  this is for hot plug REPLACE
545  *
546  * returns 0 if success
547  */
548 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
549 {
550 	u8 cloop;
551 	u8 header_type;
552 	u8 secondary_bus;
553 	u8 type;
554 	int sub_bus;
555 	u32 temp_register;
556 	u32 base;
557 	u32 rc;
558 	struct pci_func *next;
559 	int index = 0;
560 	struct pci_bus *pci_bus = ctrl->pci_bus;
561 	unsigned int devfn;
562 
563 	func = cpqhp_slot_find(func->bus, func->device, index++);
564 
565 	while (func != NULL) {
566 		pci_bus->number = func->bus;
567 		devfn = PCI_DEVFN(func->device, func->function);
568 
569 		/* Check for Bridge */
570 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
571 
572 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
573 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
574 
575 			sub_bus = (int) secondary_bus;
576 
577 			next = cpqhp_slot_list[sub_bus];
578 
579 			while (next != NULL) {
580 				rc = cpqhp_save_base_addr_length(ctrl, next);
581 				if (rc)
582 					return rc;
583 
584 				next = next->next;
585 			}
586 			pci_bus->number = func->bus;
587 
588 			/* FIXME: this loop is duplicated in the non-bridge
589 			 * case.  The two could be rolled together Figure out
590 			 * IO and memory base lengths
591 			 */
592 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
593 				temp_register = 0xFFFFFFFF;
594 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
595 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
596 				/* If this register is implemented */
597 				if (base) {
598 					if (base & 0x01L) {
599 						/* IO base
600 						 * set base = amount of IO space
601 						 * requested
602 						 */
603 						base = base & 0xFFFFFFFE;
604 						base = (~base) + 1;
605 
606 						type = 1;
607 					} else {
608 						/* memory base */
609 						base = base & 0xFFFFFFF0;
610 						base = (~base) + 1;
611 
612 						type = 0;
613 					}
614 				} else {
615 					base = 0x0L;
616 					type = 0;
617 				}
618 
619 				/* Save information in slot structure */
620 				func->base_length[(cloop - 0x10) >> 2] =
621 				base;
622 				func->base_type[(cloop - 0x10) >> 2] = type;
623 
624 			}	/* End of base register loop */
625 
626 		} else if ((header_type & 0x7F) == 0x00) {
627 			/* Figure out IO and memory base lengths */
628 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
629 				temp_register = 0xFFFFFFFF;
630 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
631 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
632 
633 				/* If this register is implemented */
634 				if (base) {
635 					if (base & 0x01L) {
636 						/* IO base
637 						 * base = amount of IO space
638 						 * requested
639 						 */
640 						base = base & 0xFFFFFFFE;
641 						base = (~base) + 1;
642 
643 						type = 1;
644 					} else {
645 						/* memory base
646 						 * base = amount of memory
647 						 * space requested
648 						 */
649 						base = base & 0xFFFFFFF0;
650 						base = (~base) + 1;
651 
652 						type = 0;
653 					}
654 				} else {
655 					base = 0x0L;
656 					type = 0;
657 				}
658 
659 				/* Save information in slot structure */
660 				func->base_length[(cloop - 0x10) >> 2] = base;
661 				func->base_type[(cloop - 0x10) >> 2] = type;
662 
663 			}	/* End of base register loop */
664 
665 		} else {	  /* Some other unknown header type */
666 		}
667 
668 		/* find the next device in this slot */
669 		func = cpqhp_slot_find(func->bus, func->device, index++);
670 	}
671 
672 	return(0);
673 }
674 
675 
676 /*
677  * cpqhp_save_used_resources
678  *
679  * Stores used resource information for existing boards.  this is
680  * for boards that were in the system when this driver was loaded.
681  * this function is for hot plug ADD
682  *
683  * returns 0 if success
684  */
685 int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
686 {
687 	u8 cloop;
688 	u8 header_type;
689 	u8 secondary_bus;
690 	u8 temp_byte;
691 	u8 b_base;
692 	u8 b_length;
693 	u16 command;
694 	u16 save_command;
695 	u16 w_base;
696 	u16 w_length;
697 	u32 temp_register;
698 	u32 save_base;
699 	u32 base;
700 	int index = 0;
701 	struct pci_resource *mem_node;
702 	struct pci_resource *p_mem_node;
703 	struct pci_resource *io_node;
704 	struct pci_resource *bus_node;
705 	struct pci_bus *pci_bus = ctrl->pci_bus;
706 	unsigned int devfn;
707 
708 	func = cpqhp_slot_find(func->bus, func->device, index++);
709 
710 	while ((func != NULL) && func->is_a_board) {
711 		pci_bus->number = func->bus;
712 		devfn = PCI_DEVFN(func->device, func->function);
713 
714 		/* Save the command register */
715 		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
716 
717 		/* disable card */
718 		command = 0x00;
719 		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
720 
721 		/* Check for Bridge */
722 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
723 
724 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
725 			/* Clear Bridge Control Register */
726 			command = 0x00;
727 			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
728 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
729 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
730 
731 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
732 			if (!bus_node)
733 				return -ENOMEM;
734 
735 			bus_node->base = secondary_bus;
736 			bus_node->length = temp_byte - secondary_bus + 1;
737 
738 			bus_node->next = func->bus_head;
739 			func->bus_head = bus_node;
740 
741 			/* Save IO base and Limit registers */
742 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
743 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
744 
745 			if ((b_base <= b_length) && (save_command & 0x01)) {
746 				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
747 				if (!io_node)
748 					return -ENOMEM;
749 
750 				io_node->base = (b_base & 0xF0) << 8;
751 				io_node->length = (b_length - b_base + 0x10) << 8;
752 
753 				io_node->next = func->io_head;
754 				func->io_head = io_node;
755 			}
756 
757 			/* Save memory base and Limit registers */
758 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
759 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
760 
761 			if ((w_base <= w_length) && (save_command & 0x02)) {
762 				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
763 				if (!mem_node)
764 					return -ENOMEM;
765 
766 				mem_node->base = w_base << 16;
767 				mem_node->length = (w_length - w_base + 0x10) << 16;
768 
769 				mem_node->next = func->mem_head;
770 				func->mem_head = mem_node;
771 			}
772 
773 			/* Save prefetchable memory base and Limit registers */
774 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
775 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
776 
777 			if ((w_base <= w_length) && (save_command & 0x02)) {
778 				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
779 				if (!p_mem_node)
780 					return -ENOMEM;
781 
782 				p_mem_node->base = w_base << 16;
783 				p_mem_node->length = (w_length - w_base + 0x10) << 16;
784 
785 				p_mem_node->next = func->p_mem_head;
786 				func->p_mem_head = p_mem_node;
787 			}
788 			/* Figure out IO and memory base lengths */
789 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
790 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
791 
792 				temp_register = 0xFFFFFFFF;
793 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
794 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
795 
796 				temp_register = base;
797 
798 				/* If this register is implemented */
799 				if (base) {
800 					if (((base & 0x03L) == 0x01)
801 					    && (save_command & 0x01)) {
802 						/* IO base
803 						 * set temp_register = amount
804 						 * of IO space requested
805 						 */
806 						temp_register = base & 0xFFFFFFFE;
807 						temp_register = (~temp_register) + 1;
808 
809 						io_node = kmalloc(sizeof(*io_node),
810 								GFP_KERNEL);
811 						if (!io_node)
812 							return -ENOMEM;
813 
814 						io_node->base =
815 						save_base & (~0x03L);
816 						io_node->length = temp_register;
817 
818 						io_node->next = func->io_head;
819 						func->io_head = io_node;
820 					} else
821 						if (((base & 0x0BL) == 0x08)
822 						    && (save_command & 0x02)) {
823 						/* prefetchable memory base */
824 						temp_register = base & 0xFFFFFFF0;
825 						temp_register = (~temp_register) + 1;
826 
827 						p_mem_node = kmalloc(sizeof(*p_mem_node),
828 								GFP_KERNEL);
829 						if (!p_mem_node)
830 							return -ENOMEM;
831 
832 						p_mem_node->base = save_base & (~0x0FL);
833 						p_mem_node->length = temp_register;
834 
835 						p_mem_node->next = func->p_mem_head;
836 						func->p_mem_head = p_mem_node;
837 					} else
838 						if (((base & 0x0BL) == 0x00)
839 						    && (save_command & 0x02)) {
840 						/* prefetchable memory base */
841 						temp_register = base & 0xFFFFFFF0;
842 						temp_register = (~temp_register) + 1;
843 
844 						mem_node = kmalloc(sizeof(*mem_node),
845 								GFP_KERNEL);
846 						if (!mem_node)
847 							return -ENOMEM;
848 
849 						mem_node->base = save_base & (~0x0FL);
850 						mem_node->length = temp_register;
851 
852 						mem_node->next = func->mem_head;
853 						func->mem_head = mem_node;
854 					} else
855 						return(1);
856 				}
857 			}	/* End of base register loop */
858 		/* Standard header */
859 		} else if ((header_type & 0x7F) == 0x00) {
860 			/* Figure out IO and memory base lengths */
861 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
862 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
863 
864 				temp_register = 0xFFFFFFFF;
865 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
866 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
867 
868 				temp_register = base;
869 
870 				/* If this register is implemented */
871 				if (base) {
872 					if (((base & 0x03L) == 0x01)
873 					    && (save_command & 0x01)) {
874 						/* IO base
875 						 * set temp_register = amount
876 						 * of IO space requested
877 						 */
878 						temp_register = base & 0xFFFFFFFE;
879 						temp_register = (~temp_register) + 1;
880 
881 						io_node = kmalloc(sizeof(*io_node),
882 								GFP_KERNEL);
883 						if (!io_node)
884 							return -ENOMEM;
885 
886 						io_node->base = save_base & (~0x01L);
887 						io_node->length = temp_register;
888 
889 						io_node->next = func->io_head;
890 						func->io_head = io_node;
891 					} else
892 						if (((base & 0x0BL) == 0x08)
893 						    && (save_command & 0x02)) {
894 						/* prefetchable memory base */
895 						temp_register = base & 0xFFFFFFF0;
896 						temp_register = (~temp_register) + 1;
897 
898 						p_mem_node = kmalloc(sizeof(*p_mem_node),
899 								GFP_KERNEL);
900 						if (!p_mem_node)
901 							return -ENOMEM;
902 
903 						p_mem_node->base = save_base & (~0x0FL);
904 						p_mem_node->length = temp_register;
905 
906 						p_mem_node->next = func->p_mem_head;
907 						func->p_mem_head = p_mem_node;
908 					} else
909 						if (((base & 0x0BL) == 0x00)
910 						    && (save_command & 0x02)) {
911 						/* prefetchable memory base */
912 						temp_register = base & 0xFFFFFFF0;
913 						temp_register = (~temp_register) + 1;
914 
915 						mem_node = kmalloc(sizeof(*mem_node),
916 								GFP_KERNEL);
917 						if (!mem_node)
918 							return -ENOMEM;
919 
920 						mem_node->base = save_base & (~0x0FL);
921 						mem_node->length = temp_register;
922 
923 						mem_node->next = func->mem_head;
924 						func->mem_head = mem_node;
925 					} else
926 						return(1);
927 				}
928 			}	/* End of base register loop */
929 		}
930 
931 		/* find the next device in this slot */
932 		func = cpqhp_slot_find(func->bus, func->device, index++);
933 	}
934 
935 	return 0;
936 }
937 
938 
939 /*
940  * cpqhp_configure_board
941  *
942  * Copies saved configuration information to one slot.
943  * this is called recursively for bridge devices.
944  * this is for hot plug REPLACE!
945  *
946  * returns 0 if success
947  */
948 int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
949 {
950 	int cloop;
951 	u8 header_type;
952 	u8 secondary_bus;
953 	int sub_bus;
954 	struct pci_func *next;
955 	u32 temp;
956 	u32 rc;
957 	int index = 0;
958 	struct pci_bus *pci_bus = ctrl->pci_bus;
959 	unsigned int devfn;
960 
961 	func = cpqhp_slot_find(func->bus, func->device, index++);
962 
963 	while (func != NULL) {
964 		pci_bus->number = func->bus;
965 		devfn = PCI_DEVFN(func->device, func->function);
966 
967 		/* Start at the top of config space so that the control
968 		 * registers are programmed last
969 		 */
970 		for (cloop = 0x3C; cloop > 0; cloop -= 4)
971 			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
972 
973 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
974 
975 		/* If this is a bridge device, restore subordinate devices */
976 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
977 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
978 
979 			sub_bus = (int) secondary_bus;
980 
981 			next = cpqhp_slot_list[sub_bus];
982 
983 			while (next != NULL) {
984 				rc = cpqhp_configure_board(ctrl, next);
985 				if (rc)
986 					return rc;
987 
988 				next = next->next;
989 			}
990 		} else {
991 
992 			/* Check all the base Address Registers to make sure
993 			 * they are the same.  If not, the board is different.
994 			 */
995 
996 			for (cloop = 16; cloop < 40; cloop += 4) {
997 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
998 
999 				if (temp != func->config_space[cloop >> 2]) {
1000 					dbg("Config space compare failure!!! offset = %x\n", cloop);
1001 					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1002 					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1003 					return 1;
1004 				}
1005 			}
1006 		}
1007 
1008 		func->configured = 1;
1009 
1010 		func = cpqhp_slot_find(func->bus, func->device, index++);
1011 	}
1012 
1013 	return 0;
1014 }
1015 
1016 
1017 /*
1018  * cpqhp_valid_replace
1019  *
1020  * this function checks to see if a board is the same as the
1021  * one it is replacing.  this check will detect if the device's
1022  * vendor or device id's are the same
1023  *
1024  * returns 0 if the board is the same nonzero otherwise
1025  */
1026 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1027 {
1028 	u8 cloop;
1029 	u8 header_type;
1030 	u8 secondary_bus;
1031 	u8 type;
1032 	u32 temp_register = 0;
1033 	u32 base;
1034 	u32 rc;
1035 	struct pci_func *next;
1036 	int index = 0;
1037 	struct pci_bus *pci_bus = ctrl->pci_bus;
1038 	unsigned int devfn;
1039 
1040 	if (!func->is_a_board)
1041 		return(ADD_NOT_SUPPORTED);
1042 
1043 	func = cpqhp_slot_find(func->bus, func->device, index++);
1044 
1045 	while (func != NULL) {
1046 		pci_bus->number = func->bus;
1047 		devfn = PCI_DEVFN(func->device, func->function);
1048 
1049 		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1050 
1051 		/* No adapter present */
1052 		if (temp_register == 0xFFFFFFFF)
1053 			return(NO_ADAPTER_PRESENT);
1054 
1055 		if (temp_register != func->config_space[0])
1056 			return(ADAPTER_NOT_SAME);
1057 
1058 		/* Check for same revision number and class code */
1059 		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1060 
1061 		/* Adapter not the same */
1062 		if (temp_register != func->config_space[0x08 >> 2])
1063 			return(ADAPTER_NOT_SAME);
1064 
1065 		/* Check for Bridge */
1066 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1067 
1068 		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1069 			/* In order to continue checking, we must program the
1070 			 * bus registers in the bridge to respond to accesses
1071 			 * for its subordinate bus(es)
1072 			 */
1073 
1074 			temp_register = func->config_space[0x18 >> 2];
1075 			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1076 
1077 			secondary_bus = (temp_register >> 8) & 0xFF;
1078 
1079 			next = cpqhp_slot_list[secondary_bus];
1080 
1081 			while (next != NULL) {
1082 				rc = cpqhp_valid_replace(ctrl, next);
1083 				if (rc)
1084 					return rc;
1085 
1086 				next = next->next;
1087 			}
1088 
1089 		}
1090 		/* Check to see if it is a standard config header */
1091 		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1092 			/* Check subsystem vendor and ID */
1093 			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1094 
1095 			if (temp_register != func->config_space[0x2C >> 2]) {
1096 				/* If it's a SMART-2 and the register isn't
1097 				 * filled in, ignore the difference because
1098 				 * they just have an old rev of the firmware
1099 				 */
1100 				if (!((func->config_space[0] == 0xAE100E11)
1101 				      && (temp_register == 0x00L)))
1102 					return(ADAPTER_NOT_SAME);
1103 			}
1104 			/* Figure out IO and memory base lengths */
1105 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1106 				temp_register = 0xFFFFFFFF;
1107 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1108 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1109 
1110 				/* If this register is implemented */
1111 				if (base) {
1112 					if (base & 0x01L) {
1113 						/* IO base
1114 						 * set base = amount of IO
1115 						 * space requested
1116 						 */
1117 						base = base & 0xFFFFFFFE;
1118 						base = (~base) + 1;
1119 
1120 						type = 1;
1121 					} else {
1122 						/* memory base */
1123 						base = base & 0xFFFFFFF0;
1124 						base = (~base) + 1;
1125 
1126 						type = 0;
1127 					}
1128 				} else {
1129 					base = 0x0L;
1130 					type = 0;
1131 				}
1132 
1133 				/* Check information in slot structure */
1134 				if (func->base_length[(cloop - 0x10) >> 2] != base)
1135 					return(ADAPTER_NOT_SAME);
1136 
1137 				if (func->base_type[(cloop - 0x10) >> 2] != type)
1138 					return(ADAPTER_NOT_SAME);
1139 
1140 			}	/* End of base register loop */
1141 
1142 		}		/* End of (type 0 config space) else */
1143 		else {
1144 			/* this is not a type 0 or 1 config space header so
1145 			 * we don't know how to do it
1146 			 */
1147 			return(DEVICE_TYPE_NOT_SUPPORTED);
1148 		}
1149 
1150 		/* Get the next function */
1151 		func = cpqhp_slot_find(func->bus, func->device, index++);
1152 	}
1153 
1154 
1155 	return 0;
1156 }
1157 
1158 
1159 /*
1160  * cpqhp_find_available_resources
1161  *
1162  * Finds available memory, IO, and IRQ resources for programming
1163  * devices which may be added to the system
1164  * this function is for hot plug ADD!
1165  *
1166  * returns 0 if success
1167  */
1168 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1169 {
1170 	u8 temp;
1171 	u8 populated_slot;
1172 	u8 bridged_slot;
1173 	void __iomem *one_slot;
1174 	void __iomem *rom_resource_table;
1175 	struct pci_func *func = NULL;
1176 	int i = 10, index;
1177 	u32 temp_dword, rc;
1178 	struct pci_resource *mem_node;
1179 	struct pci_resource *p_mem_node;
1180 	struct pci_resource *io_node;
1181 	struct pci_resource *bus_node;
1182 
1183 	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1184 	dbg("rom_resource_table = %p\n", rom_resource_table);
1185 
1186 	if (rom_resource_table == NULL)
1187 		return -ENODEV;
1188 
1189 	/* Sum all resources and setup resource maps */
1190 	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1191 	dbg("unused_IRQ = %x\n", unused_IRQ);
1192 
1193 	temp = 0;
1194 	while (unused_IRQ) {
1195 		if (unused_IRQ & 1) {
1196 			cpqhp_disk_irq = temp;
1197 			break;
1198 		}
1199 		unused_IRQ = unused_IRQ >> 1;
1200 		temp++;
1201 	}
1202 
1203 	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1204 	unused_IRQ = unused_IRQ >> 1;
1205 	temp++;
1206 
1207 	while (unused_IRQ) {
1208 		if (unused_IRQ & 1) {
1209 			cpqhp_nic_irq = temp;
1210 			break;
1211 		}
1212 		unused_IRQ = unused_IRQ >> 1;
1213 		temp++;
1214 	}
1215 
1216 	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1217 	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1218 
1219 	temp = 0;
1220 
1221 	if (!cpqhp_nic_irq)
1222 		cpqhp_nic_irq = ctrl->cfgspc_irq;
1223 
1224 	if (!cpqhp_disk_irq)
1225 		cpqhp_disk_irq = ctrl->cfgspc_irq;
1226 
1227 	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1228 
1229 	rc = compaq_nvram_load(rom_start, ctrl);
1230 	if (rc)
1231 		return rc;
1232 
1233 	one_slot = rom_resource_table + sizeof(struct hrt);
1234 
1235 	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1236 	dbg("number_of_entries = %d\n", i);
1237 
1238 	if (!readb(one_slot + SECONDARY_BUS))
1239 		return 1;
1240 
1241 	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1242 
1243 	while (i && readb(one_slot + SECONDARY_BUS)) {
1244 		u8 dev_func = readb(one_slot + DEV_FUNC);
1245 		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1246 		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1247 		u8 max_bus = readb(one_slot + MAX_BUS);
1248 		u16 io_base = readw(one_slot + IO_BASE);
1249 		u16 io_length = readw(one_slot + IO_LENGTH);
1250 		u16 mem_base = readw(one_slot + MEM_BASE);
1251 		u16 mem_length = readw(one_slot + MEM_LENGTH);
1252 		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1253 		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1254 
1255 		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1256 		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1257 		    primary_bus, secondary_bus, max_bus);
1258 
1259 		/* If this entry isn't for our controller's bus, ignore it */
1260 		if (primary_bus != ctrl->bus) {
1261 			i--;
1262 			one_slot += sizeof(struct slot_rt);
1263 			continue;
1264 		}
1265 		/* find out if this entry is for an occupied slot */
1266 		ctrl->pci_bus->number = primary_bus;
1267 		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1268 		dbg("temp_D_word = %x\n", temp_dword);
1269 
1270 		if (temp_dword != 0xFFFFFFFF) {
1271 			index = 0;
1272 			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1273 
1274 			while (func && (func->function != (dev_func & 0x07))) {
1275 				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1276 				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1277 			}
1278 
1279 			/* If we can't find a match, skip this table entry */
1280 			if (!func) {
1281 				i--;
1282 				one_slot += sizeof(struct slot_rt);
1283 				continue;
1284 			}
1285 			/* this may not work and shouldn't be used */
1286 			if (secondary_bus != primary_bus)
1287 				bridged_slot = 1;
1288 			else
1289 				bridged_slot = 0;
1290 
1291 			populated_slot = 1;
1292 		} else {
1293 			populated_slot = 0;
1294 			bridged_slot = 0;
1295 		}
1296 
1297 
1298 		/* If we've got a valid IO base, use it */
1299 
1300 		temp_dword = io_base + io_length;
1301 
1302 		if ((io_base) && (temp_dword < 0x10000)) {
1303 			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1304 			if (!io_node)
1305 				return -ENOMEM;
1306 
1307 			io_node->base = io_base;
1308 			io_node->length = io_length;
1309 
1310 			dbg("found io_node(base, length) = %x, %x\n",
1311 					io_node->base, io_node->length);
1312 			dbg("populated slot =%d \n", populated_slot);
1313 			if (!populated_slot) {
1314 				io_node->next = ctrl->io_head;
1315 				ctrl->io_head = io_node;
1316 			} else {
1317 				io_node->next = func->io_head;
1318 				func->io_head = io_node;
1319 			}
1320 		}
1321 
1322 		/* If we've got a valid memory base, use it */
1323 		temp_dword = mem_base + mem_length;
1324 		if ((mem_base) && (temp_dword < 0x10000)) {
1325 			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1326 			if (!mem_node)
1327 				return -ENOMEM;
1328 
1329 			mem_node->base = mem_base << 16;
1330 
1331 			mem_node->length = mem_length << 16;
1332 
1333 			dbg("found mem_node(base, length) = %x, %x\n",
1334 					mem_node->base, mem_node->length);
1335 			dbg("populated slot =%d \n", populated_slot);
1336 			if (!populated_slot) {
1337 				mem_node->next = ctrl->mem_head;
1338 				ctrl->mem_head = mem_node;
1339 			} else {
1340 				mem_node->next = func->mem_head;
1341 				func->mem_head = mem_node;
1342 			}
1343 		}
1344 
1345 		/* If we've got a valid prefetchable memory base, and
1346 		 * the base + length isn't greater than 0xFFFF
1347 		 */
1348 		temp_dword = pre_mem_base + pre_mem_length;
1349 		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1350 			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1351 			if (!p_mem_node)
1352 				return -ENOMEM;
1353 
1354 			p_mem_node->base = pre_mem_base << 16;
1355 
1356 			p_mem_node->length = pre_mem_length << 16;
1357 			dbg("found p_mem_node(base, length) = %x, %x\n",
1358 					p_mem_node->base, p_mem_node->length);
1359 			dbg("populated slot =%d \n", populated_slot);
1360 
1361 			if (!populated_slot) {
1362 				p_mem_node->next = ctrl->p_mem_head;
1363 				ctrl->p_mem_head = p_mem_node;
1364 			} else {
1365 				p_mem_node->next = func->p_mem_head;
1366 				func->p_mem_head = p_mem_node;
1367 			}
1368 		}
1369 
1370 		/* If we've got a valid bus number, use it
1371 		 * The second condition is to ignore bus numbers on
1372 		 * populated slots that don't have PCI-PCI bridges
1373 		 */
1374 		if (secondary_bus && (secondary_bus != primary_bus)) {
1375 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1376 			if (!bus_node)
1377 				return -ENOMEM;
1378 
1379 			bus_node->base = secondary_bus;
1380 			bus_node->length = max_bus - secondary_bus + 1;
1381 			dbg("found bus_node(base, length) = %x, %x\n",
1382 					bus_node->base, bus_node->length);
1383 			dbg("populated slot =%d \n", populated_slot);
1384 			if (!populated_slot) {
1385 				bus_node->next = ctrl->bus_head;
1386 				ctrl->bus_head = bus_node;
1387 			} else {
1388 				bus_node->next = func->bus_head;
1389 				func->bus_head = bus_node;
1390 			}
1391 		}
1392 
1393 		i--;
1394 		one_slot += sizeof(struct slot_rt);
1395 	}
1396 
1397 	/* If all of the following fail, we don't have any resources for
1398 	 * hot plug add
1399 	 */
1400 	rc = 1;
1401 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1402 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1403 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1404 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1405 
1406 	return rc;
1407 }
1408 
1409 
1410 /*
1411  * cpqhp_return_board_resources
1412  *
1413  * this routine returns all resources allocated to a board to
1414  * the available pool.
1415  *
1416  * returns 0 if success
1417  */
1418 int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1419 {
1420 	int rc = 0;
1421 	struct pci_resource *node;
1422 	struct pci_resource *t_node;
1423 	dbg("%s\n", __func__);
1424 
1425 	if (!func)
1426 		return 1;
1427 
1428 	node = func->io_head;
1429 	func->io_head = NULL;
1430 	while (node) {
1431 		t_node = node->next;
1432 		return_resource(&(resources->io_head), node);
1433 		node = t_node;
1434 	}
1435 
1436 	node = func->mem_head;
1437 	func->mem_head = NULL;
1438 	while (node) {
1439 		t_node = node->next;
1440 		return_resource(&(resources->mem_head), node);
1441 		node = t_node;
1442 	}
1443 
1444 	node = func->p_mem_head;
1445 	func->p_mem_head = NULL;
1446 	while (node) {
1447 		t_node = node->next;
1448 		return_resource(&(resources->p_mem_head), node);
1449 		node = t_node;
1450 	}
1451 
1452 	node = func->bus_head;
1453 	func->bus_head = NULL;
1454 	while (node) {
1455 		t_node = node->next;
1456 		return_resource(&(resources->bus_head), node);
1457 		node = t_node;
1458 	}
1459 
1460 	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1461 	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1462 	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1463 	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1464 
1465 	return rc;
1466 }
1467 
1468 
1469 /*
1470  * cpqhp_destroy_resource_list
1471  *
1472  * Puts node back in the resource list pointed to by head
1473  */
1474 void cpqhp_destroy_resource_list(struct resource_lists *resources)
1475 {
1476 	struct pci_resource *res, *tres;
1477 
1478 	res = resources->io_head;
1479 	resources->io_head = NULL;
1480 
1481 	while (res) {
1482 		tres = res;
1483 		res = res->next;
1484 		kfree(tres);
1485 	}
1486 
1487 	res = resources->mem_head;
1488 	resources->mem_head = NULL;
1489 
1490 	while (res) {
1491 		tres = res;
1492 		res = res->next;
1493 		kfree(tres);
1494 	}
1495 
1496 	res = resources->p_mem_head;
1497 	resources->p_mem_head = NULL;
1498 
1499 	while (res) {
1500 		tres = res;
1501 		res = res->next;
1502 		kfree(tres);
1503 	}
1504 
1505 	res = resources->bus_head;
1506 	resources->bus_head = NULL;
1507 
1508 	while (res) {
1509 		tres = res;
1510 		res = res->next;
1511 		kfree(tres);
1512 	}
1513 }
1514 
1515 
1516 /*
1517  * cpqhp_destroy_board_resources
1518  *
1519  * Puts node back in the resource list pointed to by head
1520  */
1521 void cpqhp_destroy_board_resources(struct pci_func *func)
1522 {
1523 	struct pci_resource *res, *tres;
1524 
1525 	res = func->io_head;
1526 	func->io_head = NULL;
1527 
1528 	while (res) {
1529 		tres = res;
1530 		res = res->next;
1531 		kfree(tres);
1532 	}
1533 
1534 	res = func->mem_head;
1535 	func->mem_head = NULL;
1536 
1537 	while (res) {
1538 		tres = res;
1539 		res = res->next;
1540 		kfree(tres);
1541 	}
1542 
1543 	res = func->p_mem_head;
1544 	func->p_mem_head = NULL;
1545 
1546 	while (res) {
1547 		tres = res;
1548 		res = res->next;
1549 		kfree(tres);
1550 	}
1551 
1552 	res = func->bus_head;
1553 	func->bus_head = NULL;
1554 
1555 	while (res) {
1556 		tres = res;
1557 		res = res->next;
1558 		kfree(tres);
1559 	}
1560 }
1561