1 /* 2 * Compaq Hot Plug Controller Driver 3 * 4 * Copyright (C) 1995,2001 Compaq Computer Corporation 5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 6 * Copyright (C) 2001 IBM Corp. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 18 * NON INFRINGEMENT. See the GNU General Public License for more 19 * details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Send feedback to <greg@kroah.com> 26 * 27 */ 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/wait.h> 37 #include <linux/pci.h> 38 #include <linux/pci_hotplug.h> 39 #include <linux/kthread.h> 40 #include "cpqphp.h" 41 42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func, 43 u8 behind_bridge, struct resource_lists *resources); 44 static int configure_new_function(struct controller* ctrl, struct pci_func *func, 45 u8 behind_bridge, struct resource_lists *resources); 46 static void interrupt_event_handler(struct controller *ctrl); 47 48 49 static struct task_struct *cpqhp_event_thread; 50 static unsigned long pushbutton_pending; /* = 0 */ 51 52 /* delay is in jiffies to wait for */ 53 static void long_delay(int delay) 54 { 55 /* 56 * XXX(hch): if someone is bored please convert all callers 57 * to call msleep_interruptible directly. They really want 58 * to specify timeouts in natural units and spend a lot of 59 * effort converting them to jiffies.. 60 */ 61 msleep_interruptible(jiffies_to_msecs(delay)); 62 } 63 64 65 /* FIXME: The following line needs to be somewhere else... */ 66 #define WRONG_BUS_FREQUENCY 0x07 67 static u8 handle_switch_change(u8 change, struct controller * ctrl) 68 { 69 int hp_slot; 70 u8 rc = 0; 71 u16 temp_word; 72 struct pci_func *func; 73 struct event_info *taskInfo; 74 75 if (!change) 76 return 0; 77 78 /* Switch Change */ 79 dbg("cpqsbd: Switch interrupt received.\n"); 80 81 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 82 if (change & (0x1L << hp_slot)) { 83 /* 84 * this one changed. 85 */ 86 func = cpqhp_slot_find(ctrl->bus, 87 (hp_slot + ctrl->slot_device_offset), 0); 88 89 /* this is the structure that tells the worker thread 90 * what to do 91 */ 92 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 93 ctrl->next_event = (ctrl->next_event + 1) % 10; 94 taskInfo->hp_slot = hp_slot; 95 96 rc++; 97 98 temp_word = ctrl->ctrl_int_comp >> 16; 99 func->presence_save = (temp_word >> hp_slot) & 0x01; 100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 101 102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 103 /* 104 * Switch opened 105 */ 106 107 func->switch_save = 0; 108 109 taskInfo->event_type = INT_SWITCH_OPEN; 110 } else { 111 /* 112 * Switch closed 113 */ 114 115 func->switch_save = 0x10; 116 117 taskInfo->event_type = INT_SWITCH_CLOSE; 118 } 119 } 120 } 121 122 return rc; 123 } 124 125 /** 126 * cpqhp_find_slot - find the struct slot of given device 127 * @ctrl: scan lots of this controller 128 * @device: the device id to find 129 */ 130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 131 { 132 struct slot *slot = ctrl->slot; 133 134 while (slot && (slot->device != device)) 135 slot = slot->next; 136 137 return slot; 138 } 139 140 141 static u8 handle_presence_change(u16 change, struct controller * ctrl) 142 { 143 int hp_slot; 144 u8 rc = 0; 145 u8 temp_byte; 146 u16 temp_word; 147 struct pci_func *func; 148 struct event_info *taskInfo; 149 struct slot *p_slot; 150 151 if (!change) 152 return 0; 153 154 /* 155 * Presence Change 156 */ 157 dbg("cpqsbd: Presence/Notify input change.\n"); 158 dbg(" Changed bits are 0x%4.4x\n", change ); 159 160 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 161 if (change & (0x0101 << hp_slot)) { 162 /* 163 * this one changed. 164 */ 165 func = cpqhp_slot_find(ctrl->bus, 166 (hp_slot + ctrl->slot_device_offset), 0); 167 168 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 169 ctrl->next_event = (ctrl->next_event + 1) % 10; 170 taskInfo->hp_slot = hp_slot; 171 172 rc++; 173 174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 175 if (!p_slot) 176 return 0; 177 178 /* If the switch closed, must be a button 179 * If not in button mode, nevermind 180 */ 181 if (func->switch_save && (ctrl->push_button == 1)) { 182 temp_word = ctrl->ctrl_int_comp >> 16; 183 temp_byte = (temp_word >> hp_slot) & 0x01; 184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 185 186 if (temp_byte != func->presence_save) { 187 /* 188 * button Pressed (doesn't do anything) 189 */ 190 dbg("hp_slot %d button pressed\n", hp_slot); 191 taskInfo->event_type = INT_BUTTON_PRESS; 192 } else { 193 /* 194 * button Released - TAKE ACTION!!!! 195 */ 196 dbg("hp_slot %d button released\n", hp_slot); 197 taskInfo->event_type = INT_BUTTON_RELEASE; 198 199 /* Cancel if we are still blinking */ 200 if ((p_slot->state == BLINKINGON_STATE) 201 || (p_slot->state == BLINKINGOFF_STATE)) { 202 taskInfo->event_type = INT_BUTTON_CANCEL; 203 dbg("hp_slot %d button cancel\n", hp_slot); 204 } else if ((p_slot->state == POWERON_STATE) 205 || (p_slot->state == POWEROFF_STATE)) { 206 /* info(msg_button_ignore, p_slot->number); */ 207 taskInfo->event_type = INT_BUTTON_IGNORE; 208 dbg("hp_slot %d button ignore\n", hp_slot); 209 } 210 } 211 } else { 212 /* Switch is open, assume a presence change 213 * Save the presence state 214 */ 215 temp_word = ctrl->ctrl_int_comp >> 16; 216 func->presence_save = (temp_word >> hp_slot) & 0x01; 217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 218 219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 221 /* Present */ 222 taskInfo->event_type = INT_PRESENCE_ON; 223 } else { 224 /* Not Present */ 225 taskInfo->event_type = INT_PRESENCE_OFF; 226 } 227 } 228 } 229 } 230 231 return rc; 232 } 233 234 235 static u8 handle_power_fault(u8 change, struct controller * ctrl) 236 { 237 int hp_slot; 238 u8 rc = 0; 239 struct pci_func *func; 240 struct event_info *taskInfo; 241 242 if (!change) 243 return 0; 244 245 /* 246 * power fault 247 */ 248 249 info("power fault interrupt\n"); 250 251 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 252 if (change & (0x01 << hp_slot)) { 253 /* 254 * this one changed. 255 */ 256 func = cpqhp_slot_find(ctrl->bus, 257 (hp_slot + ctrl->slot_device_offset), 0); 258 259 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 260 ctrl->next_event = (ctrl->next_event + 1) % 10; 261 taskInfo->hp_slot = hp_slot; 262 263 rc++; 264 265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 266 /* 267 * power fault Cleared 268 */ 269 func->status = 0x00; 270 271 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 272 } else { 273 /* 274 * power fault 275 */ 276 taskInfo->event_type = INT_POWER_FAULT; 277 278 if (ctrl->rev < 4) { 279 amber_LED_on (ctrl, hp_slot); 280 green_LED_off (ctrl, hp_slot); 281 set_SOGO (ctrl); 282 283 /* this is a fatal condition, we want 284 * to crash the machine to protect from 285 * data corruption. simulated_NMI 286 * shouldn't ever return */ 287 /* FIXME 288 simulated_NMI(hp_slot, ctrl); */ 289 290 /* The following code causes a software 291 * crash just in case simulated_NMI did 292 * return */ 293 /*FIXME 294 panic(msg_power_fault); */ 295 } else { 296 /* set power fault status for this board */ 297 func->status = 0xFF; 298 info("power fault bit %x set\n", hp_slot); 299 } 300 } 301 } 302 } 303 304 return rc; 305 } 306 307 308 /** 309 * sort_by_size - sort nodes on the list by their length, smallest first. 310 * @head: list to sort 311 */ 312 static int sort_by_size(struct pci_resource **head) 313 { 314 struct pci_resource *current_res; 315 struct pci_resource *next_res; 316 int out_of_order = 1; 317 318 if (!(*head)) 319 return 1; 320 321 if (!((*head)->next)) 322 return 0; 323 324 while (out_of_order) { 325 out_of_order = 0; 326 327 /* Special case for swapping list head */ 328 if (((*head)->next) && 329 ((*head)->length > (*head)->next->length)) { 330 out_of_order++; 331 current_res = *head; 332 *head = (*head)->next; 333 current_res->next = (*head)->next; 334 (*head)->next = current_res; 335 } 336 337 current_res = *head; 338 339 while (current_res->next && current_res->next->next) { 340 if (current_res->next->length > current_res->next->next->length) { 341 out_of_order++; 342 next_res = current_res->next; 343 current_res->next = current_res->next->next; 344 current_res = current_res->next; 345 next_res->next = current_res->next; 346 current_res->next = next_res; 347 } else 348 current_res = current_res->next; 349 } 350 } /* End of out_of_order loop */ 351 352 return 0; 353 } 354 355 356 /** 357 * sort_by_max_size - sort nodes on the list by their length, largest first. 358 * @head: list to sort 359 */ 360 static int sort_by_max_size(struct pci_resource **head) 361 { 362 struct pci_resource *current_res; 363 struct pci_resource *next_res; 364 int out_of_order = 1; 365 366 if (!(*head)) 367 return 1; 368 369 if (!((*head)->next)) 370 return 0; 371 372 while (out_of_order) { 373 out_of_order = 0; 374 375 /* Special case for swapping list head */ 376 if (((*head)->next) && 377 ((*head)->length < (*head)->next->length)) { 378 out_of_order++; 379 current_res = *head; 380 *head = (*head)->next; 381 current_res->next = (*head)->next; 382 (*head)->next = current_res; 383 } 384 385 current_res = *head; 386 387 while (current_res->next && current_res->next->next) { 388 if (current_res->next->length < current_res->next->next->length) { 389 out_of_order++; 390 next_res = current_res->next; 391 current_res->next = current_res->next->next; 392 current_res = current_res->next; 393 next_res->next = current_res->next; 394 current_res->next = next_res; 395 } else 396 current_res = current_res->next; 397 } 398 } /* End of out_of_order loop */ 399 400 return 0; 401 } 402 403 404 /** 405 * do_pre_bridge_resource_split - find node of resources that are unused 406 * @head: new list head 407 * @orig_head: original list head 408 * @alignment: max node size (?) 409 */ 410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 411 struct pci_resource **orig_head, u32 alignment) 412 { 413 struct pci_resource *prevnode = NULL; 414 struct pci_resource *node; 415 struct pci_resource *split_node; 416 u32 rc; 417 u32 temp_dword; 418 dbg("do_pre_bridge_resource_split\n"); 419 420 if (!(*head) || !(*orig_head)) 421 return NULL; 422 423 rc = cpqhp_resource_sort_and_combine(head); 424 425 if (rc) 426 return NULL; 427 428 if ((*head)->base != (*orig_head)->base) 429 return NULL; 430 431 if ((*head)->length == (*orig_head)->length) 432 return NULL; 433 434 435 /* If we got here, there the bridge requires some of the resource, but 436 * we may be able to split some off of the front 437 */ 438 439 node = *head; 440 441 if (node->length & (alignment -1)) { 442 /* this one isn't an aligned length, so we'll make a new entry 443 * and split it up. 444 */ 445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 446 447 if (!split_node) 448 return NULL; 449 450 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 451 452 split_node->base = node->base; 453 split_node->length = temp_dword; 454 455 node->length -= temp_dword; 456 node->base += split_node->length; 457 458 /* Put it in the list */ 459 *head = split_node; 460 split_node->next = node; 461 } 462 463 if (node->length < alignment) 464 return NULL; 465 466 /* Now unlink it */ 467 if (*head == node) { 468 *head = node->next; 469 } else { 470 prevnode = *head; 471 while (prevnode->next != node) 472 prevnode = prevnode->next; 473 474 prevnode->next = node->next; 475 } 476 node->next = NULL; 477 478 return node; 479 } 480 481 482 /** 483 * do_bridge_resource_split - find one node of resources that aren't in use 484 * @head: list head 485 * @alignment: max node size (?) 486 */ 487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 488 { 489 struct pci_resource *prevnode = NULL; 490 struct pci_resource *node; 491 u32 rc; 492 u32 temp_dword; 493 494 rc = cpqhp_resource_sort_and_combine(head); 495 496 if (rc) 497 return NULL; 498 499 node = *head; 500 501 while (node->next) { 502 prevnode = node; 503 node = node->next; 504 kfree(prevnode); 505 } 506 507 if (node->length < alignment) 508 goto error; 509 510 if (node->base & (alignment - 1)) { 511 /* Short circuit if adjusted size is too small */ 512 temp_dword = (node->base | (alignment-1)) + 1; 513 if ((node->length - (temp_dword - node->base)) < alignment) 514 goto error; 515 516 node->length -= (temp_dword - node->base); 517 node->base = temp_dword; 518 } 519 520 if (node->length & (alignment - 1)) 521 /* There's stuff in use after this node */ 522 goto error; 523 524 return node; 525 error: 526 kfree(node); 527 return NULL; 528 } 529 530 531 /** 532 * get_io_resource - find first node of given size not in ISA aliasing window. 533 * @head: list to search 534 * @size: size of node to find, must be a power of two. 535 * 536 * Description: This function sorts the resource list by size and then returns 537 * returns the first node of "size" length that is not in the ISA aliasing 538 * window. If it finds a node larger than "size" it will split it up. 539 */ 540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 541 { 542 struct pci_resource *prevnode; 543 struct pci_resource *node; 544 struct pci_resource *split_node; 545 u32 temp_dword; 546 547 if (!(*head)) 548 return NULL; 549 550 if (cpqhp_resource_sort_and_combine(head)) 551 return NULL; 552 553 if (sort_by_size(head)) 554 return NULL; 555 556 for (node = *head; node; node = node->next) { 557 if (node->length < size) 558 continue; 559 560 if (node->base & (size - 1)) { 561 /* this one isn't base aligned properly 562 * so we'll make a new entry and split it up 563 */ 564 temp_dword = (node->base | (size-1)) + 1; 565 566 /* Short circuit if adjusted size is too small */ 567 if ((node->length - (temp_dword - node->base)) < size) 568 continue; 569 570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 571 572 if (!split_node) 573 return NULL; 574 575 split_node->base = node->base; 576 split_node->length = temp_dword - node->base; 577 node->base = temp_dword; 578 node->length -= split_node->length; 579 580 /* Put it in the list */ 581 split_node->next = node->next; 582 node->next = split_node; 583 } /* End of non-aligned base */ 584 585 /* Don't need to check if too small since we already did */ 586 if (node->length > size) { 587 /* this one is longer than we need 588 * so we'll make a new entry and split it up 589 */ 590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 591 592 if (!split_node) 593 return NULL; 594 595 split_node->base = node->base + size; 596 split_node->length = node->length - size; 597 node->length = size; 598 599 /* Put it in the list */ 600 split_node->next = node->next; 601 node->next = split_node; 602 } /* End of too big on top end */ 603 604 /* For IO make sure it's not in the ISA aliasing space */ 605 if (node->base & 0x300L) 606 continue; 607 608 /* If we got here, then it is the right size 609 * Now take it out of the list and break 610 */ 611 if (*head == node) { 612 *head = node->next; 613 } else { 614 prevnode = *head; 615 while (prevnode->next != node) 616 prevnode = prevnode->next; 617 618 prevnode->next = node->next; 619 } 620 node->next = NULL; 621 break; 622 } 623 624 return node; 625 } 626 627 628 /** 629 * get_max_resource - get largest node which has at least the given size. 630 * @head: the list to search the node in 631 * @size: the minimum size of the node to find 632 * 633 * Description: Gets the largest node that is at least "size" big from the 634 * list pointed to by head. It aligns the node on top and bottom 635 * to "size" alignment before returning it. 636 */ 637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 638 { 639 struct pci_resource *max; 640 struct pci_resource *temp; 641 struct pci_resource *split_node; 642 u32 temp_dword; 643 644 if (cpqhp_resource_sort_and_combine(head)) 645 return NULL; 646 647 if (sort_by_max_size(head)) 648 return NULL; 649 650 for (max = *head; max; max = max->next) { 651 /* If not big enough we could probably just bail, 652 * instead we'll continue to the next. 653 */ 654 if (max->length < size) 655 continue; 656 657 if (max->base & (size - 1)) { 658 /* this one isn't base aligned properly 659 * so we'll make a new entry and split it up 660 */ 661 temp_dword = (max->base | (size-1)) + 1; 662 663 /* Short circuit if adjusted size is too small */ 664 if ((max->length - (temp_dword - max->base)) < size) 665 continue; 666 667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 668 669 if (!split_node) 670 return NULL; 671 672 split_node->base = max->base; 673 split_node->length = temp_dword - max->base; 674 max->base = temp_dword; 675 max->length -= split_node->length; 676 677 split_node->next = max->next; 678 max->next = split_node; 679 } 680 681 if ((max->base + max->length) & (size - 1)) { 682 /* this one isn't end aligned properly at the top 683 * so we'll make a new entry and split it up 684 */ 685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 686 687 if (!split_node) 688 return NULL; 689 temp_dword = ((max->base + max->length) & ~(size - 1)); 690 split_node->base = temp_dword; 691 split_node->length = max->length + max->base 692 - split_node->base; 693 max->length -= split_node->length; 694 695 split_node->next = max->next; 696 max->next = split_node; 697 } 698 699 /* Make sure it didn't shrink too much when we aligned it */ 700 if (max->length < size) 701 continue; 702 703 /* Now take it out of the list */ 704 temp = *head; 705 if (temp == max) { 706 *head = max->next; 707 } else { 708 while (temp && temp->next != max) { 709 temp = temp->next; 710 } 711 712 temp->next = max->next; 713 } 714 715 max->next = NULL; 716 break; 717 } 718 719 return max; 720 } 721 722 723 /** 724 * get_resource - find resource of given size and split up larger ones. 725 * @head: the list to search for resources 726 * @size: the size limit to use 727 * 728 * Description: This function sorts the resource list by size and then 729 * returns the first node of "size" length. If it finds a node 730 * larger than "size" it will split it up. 731 * 732 * size must be a power of two. 733 */ 734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 735 { 736 struct pci_resource *prevnode; 737 struct pci_resource *node; 738 struct pci_resource *split_node; 739 u32 temp_dword; 740 741 if (cpqhp_resource_sort_and_combine(head)) 742 return NULL; 743 744 if (sort_by_size(head)) 745 return NULL; 746 747 for (node = *head; node; node = node->next) { 748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 749 __func__, size, node, node->base, node->length); 750 if (node->length < size) 751 continue; 752 753 if (node->base & (size - 1)) { 754 dbg("%s: not aligned\n", __func__); 755 /* this one isn't base aligned properly 756 * so we'll make a new entry and split it up 757 */ 758 temp_dword = (node->base | (size-1)) + 1; 759 760 /* Short circuit if adjusted size is too small */ 761 if ((node->length - (temp_dword - node->base)) < size) 762 continue; 763 764 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 765 766 if (!split_node) 767 return NULL; 768 769 split_node->base = node->base; 770 split_node->length = temp_dword - node->base; 771 node->base = temp_dword; 772 node->length -= split_node->length; 773 774 split_node->next = node->next; 775 node->next = split_node; 776 } /* End of non-aligned base */ 777 778 /* Don't need to check if too small since we already did */ 779 if (node->length > size) { 780 dbg("%s: too big\n", __func__); 781 /* this one is longer than we need 782 * so we'll make a new entry and split it up 783 */ 784 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 785 786 if (!split_node) 787 return NULL; 788 789 split_node->base = node->base + size; 790 split_node->length = node->length - size; 791 node->length = size; 792 793 /* Put it in the list */ 794 split_node->next = node->next; 795 node->next = split_node; 796 } /* End of too big on top end */ 797 798 dbg("%s: got one!!!\n", __func__); 799 /* If we got here, then it is the right size 800 * Now take it out of the list */ 801 if (*head == node) { 802 *head = node->next; 803 } else { 804 prevnode = *head; 805 while (prevnode->next != node) 806 prevnode = prevnode->next; 807 808 prevnode->next = node->next; 809 } 810 node->next = NULL; 811 break; 812 } 813 return node; 814 } 815 816 817 /** 818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 819 * @head: the list to sort and clean up 820 * 821 * Description: Sorts all of the nodes in the list in ascending order by 822 * their base addresses. Also does garbage collection by 823 * combining adjacent nodes. 824 * 825 * Returns %0 if success. 826 */ 827 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 828 { 829 struct pci_resource *node1; 830 struct pci_resource *node2; 831 int out_of_order = 1; 832 833 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 834 835 if (!(*head)) 836 return 1; 837 838 dbg("*head->next = %p\n",(*head)->next); 839 840 if (!(*head)->next) 841 return 0; /* only one item on the list, already sorted! */ 842 843 dbg("*head->base = 0x%x\n",(*head)->base); 844 dbg("*head->next->base = 0x%x\n",(*head)->next->base); 845 while (out_of_order) { 846 out_of_order = 0; 847 848 /* Special case for swapping list head */ 849 if (((*head)->next) && 850 ((*head)->base > (*head)->next->base)) { 851 node1 = *head; 852 (*head) = (*head)->next; 853 node1->next = (*head)->next; 854 (*head)->next = node1; 855 out_of_order++; 856 } 857 858 node1 = (*head); 859 860 while (node1->next && node1->next->next) { 861 if (node1->next->base > node1->next->next->base) { 862 out_of_order++; 863 node2 = node1->next; 864 node1->next = node1->next->next; 865 node1 = node1->next; 866 node2->next = node1->next; 867 node1->next = node2; 868 } else 869 node1 = node1->next; 870 } 871 } /* End of out_of_order loop */ 872 873 node1 = *head; 874 875 while (node1 && node1->next) { 876 if ((node1->base + node1->length) == node1->next->base) { 877 /* Combine */ 878 dbg("8..\n"); 879 node1->length += node1->next->length; 880 node2 = node1->next; 881 node1->next = node1->next->next; 882 kfree(node2); 883 } else 884 node1 = node1->next; 885 } 886 887 return 0; 888 } 889 890 891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 892 { 893 struct controller *ctrl = data; 894 u8 schedule_flag = 0; 895 u8 reset; 896 u16 misc; 897 u32 Diff; 898 u32 temp_dword; 899 900 901 misc = readw(ctrl->hpc_reg + MISC); 902 /* 903 * Check to see if it was our interrupt 904 */ 905 if (!(misc & 0x000C)) { 906 return IRQ_NONE; 907 } 908 909 if (misc & 0x0004) { 910 /* 911 * Serial Output interrupt Pending 912 */ 913 914 /* Clear the interrupt */ 915 misc |= 0x0004; 916 writew(misc, ctrl->hpc_reg + MISC); 917 918 /* Read to clear posted writes */ 919 misc = readw(ctrl->hpc_reg + MISC); 920 921 dbg ("%s - waking up\n", __func__); 922 wake_up_interruptible(&ctrl->queue); 923 } 924 925 if (misc & 0x0008) { 926 /* General-interrupt-input interrupt Pending */ 927 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 928 929 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 930 931 /* Clear the interrupt */ 932 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 933 934 /* Read it back to clear any posted writes */ 935 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 936 937 if (!Diff) 938 /* Clear all interrupts */ 939 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 940 941 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 942 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 943 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 944 } 945 946 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 947 if (reset & 0x40) { 948 /* Bus reset has completed */ 949 reset &= 0xCF; 950 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 951 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 952 wake_up_interruptible(&ctrl->queue); 953 } 954 955 if (schedule_flag) { 956 wake_up_process(cpqhp_event_thread); 957 dbg("Waking even thread"); 958 } 959 return IRQ_HANDLED; 960 } 961 962 963 /** 964 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 965 * @busnumber: bus where new node is to be located 966 * 967 * Returns pointer to the new node or %NULL if unsuccessful. 968 */ 969 struct pci_func *cpqhp_slot_create(u8 busnumber) 970 { 971 struct pci_func *new_slot; 972 struct pci_func *next; 973 974 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 975 if (new_slot == NULL) 976 return new_slot; 977 978 new_slot->next = NULL; 979 new_slot->configured = 1; 980 981 if (cpqhp_slot_list[busnumber] == NULL) { 982 cpqhp_slot_list[busnumber] = new_slot; 983 } else { 984 next = cpqhp_slot_list[busnumber]; 985 while (next->next != NULL) 986 next = next->next; 987 next->next = new_slot; 988 } 989 return new_slot; 990 } 991 992 993 /** 994 * slot_remove - Removes a node from the linked list of slots. 995 * @old_slot: slot to remove 996 * 997 * Returns %0 if successful, !0 otherwise. 998 */ 999 static int slot_remove(struct pci_func * old_slot) 1000 { 1001 struct pci_func *next; 1002 1003 if (old_slot == NULL) 1004 return 1; 1005 1006 next = cpqhp_slot_list[old_slot->bus]; 1007 if (next == NULL) 1008 return 1; 1009 1010 if (next == old_slot) { 1011 cpqhp_slot_list[old_slot->bus] = old_slot->next; 1012 cpqhp_destroy_board_resources(old_slot); 1013 kfree(old_slot); 1014 return 0; 1015 } 1016 1017 while ((next->next != old_slot) && (next->next != NULL)) 1018 next = next->next; 1019 1020 if (next->next == old_slot) { 1021 next->next = old_slot->next; 1022 cpqhp_destroy_board_resources(old_slot); 1023 kfree(old_slot); 1024 return 0; 1025 } else 1026 return 2; 1027 } 1028 1029 1030 /** 1031 * bridge_slot_remove - Removes a node from the linked list of slots. 1032 * @bridge: bridge to remove 1033 * 1034 * Returns %0 if successful, !0 otherwise. 1035 */ 1036 static int bridge_slot_remove(struct pci_func *bridge) 1037 { 1038 u8 subordinateBus, secondaryBus; 1039 u8 tempBus; 1040 struct pci_func *next; 1041 1042 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1043 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1044 1045 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1046 next = cpqhp_slot_list[tempBus]; 1047 1048 while (!slot_remove(next)) 1049 next = cpqhp_slot_list[tempBus]; 1050 } 1051 1052 next = cpqhp_slot_list[bridge->bus]; 1053 1054 if (next == NULL) 1055 return 1; 1056 1057 if (next == bridge) { 1058 cpqhp_slot_list[bridge->bus] = bridge->next; 1059 goto out; 1060 } 1061 1062 while ((next->next != bridge) && (next->next != NULL)) 1063 next = next->next; 1064 1065 if (next->next != bridge) 1066 return 2; 1067 next->next = bridge->next; 1068 out: 1069 kfree(bridge); 1070 return 0; 1071 } 1072 1073 1074 /** 1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1076 * @bus: bus to find 1077 * @device: device to find 1078 * @index: is %0 for first function found, %1 for the second... 1079 * 1080 * Returns pointer to the node if successful, %NULL otherwise. 1081 */ 1082 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1083 { 1084 int found = -1; 1085 struct pci_func *func; 1086 1087 func = cpqhp_slot_list[bus]; 1088 1089 if ((func == NULL) || ((func->device == device) && (index == 0))) 1090 return func; 1091 1092 if (func->device == device) 1093 found++; 1094 1095 while (func->next != NULL) { 1096 func = func->next; 1097 1098 if (func->device == device) 1099 found++; 1100 1101 if (found == index) 1102 return func; 1103 } 1104 1105 return NULL; 1106 } 1107 1108 1109 /* DJZ: I don't think is_bridge will work as is. 1110 * FIXME */ 1111 static int is_bridge(struct pci_func * func) 1112 { 1113 /* Check the header type */ 1114 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1115 return 1; 1116 else 1117 return 0; 1118 } 1119 1120 1121 /** 1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1123 * @ctrl: controller to change frequency/mode for. 1124 * @adapter_speed: the speed of the adapter we want to match. 1125 * @hp_slot: the slot number where the adapter is installed. 1126 * 1127 * Returns %0 if we successfully change frequency and/or mode to match the 1128 * adapter speed. 1129 */ 1130 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1131 { 1132 struct slot *slot; 1133 u8 reg; 1134 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1135 u16 reg16; 1136 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1137 1138 if (ctrl->speed == adapter_speed) 1139 return 0; 1140 1141 /* We don't allow freq/mode changes if we find another adapter running 1142 * in another slot on this controller 1143 */ 1144 for(slot = ctrl->slot; slot; slot = slot->next) { 1145 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1146 continue; 1147 if (!slot->hotplug_slot || !slot->hotplug_slot->info) 1148 continue; 1149 if (slot->hotplug_slot->info->adapter_status == 0) 1150 continue; 1151 /* If another adapter is running on the same segment but at a 1152 * lower speed/mode, we allow the new adapter to function at 1153 * this rate if supported 1154 */ 1155 if (ctrl->speed < adapter_speed) 1156 return 0; 1157 1158 return 1; 1159 } 1160 1161 /* If the controller doesn't support freq/mode changes and the 1162 * controller is running at a higher mode, we bail 1163 */ 1164 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1165 return 1; 1166 1167 /* But we allow the adapter to run at a lower rate if possible */ 1168 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1169 return 0; 1170 1171 /* We try to set the max speed supported by both the adapter and 1172 * controller 1173 */ 1174 if (ctrl->speed_capability < adapter_speed) { 1175 if (ctrl->speed == ctrl->speed_capability) 1176 return 0; 1177 adapter_speed = ctrl->speed_capability; 1178 } 1179 1180 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1181 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1182 1183 set_SOGO(ctrl); 1184 wait_for_ctrl_irq(ctrl); 1185 1186 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1187 reg = 0xF5; 1188 else 1189 reg = 0xF4; 1190 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1191 1192 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1193 reg16 &= ~0x000F; 1194 switch(adapter_speed) { 1195 case(PCI_SPEED_133MHz_PCIX): 1196 reg = 0x75; 1197 reg16 |= 0xB; 1198 break; 1199 case(PCI_SPEED_100MHz_PCIX): 1200 reg = 0x74; 1201 reg16 |= 0xA; 1202 break; 1203 case(PCI_SPEED_66MHz_PCIX): 1204 reg = 0x73; 1205 reg16 |= 0x9; 1206 break; 1207 case(PCI_SPEED_66MHz): 1208 reg = 0x73; 1209 reg16 |= 0x1; 1210 break; 1211 default: /* 33MHz PCI 2.2 */ 1212 reg = 0x71; 1213 break; 1214 1215 } 1216 reg16 |= 0xB << 12; 1217 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1218 1219 mdelay(5); 1220 1221 /* Reenable interrupts */ 1222 writel(0, ctrl->hpc_reg + INT_MASK); 1223 1224 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1225 1226 /* Restart state machine */ 1227 reg = ~0xF; 1228 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1229 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1230 1231 /* Only if mode change...*/ 1232 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1233 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1234 set_SOGO(ctrl); 1235 1236 wait_for_ctrl_irq(ctrl); 1237 mdelay(1100); 1238 1239 /* Restore LED/Slot state */ 1240 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1241 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1242 1243 set_SOGO(ctrl); 1244 wait_for_ctrl_irq(ctrl); 1245 1246 ctrl->speed = adapter_speed; 1247 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1248 1249 info("Successfully changed frequency/mode for adapter in slot %d\n", 1250 slot->number); 1251 return 0; 1252 } 1253 1254 /* the following routines constitute the bulk of the 1255 * hotplug controller logic 1256 */ 1257 1258 1259 /** 1260 * board_replaced - Called after a board has been replaced in the system. 1261 * @func: PCI device/function information 1262 * @ctrl: hotplug controller 1263 * 1264 * This is only used if we don't have resources for hot add. 1265 * Turns power on for the board. 1266 * Checks to see if board is the same. 1267 * If board is same, reconfigures it. 1268 * If board isn't same, turns it back off. 1269 */ 1270 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1271 { 1272 u8 hp_slot; 1273 u8 temp_byte; 1274 u8 adapter_speed; 1275 u32 rc = 0; 1276 1277 hp_slot = func->device - ctrl->slot_device_offset; 1278 1279 /* 1280 * The switch is open. 1281 */ 1282 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1283 rc = INTERLOCK_OPEN; 1284 /* 1285 * The board is already on 1286 */ 1287 else if (is_slot_enabled (ctrl, hp_slot)) 1288 rc = CARD_FUNCTIONING; 1289 else { 1290 mutex_lock(&ctrl->crit_sect); 1291 1292 /* turn on board without attaching to the bus */ 1293 enable_slot_power (ctrl, hp_slot); 1294 1295 set_SOGO(ctrl); 1296 1297 /* Wait for SOBS to be unset */ 1298 wait_for_ctrl_irq (ctrl); 1299 1300 /* Change bits in slot power register to force another shift out 1301 * NOTE: this is to work around the timer bug */ 1302 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1303 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1304 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1305 1306 set_SOGO(ctrl); 1307 1308 /* Wait for SOBS to be unset */ 1309 wait_for_ctrl_irq (ctrl); 1310 1311 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1312 if (ctrl->speed != adapter_speed) 1313 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1314 rc = WRONG_BUS_FREQUENCY; 1315 1316 /* turn off board without attaching to the bus */ 1317 disable_slot_power (ctrl, hp_slot); 1318 1319 set_SOGO(ctrl); 1320 1321 /* Wait for SOBS to be unset */ 1322 wait_for_ctrl_irq (ctrl); 1323 1324 mutex_unlock(&ctrl->crit_sect); 1325 1326 if (rc) 1327 return rc; 1328 1329 mutex_lock(&ctrl->crit_sect); 1330 1331 slot_enable (ctrl, hp_slot); 1332 green_LED_blink (ctrl, hp_slot); 1333 1334 amber_LED_off (ctrl, hp_slot); 1335 1336 set_SOGO(ctrl); 1337 1338 /* Wait for SOBS to be unset */ 1339 wait_for_ctrl_irq (ctrl); 1340 1341 mutex_unlock(&ctrl->crit_sect); 1342 1343 /* Wait for ~1 second because of hot plug spec */ 1344 long_delay(1*HZ); 1345 1346 /* Check for a power fault */ 1347 if (func->status == 0xFF) { 1348 /* power fault occurred, but it was benign */ 1349 rc = POWER_FAILURE; 1350 func->status = 0; 1351 } else 1352 rc = cpqhp_valid_replace(ctrl, func); 1353 1354 if (!rc) { 1355 /* It must be the same board */ 1356 1357 rc = cpqhp_configure_board(ctrl, func); 1358 1359 /* If configuration fails, turn it off 1360 * Get slot won't work for devices behind 1361 * bridges, but in this case it will always be 1362 * called for the "base" bus/dev/func of an 1363 * adapter. 1364 */ 1365 1366 mutex_lock(&ctrl->crit_sect); 1367 1368 amber_LED_on (ctrl, hp_slot); 1369 green_LED_off (ctrl, hp_slot); 1370 slot_disable (ctrl, hp_slot); 1371 1372 set_SOGO(ctrl); 1373 1374 /* Wait for SOBS to be unset */ 1375 wait_for_ctrl_irq (ctrl); 1376 1377 mutex_unlock(&ctrl->crit_sect); 1378 1379 if (rc) 1380 return rc; 1381 else 1382 return 1; 1383 1384 } else { 1385 /* Something is wrong 1386 1387 * Get slot won't work for devices behind bridges, but 1388 * in this case it will always be called for the "base" 1389 * bus/dev/func of an adapter. 1390 */ 1391 1392 mutex_lock(&ctrl->crit_sect); 1393 1394 amber_LED_on (ctrl, hp_slot); 1395 green_LED_off (ctrl, hp_slot); 1396 slot_disable (ctrl, hp_slot); 1397 1398 set_SOGO(ctrl); 1399 1400 /* Wait for SOBS to be unset */ 1401 wait_for_ctrl_irq (ctrl); 1402 1403 mutex_unlock(&ctrl->crit_sect); 1404 } 1405 1406 } 1407 return rc; 1408 1409 } 1410 1411 1412 /** 1413 * board_added - Called after a board has been added to the system. 1414 * @func: PCI device/function info 1415 * @ctrl: hotplug controller 1416 * 1417 * Turns power on for the board. 1418 * Configures board. 1419 */ 1420 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1421 { 1422 u8 hp_slot; 1423 u8 temp_byte; 1424 u8 adapter_speed; 1425 int index; 1426 u32 temp_register = 0xFFFFFFFF; 1427 u32 rc = 0; 1428 struct pci_func *new_slot = NULL; 1429 struct slot *p_slot; 1430 struct resource_lists res_lists; 1431 1432 hp_slot = func->device - ctrl->slot_device_offset; 1433 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1434 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1435 1436 mutex_lock(&ctrl->crit_sect); 1437 1438 /* turn on board without attaching to the bus */ 1439 enable_slot_power(ctrl, hp_slot); 1440 1441 set_SOGO(ctrl); 1442 1443 /* Wait for SOBS to be unset */ 1444 wait_for_ctrl_irq (ctrl); 1445 1446 /* Change bits in slot power register to force another shift out 1447 * NOTE: this is to work around the timer bug 1448 */ 1449 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1450 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1451 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1452 1453 set_SOGO(ctrl); 1454 1455 /* Wait for SOBS to be unset */ 1456 wait_for_ctrl_irq (ctrl); 1457 1458 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1459 if (ctrl->speed != adapter_speed) 1460 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1461 rc = WRONG_BUS_FREQUENCY; 1462 1463 /* turn off board without attaching to the bus */ 1464 disable_slot_power (ctrl, hp_slot); 1465 1466 set_SOGO(ctrl); 1467 1468 /* Wait for SOBS to be unset */ 1469 wait_for_ctrl_irq(ctrl); 1470 1471 mutex_unlock(&ctrl->crit_sect); 1472 1473 if (rc) 1474 return rc; 1475 1476 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1477 1478 /* turn on board and blink green LED */ 1479 1480 dbg("%s: before down\n", __func__); 1481 mutex_lock(&ctrl->crit_sect); 1482 dbg("%s: after down\n", __func__); 1483 1484 dbg("%s: before slot_enable\n", __func__); 1485 slot_enable (ctrl, hp_slot); 1486 1487 dbg("%s: before green_LED_blink\n", __func__); 1488 green_LED_blink (ctrl, hp_slot); 1489 1490 dbg("%s: before amber_LED_blink\n", __func__); 1491 amber_LED_off (ctrl, hp_slot); 1492 1493 dbg("%s: before set_SOGO\n", __func__); 1494 set_SOGO(ctrl); 1495 1496 /* Wait for SOBS to be unset */ 1497 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1498 wait_for_ctrl_irq (ctrl); 1499 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1500 1501 dbg("%s: before up\n", __func__); 1502 mutex_unlock(&ctrl->crit_sect); 1503 dbg("%s: after up\n", __func__); 1504 1505 /* Wait for ~1 second because of hot plug spec */ 1506 dbg("%s: before long_delay\n", __func__); 1507 long_delay(1*HZ); 1508 dbg("%s: after long_delay\n", __func__); 1509 1510 dbg("%s: func status = %x\n", __func__, func->status); 1511 /* Check for a power fault */ 1512 if (func->status == 0xFF) { 1513 /* power fault occurred, but it was benign */ 1514 temp_register = 0xFFFFFFFF; 1515 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1516 rc = POWER_FAILURE; 1517 func->status = 0; 1518 } else { 1519 /* Get vendor/device ID u32 */ 1520 ctrl->pci_bus->number = func->bus; 1521 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1522 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1523 dbg("%s: temp_register is %x\n", __func__, temp_register); 1524 1525 if (rc != 0) { 1526 /* Something's wrong here */ 1527 temp_register = 0xFFFFFFFF; 1528 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1529 } 1530 /* Preset return code. It will be changed later if things go okay. */ 1531 rc = NO_ADAPTER_PRESENT; 1532 } 1533 1534 /* All F's is an empty slot or an invalid board */ 1535 if (temp_register != 0xFFFFFFFF) { 1536 res_lists.io_head = ctrl->io_head; 1537 res_lists.mem_head = ctrl->mem_head; 1538 res_lists.p_mem_head = ctrl->p_mem_head; 1539 res_lists.bus_head = ctrl->bus_head; 1540 res_lists.irqs = NULL; 1541 1542 rc = configure_new_device(ctrl, func, 0, &res_lists); 1543 1544 dbg("%s: back from configure_new_device\n", __func__); 1545 ctrl->io_head = res_lists.io_head; 1546 ctrl->mem_head = res_lists.mem_head; 1547 ctrl->p_mem_head = res_lists.p_mem_head; 1548 ctrl->bus_head = res_lists.bus_head; 1549 1550 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1551 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1552 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1553 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1554 1555 if (rc) { 1556 mutex_lock(&ctrl->crit_sect); 1557 1558 amber_LED_on (ctrl, hp_slot); 1559 green_LED_off (ctrl, hp_slot); 1560 slot_disable (ctrl, hp_slot); 1561 1562 set_SOGO(ctrl); 1563 1564 /* Wait for SOBS to be unset */ 1565 wait_for_ctrl_irq (ctrl); 1566 1567 mutex_unlock(&ctrl->crit_sect); 1568 return rc; 1569 } else { 1570 cpqhp_save_slot_config(ctrl, func); 1571 } 1572 1573 1574 func->status = 0; 1575 func->switch_save = 0x10; 1576 func->is_a_board = 0x01; 1577 1578 /* next, we will instantiate the linux pci_dev structures (with 1579 * appropriate driver notification, if already present) */ 1580 dbg("%s: configure linux pci_dev structure\n", __func__); 1581 index = 0; 1582 do { 1583 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1584 if (new_slot && !new_slot->pci_dev) 1585 cpqhp_configure_device(ctrl, new_slot); 1586 } while (new_slot); 1587 1588 mutex_lock(&ctrl->crit_sect); 1589 1590 green_LED_on (ctrl, hp_slot); 1591 1592 set_SOGO(ctrl); 1593 1594 /* Wait for SOBS to be unset */ 1595 wait_for_ctrl_irq (ctrl); 1596 1597 mutex_unlock(&ctrl->crit_sect); 1598 } else { 1599 mutex_lock(&ctrl->crit_sect); 1600 1601 amber_LED_on (ctrl, hp_slot); 1602 green_LED_off (ctrl, hp_slot); 1603 slot_disable (ctrl, hp_slot); 1604 1605 set_SOGO(ctrl); 1606 1607 /* Wait for SOBS to be unset */ 1608 wait_for_ctrl_irq (ctrl); 1609 1610 mutex_unlock(&ctrl->crit_sect); 1611 1612 return rc; 1613 } 1614 return 0; 1615 } 1616 1617 1618 /** 1619 * remove_board - Turns off slot and LEDs 1620 * @func: PCI device/function info 1621 * @replace_flag: whether replacing or adding a new device 1622 * @ctrl: target controller 1623 */ 1624 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) 1625 { 1626 int index; 1627 u8 skip = 0; 1628 u8 device; 1629 u8 hp_slot; 1630 u8 temp_byte; 1631 u32 rc; 1632 struct resource_lists res_lists; 1633 struct pci_func *temp_func; 1634 1635 if (cpqhp_unconfigure_device(func)) 1636 return 1; 1637 1638 device = func->device; 1639 1640 hp_slot = func->device - ctrl->slot_device_offset; 1641 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1642 1643 /* When we get here, it is safe to change base address registers. 1644 * We will attempt to save the base address register lengths */ 1645 if (replace_flag || !ctrl->add_support) 1646 rc = cpqhp_save_base_addr_length(ctrl, func); 1647 else if (!func->bus_head && !func->mem_head && 1648 !func->p_mem_head && !func->io_head) { 1649 /* Here we check to see if we've saved any of the board's 1650 * resources already. If so, we'll skip the attempt to 1651 * determine what's being used. */ 1652 index = 0; 1653 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1654 while (temp_func) { 1655 if (temp_func->bus_head || temp_func->mem_head 1656 || temp_func->p_mem_head || temp_func->io_head) { 1657 skip = 1; 1658 break; 1659 } 1660 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1661 } 1662 1663 if (!skip) 1664 rc = cpqhp_save_used_resources(ctrl, func); 1665 } 1666 /* Change status to shutdown */ 1667 if (func->is_a_board) 1668 func->status = 0x01; 1669 func->configured = 0; 1670 1671 mutex_lock(&ctrl->crit_sect); 1672 1673 green_LED_off (ctrl, hp_slot); 1674 slot_disable (ctrl, hp_slot); 1675 1676 set_SOGO(ctrl); 1677 1678 /* turn off SERR for slot */ 1679 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1680 temp_byte &= ~(0x01 << hp_slot); 1681 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1682 1683 /* Wait for SOBS to be unset */ 1684 wait_for_ctrl_irq (ctrl); 1685 1686 mutex_unlock(&ctrl->crit_sect); 1687 1688 if (!replace_flag && ctrl->add_support) { 1689 while (func) { 1690 res_lists.io_head = ctrl->io_head; 1691 res_lists.mem_head = ctrl->mem_head; 1692 res_lists.p_mem_head = ctrl->p_mem_head; 1693 res_lists.bus_head = ctrl->bus_head; 1694 1695 cpqhp_return_board_resources(func, &res_lists); 1696 1697 ctrl->io_head = res_lists.io_head; 1698 ctrl->mem_head = res_lists.mem_head; 1699 ctrl->p_mem_head = res_lists.p_mem_head; 1700 ctrl->bus_head = res_lists.bus_head; 1701 1702 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1703 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1704 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1705 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1706 1707 if (is_bridge(func)) { 1708 bridge_slot_remove(func); 1709 } else 1710 slot_remove(func); 1711 1712 func = cpqhp_slot_find(ctrl->bus, device, 0); 1713 } 1714 1715 /* Setup slot structure with entry for empty slot */ 1716 func = cpqhp_slot_create(ctrl->bus); 1717 1718 if (func == NULL) 1719 return 1; 1720 1721 func->bus = ctrl->bus; 1722 func->device = device; 1723 func->function = 0; 1724 func->configured = 0; 1725 func->switch_save = 0x10; 1726 func->is_a_board = 0; 1727 func->p_task_event = NULL; 1728 } 1729 1730 return 0; 1731 } 1732 1733 static void pushbutton_helper_thread(unsigned long data) 1734 { 1735 pushbutton_pending = data; 1736 wake_up_process(cpqhp_event_thread); 1737 } 1738 1739 1740 /* this is the main worker thread */ 1741 static int event_thread(void* data) 1742 { 1743 struct controller *ctrl; 1744 1745 while (1) { 1746 dbg("!!!!event_thread sleeping\n"); 1747 set_current_state(TASK_INTERRUPTIBLE); 1748 schedule(); 1749 1750 if (kthread_should_stop()) 1751 break; 1752 /* Do stuff here */ 1753 if (pushbutton_pending) 1754 cpqhp_pushbutton_thread(pushbutton_pending); 1755 else 1756 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) 1757 interrupt_event_handler(ctrl); 1758 } 1759 dbg("event_thread signals exit\n"); 1760 return 0; 1761 } 1762 1763 int cpqhp_event_start_thread(void) 1764 { 1765 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1766 if (IS_ERR(cpqhp_event_thread)) { 1767 err ("Can't start up our event thread\n"); 1768 return PTR_ERR(cpqhp_event_thread); 1769 } 1770 1771 return 0; 1772 } 1773 1774 1775 void cpqhp_event_stop_thread(void) 1776 { 1777 kthread_stop(cpqhp_event_thread); 1778 } 1779 1780 1781 static int update_slot_info(struct controller *ctrl, struct slot *slot) 1782 { 1783 struct hotplug_slot_info *info; 1784 int result; 1785 1786 info = kmalloc(sizeof(*info), GFP_KERNEL); 1787 if (!info) 1788 return -ENOMEM; 1789 1790 info->power_status = get_slot_enabled(ctrl, slot); 1791 info->attention_status = cpq_get_attention_status(ctrl, slot); 1792 info->latch_status = cpq_get_latch_status(ctrl, slot); 1793 info->adapter_status = get_presence_status(ctrl, slot); 1794 result = pci_hp_change_slot_info(slot->hotplug_slot, info); 1795 kfree (info); 1796 return result; 1797 } 1798 1799 static void interrupt_event_handler(struct controller *ctrl) 1800 { 1801 int loop = 0; 1802 int change = 1; 1803 struct pci_func *func; 1804 u8 hp_slot; 1805 struct slot *p_slot; 1806 1807 while (change) { 1808 change = 0; 1809 1810 for (loop = 0; loop < 10; loop++) { 1811 /* dbg("loop %d\n", loop); */ 1812 if (ctrl->event_queue[loop].event_type != 0) { 1813 hp_slot = ctrl->event_queue[loop].hp_slot; 1814 1815 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1816 if (!func) 1817 return; 1818 1819 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1820 if (!p_slot) 1821 return; 1822 1823 dbg("hp_slot %d, func %p, p_slot %p\n", 1824 hp_slot, func, p_slot); 1825 1826 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1827 dbg("button pressed\n"); 1828 } else if (ctrl->event_queue[loop].event_type == 1829 INT_BUTTON_CANCEL) { 1830 dbg("button cancel\n"); 1831 del_timer(&p_slot->task_event); 1832 1833 mutex_lock(&ctrl->crit_sect); 1834 1835 if (p_slot->state == BLINKINGOFF_STATE) { 1836 /* slot is on */ 1837 dbg("turn on green LED\n"); 1838 green_LED_on (ctrl, hp_slot); 1839 } else if (p_slot->state == BLINKINGON_STATE) { 1840 /* slot is off */ 1841 dbg("turn off green LED\n"); 1842 green_LED_off (ctrl, hp_slot); 1843 } 1844 1845 info(msg_button_cancel, p_slot->number); 1846 1847 p_slot->state = STATIC_STATE; 1848 1849 amber_LED_off (ctrl, hp_slot); 1850 1851 set_SOGO(ctrl); 1852 1853 /* Wait for SOBS to be unset */ 1854 wait_for_ctrl_irq (ctrl); 1855 1856 mutex_unlock(&ctrl->crit_sect); 1857 } 1858 /*** button Released (No action on press...) */ 1859 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1860 dbg("button release\n"); 1861 1862 if (is_slot_enabled (ctrl, hp_slot)) { 1863 dbg("slot is on\n"); 1864 p_slot->state = BLINKINGOFF_STATE; 1865 info(msg_button_off, p_slot->number); 1866 } else { 1867 dbg("slot is off\n"); 1868 p_slot->state = BLINKINGON_STATE; 1869 info(msg_button_on, p_slot->number); 1870 } 1871 mutex_lock(&ctrl->crit_sect); 1872 1873 dbg("blink green LED and turn off amber\n"); 1874 1875 amber_LED_off (ctrl, hp_slot); 1876 green_LED_blink (ctrl, hp_slot); 1877 1878 set_SOGO(ctrl); 1879 1880 /* Wait for SOBS to be unset */ 1881 wait_for_ctrl_irq (ctrl); 1882 1883 mutex_unlock(&ctrl->crit_sect); 1884 init_timer(&p_slot->task_event); 1885 p_slot->hp_slot = hp_slot; 1886 p_slot->ctrl = ctrl; 1887 /* p_slot->physical_slot = physical_slot; */ 1888 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1889 p_slot->task_event.function = pushbutton_helper_thread; 1890 p_slot->task_event.data = (u32) p_slot; 1891 1892 dbg("add_timer p_slot = %p\n", p_slot); 1893 add_timer(&p_slot->task_event); 1894 } 1895 /***********POWER FAULT */ 1896 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1897 dbg("power fault\n"); 1898 } else { 1899 /* refresh notification */ 1900 if (p_slot) 1901 update_slot_info(ctrl, p_slot); 1902 } 1903 1904 ctrl->event_queue[loop].event_type = 0; 1905 1906 change = 1; 1907 } 1908 } /* End of FOR loop */ 1909 } 1910 1911 return; 1912 } 1913 1914 1915 /** 1916 * cpqhp_pushbutton_thread - handle pushbutton events 1917 * @slot: target slot (struct) 1918 * 1919 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1920 * Handles all pending events and exits. 1921 */ 1922 void cpqhp_pushbutton_thread(unsigned long slot) 1923 { 1924 u8 hp_slot; 1925 u8 device; 1926 struct pci_func *func; 1927 struct slot *p_slot = (struct slot *) slot; 1928 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1929 1930 pushbutton_pending = 0; 1931 hp_slot = p_slot->hp_slot; 1932 1933 device = p_slot->device; 1934 1935 if (is_slot_enabled(ctrl, hp_slot)) { 1936 p_slot->state = POWEROFF_STATE; 1937 /* power Down board */ 1938 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1939 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1940 if (!func) { 1941 dbg("Error! func NULL in %s\n", __func__); 1942 return ; 1943 } 1944 1945 if (cpqhp_process_SS(ctrl, func) != 0) { 1946 amber_LED_on(ctrl, hp_slot); 1947 green_LED_on(ctrl, hp_slot); 1948 1949 set_SOGO(ctrl); 1950 1951 /* Wait for SOBS to be unset */ 1952 wait_for_ctrl_irq(ctrl); 1953 } 1954 1955 p_slot->state = STATIC_STATE; 1956 } else { 1957 p_slot->state = POWERON_STATE; 1958 /* slot is off */ 1959 1960 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1961 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1962 if (!func) { 1963 dbg("Error! func NULL in %s\n", __func__); 1964 return ; 1965 } 1966 1967 if (ctrl != NULL) { 1968 if (cpqhp_process_SI(ctrl, func) != 0) { 1969 amber_LED_on(ctrl, hp_slot); 1970 green_LED_off(ctrl, hp_slot); 1971 1972 set_SOGO(ctrl); 1973 1974 /* Wait for SOBS to be unset */ 1975 wait_for_ctrl_irq (ctrl); 1976 } 1977 } 1978 1979 p_slot->state = STATIC_STATE; 1980 } 1981 1982 return; 1983 } 1984 1985 1986 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1987 { 1988 u8 device, hp_slot; 1989 u16 temp_word; 1990 u32 tempdword; 1991 int rc; 1992 struct slot* p_slot; 1993 int physical_slot = 0; 1994 1995 tempdword = 0; 1996 1997 device = func->device; 1998 hp_slot = device - ctrl->slot_device_offset; 1999 p_slot = cpqhp_find_slot(ctrl, device); 2000 if (p_slot) 2001 physical_slot = p_slot->number; 2002 2003 /* Check to see if the interlock is closed */ 2004 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 2005 2006 if (tempdword & (0x01 << hp_slot)) { 2007 return 1; 2008 } 2009 2010 if (func->is_a_board) { 2011 rc = board_replaced(func, ctrl); 2012 } else { 2013 /* add board */ 2014 slot_remove(func); 2015 2016 func = cpqhp_slot_create(ctrl->bus); 2017 if (func == NULL) 2018 return 1; 2019 2020 func->bus = ctrl->bus; 2021 func->device = device; 2022 func->function = 0; 2023 func->configured = 0; 2024 func->is_a_board = 1; 2025 2026 /* We have to save the presence info for these slots */ 2027 temp_word = ctrl->ctrl_int_comp >> 16; 2028 func->presence_save = (temp_word >> hp_slot) & 0x01; 2029 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 2030 2031 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2032 func->switch_save = 0; 2033 } else { 2034 func->switch_save = 0x10; 2035 } 2036 2037 rc = board_added(func, ctrl); 2038 if (rc) { 2039 if (is_bridge(func)) { 2040 bridge_slot_remove(func); 2041 } else 2042 slot_remove(func); 2043 2044 /* Setup slot structure with entry for empty slot */ 2045 func = cpqhp_slot_create(ctrl->bus); 2046 2047 if (func == NULL) 2048 return 1; 2049 2050 func->bus = ctrl->bus; 2051 func->device = device; 2052 func->function = 0; 2053 func->configured = 0; 2054 func->is_a_board = 0; 2055 2056 /* We have to save the presence info for these slots */ 2057 temp_word = ctrl->ctrl_int_comp >> 16; 2058 func->presence_save = (temp_word >> hp_slot) & 0x01; 2059 func->presence_save |= 2060 (temp_word >> (hp_slot + 7)) & 0x02; 2061 2062 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2063 func->switch_save = 0; 2064 } else { 2065 func->switch_save = 0x10; 2066 } 2067 } 2068 } 2069 2070 if (rc) { 2071 dbg("%s: rc = %d\n", __func__, rc); 2072 } 2073 2074 if (p_slot) 2075 update_slot_info(ctrl, p_slot); 2076 2077 return rc; 2078 } 2079 2080 2081 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2082 { 2083 u8 device, class_code, header_type, BCR; 2084 u8 index = 0; 2085 u8 replace_flag; 2086 u32 rc = 0; 2087 unsigned int devfn; 2088 struct slot* p_slot; 2089 struct pci_bus *pci_bus = ctrl->pci_bus; 2090 int physical_slot=0; 2091 2092 device = func->device; 2093 func = cpqhp_slot_find(ctrl->bus, device, index++); 2094 p_slot = cpqhp_find_slot(ctrl, device); 2095 if (p_slot) { 2096 physical_slot = p_slot->number; 2097 } 2098 2099 /* Make sure there are no video controllers here */ 2100 while (func && !rc) { 2101 pci_bus->number = func->bus; 2102 devfn = PCI_DEVFN(func->device, func->function); 2103 2104 /* Check the Class Code */ 2105 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2106 if (rc) 2107 return rc; 2108 2109 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2110 /* Display/Video adapter (not supported) */ 2111 rc = REMOVE_NOT_SUPPORTED; 2112 } else { 2113 /* See if it's a bridge */ 2114 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2115 if (rc) 2116 return rc; 2117 2118 /* If it's a bridge, check the VGA Enable bit */ 2119 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2120 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2121 if (rc) 2122 return rc; 2123 2124 /* If the VGA Enable bit is set, remove isn't 2125 * supported */ 2126 if (BCR & PCI_BRIDGE_CTL_VGA) 2127 rc = REMOVE_NOT_SUPPORTED; 2128 } 2129 } 2130 2131 func = cpqhp_slot_find(ctrl->bus, device, index++); 2132 } 2133 2134 func = cpqhp_slot_find(ctrl->bus, device, 0); 2135 if ((func != NULL) && !rc) { 2136 /* FIXME: Replace flag should be passed into process_SS */ 2137 replace_flag = !(ctrl->add_support); 2138 rc = remove_board(func, replace_flag, ctrl); 2139 } else if (!rc) { 2140 rc = 1; 2141 } 2142 2143 if (p_slot) 2144 update_slot_info(ctrl, p_slot); 2145 2146 return rc; 2147 } 2148 2149 /** 2150 * switch_leds - switch the leds, go from one site to the other. 2151 * @ctrl: controller to use 2152 * @num_of_slots: number of slots to use 2153 * @work_LED: LED control value 2154 * @direction: 1 to start from the left side, 0 to start right. 2155 */ 2156 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2157 u32 *work_LED, const int direction) 2158 { 2159 int loop; 2160 2161 for (loop = 0; loop < num_of_slots; loop++) { 2162 if (direction) 2163 *work_LED = *work_LED >> 1; 2164 else 2165 *work_LED = *work_LED << 1; 2166 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2167 2168 set_SOGO(ctrl); 2169 2170 /* Wait for SOGO interrupt */ 2171 wait_for_ctrl_irq(ctrl); 2172 2173 /* Get ready for next iteration */ 2174 long_delay((2*HZ)/10); 2175 } 2176 } 2177 2178 /** 2179 * cpqhp_hardware_test - runs hardware tests 2180 * @ctrl: target controller 2181 * @test_num: the number written to the "test" file in sysfs. 2182 * 2183 * For hot plug ctrl folks to play with. 2184 */ 2185 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2186 { 2187 u32 save_LED; 2188 u32 work_LED; 2189 int loop; 2190 int num_of_slots; 2191 2192 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2193 2194 switch (test_num) { 2195 case 1: 2196 /* Do stuff here! */ 2197 2198 /* Do that funky LED thing */ 2199 /* so we can restore them later */ 2200 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2201 work_LED = 0x01010101; 2202 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2203 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2204 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2205 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2206 2207 work_LED = 0x01010000; 2208 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2209 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2210 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2211 work_LED = 0x00000101; 2212 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2213 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2214 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2215 2216 work_LED = 0x01010000; 2217 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2218 for (loop = 0; loop < num_of_slots; loop++) { 2219 set_SOGO(ctrl); 2220 2221 /* Wait for SOGO interrupt */ 2222 wait_for_ctrl_irq (ctrl); 2223 2224 /* Get ready for next iteration */ 2225 long_delay((3*HZ)/10); 2226 work_LED = work_LED >> 16; 2227 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2228 2229 set_SOGO(ctrl); 2230 2231 /* Wait for SOGO interrupt */ 2232 wait_for_ctrl_irq (ctrl); 2233 2234 /* Get ready for next iteration */ 2235 long_delay((3*HZ)/10); 2236 work_LED = work_LED << 16; 2237 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2238 work_LED = work_LED << 1; 2239 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2240 } 2241 2242 /* put it back the way it was */ 2243 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2244 2245 set_SOGO(ctrl); 2246 2247 /* Wait for SOBS to be unset */ 2248 wait_for_ctrl_irq (ctrl); 2249 break; 2250 case 2: 2251 /* Do other stuff here! */ 2252 break; 2253 case 3: 2254 /* and more... */ 2255 break; 2256 } 2257 return 0; 2258 } 2259 2260 2261 /** 2262 * configure_new_device - Configures the PCI header information of one board. 2263 * @ctrl: pointer to controller structure 2264 * @func: pointer to function structure 2265 * @behind_bridge: 1 if this is a recursive call, 0 if not 2266 * @resources: pointer to set of resource lists 2267 * 2268 * Returns 0 if success. 2269 */ 2270 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, 2271 u8 behind_bridge, struct resource_lists * resources) 2272 { 2273 u8 temp_byte, function, max_functions, stop_it; 2274 int rc; 2275 u32 ID; 2276 struct pci_func *new_slot; 2277 int index; 2278 2279 new_slot = func; 2280 2281 dbg("%s\n", __func__); 2282 /* Check for Multi-function device */ 2283 ctrl->pci_bus->number = func->bus; 2284 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2285 if (rc) { 2286 dbg("%s: rc = %d\n", __func__, rc); 2287 return rc; 2288 } 2289 2290 if (temp_byte & 0x80) /* Multi-function device */ 2291 max_functions = 8; 2292 else 2293 max_functions = 1; 2294 2295 function = 0; 2296 2297 do { 2298 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2299 2300 if (rc) { 2301 dbg("configure_new_function failed %d\n",rc); 2302 index = 0; 2303 2304 while (new_slot) { 2305 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2306 2307 if (new_slot) 2308 cpqhp_return_board_resources(new_slot, resources); 2309 } 2310 2311 return rc; 2312 } 2313 2314 function++; 2315 2316 stop_it = 0; 2317 2318 /* The following loop skips to the next present function 2319 * and creates a board structure */ 2320 2321 while ((function < max_functions) && (!stop_it)) { 2322 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2323 2324 if (ID == 0xFFFFFFFF) { 2325 function++; 2326 } else { 2327 /* Setup slot structure. */ 2328 new_slot = cpqhp_slot_create(func->bus); 2329 2330 if (new_slot == NULL) 2331 return 1; 2332 2333 new_slot->bus = func->bus; 2334 new_slot->device = func->device; 2335 new_slot->function = function; 2336 new_slot->is_a_board = 1; 2337 new_slot->status = 0; 2338 2339 stop_it++; 2340 } 2341 } 2342 2343 } while (function < max_functions); 2344 dbg("returning from configure_new_device\n"); 2345 2346 return 0; 2347 } 2348 2349 2350 /* 2351 * Configuration logic that involves the hotplug data structures and 2352 * their bookkeeping 2353 */ 2354 2355 2356 /** 2357 * configure_new_function - Configures the PCI header information of one device 2358 * @ctrl: pointer to controller structure 2359 * @func: pointer to function structure 2360 * @behind_bridge: 1 if this is a recursive call, 0 if not 2361 * @resources: pointer to set of resource lists 2362 * 2363 * Calls itself recursively for bridged devices. 2364 * Returns 0 if success. 2365 */ 2366 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2367 u8 behind_bridge, 2368 struct resource_lists *resources) 2369 { 2370 int cloop; 2371 u8 IRQ = 0; 2372 u8 temp_byte; 2373 u8 device; 2374 u8 class_code; 2375 u16 command; 2376 u16 temp_word; 2377 u32 temp_dword; 2378 u32 rc; 2379 u32 temp_register; 2380 u32 base; 2381 u32 ID; 2382 unsigned int devfn; 2383 struct pci_resource *mem_node; 2384 struct pci_resource *p_mem_node; 2385 struct pci_resource *io_node; 2386 struct pci_resource *bus_node; 2387 struct pci_resource *hold_mem_node; 2388 struct pci_resource *hold_p_mem_node; 2389 struct pci_resource *hold_IO_node; 2390 struct pci_resource *hold_bus_node; 2391 struct irq_mapping irqs; 2392 struct pci_func *new_slot; 2393 struct pci_bus *pci_bus; 2394 struct resource_lists temp_resources; 2395 2396 pci_bus = ctrl->pci_bus; 2397 pci_bus->number = func->bus; 2398 devfn = PCI_DEVFN(func->device, func->function); 2399 2400 /* Check for Bridge */ 2401 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2402 if (rc) 2403 return rc; 2404 2405 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2406 /* set Primary bus */ 2407 dbg("set Primary bus = %d\n", func->bus); 2408 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2409 if (rc) 2410 return rc; 2411 2412 /* find range of busses to use */ 2413 dbg("find ranges of buses to use\n"); 2414 bus_node = get_max_resource(&(resources->bus_head), 1); 2415 2416 /* If we don't have any busses to allocate, we can't continue */ 2417 if (!bus_node) 2418 return -ENOMEM; 2419 2420 /* set Secondary bus */ 2421 temp_byte = bus_node->base; 2422 dbg("set Secondary bus = %d\n", bus_node->base); 2423 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2424 if (rc) 2425 return rc; 2426 2427 /* set subordinate bus */ 2428 temp_byte = bus_node->base + bus_node->length - 1; 2429 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2430 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2431 if (rc) 2432 return rc; 2433 2434 /* set subordinate Latency Timer and base Latency Timer */ 2435 temp_byte = 0x40; 2436 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2437 if (rc) 2438 return rc; 2439 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2440 if (rc) 2441 return rc; 2442 2443 /* set Cache Line size */ 2444 temp_byte = 0x08; 2445 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2446 if (rc) 2447 return rc; 2448 2449 /* Setup the IO, memory, and prefetchable windows */ 2450 io_node = get_max_resource(&(resources->io_head), 0x1000); 2451 if (!io_node) 2452 return -ENOMEM; 2453 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2454 if (!mem_node) 2455 return -ENOMEM; 2456 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2457 if (!p_mem_node) 2458 return -ENOMEM; 2459 dbg("Setup the IO, memory, and prefetchable windows\n"); 2460 dbg("io_node\n"); 2461 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2462 io_node->length, io_node->next); 2463 dbg("mem_node\n"); 2464 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2465 mem_node->length, mem_node->next); 2466 dbg("p_mem_node\n"); 2467 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2468 p_mem_node->length, p_mem_node->next); 2469 2470 /* set up the IRQ info */ 2471 if (!resources->irqs) { 2472 irqs.barber_pole = 0; 2473 irqs.interrupt[0] = 0; 2474 irqs.interrupt[1] = 0; 2475 irqs.interrupt[2] = 0; 2476 irqs.interrupt[3] = 0; 2477 irqs.valid_INT = 0; 2478 } else { 2479 irqs.barber_pole = resources->irqs->barber_pole; 2480 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2481 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2482 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2483 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2484 irqs.valid_INT = resources->irqs->valid_INT; 2485 } 2486 2487 /* set up resource lists that are now aligned on top and bottom 2488 * for anything behind the bridge. */ 2489 temp_resources.bus_head = bus_node; 2490 temp_resources.io_head = io_node; 2491 temp_resources.mem_head = mem_node; 2492 temp_resources.p_mem_head = p_mem_node; 2493 temp_resources.irqs = &irqs; 2494 2495 /* Make copies of the nodes we are going to pass down so that 2496 * if there is a problem,we can just use these to free resources 2497 */ 2498 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2499 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2500 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2501 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2502 2503 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2504 kfree(hold_bus_node); 2505 kfree(hold_IO_node); 2506 kfree(hold_mem_node); 2507 kfree(hold_p_mem_node); 2508 2509 return 1; 2510 } 2511 2512 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2513 2514 bus_node->base += 1; 2515 bus_node->length -= 1; 2516 bus_node->next = NULL; 2517 2518 /* If we have IO resources copy them and fill in the bridge's 2519 * IO range registers */ 2520 if (io_node) { 2521 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2522 io_node->next = NULL; 2523 2524 /* set IO base and Limit registers */ 2525 temp_byte = io_node->base >> 8; 2526 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2527 2528 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2529 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2530 } else { 2531 kfree(hold_IO_node); 2532 hold_IO_node = NULL; 2533 } 2534 2535 /* If we have memory resources copy them and fill in the 2536 * bridge's memory range registers. Otherwise, fill in the 2537 * range registers with values that disable them. */ 2538 if (mem_node) { 2539 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2540 mem_node->next = NULL; 2541 2542 /* set Mem base and Limit registers */ 2543 temp_word = mem_node->base >> 16; 2544 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2545 2546 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2547 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2548 } else { 2549 temp_word = 0xFFFF; 2550 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2551 2552 temp_word = 0x0000; 2553 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2554 2555 kfree(hold_mem_node); 2556 hold_mem_node = NULL; 2557 } 2558 2559 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2560 p_mem_node->next = NULL; 2561 2562 /* set Pre Mem base and Limit registers */ 2563 temp_word = p_mem_node->base >> 16; 2564 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2565 2566 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2567 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2568 2569 /* Adjust this to compensate for extra adjustment in first loop 2570 */ 2571 irqs.barber_pole--; 2572 2573 rc = 0; 2574 2575 /* Here we actually find the devices and configure them */ 2576 for (device = 0; (device <= 0x1F) && !rc; device++) { 2577 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2578 2579 ID = 0xFFFFFFFF; 2580 pci_bus->number = hold_bus_node->base; 2581 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2582 pci_bus->number = func->bus; 2583 2584 if (ID != 0xFFFFFFFF) { /* device present */ 2585 /* Setup slot structure. */ 2586 new_slot = cpqhp_slot_create(hold_bus_node->base); 2587 2588 if (new_slot == NULL) { 2589 rc = -ENOMEM; 2590 continue; 2591 } 2592 2593 new_slot->bus = hold_bus_node->base; 2594 new_slot->device = device; 2595 new_slot->function = 0; 2596 new_slot->is_a_board = 1; 2597 new_slot->status = 0; 2598 2599 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2600 dbg("configure_new_device rc=0x%x\n",rc); 2601 } /* End of IF (device in slot?) */ 2602 } /* End of FOR loop */ 2603 2604 if (rc) 2605 goto free_and_out; 2606 /* save the interrupt routing information */ 2607 if (resources->irqs) { 2608 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2609 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2610 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2611 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2612 resources->irqs->valid_INT = irqs.valid_INT; 2613 } else if (!behind_bridge) { 2614 /* We need to hook up the interrupts here */ 2615 for (cloop = 0; cloop < 4; cloop++) { 2616 if (irqs.valid_INT & (0x01 << cloop)) { 2617 rc = cpqhp_set_irq(func->bus, func->device, 2618 cloop + 1, irqs.interrupt[cloop]); 2619 if (rc) 2620 goto free_and_out; 2621 } 2622 } /* end of for loop */ 2623 } 2624 /* Return unused bus resources 2625 * First use the temporary node to store information for 2626 * the board */ 2627 if (hold_bus_node && bus_node && temp_resources.bus_head) { 2628 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2629 2630 hold_bus_node->next = func->bus_head; 2631 func->bus_head = hold_bus_node; 2632 2633 temp_byte = temp_resources.bus_head->base - 1; 2634 2635 /* set subordinate bus */ 2636 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2637 2638 if (temp_resources.bus_head->length == 0) { 2639 kfree(temp_resources.bus_head); 2640 temp_resources.bus_head = NULL; 2641 } else { 2642 return_resource(&(resources->bus_head), temp_resources.bus_head); 2643 } 2644 } 2645 2646 /* If we have IO space available and there is some left, 2647 * return the unused portion */ 2648 if (hold_IO_node && temp_resources.io_head) { 2649 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2650 &hold_IO_node, 0x1000); 2651 2652 /* Check if we were able to split something off */ 2653 if (io_node) { 2654 hold_IO_node->base = io_node->base + io_node->length; 2655 2656 temp_byte = (hold_IO_node->base) >> 8; 2657 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); 2658 2659 return_resource(&(resources->io_head), io_node); 2660 } 2661 2662 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2663 2664 /* Check if we were able to split something off */ 2665 if (io_node) { 2666 /* First use the temporary node to store 2667 * information for the board */ 2668 hold_IO_node->length = io_node->base - hold_IO_node->base; 2669 2670 /* If we used any, add it to the board's list */ 2671 if (hold_IO_node->length) { 2672 hold_IO_node->next = func->io_head; 2673 func->io_head = hold_IO_node; 2674 2675 temp_byte = (io_node->base - 1) >> 8; 2676 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2677 2678 return_resource(&(resources->io_head), io_node); 2679 } else { 2680 /* it doesn't need any IO */ 2681 temp_word = 0x0000; 2682 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2683 2684 return_resource(&(resources->io_head), io_node); 2685 kfree(hold_IO_node); 2686 } 2687 } else { 2688 /* it used most of the range */ 2689 hold_IO_node->next = func->io_head; 2690 func->io_head = hold_IO_node; 2691 } 2692 } else if (hold_IO_node) { 2693 /* it used the whole range */ 2694 hold_IO_node->next = func->io_head; 2695 func->io_head = hold_IO_node; 2696 } 2697 /* If we have memory space available and there is some left, 2698 * return the unused portion */ 2699 if (hold_mem_node && temp_resources.mem_head) { 2700 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2701 &hold_mem_node, 0x100000); 2702 2703 /* Check if we were able to split something off */ 2704 if (mem_node) { 2705 hold_mem_node->base = mem_node->base + mem_node->length; 2706 2707 temp_word = (hold_mem_node->base) >> 16; 2708 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2709 2710 return_resource(&(resources->mem_head), mem_node); 2711 } 2712 2713 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2714 2715 /* Check if we were able to split something off */ 2716 if (mem_node) { 2717 /* First use the temporary node to store 2718 * information for the board */ 2719 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2720 2721 if (hold_mem_node->length) { 2722 hold_mem_node->next = func->mem_head; 2723 func->mem_head = hold_mem_node; 2724 2725 /* configure end address */ 2726 temp_word = (mem_node->base - 1) >> 16; 2727 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2728 2729 /* Return unused resources to the pool */ 2730 return_resource(&(resources->mem_head), mem_node); 2731 } else { 2732 /* it doesn't need any Mem */ 2733 temp_word = 0x0000; 2734 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2735 2736 return_resource(&(resources->mem_head), mem_node); 2737 kfree(hold_mem_node); 2738 } 2739 } else { 2740 /* it used most of the range */ 2741 hold_mem_node->next = func->mem_head; 2742 func->mem_head = hold_mem_node; 2743 } 2744 } else if (hold_mem_node) { 2745 /* it used the whole range */ 2746 hold_mem_node->next = func->mem_head; 2747 func->mem_head = hold_mem_node; 2748 } 2749 /* If we have prefetchable memory space available and there 2750 * is some left at the end, return the unused portion */ 2751 if (hold_p_mem_node && temp_resources.p_mem_head) { 2752 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2753 &hold_p_mem_node, 0x100000); 2754 2755 /* Check if we were able to split something off */ 2756 if (p_mem_node) { 2757 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2758 2759 temp_word = (hold_p_mem_node->base) >> 16; 2760 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2761 2762 return_resource(&(resources->p_mem_head), p_mem_node); 2763 } 2764 2765 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2766 2767 /* Check if we were able to split something off */ 2768 if (p_mem_node) { 2769 /* First use the temporary node to store 2770 * information for the board */ 2771 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2772 2773 /* If we used any, add it to the board's list */ 2774 if (hold_p_mem_node->length) { 2775 hold_p_mem_node->next = func->p_mem_head; 2776 func->p_mem_head = hold_p_mem_node; 2777 2778 temp_word = (p_mem_node->base - 1) >> 16; 2779 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2780 2781 return_resource(&(resources->p_mem_head), p_mem_node); 2782 } else { 2783 /* it doesn't need any PMem */ 2784 temp_word = 0x0000; 2785 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2786 2787 return_resource(&(resources->p_mem_head), p_mem_node); 2788 kfree(hold_p_mem_node); 2789 } 2790 } else { 2791 /* it used the most of the range */ 2792 hold_p_mem_node->next = func->p_mem_head; 2793 func->p_mem_head = hold_p_mem_node; 2794 } 2795 } else if (hold_p_mem_node) { 2796 /* it used the whole range */ 2797 hold_p_mem_node->next = func->p_mem_head; 2798 func->p_mem_head = hold_p_mem_node; 2799 } 2800 /* We should be configuring an IRQ and the bridge's base address 2801 * registers if it needs them. Although we have never seen such 2802 * a device */ 2803 2804 /* enable card */ 2805 command = 0x0157; /* = PCI_COMMAND_IO | 2806 * PCI_COMMAND_MEMORY | 2807 * PCI_COMMAND_MASTER | 2808 * PCI_COMMAND_INVALIDATE | 2809 * PCI_COMMAND_PARITY | 2810 * PCI_COMMAND_SERR */ 2811 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); 2812 2813 /* set Bridge Control Register */ 2814 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2815 * PCI_BRIDGE_CTL_SERR | 2816 * PCI_BRIDGE_CTL_NO_ISA */ 2817 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2818 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2819 /* Standard device */ 2820 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2821 2822 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2823 /* Display (video) adapter (not supported) */ 2824 return DEVICE_TYPE_NOT_SUPPORTED; 2825 } 2826 /* Figure out IO and memory needs */ 2827 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2828 temp_register = 0xFFFFFFFF; 2829 2830 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2831 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); 2832 2833 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); 2834 dbg("CND: base = 0x%x\n", temp_register); 2835 2836 if (temp_register) { /* If this register is implemented */ 2837 if ((temp_register & 0x03L) == 0x01) { 2838 /* Map IO */ 2839 2840 /* set base = amount of IO space */ 2841 base = temp_register & 0xFFFFFFFC; 2842 base = ~base + 1; 2843 2844 dbg("CND: length = 0x%x\n", base); 2845 io_node = get_io_resource(&(resources->io_head), base); 2846 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2847 io_node->base, io_node->length, io_node->next); 2848 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2849 2850 /* allocate the resource to the board */ 2851 if (io_node) { 2852 base = io_node->base; 2853 2854 io_node->next = func->io_head; 2855 func->io_head = io_node; 2856 } else 2857 return -ENOMEM; 2858 } else if ((temp_register & 0x0BL) == 0x08) { 2859 /* Map prefetchable memory */ 2860 base = temp_register & 0xFFFFFFF0; 2861 base = ~base + 1; 2862 2863 dbg("CND: length = 0x%x\n", base); 2864 p_mem_node = get_resource(&(resources->p_mem_head), base); 2865 2866 /* allocate the resource to the board */ 2867 if (p_mem_node) { 2868 base = p_mem_node->base; 2869 2870 p_mem_node->next = func->p_mem_head; 2871 func->p_mem_head = p_mem_node; 2872 } else 2873 return -ENOMEM; 2874 } else if ((temp_register & 0x0BL) == 0x00) { 2875 /* Map memory */ 2876 base = temp_register & 0xFFFFFFF0; 2877 base = ~base + 1; 2878 2879 dbg("CND: length = 0x%x\n", base); 2880 mem_node = get_resource(&(resources->mem_head), base); 2881 2882 /* allocate the resource to the board */ 2883 if (mem_node) { 2884 base = mem_node->base; 2885 2886 mem_node->next = func->mem_head; 2887 func->mem_head = mem_node; 2888 } else 2889 return -ENOMEM; 2890 } else if ((temp_register & 0x0BL) == 0x04) { 2891 /* Map memory */ 2892 base = temp_register & 0xFFFFFFF0; 2893 base = ~base + 1; 2894 2895 dbg("CND: length = 0x%x\n", base); 2896 mem_node = get_resource(&(resources->mem_head), base); 2897 2898 /* allocate the resource to the board */ 2899 if (mem_node) { 2900 base = mem_node->base; 2901 2902 mem_node->next = func->mem_head; 2903 func->mem_head = mem_node; 2904 } else 2905 return -ENOMEM; 2906 } else if ((temp_register & 0x0BL) == 0x06) { 2907 /* Those bits are reserved, we can't handle this */ 2908 return 1; 2909 } else { 2910 /* Requesting space below 1M */ 2911 return NOT_ENOUGH_RESOURCES; 2912 } 2913 2914 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2915 2916 /* Check for 64-bit base */ 2917 if ((temp_register & 0x07L) == 0x04) { 2918 cloop += 4; 2919 2920 /* Upper 32 bits of address always zero 2921 * on today's systems */ 2922 /* FIXME this is probably not true on 2923 * Alpha and ia64??? */ 2924 base = 0; 2925 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2926 } 2927 } 2928 } /* End of base register loop */ 2929 if (cpqhp_legacy_mode) { 2930 /* Figure out which interrupt pin this function uses */ 2931 rc = pci_bus_read_config_byte (pci_bus, devfn, 2932 PCI_INTERRUPT_PIN, &temp_byte); 2933 2934 /* If this function needs an interrupt and we are behind 2935 * a bridge and the pin is tied to something that's 2936 * alread mapped, set this one the same */ 2937 if (temp_byte && resources->irqs && 2938 (resources->irqs->valid_INT & 2939 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2940 /* We have to share with something already set up */ 2941 IRQ = resources->irqs->interrupt[(temp_byte + 2942 resources->irqs->barber_pole - 1) & 0x03]; 2943 } else { 2944 /* Program IRQ based on card type */ 2945 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2946 2947 if (class_code == PCI_BASE_CLASS_STORAGE) 2948 IRQ = cpqhp_disk_irq; 2949 else 2950 IRQ = cpqhp_nic_irq; 2951 } 2952 2953 /* IRQ Line */ 2954 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2955 } 2956 2957 if (!behind_bridge) { 2958 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2959 if (rc) 2960 return 1; 2961 } else { 2962 /* TBD - this code may also belong in the other clause 2963 * of this If statement */ 2964 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2965 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2966 } 2967 2968 /* Latency Timer */ 2969 temp_byte = 0x40; 2970 rc = pci_bus_write_config_byte(pci_bus, devfn, 2971 PCI_LATENCY_TIMER, temp_byte); 2972 2973 /* Cache Line size */ 2974 temp_byte = 0x08; 2975 rc = pci_bus_write_config_byte(pci_bus, devfn, 2976 PCI_CACHE_LINE_SIZE, temp_byte); 2977 2978 /* disable ROM base Address */ 2979 temp_dword = 0x00L; 2980 rc = pci_bus_write_config_word(pci_bus, devfn, 2981 PCI_ROM_ADDRESS, temp_dword); 2982 2983 /* enable card */ 2984 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2985 * PCI_COMMAND_MEMORY | 2986 * PCI_COMMAND_MASTER | 2987 * PCI_COMMAND_INVALIDATE | 2988 * PCI_COMMAND_PARITY | 2989 * PCI_COMMAND_SERR */ 2990 rc = pci_bus_write_config_word (pci_bus, devfn, 2991 PCI_COMMAND, temp_word); 2992 } else { /* End of Not-A-Bridge else */ 2993 /* It's some strange type of PCI adapter (Cardbus?) */ 2994 return DEVICE_TYPE_NOT_SUPPORTED; 2995 } 2996 2997 func->configured = 1; 2998 2999 return 0; 3000 free_and_out: 3001 cpqhp_destroy_resource_list (&temp_resources); 3002 3003 return_resource(&(resources-> bus_head), hold_bus_node); 3004 return_resource(&(resources-> io_head), hold_IO_node); 3005 return_resource(&(resources-> mem_head), hold_mem_node); 3006 return_resource(&(resources-> p_mem_head), hold_p_mem_node); 3007 return rc; 3008 } 3009