1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/pci.h>
38 #include <linux/pci_hotplug.h>
39 #include <linux/kthread.h>
40 #include "cpqphp.h"
41 
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 			u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 			u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
47 
48 
49 static struct task_struct *cpqhp_event_thread;
50 static unsigned long pushbutton_pending;	/* = 0 */
51 
52 /* delay is in jiffies to wait for */
53 static void long_delay(int delay)
54 {
55 	/*
56 	 * XXX(hch): if someone is bored please convert all callers
57 	 * to call msleep_interruptible directly.  They really want
58 	 * to specify timeouts in natural units and spend a lot of
59 	 * effort converting them to jiffies..
60 	 */
61 	msleep_interruptible(jiffies_to_msecs(delay));
62 }
63 
64 
65 /* FIXME: The following line needs to be somewhere else... */
66 #define WRONG_BUS_FREQUENCY 0x07
67 static u8 handle_switch_change(u8 change, struct controller * ctrl)
68 {
69 	int hp_slot;
70 	u8 rc = 0;
71 	u16 temp_word;
72 	struct pci_func *func;
73 	struct event_info *taskInfo;
74 
75 	if (!change)
76 		return 0;
77 
78 	/* Switch Change */
79 	dbg("cpqsbd:  Switch interrupt received.\n");
80 
81 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
82 		if (change & (0x1L << hp_slot)) {
83 			/*
84 			 * this one changed.
85 			 */
86 			func = cpqhp_slot_find(ctrl->bus,
87 				(hp_slot + ctrl->slot_device_offset), 0);
88 
89 			/* this is the structure that tells the worker thread
90 			 * what to do
91 			 */
92 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 			ctrl->next_event = (ctrl->next_event + 1) % 10;
94 			taskInfo->hp_slot = hp_slot;
95 
96 			rc++;
97 
98 			temp_word = ctrl->ctrl_int_comp >> 16;
99 			func->presence_save = (temp_word >> hp_slot) & 0x01;
100 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101 
102 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103 				/*
104 				 * Switch opened
105 				 */
106 
107 				func->switch_save = 0;
108 
109 				taskInfo->event_type = INT_SWITCH_OPEN;
110 			} else {
111 				/*
112 				 * Switch closed
113 				 */
114 
115 				func->switch_save = 0x10;
116 
117 				taskInfo->event_type = INT_SWITCH_CLOSE;
118 			}
119 		}
120 	}
121 
122 	return rc;
123 }
124 
125 /**
126  * cpqhp_find_slot - find the struct slot of given device
127  * @ctrl: scan lots of this controller
128  * @device: the device id to find
129  */
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131 {
132 	struct slot *slot = ctrl->slot;
133 
134 	while (slot && (slot->device != device))
135 		slot = slot->next;
136 
137 	return slot;
138 }
139 
140 
141 static u8 handle_presence_change(u16 change, struct controller * ctrl)
142 {
143 	int hp_slot;
144 	u8 rc = 0;
145 	u8 temp_byte;
146 	u16 temp_word;
147 	struct pci_func *func;
148 	struct event_info *taskInfo;
149 	struct slot *p_slot;
150 
151 	if (!change)
152 		return 0;
153 
154 	/*
155 	 * Presence Change
156 	 */
157 	dbg("cpqsbd:  Presence/Notify input change.\n");
158 	dbg("         Changed bits are 0x%4.4x\n", change );
159 
160 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
161 		if (change & (0x0101 << hp_slot)) {
162 			/*
163 			 * this one changed.
164 			 */
165 			func = cpqhp_slot_find(ctrl->bus,
166 				(hp_slot + ctrl->slot_device_offset), 0);
167 
168 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
169 			ctrl->next_event = (ctrl->next_event + 1) % 10;
170 			taskInfo->hp_slot = hp_slot;
171 
172 			rc++;
173 
174 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
175 			if (!p_slot)
176 				return 0;
177 
178 			/* If the switch closed, must be a button
179 			 * If not in button mode, nevermind
180 			 */
181 			if (func->switch_save && (ctrl->push_button == 1)) {
182 				temp_word = ctrl->ctrl_int_comp >> 16;
183 				temp_byte = (temp_word >> hp_slot) & 0x01;
184 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185 
186 				if (temp_byte != func->presence_save) {
187 					/*
188 					 * button Pressed (doesn't do anything)
189 					 */
190 					dbg("hp_slot %d button pressed\n", hp_slot);
191 					taskInfo->event_type = INT_BUTTON_PRESS;
192 				} else {
193 					/*
194 					 * button Released - TAKE ACTION!!!!
195 					 */
196 					dbg("hp_slot %d button released\n", hp_slot);
197 					taskInfo->event_type = INT_BUTTON_RELEASE;
198 
199 					/* Cancel if we are still blinking */
200 					if ((p_slot->state == BLINKINGON_STATE)
201 					    || (p_slot->state == BLINKINGOFF_STATE)) {
202 						taskInfo->event_type = INT_BUTTON_CANCEL;
203 						dbg("hp_slot %d button cancel\n", hp_slot);
204 					} else if ((p_slot->state == POWERON_STATE)
205 						   || (p_slot->state == POWEROFF_STATE)) {
206 						/* info(msg_button_ignore, p_slot->number); */
207 						taskInfo->event_type = INT_BUTTON_IGNORE;
208 						dbg("hp_slot %d button ignore\n", hp_slot);
209 					}
210 				}
211 			} else {
212 				/* Switch is open, assume a presence change
213 				 * Save the presence state
214 				 */
215 				temp_word = ctrl->ctrl_int_comp >> 16;
216 				func->presence_save = (temp_word >> hp_slot) & 0x01;
217 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
218 
219 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
220 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
221 					/* Present */
222 					taskInfo->event_type = INT_PRESENCE_ON;
223 				} else {
224 					/* Not Present */
225 					taskInfo->event_type = INT_PRESENCE_OFF;
226 				}
227 			}
228 		}
229 	}
230 
231 	return rc;
232 }
233 
234 
235 static u8 handle_power_fault(u8 change, struct controller * ctrl)
236 {
237 	int hp_slot;
238 	u8 rc = 0;
239 	struct pci_func *func;
240 	struct event_info *taskInfo;
241 
242 	if (!change)
243 		return 0;
244 
245 	/*
246 	 * power fault
247 	 */
248 
249 	info("power fault interrupt\n");
250 
251 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
252 		if (change & (0x01 << hp_slot)) {
253 			/*
254 			 * this one changed.
255 			 */
256 			func = cpqhp_slot_find(ctrl->bus,
257 				(hp_slot + ctrl->slot_device_offset), 0);
258 
259 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
260 			ctrl->next_event = (ctrl->next_event + 1) % 10;
261 			taskInfo->hp_slot = hp_slot;
262 
263 			rc++;
264 
265 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
266 				/*
267 				 * power fault Cleared
268 				 */
269 				func->status = 0x00;
270 
271 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
272 			} else {
273 				/*
274 				 * power fault
275 				 */
276 				taskInfo->event_type = INT_POWER_FAULT;
277 
278 				if (ctrl->rev < 4) {
279 					amber_LED_on (ctrl, hp_slot);
280 					green_LED_off (ctrl, hp_slot);
281 					set_SOGO (ctrl);
282 
283 					/* this is a fatal condition, we want
284 					 * to crash the machine to protect from
285 					 * data corruption. simulated_NMI
286 					 * shouldn't ever return */
287 					/* FIXME
288 					simulated_NMI(hp_slot, ctrl); */
289 
290 					/* The following code causes a software
291 					 * crash just in case simulated_NMI did
292 					 * return */
293 					/*FIXME
294 					panic(msg_power_fault); */
295 				} else {
296 					/* set power fault status for this board */
297 					func->status = 0xFF;
298 					info("power fault bit %x set\n", hp_slot);
299 				}
300 			}
301 		}
302 	}
303 
304 	return rc;
305 }
306 
307 
308 /**
309  * sort_by_size - sort nodes on the list by their length, smallest first.
310  * @head: list to sort
311  */
312 static int sort_by_size(struct pci_resource **head)
313 {
314 	struct pci_resource *current_res;
315 	struct pci_resource *next_res;
316 	int out_of_order = 1;
317 
318 	if (!(*head))
319 		return 1;
320 
321 	if (!((*head)->next))
322 		return 0;
323 
324 	while (out_of_order) {
325 		out_of_order = 0;
326 
327 		/* Special case for swapping list head */
328 		if (((*head)->next) &&
329 		    ((*head)->length > (*head)->next->length)) {
330 			out_of_order++;
331 			current_res = *head;
332 			*head = (*head)->next;
333 			current_res->next = (*head)->next;
334 			(*head)->next = current_res;
335 		}
336 
337 		current_res = *head;
338 
339 		while (current_res->next && current_res->next->next) {
340 			if (current_res->next->length > current_res->next->next->length) {
341 				out_of_order++;
342 				next_res = current_res->next;
343 				current_res->next = current_res->next->next;
344 				current_res = current_res->next;
345 				next_res->next = current_res->next;
346 				current_res->next = next_res;
347 			} else
348 				current_res = current_res->next;
349 		}
350 	}  /* End of out_of_order loop */
351 
352 	return 0;
353 }
354 
355 
356 /**
357  * sort_by_max_size - sort nodes on the list by their length, largest first.
358  * @head: list to sort
359  */
360 static int sort_by_max_size(struct pci_resource **head)
361 {
362 	struct pci_resource *current_res;
363 	struct pci_resource *next_res;
364 	int out_of_order = 1;
365 
366 	if (!(*head))
367 		return 1;
368 
369 	if (!((*head)->next))
370 		return 0;
371 
372 	while (out_of_order) {
373 		out_of_order = 0;
374 
375 		/* Special case for swapping list head */
376 		if (((*head)->next) &&
377 		    ((*head)->length < (*head)->next->length)) {
378 			out_of_order++;
379 			current_res = *head;
380 			*head = (*head)->next;
381 			current_res->next = (*head)->next;
382 			(*head)->next = current_res;
383 		}
384 
385 		current_res = *head;
386 
387 		while (current_res->next && current_res->next->next) {
388 			if (current_res->next->length < current_res->next->next->length) {
389 				out_of_order++;
390 				next_res = current_res->next;
391 				current_res->next = current_res->next->next;
392 				current_res = current_res->next;
393 				next_res->next = current_res->next;
394 				current_res->next = next_res;
395 			} else
396 				current_res = current_res->next;
397 		}
398 	}  /* End of out_of_order loop */
399 
400 	return 0;
401 }
402 
403 
404 /**
405  * do_pre_bridge_resource_split - find node of resources that are unused
406  * @head: new list head
407  * @orig_head: original list head
408  * @alignment: max node size (?)
409  */
410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
411 				struct pci_resource **orig_head, u32 alignment)
412 {
413 	struct pci_resource *prevnode = NULL;
414 	struct pci_resource *node;
415 	struct pci_resource *split_node;
416 	u32 rc;
417 	u32 temp_dword;
418 	dbg("do_pre_bridge_resource_split\n");
419 
420 	if (!(*head) || !(*orig_head))
421 		return NULL;
422 
423 	rc = cpqhp_resource_sort_and_combine(head);
424 
425 	if (rc)
426 		return NULL;
427 
428 	if ((*head)->base != (*orig_head)->base)
429 		return NULL;
430 
431 	if ((*head)->length == (*orig_head)->length)
432 		return NULL;
433 
434 
435 	/* If we got here, there the bridge requires some of the resource, but
436 	 * we may be able to split some off of the front
437 	 */
438 
439 	node = *head;
440 
441 	if (node->length & (alignment -1)) {
442 		/* this one isn't an aligned length, so we'll make a new entry
443 		 * and split it up.
444 		 */
445 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
446 
447 		if (!split_node)
448 			return NULL;
449 
450 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
451 
452 		split_node->base = node->base;
453 		split_node->length = temp_dword;
454 
455 		node->length -= temp_dword;
456 		node->base += split_node->length;
457 
458 		/* Put it in the list */
459 		*head = split_node;
460 		split_node->next = node;
461 	}
462 
463 	if (node->length < alignment)
464 		return NULL;
465 
466 	/* Now unlink it */
467 	if (*head == node) {
468 		*head = node->next;
469 	} else {
470 		prevnode = *head;
471 		while (prevnode->next != node)
472 			prevnode = prevnode->next;
473 
474 		prevnode->next = node->next;
475 	}
476 	node->next = NULL;
477 
478 	return node;
479 }
480 
481 
482 /**
483  * do_bridge_resource_split - find one node of resources that aren't in use
484  * @head: list head
485  * @alignment: max node size (?)
486  */
487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
488 {
489 	struct pci_resource *prevnode = NULL;
490 	struct pci_resource *node;
491 	u32 rc;
492 	u32 temp_dword;
493 
494 	rc = cpqhp_resource_sort_and_combine(head);
495 
496 	if (rc)
497 		return NULL;
498 
499 	node = *head;
500 
501 	while (node->next) {
502 		prevnode = node;
503 		node = node->next;
504 		kfree(prevnode);
505 	}
506 
507 	if (node->length < alignment)
508 		goto error;
509 
510 	if (node->base & (alignment - 1)) {
511 		/* Short circuit if adjusted size is too small */
512 		temp_dword = (node->base | (alignment-1)) + 1;
513 		if ((node->length - (temp_dword - node->base)) < alignment)
514 			goto error;
515 
516 		node->length -= (temp_dword - node->base);
517 		node->base = temp_dword;
518 	}
519 
520 	if (node->length & (alignment - 1))
521 		/* There's stuff in use after this node */
522 		goto error;
523 
524 	return node;
525 error:
526 	kfree(node);
527 	return NULL;
528 }
529 
530 
531 /**
532  * get_io_resource - find first node of given size not in ISA aliasing window.
533  * @head: list to search
534  * @size: size of node to find, must be a power of two.
535  *
536  * Description: This function sorts the resource list by size and then returns
537  * returns the first node of "size" length that is not in the ISA aliasing
538  * window.  If it finds a node larger than "size" it will split it up.
539  */
540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
541 {
542 	struct pci_resource *prevnode;
543 	struct pci_resource *node;
544 	struct pci_resource *split_node;
545 	u32 temp_dword;
546 
547 	if (!(*head))
548 		return NULL;
549 
550 	if (cpqhp_resource_sort_and_combine(head))
551 		return NULL;
552 
553 	if (sort_by_size(head))
554 		return NULL;
555 
556 	for (node = *head; node; node = node->next) {
557 		if (node->length < size)
558 			continue;
559 
560 		if (node->base & (size - 1)) {
561 			/* this one isn't base aligned properly
562 			 * so we'll make a new entry and split it up
563 			 */
564 			temp_dword = (node->base | (size-1)) + 1;
565 
566 			/* Short circuit if adjusted size is too small */
567 			if ((node->length - (temp_dword - node->base)) < size)
568 				continue;
569 
570 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
571 
572 			if (!split_node)
573 				return NULL;
574 
575 			split_node->base = node->base;
576 			split_node->length = temp_dword - node->base;
577 			node->base = temp_dword;
578 			node->length -= split_node->length;
579 
580 			/* Put it in the list */
581 			split_node->next = node->next;
582 			node->next = split_node;
583 		} /* End of non-aligned base */
584 
585 		/* Don't need to check if too small since we already did */
586 		if (node->length > size) {
587 			/* this one is longer than we need
588 			 * so we'll make a new entry and split it up
589 			 */
590 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
591 
592 			if (!split_node)
593 				return NULL;
594 
595 			split_node->base = node->base + size;
596 			split_node->length = node->length - size;
597 			node->length = size;
598 
599 			/* Put it in the list */
600 			split_node->next = node->next;
601 			node->next = split_node;
602 		}  /* End of too big on top end */
603 
604 		/* For IO make sure it's not in the ISA aliasing space */
605 		if (node->base & 0x300L)
606 			continue;
607 
608 		/* If we got here, then it is the right size
609 		 * Now take it out of the list and break
610 		 */
611 		if (*head == node) {
612 			*head = node->next;
613 		} else {
614 			prevnode = *head;
615 			while (prevnode->next != node)
616 				prevnode = prevnode->next;
617 
618 			prevnode->next = node->next;
619 		}
620 		node->next = NULL;
621 		break;
622 	}
623 
624 	return node;
625 }
626 
627 
628 /**
629  * get_max_resource - get largest node which has at least the given size.
630  * @head: the list to search the node in
631  * @size: the minimum size of the node to find
632  *
633  * Description: Gets the largest node that is at least "size" big from the
634  * list pointed to by head.  It aligns the node on top and bottom
635  * to "size" alignment before returning it.
636  */
637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
638 {
639 	struct pci_resource *max;
640 	struct pci_resource *temp;
641 	struct pci_resource *split_node;
642 	u32 temp_dword;
643 
644 	if (cpqhp_resource_sort_and_combine(head))
645 		return NULL;
646 
647 	if (sort_by_max_size(head))
648 		return NULL;
649 
650 	for (max = *head; max; max = max->next) {
651 		/* If not big enough we could probably just bail,
652 		 * instead we'll continue to the next.
653 		 */
654 		if (max->length < size)
655 			continue;
656 
657 		if (max->base & (size - 1)) {
658 			/* this one isn't base aligned properly
659 			 * so we'll make a new entry and split it up
660 			 */
661 			temp_dword = (max->base | (size-1)) + 1;
662 
663 			/* Short circuit if adjusted size is too small */
664 			if ((max->length - (temp_dword - max->base)) < size)
665 				continue;
666 
667 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
668 
669 			if (!split_node)
670 				return NULL;
671 
672 			split_node->base = max->base;
673 			split_node->length = temp_dword - max->base;
674 			max->base = temp_dword;
675 			max->length -= split_node->length;
676 
677 			split_node->next = max->next;
678 			max->next = split_node;
679 		}
680 
681 		if ((max->base + max->length) & (size - 1)) {
682 			/* this one isn't end aligned properly at the top
683 			 * so we'll make a new entry and split it up
684 			 */
685 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
686 
687 			if (!split_node)
688 				return NULL;
689 			temp_dword = ((max->base + max->length) & ~(size - 1));
690 			split_node->base = temp_dword;
691 			split_node->length = max->length + max->base
692 					     - split_node->base;
693 			max->length -= split_node->length;
694 
695 			split_node->next = max->next;
696 			max->next = split_node;
697 		}
698 
699 		/* Make sure it didn't shrink too much when we aligned it */
700 		if (max->length < size)
701 			continue;
702 
703 		/* Now take it out of the list */
704 		temp = *head;
705 		if (temp == max) {
706 			*head = max->next;
707 		} else {
708 			while (temp && temp->next != max) {
709 				temp = temp->next;
710 			}
711 
712 			temp->next = max->next;
713 		}
714 
715 		max->next = NULL;
716 		break;
717 	}
718 
719 	return max;
720 }
721 
722 
723 /**
724  * get_resource - find resource of given size and split up larger ones.
725  * @head: the list to search for resources
726  * @size: the size limit to use
727  *
728  * Description: This function sorts the resource list by size and then
729  * returns the first node of "size" length.  If it finds a node
730  * larger than "size" it will split it up.
731  *
732  * size must be a power of two.
733  */
734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
735 {
736 	struct pci_resource *prevnode;
737 	struct pci_resource *node;
738 	struct pci_resource *split_node;
739 	u32 temp_dword;
740 
741 	if (cpqhp_resource_sort_and_combine(head))
742 		return NULL;
743 
744 	if (sort_by_size(head))
745 		return NULL;
746 
747 	for (node = *head; node; node = node->next) {
748 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
749 		    __func__, size, node, node->base, node->length);
750 		if (node->length < size)
751 			continue;
752 
753 		if (node->base & (size - 1)) {
754 			dbg("%s: not aligned\n", __func__);
755 			/* this one isn't base aligned properly
756 			 * so we'll make a new entry and split it up
757 			 */
758 			temp_dword = (node->base | (size-1)) + 1;
759 
760 			/* Short circuit if adjusted size is too small */
761 			if ((node->length - (temp_dword - node->base)) < size)
762 				continue;
763 
764 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
765 
766 			if (!split_node)
767 				return NULL;
768 
769 			split_node->base = node->base;
770 			split_node->length = temp_dword - node->base;
771 			node->base = temp_dword;
772 			node->length -= split_node->length;
773 
774 			split_node->next = node->next;
775 			node->next = split_node;
776 		} /* End of non-aligned base */
777 
778 		/* Don't need to check if too small since we already did */
779 		if (node->length > size) {
780 			dbg("%s: too big\n", __func__);
781 			/* this one is longer than we need
782 			 * so we'll make a new entry and split it up
783 			 */
784 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
785 
786 			if (!split_node)
787 				return NULL;
788 
789 			split_node->base = node->base + size;
790 			split_node->length = node->length - size;
791 			node->length = size;
792 
793 			/* Put it in the list */
794 			split_node->next = node->next;
795 			node->next = split_node;
796 		}  /* End of too big on top end */
797 
798 		dbg("%s: got one!!!\n", __func__);
799 		/* If we got here, then it is the right size
800 		 * Now take it out of the list */
801 		if (*head == node) {
802 			*head = node->next;
803 		} else {
804 			prevnode = *head;
805 			while (prevnode->next != node)
806 				prevnode = prevnode->next;
807 
808 			prevnode->next = node->next;
809 		}
810 		node->next = NULL;
811 		break;
812 	}
813 	return node;
814 }
815 
816 
817 /**
818  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
819  * @head: the list to sort and clean up
820  *
821  * Description: Sorts all of the nodes in the list in ascending order by
822  * their base addresses.  Also does garbage collection by
823  * combining adjacent nodes.
824  *
825  * Returns %0 if success.
826  */
827 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
828 {
829 	struct pci_resource *node1;
830 	struct pci_resource *node2;
831 	int out_of_order = 1;
832 
833 	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
834 
835 	if (!(*head))
836 		return 1;
837 
838 	dbg("*head->next = %p\n",(*head)->next);
839 
840 	if (!(*head)->next)
841 		return 0;	/* only one item on the list, already sorted! */
842 
843 	dbg("*head->base = 0x%x\n",(*head)->base);
844 	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
845 	while (out_of_order) {
846 		out_of_order = 0;
847 
848 		/* Special case for swapping list head */
849 		if (((*head)->next) &&
850 		    ((*head)->base > (*head)->next->base)) {
851 			node1 = *head;
852 			(*head) = (*head)->next;
853 			node1->next = (*head)->next;
854 			(*head)->next = node1;
855 			out_of_order++;
856 		}
857 
858 		node1 = (*head);
859 
860 		while (node1->next && node1->next->next) {
861 			if (node1->next->base > node1->next->next->base) {
862 				out_of_order++;
863 				node2 = node1->next;
864 				node1->next = node1->next->next;
865 				node1 = node1->next;
866 				node2->next = node1->next;
867 				node1->next = node2;
868 			} else
869 				node1 = node1->next;
870 		}
871 	}  /* End of out_of_order loop */
872 
873 	node1 = *head;
874 
875 	while (node1 && node1->next) {
876 		if ((node1->base + node1->length) == node1->next->base) {
877 			/* Combine */
878 			dbg("8..\n");
879 			node1->length += node1->next->length;
880 			node2 = node1->next;
881 			node1->next = node1->next->next;
882 			kfree(node2);
883 		} else
884 			node1 = node1->next;
885 	}
886 
887 	return 0;
888 }
889 
890 
891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
892 {
893 	struct controller *ctrl = data;
894 	u8 schedule_flag = 0;
895 	u8 reset;
896 	u16 misc;
897 	u32 Diff;
898 	u32 temp_dword;
899 
900 
901 	misc = readw(ctrl->hpc_reg + MISC);
902 	/*
903 	 * Check to see if it was our interrupt
904 	 */
905 	if (!(misc & 0x000C)) {
906 		return IRQ_NONE;
907 	}
908 
909 	if (misc & 0x0004) {
910 		/*
911 		 * Serial Output interrupt Pending
912 		 */
913 
914 		/* Clear the interrupt */
915 		misc |= 0x0004;
916 		writew(misc, ctrl->hpc_reg + MISC);
917 
918 		/* Read to clear posted writes */
919 		misc = readw(ctrl->hpc_reg + MISC);
920 
921 		dbg ("%s - waking up\n", __func__);
922 		wake_up_interruptible(&ctrl->queue);
923 	}
924 
925 	if (misc & 0x0008) {
926 		/* General-interrupt-input interrupt Pending */
927 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
928 
929 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
930 
931 		/* Clear the interrupt */
932 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
933 
934 		/* Read it back to clear any posted writes */
935 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
936 
937 		if (!Diff)
938 			/* Clear all interrupts */
939 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
940 
941 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
942 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
943 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
944 	}
945 
946 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
947 	if (reset & 0x40) {
948 		/* Bus reset has completed */
949 		reset &= 0xCF;
950 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
951 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
952 		wake_up_interruptible(&ctrl->queue);
953 	}
954 
955 	if (schedule_flag) {
956 		wake_up_process(cpqhp_event_thread);
957 		dbg("Waking even thread");
958 	}
959 	return IRQ_HANDLED;
960 }
961 
962 
963 /**
964  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
965  * @busnumber: bus where new node is to be located
966  *
967  * Returns pointer to the new node or %NULL if unsuccessful.
968  */
969 struct pci_func *cpqhp_slot_create(u8 busnumber)
970 {
971 	struct pci_func *new_slot;
972 	struct pci_func *next;
973 
974 	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
975 	if (new_slot == NULL)
976 		return new_slot;
977 
978 	new_slot->next = NULL;
979 	new_slot->configured = 1;
980 
981 	if (cpqhp_slot_list[busnumber] == NULL) {
982 		cpqhp_slot_list[busnumber] = new_slot;
983 	} else {
984 		next = cpqhp_slot_list[busnumber];
985 		while (next->next != NULL)
986 			next = next->next;
987 		next->next = new_slot;
988 	}
989 	return new_slot;
990 }
991 
992 
993 /**
994  * slot_remove - Removes a node from the linked list of slots.
995  * @old_slot: slot to remove
996  *
997  * Returns %0 if successful, !0 otherwise.
998  */
999 static int slot_remove(struct pci_func * old_slot)
1000 {
1001 	struct pci_func *next;
1002 
1003 	if (old_slot == NULL)
1004 		return 1;
1005 
1006 	next = cpqhp_slot_list[old_slot->bus];
1007 	if (next == NULL)
1008 		return 1;
1009 
1010 	if (next == old_slot) {
1011 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1012 		cpqhp_destroy_board_resources(old_slot);
1013 		kfree(old_slot);
1014 		return 0;
1015 	}
1016 
1017 	while ((next->next != old_slot) && (next->next != NULL))
1018 		next = next->next;
1019 
1020 	if (next->next == old_slot) {
1021 		next->next = old_slot->next;
1022 		cpqhp_destroy_board_resources(old_slot);
1023 		kfree(old_slot);
1024 		return 0;
1025 	} else
1026 		return 2;
1027 }
1028 
1029 
1030 /**
1031  * bridge_slot_remove - Removes a node from the linked list of slots.
1032  * @bridge: bridge to remove
1033  *
1034  * Returns %0 if successful, !0 otherwise.
1035  */
1036 static int bridge_slot_remove(struct pci_func *bridge)
1037 {
1038 	u8 subordinateBus, secondaryBus;
1039 	u8 tempBus;
1040 	struct pci_func *next;
1041 
1042 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1043 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1044 
1045 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1046 		next = cpqhp_slot_list[tempBus];
1047 
1048 		while (!slot_remove(next))
1049 			next = cpqhp_slot_list[tempBus];
1050 	}
1051 
1052 	next = cpqhp_slot_list[bridge->bus];
1053 
1054 	if (next == NULL)
1055 		return 1;
1056 
1057 	if (next == bridge) {
1058 		cpqhp_slot_list[bridge->bus] = bridge->next;
1059 		goto out;
1060 	}
1061 
1062 	while ((next->next != bridge) && (next->next != NULL))
1063 		next = next->next;
1064 
1065 	if (next->next != bridge)
1066 		return 2;
1067 	next->next = bridge->next;
1068 out:
1069 	kfree(bridge);
1070 	return 0;
1071 }
1072 
1073 
1074 /**
1075  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1076  * @bus: bus to find
1077  * @device: device to find
1078  * @index: is %0 for first function found, %1 for the second...
1079  *
1080  * Returns pointer to the node if successful, %NULL otherwise.
1081  */
1082 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1083 {
1084 	int found = -1;
1085 	struct pci_func *func;
1086 
1087 	func = cpqhp_slot_list[bus];
1088 
1089 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1090 		return func;
1091 
1092 	if (func->device == device)
1093 		found++;
1094 
1095 	while (func->next != NULL) {
1096 		func = func->next;
1097 
1098 		if (func->device == device)
1099 			found++;
1100 
1101 		if (found == index)
1102 			return func;
1103 	}
1104 
1105 	return NULL;
1106 }
1107 
1108 
1109 /* DJZ: I don't think is_bridge will work as is.
1110  * FIXME */
1111 static int is_bridge(struct pci_func * func)
1112 {
1113 	/* Check the header type */
1114 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1115 		return 1;
1116 	else
1117 		return 0;
1118 }
1119 
1120 
1121 /**
1122  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1123  * @ctrl: controller to change frequency/mode for.
1124  * @adapter_speed: the speed of the adapter we want to match.
1125  * @hp_slot: the slot number where the adapter is installed.
1126  *
1127  * Returns %0 if we successfully change frequency and/or mode to match the
1128  * adapter speed.
1129  */
1130 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1131 {
1132 	struct slot *slot;
1133 	u8 reg;
1134 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1135 	u16 reg16;
1136 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1137 
1138 	if (ctrl->speed == adapter_speed)
1139 		return 0;
1140 
1141 	/* We don't allow freq/mode changes if we find another adapter running
1142 	 * in another slot on this controller
1143 	 */
1144 	for(slot = ctrl->slot; slot; slot = slot->next) {
1145 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1146 			continue;
1147 		if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1148 			continue;
1149 		if (slot->hotplug_slot->info->adapter_status == 0)
1150 			continue;
1151 		/* If another adapter is running on the same segment but at a
1152 		 * lower speed/mode, we allow the new adapter to function at
1153 		 * this rate if supported
1154 		 */
1155 		if (ctrl->speed < adapter_speed)
1156 			return 0;
1157 
1158 		return 1;
1159 	}
1160 
1161 	/* If the controller doesn't support freq/mode changes and the
1162 	 * controller is running at a higher mode, we bail
1163 	 */
1164 	if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1165 		return 1;
1166 
1167 	/* But we allow the adapter to run at a lower rate if possible */
1168 	if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1169 		return 0;
1170 
1171 	/* We try to set the max speed supported by both the adapter and
1172 	 * controller
1173 	 */
1174 	if (ctrl->speed_capability < adapter_speed) {
1175 		if (ctrl->speed == ctrl->speed_capability)
1176 			return 0;
1177 		adapter_speed = ctrl->speed_capability;
1178 	}
1179 
1180 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1181 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1182 
1183 	set_SOGO(ctrl);
1184 	wait_for_ctrl_irq(ctrl);
1185 
1186 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1187 		reg = 0xF5;
1188 	else
1189 		reg = 0xF4;
1190 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1191 
1192 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1193 	reg16 &= ~0x000F;
1194 	switch(adapter_speed) {
1195 		case(PCI_SPEED_133MHz_PCIX):
1196 			reg = 0x75;
1197 			reg16 |= 0xB;
1198 			break;
1199 		case(PCI_SPEED_100MHz_PCIX):
1200 			reg = 0x74;
1201 			reg16 |= 0xA;
1202 			break;
1203 		case(PCI_SPEED_66MHz_PCIX):
1204 			reg = 0x73;
1205 			reg16 |= 0x9;
1206 			break;
1207 		case(PCI_SPEED_66MHz):
1208 			reg = 0x73;
1209 			reg16 |= 0x1;
1210 			break;
1211 		default: /* 33MHz PCI 2.2 */
1212 			reg = 0x71;
1213 			break;
1214 
1215 	}
1216 	reg16 |= 0xB << 12;
1217 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1218 
1219 	mdelay(5);
1220 
1221 	/* Reenable interrupts */
1222 	writel(0, ctrl->hpc_reg + INT_MASK);
1223 
1224 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1225 
1226 	/* Restart state machine */
1227 	reg = ~0xF;
1228 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1229 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1230 
1231 	/* Only if mode change...*/
1232 	if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1233 		((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1234 			set_SOGO(ctrl);
1235 
1236 	wait_for_ctrl_irq(ctrl);
1237 	mdelay(1100);
1238 
1239 	/* Restore LED/Slot state */
1240 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1241 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1242 
1243 	set_SOGO(ctrl);
1244 	wait_for_ctrl_irq(ctrl);
1245 
1246 	ctrl->speed = adapter_speed;
1247 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1248 
1249 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1250 			slot->number);
1251 	return 0;
1252 }
1253 
1254 /* the following routines constitute the bulk of the
1255  * hotplug controller logic
1256  */
1257 
1258 
1259 /**
1260  * board_replaced - Called after a board has been replaced in the system.
1261  * @func: PCI device/function information
1262  * @ctrl: hotplug controller
1263  *
1264  * This is only used if we don't have resources for hot add.
1265  * Turns power on for the board.
1266  * Checks to see if board is the same.
1267  * If board is same, reconfigures it.
1268  * If board isn't same, turns it back off.
1269  */
1270 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1271 {
1272 	u8 hp_slot;
1273 	u8 temp_byte;
1274 	u8 adapter_speed;
1275 	u32 rc = 0;
1276 
1277 	hp_slot = func->device - ctrl->slot_device_offset;
1278 
1279 	/*
1280 	 * The switch is open.
1281 	 */
1282 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1283 		rc = INTERLOCK_OPEN;
1284 	/*
1285 	 * The board is already on
1286 	 */
1287 	else if (is_slot_enabled (ctrl, hp_slot))
1288 		rc = CARD_FUNCTIONING;
1289 	else {
1290 		mutex_lock(&ctrl->crit_sect);
1291 
1292 		/* turn on board without attaching to the bus */
1293 		enable_slot_power (ctrl, hp_slot);
1294 
1295 		set_SOGO(ctrl);
1296 
1297 		/* Wait for SOBS to be unset */
1298 		wait_for_ctrl_irq (ctrl);
1299 
1300 		/* Change bits in slot power register to force another shift out
1301 		 * NOTE: this is to work around the timer bug */
1302 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1303 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1304 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1305 
1306 		set_SOGO(ctrl);
1307 
1308 		/* Wait for SOBS to be unset */
1309 		wait_for_ctrl_irq (ctrl);
1310 
1311 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1312 		if (ctrl->speed != adapter_speed)
1313 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1314 				rc = WRONG_BUS_FREQUENCY;
1315 
1316 		/* turn off board without attaching to the bus */
1317 		disable_slot_power (ctrl, hp_slot);
1318 
1319 		set_SOGO(ctrl);
1320 
1321 		/* Wait for SOBS to be unset */
1322 		wait_for_ctrl_irq (ctrl);
1323 
1324 		mutex_unlock(&ctrl->crit_sect);
1325 
1326 		if (rc)
1327 			return rc;
1328 
1329 		mutex_lock(&ctrl->crit_sect);
1330 
1331 		slot_enable (ctrl, hp_slot);
1332 		green_LED_blink (ctrl, hp_slot);
1333 
1334 		amber_LED_off (ctrl, hp_slot);
1335 
1336 		set_SOGO(ctrl);
1337 
1338 		/* Wait for SOBS to be unset */
1339 		wait_for_ctrl_irq (ctrl);
1340 
1341 		mutex_unlock(&ctrl->crit_sect);
1342 
1343 		/* Wait for ~1 second because of hot plug spec */
1344 		long_delay(1*HZ);
1345 
1346 		/* Check for a power fault */
1347 		if (func->status == 0xFF) {
1348 			/* power fault occurred, but it was benign */
1349 			rc = POWER_FAILURE;
1350 			func->status = 0;
1351 		} else
1352 			rc = cpqhp_valid_replace(ctrl, func);
1353 
1354 		if (!rc) {
1355 			/* It must be the same board */
1356 
1357 			rc = cpqhp_configure_board(ctrl, func);
1358 
1359 			/* If configuration fails, turn it off
1360 			 * Get slot won't work for devices behind
1361 			 * bridges, but in this case it will always be
1362 			 * called for the "base" bus/dev/func of an
1363 			 * adapter.
1364 			 */
1365 
1366 			mutex_lock(&ctrl->crit_sect);
1367 
1368 			amber_LED_on (ctrl, hp_slot);
1369 			green_LED_off (ctrl, hp_slot);
1370 			slot_disable (ctrl, hp_slot);
1371 
1372 			set_SOGO(ctrl);
1373 
1374 			/* Wait for SOBS to be unset */
1375 			wait_for_ctrl_irq (ctrl);
1376 
1377 			mutex_unlock(&ctrl->crit_sect);
1378 
1379 			if (rc)
1380 				return rc;
1381 			else
1382 				return 1;
1383 
1384 		} else {
1385 			/* Something is wrong
1386 
1387 			 * Get slot won't work for devices behind bridges, but
1388 			 * in this case it will always be called for the "base"
1389 			 * bus/dev/func of an adapter.
1390 			 */
1391 
1392 			mutex_lock(&ctrl->crit_sect);
1393 
1394 			amber_LED_on (ctrl, hp_slot);
1395 			green_LED_off (ctrl, hp_slot);
1396 			slot_disable (ctrl, hp_slot);
1397 
1398 			set_SOGO(ctrl);
1399 
1400 			/* Wait for SOBS to be unset */
1401 			wait_for_ctrl_irq (ctrl);
1402 
1403 			mutex_unlock(&ctrl->crit_sect);
1404 		}
1405 
1406 	}
1407 	return rc;
1408 
1409 }
1410 
1411 
1412 /**
1413  * board_added - Called after a board has been added to the system.
1414  * @func: PCI device/function info
1415  * @ctrl: hotplug controller
1416  *
1417  * Turns power on for the board.
1418  * Configures board.
1419  */
1420 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1421 {
1422 	u8 hp_slot;
1423 	u8 temp_byte;
1424 	u8 adapter_speed;
1425 	int index;
1426 	u32 temp_register = 0xFFFFFFFF;
1427 	u32 rc = 0;
1428 	struct pci_func *new_slot = NULL;
1429 	struct slot *p_slot;
1430 	struct resource_lists res_lists;
1431 
1432 	hp_slot = func->device - ctrl->slot_device_offset;
1433 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1434 	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1435 
1436 	mutex_lock(&ctrl->crit_sect);
1437 
1438 	/* turn on board without attaching to the bus */
1439 	enable_slot_power(ctrl, hp_slot);
1440 
1441 	set_SOGO(ctrl);
1442 
1443 	/* Wait for SOBS to be unset */
1444 	wait_for_ctrl_irq (ctrl);
1445 
1446 	/* Change bits in slot power register to force another shift out
1447 	 * NOTE: this is to work around the timer bug
1448 	 */
1449 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1450 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1451 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1452 
1453 	set_SOGO(ctrl);
1454 
1455 	/* Wait for SOBS to be unset */
1456 	wait_for_ctrl_irq (ctrl);
1457 
1458 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1459 	if (ctrl->speed != adapter_speed)
1460 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1461 			rc = WRONG_BUS_FREQUENCY;
1462 
1463 	/* turn off board without attaching to the bus */
1464 	disable_slot_power (ctrl, hp_slot);
1465 
1466 	set_SOGO(ctrl);
1467 
1468 	/* Wait for SOBS to be unset */
1469 	wait_for_ctrl_irq(ctrl);
1470 
1471 	mutex_unlock(&ctrl->crit_sect);
1472 
1473 	if (rc)
1474 		return rc;
1475 
1476 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1477 
1478 	/* turn on board and blink green LED */
1479 
1480 	dbg("%s: before down\n", __func__);
1481 	mutex_lock(&ctrl->crit_sect);
1482 	dbg("%s: after down\n", __func__);
1483 
1484 	dbg("%s: before slot_enable\n", __func__);
1485 	slot_enable (ctrl, hp_slot);
1486 
1487 	dbg("%s: before green_LED_blink\n", __func__);
1488 	green_LED_blink (ctrl, hp_slot);
1489 
1490 	dbg("%s: before amber_LED_blink\n", __func__);
1491 	amber_LED_off (ctrl, hp_slot);
1492 
1493 	dbg("%s: before set_SOGO\n", __func__);
1494 	set_SOGO(ctrl);
1495 
1496 	/* Wait for SOBS to be unset */
1497 	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1498 	wait_for_ctrl_irq (ctrl);
1499 	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1500 
1501 	dbg("%s: before up\n", __func__);
1502 	mutex_unlock(&ctrl->crit_sect);
1503 	dbg("%s: after up\n", __func__);
1504 
1505 	/* Wait for ~1 second because of hot plug spec */
1506 	dbg("%s: before long_delay\n", __func__);
1507 	long_delay(1*HZ);
1508 	dbg("%s: after long_delay\n", __func__);
1509 
1510 	dbg("%s: func status = %x\n", __func__, func->status);
1511 	/* Check for a power fault */
1512 	if (func->status == 0xFF) {
1513 		/* power fault occurred, but it was benign */
1514 		temp_register = 0xFFFFFFFF;
1515 		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1516 		rc = POWER_FAILURE;
1517 		func->status = 0;
1518 	} else {
1519 		/* Get vendor/device ID u32 */
1520 		ctrl->pci_bus->number = func->bus;
1521 		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1522 		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1523 		dbg("%s: temp_register is %x\n", __func__, temp_register);
1524 
1525 		if (rc != 0) {
1526 			/* Something's wrong here */
1527 			temp_register = 0xFFFFFFFF;
1528 			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1529 		}
1530 		/* Preset return code.  It will be changed later if things go okay. */
1531 		rc = NO_ADAPTER_PRESENT;
1532 	}
1533 
1534 	/* All F's is an empty slot or an invalid board */
1535 	if (temp_register != 0xFFFFFFFF) {
1536 		res_lists.io_head = ctrl->io_head;
1537 		res_lists.mem_head = ctrl->mem_head;
1538 		res_lists.p_mem_head = ctrl->p_mem_head;
1539 		res_lists.bus_head = ctrl->bus_head;
1540 		res_lists.irqs = NULL;
1541 
1542 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1543 
1544 		dbg("%s: back from configure_new_device\n", __func__);
1545 		ctrl->io_head = res_lists.io_head;
1546 		ctrl->mem_head = res_lists.mem_head;
1547 		ctrl->p_mem_head = res_lists.p_mem_head;
1548 		ctrl->bus_head = res_lists.bus_head;
1549 
1550 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1551 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1552 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1553 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1554 
1555 		if (rc) {
1556 			mutex_lock(&ctrl->crit_sect);
1557 
1558 			amber_LED_on (ctrl, hp_slot);
1559 			green_LED_off (ctrl, hp_slot);
1560 			slot_disable (ctrl, hp_slot);
1561 
1562 			set_SOGO(ctrl);
1563 
1564 			/* Wait for SOBS to be unset */
1565 			wait_for_ctrl_irq (ctrl);
1566 
1567 			mutex_unlock(&ctrl->crit_sect);
1568 			return rc;
1569 		} else {
1570 			cpqhp_save_slot_config(ctrl, func);
1571 		}
1572 
1573 
1574 		func->status = 0;
1575 		func->switch_save = 0x10;
1576 		func->is_a_board = 0x01;
1577 
1578 		/* next, we will instantiate the linux pci_dev structures (with
1579 		 * appropriate driver notification, if already present) */
1580 		dbg("%s: configure linux pci_dev structure\n", __func__);
1581 		index = 0;
1582 		do {
1583 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1584 			if (new_slot && !new_slot->pci_dev)
1585 				cpqhp_configure_device(ctrl, new_slot);
1586 		} while (new_slot);
1587 
1588 		mutex_lock(&ctrl->crit_sect);
1589 
1590 		green_LED_on (ctrl, hp_slot);
1591 
1592 		set_SOGO(ctrl);
1593 
1594 		/* Wait for SOBS to be unset */
1595 		wait_for_ctrl_irq (ctrl);
1596 
1597 		mutex_unlock(&ctrl->crit_sect);
1598 	} else {
1599 		mutex_lock(&ctrl->crit_sect);
1600 
1601 		amber_LED_on (ctrl, hp_slot);
1602 		green_LED_off (ctrl, hp_slot);
1603 		slot_disable (ctrl, hp_slot);
1604 
1605 		set_SOGO(ctrl);
1606 
1607 		/* Wait for SOBS to be unset */
1608 		wait_for_ctrl_irq (ctrl);
1609 
1610 		mutex_unlock(&ctrl->crit_sect);
1611 
1612 		return rc;
1613 	}
1614 	return 0;
1615 }
1616 
1617 
1618 /**
1619  * remove_board - Turns off slot and LEDs
1620  * @func: PCI device/function info
1621  * @replace_flag: whether replacing or adding a new device
1622  * @ctrl: target controller
1623  */
1624 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1625 {
1626 	int index;
1627 	u8 skip = 0;
1628 	u8 device;
1629 	u8 hp_slot;
1630 	u8 temp_byte;
1631 	u32 rc;
1632 	struct resource_lists res_lists;
1633 	struct pci_func *temp_func;
1634 
1635 	if (cpqhp_unconfigure_device(func))
1636 		return 1;
1637 
1638 	device = func->device;
1639 
1640 	hp_slot = func->device - ctrl->slot_device_offset;
1641 	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1642 
1643 	/* When we get here, it is safe to change base address registers.
1644 	 * We will attempt to save the base address register lengths */
1645 	if (replace_flag || !ctrl->add_support)
1646 		rc = cpqhp_save_base_addr_length(ctrl, func);
1647 	else if (!func->bus_head && !func->mem_head &&
1648 		 !func->p_mem_head && !func->io_head) {
1649 		/* Here we check to see if we've saved any of the board's
1650 		 * resources already.  If so, we'll skip the attempt to
1651 		 * determine what's being used. */
1652 		index = 0;
1653 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1654 		while (temp_func) {
1655 			if (temp_func->bus_head || temp_func->mem_head
1656 			    || temp_func->p_mem_head || temp_func->io_head) {
1657 				skip = 1;
1658 				break;
1659 			}
1660 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1661 		}
1662 
1663 		if (!skip)
1664 			rc = cpqhp_save_used_resources(ctrl, func);
1665 	}
1666 	/* Change status to shutdown */
1667 	if (func->is_a_board)
1668 		func->status = 0x01;
1669 	func->configured = 0;
1670 
1671 	mutex_lock(&ctrl->crit_sect);
1672 
1673 	green_LED_off (ctrl, hp_slot);
1674 	slot_disable (ctrl, hp_slot);
1675 
1676 	set_SOGO(ctrl);
1677 
1678 	/* turn off SERR for slot */
1679 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1680 	temp_byte &= ~(0x01 << hp_slot);
1681 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1682 
1683 	/* Wait for SOBS to be unset */
1684 	wait_for_ctrl_irq (ctrl);
1685 
1686 	mutex_unlock(&ctrl->crit_sect);
1687 
1688 	if (!replace_flag && ctrl->add_support) {
1689 		while (func) {
1690 			res_lists.io_head = ctrl->io_head;
1691 			res_lists.mem_head = ctrl->mem_head;
1692 			res_lists.p_mem_head = ctrl->p_mem_head;
1693 			res_lists.bus_head = ctrl->bus_head;
1694 
1695 			cpqhp_return_board_resources(func, &res_lists);
1696 
1697 			ctrl->io_head = res_lists.io_head;
1698 			ctrl->mem_head = res_lists.mem_head;
1699 			ctrl->p_mem_head = res_lists.p_mem_head;
1700 			ctrl->bus_head = res_lists.bus_head;
1701 
1702 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1703 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1704 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1705 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1706 
1707 			if (is_bridge(func)) {
1708 				bridge_slot_remove(func);
1709 			} else
1710 				slot_remove(func);
1711 
1712 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1713 		}
1714 
1715 		/* Setup slot structure with entry for empty slot */
1716 		func = cpqhp_slot_create(ctrl->bus);
1717 
1718 		if (func == NULL)
1719 			return 1;
1720 
1721 		func->bus = ctrl->bus;
1722 		func->device = device;
1723 		func->function = 0;
1724 		func->configured = 0;
1725 		func->switch_save = 0x10;
1726 		func->is_a_board = 0;
1727 		func->p_task_event = NULL;
1728 	}
1729 
1730 	return 0;
1731 }
1732 
1733 static void pushbutton_helper_thread(unsigned long data)
1734 {
1735 	pushbutton_pending = data;
1736 	wake_up_process(cpqhp_event_thread);
1737 }
1738 
1739 
1740 /* this is the main worker thread */
1741 static int event_thread(void* data)
1742 {
1743 	struct controller *ctrl;
1744 
1745 	while (1) {
1746 		dbg("!!!!event_thread sleeping\n");
1747 		set_current_state(TASK_INTERRUPTIBLE);
1748 		schedule();
1749 
1750 		if (kthread_should_stop())
1751 			break;
1752 		/* Do stuff here */
1753 		if (pushbutton_pending)
1754 			cpqhp_pushbutton_thread(pushbutton_pending);
1755 		else
1756 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1757 				interrupt_event_handler(ctrl);
1758 	}
1759 	dbg("event_thread signals exit\n");
1760 	return 0;
1761 }
1762 
1763 int cpqhp_event_start_thread(void)
1764 {
1765 	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1766 	if (IS_ERR(cpqhp_event_thread)) {
1767 		err ("Can't start up our event thread\n");
1768 		return PTR_ERR(cpqhp_event_thread);
1769 	}
1770 
1771 	return 0;
1772 }
1773 
1774 
1775 void cpqhp_event_stop_thread(void)
1776 {
1777 	kthread_stop(cpqhp_event_thread);
1778 }
1779 
1780 
1781 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1782 {
1783 	struct hotplug_slot_info *info;
1784 	int result;
1785 
1786 	info = kmalloc(sizeof(*info), GFP_KERNEL);
1787 	if (!info)
1788 		return -ENOMEM;
1789 
1790 	info->power_status = get_slot_enabled(ctrl, slot);
1791 	info->attention_status = cpq_get_attention_status(ctrl, slot);
1792 	info->latch_status = cpq_get_latch_status(ctrl, slot);
1793 	info->adapter_status = get_presence_status(ctrl, slot);
1794 	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1795 	kfree (info);
1796 	return result;
1797 }
1798 
1799 static void interrupt_event_handler(struct controller *ctrl)
1800 {
1801 	int loop = 0;
1802 	int change = 1;
1803 	struct pci_func *func;
1804 	u8 hp_slot;
1805 	struct slot *p_slot;
1806 
1807 	while (change) {
1808 		change = 0;
1809 
1810 		for (loop = 0; loop < 10; loop++) {
1811 			/* dbg("loop %d\n", loop); */
1812 			if (ctrl->event_queue[loop].event_type != 0) {
1813 				hp_slot = ctrl->event_queue[loop].hp_slot;
1814 
1815 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1816 				if (!func)
1817 					return;
1818 
1819 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1820 				if (!p_slot)
1821 					return;
1822 
1823 				dbg("hp_slot %d, func %p, p_slot %p\n",
1824 				    hp_slot, func, p_slot);
1825 
1826 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1827 					dbg("button pressed\n");
1828 				} else if (ctrl->event_queue[loop].event_type ==
1829 					   INT_BUTTON_CANCEL) {
1830 					dbg("button cancel\n");
1831 					del_timer(&p_slot->task_event);
1832 
1833 					mutex_lock(&ctrl->crit_sect);
1834 
1835 					if (p_slot->state == BLINKINGOFF_STATE) {
1836 						/* slot is on */
1837 						dbg("turn on green LED\n");
1838 						green_LED_on (ctrl, hp_slot);
1839 					} else if (p_slot->state == BLINKINGON_STATE) {
1840 						/* slot is off */
1841 						dbg("turn off green LED\n");
1842 						green_LED_off (ctrl, hp_slot);
1843 					}
1844 
1845 					info(msg_button_cancel, p_slot->number);
1846 
1847 					p_slot->state = STATIC_STATE;
1848 
1849 					amber_LED_off (ctrl, hp_slot);
1850 
1851 					set_SOGO(ctrl);
1852 
1853 					/* Wait for SOBS to be unset */
1854 					wait_for_ctrl_irq (ctrl);
1855 
1856 					mutex_unlock(&ctrl->crit_sect);
1857 				}
1858 				/*** button Released (No action on press...) */
1859 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1860 					dbg("button release\n");
1861 
1862 					if (is_slot_enabled (ctrl, hp_slot)) {
1863 						dbg("slot is on\n");
1864 						p_slot->state = BLINKINGOFF_STATE;
1865 						info(msg_button_off, p_slot->number);
1866 					} else {
1867 						dbg("slot is off\n");
1868 						p_slot->state = BLINKINGON_STATE;
1869 						info(msg_button_on, p_slot->number);
1870 					}
1871 					mutex_lock(&ctrl->crit_sect);
1872 
1873 					dbg("blink green LED and turn off amber\n");
1874 
1875 					amber_LED_off (ctrl, hp_slot);
1876 					green_LED_blink (ctrl, hp_slot);
1877 
1878 					set_SOGO(ctrl);
1879 
1880 					/* Wait for SOBS to be unset */
1881 					wait_for_ctrl_irq (ctrl);
1882 
1883 					mutex_unlock(&ctrl->crit_sect);
1884 					init_timer(&p_slot->task_event);
1885 					p_slot->hp_slot = hp_slot;
1886 					p_slot->ctrl = ctrl;
1887 /*					p_slot->physical_slot = physical_slot; */
1888 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1889 					p_slot->task_event.function = pushbutton_helper_thread;
1890 					p_slot->task_event.data = (u32) p_slot;
1891 
1892 					dbg("add_timer p_slot = %p\n", p_slot);
1893 					add_timer(&p_slot->task_event);
1894 				}
1895 				/***********POWER FAULT */
1896 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1897 					dbg("power fault\n");
1898 				} else {
1899 					/* refresh notification */
1900 					if (p_slot)
1901 						update_slot_info(ctrl, p_slot);
1902 				}
1903 
1904 				ctrl->event_queue[loop].event_type = 0;
1905 
1906 				change = 1;
1907 			}
1908 		}		/* End of FOR loop */
1909 	}
1910 
1911 	return;
1912 }
1913 
1914 
1915 /**
1916  * cpqhp_pushbutton_thread - handle pushbutton events
1917  * @slot: target slot (struct)
1918  *
1919  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1920  * Handles all pending events and exits.
1921  */
1922 void cpqhp_pushbutton_thread(unsigned long slot)
1923 {
1924 	u8 hp_slot;
1925 	u8 device;
1926 	struct pci_func *func;
1927 	struct slot *p_slot = (struct slot *) slot;
1928 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1929 
1930 	pushbutton_pending = 0;
1931 	hp_slot = p_slot->hp_slot;
1932 
1933 	device = p_slot->device;
1934 
1935 	if (is_slot_enabled(ctrl, hp_slot)) {
1936 		p_slot->state = POWEROFF_STATE;
1937 		/* power Down board */
1938 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1939 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1940 		if (!func) {
1941 			dbg("Error! func NULL in %s\n", __func__);
1942 			return ;
1943 		}
1944 
1945 		if (cpqhp_process_SS(ctrl, func) != 0) {
1946 			amber_LED_on(ctrl, hp_slot);
1947 			green_LED_on(ctrl, hp_slot);
1948 
1949 			set_SOGO(ctrl);
1950 
1951 			/* Wait for SOBS to be unset */
1952 			wait_for_ctrl_irq(ctrl);
1953 		}
1954 
1955 		p_slot->state = STATIC_STATE;
1956 	} else {
1957 		p_slot->state = POWERON_STATE;
1958 		/* slot is off */
1959 
1960 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1961 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1962 		if (!func) {
1963 			dbg("Error! func NULL in %s\n", __func__);
1964 			return ;
1965 		}
1966 
1967 		if (ctrl != NULL) {
1968 			if (cpqhp_process_SI(ctrl, func) != 0) {
1969 				amber_LED_on(ctrl, hp_slot);
1970 				green_LED_off(ctrl, hp_slot);
1971 
1972 				set_SOGO(ctrl);
1973 
1974 				/* Wait for SOBS to be unset */
1975 				wait_for_ctrl_irq (ctrl);
1976 			}
1977 		}
1978 
1979 		p_slot->state = STATIC_STATE;
1980 	}
1981 
1982 	return;
1983 }
1984 
1985 
1986 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1987 {
1988 	u8 device, hp_slot;
1989 	u16 temp_word;
1990 	u32 tempdword;
1991 	int rc;
1992 	struct slot* p_slot;
1993 	int physical_slot = 0;
1994 
1995 	tempdword = 0;
1996 
1997 	device = func->device;
1998 	hp_slot = device - ctrl->slot_device_offset;
1999 	p_slot = cpqhp_find_slot(ctrl, device);
2000 	if (p_slot)
2001 		physical_slot = p_slot->number;
2002 
2003 	/* Check to see if the interlock is closed */
2004 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2005 
2006 	if (tempdword & (0x01 << hp_slot)) {
2007 		return 1;
2008 	}
2009 
2010 	if (func->is_a_board) {
2011 		rc = board_replaced(func, ctrl);
2012 	} else {
2013 		/* add board */
2014 		slot_remove(func);
2015 
2016 		func = cpqhp_slot_create(ctrl->bus);
2017 		if (func == NULL)
2018 			return 1;
2019 
2020 		func->bus = ctrl->bus;
2021 		func->device = device;
2022 		func->function = 0;
2023 		func->configured = 0;
2024 		func->is_a_board = 1;
2025 
2026 		/* We have to save the presence info for these slots */
2027 		temp_word = ctrl->ctrl_int_comp >> 16;
2028 		func->presence_save = (temp_word >> hp_slot) & 0x01;
2029 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2030 
2031 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2032 			func->switch_save = 0;
2033 		} else {
2034 			func->switch_save = 0x10;
2035 		}
2036 
2037 		rc = board_added(func, ctrl);
2038 		if (rc) {
2039 			if (is_bridge(func)) {
2040 				bridge_slot_remove(func);
2041 			} else
2042 				slot_remove(func);
2043 
2044 			/* Setup slot structure with entry for empty slot */
2045 			func = cpqhp_slot_create(ctrl->bus);
2046 
2047 			if (func == NULL)
2048 				return 1;
2049 
2050 			func->bus = ctrl->bus;
2051 			func->device = device;
2052 			func->function = 0;
2053 			func->configured = 0;
2054 			func->is_a_board = 0;
2055 
2056 			/* We have to save the presence info for these slots */
2057 			temp_word = ctrl->ctrl_int_comp >> 16;
2058 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2059 			func->presence_save |=
2060 			(temp_word >> (hp_slot + 7)) & 0x02;
2061 
2062 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2063 				func->switch_save = 0;
2064 			} else {
2065 				func->switch_save = 0x10;
2066 			}
2067 		}
2068 	}
2069 
2070 	if (rc) {
2071 		dbg("%s: rc = %d\n", __func__, rc);
2072 	}
2073 
2074 	if (p_slot)
2075 		update_slot_info(ctrl, p_slot);
2076 
2077 	return rc;
2078 }
2079 
2080 
2081 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2082 {
2083 	u8 device, class_code, header_type, BCR;
2084 	u8 index = 0;
2085 	u8 replace_flag;
2086 	u32 rc = 0;
2087 	unsigned int devfn;
2088 	struct slot* p_slot;
2089 	struct pci_bus *pci_bus = ctrl->pci_bus;
2090 	int physical_slot=0;
2091 
2092 	device = func->device;
2093 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2094 	p_slot = cpqhp_find_slot(ctrl, device);
2095 	if (p_slot) {
2096 		physical_slot = p_slot->number;
2097 	}
2098 
2099 	/* Make sure there are no video controllers here */
2100 	while (func && !rc) {
2101 		pci_bus->number = func->bus;
2102 		devfn = PCI_DEVFN(func->device, func->function);
2103 
2104 		/* Check the Class Code */
2105 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2106 		if (rc)
2107 			return rc;
2108 
2109 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2110 			/* Display/Video adapter (not supported) */
2111 			rc = REMOVE_NOT_SUPPORTED;
2112 		} else {
2113 			/* See if it's a bridge */
2114 			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2115 			if (rc)
2116 				return rc;
2117 
2118 			/* If it's a bridge, check the VGA Enable bit */
2119 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2120 				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2121 				if (rc)
2122 					return rc;
2123 
2124 				/* If the VGA Enable bit is set, remove isn't
2125 				 * supported */
2126 				if (BCR & PCI_BRIDGE_CTL_VGA)
2127 					rc = REMOVE_NOT_SUPPORTED;
2128 			}
2129 		}
2130 
2131 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2132 	}
2133 
2134 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2135 	if ((func != NULL) && !rc) {
2136 		/* FIXME: Replace flag should be passed into process_SS */
2137 		replace_flag = !(ctrl->add_support);
2138 		rc = remove_board(func, replace_flag, ctrl);
2139 	} else if (!rc) {
2140 		rc = 1;
2141 	}
2142 
2143 	if (p_slot)
2144 		update_slot_info(ctrl, p_slot);
2145 
2146 	return rc;
2147 }
2148 
2149 /**
2150  * switch_leds - switch the leds, go from one site to the other.
2151  * @ctrl: controller to use
2152  * @num_of_slots: number of slots to use
2153  * @work_LED: LED control value
2154  * @direction: 1 to start from the left side, 0 to start right.
2155  */
2156 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2157 			u32 *work_LED, const int direction)
2158 {
2159 	int loop;
2160 
2161 	for (loop = 0; loop < num_of_slots; loop++) {
2162 		if (direction)
2163 			*work_LED = *work_LED >> 1;
2164 		else
2165 			*work_LED = *work_LED << 1;
2166 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2167 
2168 		set_SOGO(ctrl);
2169 
2170 		/* Wait for SOGO interrupt */
2171 		wait_for_ctrl_irq(ctrl);
2172 
2173 		/* Get ready for next iteration */
2174 		long_delay((2*HZ)/10);
2175 	}
2176 }
2177 
2178 /**
2179  * cpqhp_hardware_test - runs hardware tests
2180  * @ctrl: target controller
2181  * @test_num: the number written to the "test" file in sysfs.
2182  *
2183  * For hot plug ctrl folks to play with.
2184  */
2185 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2186 {
2187 	u32 save_LED;
2188 	u32 work_LED;
2189 	int loop;
2190 	int num_of_slots;
2191 
2192 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2193 
2194 	switch (test_num) {
2195 	case 1:
2196 		/* Do stuff here! */
2197 
2198 		/* Do that funky LED thing */
2199 		/* so we can restore them later */
2200 		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2201 		work_LED = 0x01010101;
2202 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2203 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2204 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2205 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2206 
2207 		work_LED = 0x01010000;
2208 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2209 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2210 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2211 		work_LED = 0x00000101;
2212 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2213 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2214 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2215 
2216 		work_LED = 0x01010000;
2217 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2218 		for (loop = 0; loop < num_of_slots; loop++) {
2219 			set_SOGO(ctrl);
2220 
2221 			/* Wait for SOGO interrupt */
2222 			wait_for_ctrl_irq (ctrl);
2223 
2224 			/* Get ready for next iteration */
2225 			long_delay((3*HZ)/10);
2226 			work_LED = work_LED >> 16;
2227 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2228 
2229 			set_SOGO(ctrl);
2230 
2231 			/* Wait for SOGO interrupt */
2232 			wait_for_ctrl_irq (ctrl);
2233 
2234 			/* Get ready for next iteration */
2235 			long_delay((3*HZ)/10);
2236 			work_LED = work_LED << 16;
2237 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2238 			work_LED = work_LED << 1;
2239 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2240 		}
2241 
2242 		/* put it back the way it was */
2243 		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2244 
2245 		set_SOGO(ctrl);
2246 
2247 		/* Wait for SOBS to be unset */
2248 		wait_for_ctrl_irq (ctrl);
2249 		break;
2250 	case 2:
2251 		/* Do other stuff here! */
2252 		break;
2253 	case 3:
2254 		/* and more... */
2255 		break;
2256 	}
2257 	return 0;
2258 }
2259 
2260 
2261 /**
2262  * configure_new_device - Configures the PCI header information of one board.
2263  * @ctrl: pointer to controller structure
2264  * @func: pointer to function structure
2265  * @behind_bridge: 1 if this is a recursive call, 0 if not
2266  * @resources: pointer to set of resource lists
2267  *
2268  * Returns 0 if success.
2269  */
2270 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2271 				 u8 behind_bridge, struct resource_lists * resources)
2272 {
2273 	u8 temp_byte, function, max_functions, stop_it;
2274 	int rc;
2275 	u32 ID;
2276 	struct pci_func *new_slot;
2277 	int index;
2278 
2279 	new_slot = func;
2280 
2281 	dbg("%s\n", __func__);
2282 	/* Check for Multi-function device */
2283 	ctrl->pci_bus->number = func->bus;
2284 	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2285 	if (rc) {
2286 		dbg("%s: rc = %d\n", __func__, rc);
2287 		return rc;
2288 	}
2289 
2290 	if (temp_byte & 0x80)	/* Multi-function device */
2291 		max_functions = 8;
2292 	else
2293 		max_functions = 1;
2294 
2295 	function = 0;
2296 
2297 	do {
2298 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2299 
2300 		if (rc) {
2301 			dbg("configure_new_function failed %d\n",rc);
2302 			index = 0;
2303 
2304 			while (new_slot) {
2305 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2306 
2307 				if (new_slot)
2308 					cpqhp_return_board_resources(new_slot, resources);
2309 			}
2310 
2311 			return rc;
2312 		}
2313 
2314 		function++;
2315 
2316 		stop_it = 0;
2317 
2318 		/* The following loop skips to the next present function
2319 		 * and creates a board structure */
2320 
2321 		while ((function < max_functions) && (!stop_it)) {
2322 			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2323 
2324 			if (ID == 0xFFFFFFFF) {
2325 				function++;
2326 			} else {
2327 				/* Setup slot structure. */
2328 				new_slot = cpqhp_slot_create(func->bus);
2329 
2330 				if (new_slot == NULL)
2331 					return 1;
2332 
2333 				new_slot->bus = func->bus;
2334 				new_slot->device = func->device;
2335 				new_slot->function = function;
2336 				new_slot->is_a_board = 1;
2337 				new_slot->status = 0;
2338 
2339 				stop_it++;
2340 			}
2341 		}
2342 
2343 	} while (function < max_functions);
2344 	dbg("returning from configure_new_device\n");
2345 
2346 	return 0;
2347 }
2348 
2349 
2350 /*
2351  * Configuration logic that involves the hotplug data structures and
2352  * their bookkeeping
2353  */
2354 
2355 
2356 /**
2357  * configure_new_function - Configures the PCI header information of one device
2358  * @ctrl: pointer to controller structure
2359  * @func: pointer to function structure
2360  * @behind_bridge: 1 if this is a recursive call, 0 if not
2361  * @resources: pointer to set of resource lists
2362  *
2363  * Calls itself recursively for bridged devices.
2364  * Returns 0 if success.
2365  */
2366 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2367 				   u8 behind_bridge,
2368 				   struct resource_lists *resources)
2369 {
2370 	int cloop;
2371 	u8 IRQ = 0;
2372 	u8 temp_byte;
2373 	u8 device;
2374 	u8 class_code;
2375 	u16 command;
2376 	u16 temp_word;
2377 	u32 temp_dword;
2378 	u32 rc;
2379 	u32 temp_register;
2380 	u32 base;
2381 	u32 ID;
2382 	unsigned int devfn;
2383 	struct pci_resource *mem_node;
2384 	struct pci_resource *p_mem_node;
2385 	struct pci_resource *io_node;
2386 	struct pci_resource *bus_node;
2387 	struct pci_resource *hold_mem_node;
2388 	struct pci_resource *hold_p_mem_node;
2389 	struct pci_resource *hold_IO_node;
2390 	struct pci_resource *hold_bus_node;
2391 	struct irq_mapping irqs;
2392 	struct pci_func *new_slot;
2393 	struct pci_bus *pci_bus;
2394 	struct resource_lists temp_resources;
2395 
2396 	pci_bus = ctrl->pci_bus;
2397 	pci_bus->number = func->bus;
2398 	devfn = PCI_DEVFN(func->device, func->function);
2399 
2400 	/* Check for Bridge */
2401 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2402 	if (rc)
2403 		return rc;
2404 
2405 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2406 		/* set Primary bus */
2407 		dbg("set Primary bus = %d\n", func->bus);
2408 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2409 		if (rc)
2410 			return rc;
2411 
2412 		/* find range of busses to use */
2413 		dbg("find ranges of buses to use\n");
2414 		bus_node = get_max_resource(&(resources->bus_head), 1);
2415 
2416 		/* If we don't have any busses to allocate, we can't continue */
2417 		if (!bus_node)
2418 			return -ENOMEM;
2419 
2420 		/* set Secondary bus */
2421 		temp_byte = bus_node->base;
2422 		dbg("set Secondary bus = %d\n", bus_node->base);
2423 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2424 		if (rc)
2425 			return rc;
2426 
2427 		/* set subordinate bus */
2428 		temp_byte = bus_node->base + bus_node->length - 1;
2429 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2430 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2431 		if (rc)
2432 			return rc;
2433 
2434 		/* set subordinate Latency Timer and base Latency Timer */
2435 		temp_byte = 0x40;
2436 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2437 		if (rc)
2438 			return rc;
2439 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2440 		if (rc)
2441 			return rc;
2442 
2443 		/* set Cache Line size */
2444 		temp_byte = 0x08;
2445 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2446 		if (rc)
2447 			return rc;
2448 
2449 		/* Setup the IO, memory, and prefetchable windows */
2450 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2451 		if (!io_node)
2452 			return -ENOMEM;
2453 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2454 		if (!mem_node)
2455 			return -ENOMEM;
2456 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2457 		if (!p_mem_node)
2458 			return -ENOMEM;
2459 		dbg("Setup the IO, memory, and prefetchable windows\n");
2460 		dbg("io_node\n");
2461 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2462 					io_node->length, io_node->next);
2463 		dbg("mem_node\n");
2464 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2465 					mem_node->length, mem_node->next);
2466 		dbg("p_mem_node\n");
2467 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2468 					p_mem_node->length, p_mem_node->next);
2469 
2470 		/* set up the IRQ info */
2471 		if (!resources->irqs) {
2472 			irqs.barber_pole = 0;
2473 			irqs.interrupt[0] = 0;
2474 			irqs.interrupt[1] = 0;
2475 			irqs.interrupt[2] = 0;
2476 			irqs.interrupt[3] = 0;
2477 			irqs.valid_INT = 0;
2478 		} else {
2479 			irqs.barber_pole = resources->irqs->barber_pole;
2480 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2481 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2482 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2483 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2484 			irqs.valid_INT = resources->irqs->valid_INT;
2485 		}
2486 
2487 		/* set up resource lists that are now aligned on top and bottom
2488 		 * for anything behind the bridge. */
2489 		temp_resources.bus_head = bus_node;
2490 		temp_resources.io_head = io_node;
2491 		temp_resources.mem_head = mem_node;
2492 		temp_resources.p_mem_head = p_mem_node;
2493 		temp_resources.irqs = &irqs;
2494 
2495 		/* Make copies of the nodes we are going to pass down so that
2496 		 * if there is a problem,we can just use these to free resources
2497 		 */
2498 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2499 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2500 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2501 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2502 
2503 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2504 			kfree(hold_bus_node);
2505 			kfree(hold_IO_node);
2506 			kfree(hold_mem_node);
2507 			kfree(hold_p_mem_node);
2508 
2509 			return 1;
2510 		}
2511 
2512 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2513 
2514 		bus_node->base += 1;
2515 		bus_node->length -= 1;
2516 		bus_node->next = NULL;
2517 
2518 		/* If we have IO resources copy them and fill in the bridge's
2519 		 * IO range registers */
2520 		if (io_node) {
2521 			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2522 			io_node->next = NULL;
2523 
2524 			/* set IO base and Limit registers */
2525 			temp_byte = io_node->base >> 8;
2526 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2527 
2528 			temp_byte = (io_node->base + io_node->length - 1) >> 8;
2529 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2530 		} else {
2531 			kfree(hold_IO_node);
2532 			hold_IO_node = NULL;
2533 		}
2534 
2535 		/* If we have memory resources copy them and fill in the
2536 		 * bridge's memory range registers.  Otherwise, fill in the
2537 		 * range registers with values that disable them. */
2538 		if (mem_node) {
2539 			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2540 			mem_node->next = NULL;
2541 
2542 			/* set Mem base and Limit registers */
2543 			temp_word = mem_node->base >> 16;
2544 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2545 
2546 			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2547 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2548 		} else {
2549 			temp_word = 0xFFFF;
2550 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2551 
2552 			temp_word = 0x0000;
2553 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2554 
2555 			kfree(hold_mem_node);
2556 			hold_mem_node = NULL;
2557 		}
2558 
2559 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2560 		p_mem_node->next = NULL;
2561 
2562 		/* set Pre Mem base and Limit registers */
2563 		temp_word = p_mem_node->base >> 16;
2564 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2565 
2566 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2567 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2568 
2569 		/* Adjust this to compensate for extra adjustment in first loop
2570 		 */
2571 		irqs.barber_pole--;
2572 
2573 		rc = 0;
2574 
2575 		/* Here we actually find the devices and configure them */
2576 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2577 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2578 
2579 			ID = 0xFFFFFFFF;
2580 			pci_bus->number = hold_bus_node->base;
2581 			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2582 			pci_bus->number = func->bus;
2583 
2584 			if (ID != 0xFFFFFFFF) {	  /*  device present */
2585 				/* Setup slot structure. */
2586 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2587 
2588 				if (new_slot == NULL) {
2589 					rc = -ENOMEM;
2590 					continue;
2591 				}
2592 
2593 				new_slot->bus = hold_bus_node->base;
2594 				new_slot->device = device;
2595 				new_slot->function = 0;
2596 				new_slot->is_a_board = 1;
2597 				new_slot->status = 0;
2598 
2599 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2600 				dbg("configure_new_device rc=0x%x\n",rc);
2601 			}	/* End of IF (device in slot?) */
2602 		}		/* End of FOR loop */
2603 
2604 		if (rc)
2605 			goto free_and_out;
2606 		/* save the interrupt routing information */
2607 		if (resources->irqs) {
2608 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2609 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2610 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2611 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2612 			resources->irqs->valid_INT = irqs.valid_INT;
2613 		} else if (!behind_bridge) {
2614 			/* We need to hook up the interrupts here */
2615 			for (cloop = 0; cloop < 4; cloop++) {
2616 				if (irqs.valid_INT & (0x01 << cloop)) {
2617 					rc = cpqhp_set_irq(func->bus, func->device,
2618 							   cloop + 1, irqs.interrupt[cloop]);
2619 					if (rc)
2620 						goto free_and_out;
2621 				}
2622 			}	/* end of for loop */
2623 		}
2624 		/* Return unused bus resources
2625 		 * First use the temporary node to store information for
2626 		 * the board */
2627 		if (hold_bus_node && bus_node && temp_resources.bus_head) {
2628 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2629 
2630 			hold_bus_node->next = func->bus_head;
2631 			func->bus_head = hold_bus_node;
2632 
2633 			temp_byte = temp_resources.bus_head->base - 1;
2634 
2635 			/* set subordinate bus */
2636 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2637 
2638 			if (temp_resources.bus_head->length == 0) {
2639 				kfree(temp_resources.bus_head);
2640 				temp_resources.bus_head = NULL;
2641 			} else {
2642 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2643 			}
2644 		}
2645 
2646 		/* If we have IO space available and there is some left,
2647 		 * return the unused portion */
2648 		if (hold_IO_node && temp_resources.io_head) {
2649 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2650 							       &hold_IO_node, 0x1000);
2651 
2652 			/* Check if we were able to split something off */
2653 			if (io_node) {
2654 				hold_IO_node->base = io_node->base + io_node->length;
2655 
2656 				temp_byte = (hold_IO_node->base) >> 8;
2657 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2658 
2659 				return_resource(&(resources->io_head), io_node);
2660 			}
2661 
2662 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2663 
2664 			/* Check if we were able to split something off */
2665 			if (io_node) {
2666 				/* First use the temporary node to store
2667 				 * information for the board */
2668 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2669 
2670 				/* If we used any, add it to the board's list */
2671 				if (hold_IO_node->length) {
2672 					hold_IO_node->next = func->io_head;
2673 					func->io_head = hold_IO_node;
2674 
2675 					temp_byte = (io_node->base - 1) >> 8;
2676 					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2677 
2678 					return_resource(&(resources->io_head), io_node);
2679 				} else {
2680 					/* it doesn't need any IO */
2681 					temp_word = 0x0000;
2682 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2683 
2684 					return_resource(&(resources->io_head), io_node);
2685 					kfree(hold_IO_node);
2686 				}
2687 			} else {
2688 				/* it used most of the range */
2689 				hold_IO_node->next = func->io_head;
2690 				func->io_head = hold_IO_node;
2691 			}
2692 		} else if (hold_IO_node) {
2693 			/* it used the whole range */
2694 			hold_IO_node->next = func->io_head;
2695 			func->io_head = hold_IO_node;
2696 		}
2697 		/* If we have memory space available and there is some left,
2698 		 * return the unused portion */
2699 		if (hold_mem_node && temp_resources.mem_head) {
2700 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2701 								&hold_mem_node, 0x100000);
2702 
2703 			/* Check if we were able to split something off */
2704 			if (mem_node) {
2705 				hold_mem_node->base = mem_node->base + mem_node->length;
2706 
2707 				temp_word = (hold_mem_node->base) >> 16;
2708 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2709 
2710 				return_resource(&(resources->mem_head), mem_node);
2711 			}
2712 
2713 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2714 
2715 			/* Check if we were able to split something off */
2716 			if (mem_node) {
2717 				/* First use the temporary node to store
2718 				 * information for the board */
2719 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2720 
2721 				if (hold_mem_node->length) {
2722 					hold_mem_node->next = func->mem_head;
2723 					func->mem_head = hold_mem_node;
2724 
2725 					/* configure end address */
2726 					temp_word = (mem_node->base - 1) >> 16;
2727 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2728 
2729 					/* Return unused resources to the pool */
2730 					return_resource(&(resources->mem_head), mem_node);
2731 				} else {
2732 					/* it doesn't need any Mem */
2733 					temp_word = 0x0000;
2734 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2735 
2736 					return_resource(&(resources->mem_head), mem_node);
2737 					kfree(hold_mem_node);
2738 				}
2739 			} else {
2740 				/* it used most of the range */
2741 				hold_mem_node->next = func->mem_head;
2742 				func->mem_head = hold_mem_node;
2743 			}
2744 		} else if (hold_mem_node) {
2745 			/* it used the whole range */
2746 			hold_mem_node->next = func->mem_head;
2747 			func->mem_head = hold_mem_node;
2748 		}
2749 		/* If we have prefetchable memory space available and there
2750 		 * is some left at the end, return the unused portion */
2751 		if (hold_p_mem_node && temp_resources.p_mem_head) {
2752 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2753 								  &hold_p_mem_node, 0x100000);
2754 
2755 			/* Check if we were able to split something off */
2756 			if (p_mem_node) {
2757 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2758 
2759 				temp_word = (hold_p_mem_node->base) >> 16;
2760 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2761 
2762 				return_resource(&(resources->p_mem_head), p_mem_node);
2763 			}
2764 
2765 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2766 
2767 			/* Check if we were able to split something off */
2768 			if (p_mem_node) {
2769 				/* First use the temporary node to store
2770 				 * information for the board */
2771 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2772 
2773 				/* If we used any, add it to the board's list */
2774 				if (hold_p_mem_node->length) {
2775 					hold_p_mem_node->next = func->p_mem_head;
2776 					func->p_mem_head = hold_p_mem_node;
2777 
2778 					temp_word = (p_mem_node->base - 1) >> 16;
2779 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2780 
2781 					return_resource(&(resources->p_mem_head), p_mem_node);
2782 				} else {
2783 					/* it doesn't need any PMem */
2784 					temp_word = 0x0000;
2785 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2786 
2787 					return_resource(&(resources->p_mem_head), p_mem_node);
2788 					kfree(hold_p_mem_node);
2789 				}
2790 			} else {
2791 				/* it used the most of the range */
2792 				hold_p_mem_node->next = func->p_mem_head;
2793 				func->p_mem_head = hold_p_mem_node;
2794 			}
2795 		} else if (hold_p_mem_node) {
2796 			/* it used the whole range */
2797 			hold_p_mem_node->next = func->p_mem_head;
2798 			func->p_mem_head = hold_p_mem_node;
2799 		}
2800 		/* We should be configuring an IRQ and the bridge's base address
2801 		 * registers if it needs them.  Although we have never seen such
2802 		 * a device */
2803 
2804 		/* enable card */
2805 		command = 0x0157;	/* = PCI_COMMAND_IO |
2806 					 *   PCI_COMMAND_MEMORY |
2807 					 *   PCI_COMMAND_MASTER |
2808 					 *   PCI_COMMAND_INVALIDATE |
2809 					 *   PCI_COMMAND_PARITY |
2810 					 *   PCI_COMMAND_SERR */
2811 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2812 
2813 		/* set Bridge Control Register */
2814 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2815 					 *   PCI_BRIDGE_CTL_SERR |
2816 					 *   PCI_BRIDGE_CTL_NO_ISA */
2817 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2818 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2819 		/* Standard device */
2820 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2821 
2822 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2823 			/* Display (video) adapter (not supported) */
2824 			return DEVICE_TYPE_NOT_SUPPORTED;
2825 		}
2826 		/* Figure out IO and memory needs */
2827 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2828 			temp_register = 0xFFFFFFFF;
2829 
2830 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2831 			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2832 
2833 			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2834 			dbg("CND: base = 0x%x\n", temp_register);
2835 
2836 			if (temp_register) {	  /* If this register is implemented */
2837 				if ((temp_register & 0x03L) == 0x01) {
2838 					/* Map IO */
2839 
2840 					/* set base = amount of IO space */
2841 					base = temp_register & 0xFFFFFFFC;
2842 					base = ~base + 1;
2843 
2844 					dbg("CND:      length = 0x%x\n", base);
2845 					io_node = get_io_resource(&(resources->io_head), base);
2846 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2847 					    io_node->base, io_node->length, io_node->next);
2848 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2849 
2850 					/* allocate the resource to the board */
2851 					if (io_node) {
2852 						base = io_node->base;
2853 
2854 						io_node->next = func->io_head;
2855 						func->io_head = io_node;
2856 					} else
2857 						return -ENOMEM;
2858 				} else if ((temp_register & 0x0BL) == 0x08) {
2859 					/* Map prefetchable memory */
2860 					base = temp_register & 0xFFFFFFF0;
2861 					base = ~base + 1;
2862 
2863 					dbg("CND:      length = 0x%x\n", base);
2864 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2865 
2866 					/* allocate the resource to the board */
2867 					if (p_mem_node) {
2868 						base = p_mem_node->base;
2869 
2870 						p_mem_node->next = func->p_mem_head;
2871 						func->p_mem_head = p_mem_node;
2872 					} else
2873 						return -ENOMEM;
2874 				} else if ((temp_register & 0x0BL) == 0x00) {
2875 					/* Map memory */
2876 					base = temp_register & 0xFFFFFFF0;
2877 					base = ~base + 1;
2878 
2879 					dbg("CND:      length = 0x%x\n", base);
2880 					mem_node = get_resource(&(resources->mem_head), base);
2881 
2882 					/* allocate the resource to the board */
2883 					if (mem_node) {
2884 						base = mem_node->base;
2885 
2886 						mem_node->next = func->mem_head;
2887 						func->mem_head = mem_node;
2888 					} else
2889 						return -ENOMEM;
2890 				} else if ((temp_register & 0x0BL) == 0x04) {
2891 					/* Map memory */
2892 					base = temp_register & 0xFFFFFFF0;
2893 					base = ~base + 1;
2894 
2895 					dbg("CND:      length = 0x%x\n", base);
2896 					mem_node = get_resource(&(resources->mem_head), base);
2897 
2898 					/* allocate the resource to the board */
2899 					if (mem_node) {
2900 						base = mem_node->base;
2901 
2902 						mem_node->next = func->mem_head;
2903 						func->mem_head = mem_node;
2904 					} else
2905 						return -ENOMEM;
2906 				} else if ((temp_register & 0x0BL) == 0x06) {
2907 					/* Those bits are reserved, we can't handle this */
2908 					return 1;
2909 				} else {
2910 					/* Requesting space below 1M */
2911 					return NOT_ENOUGH_RESOURCES;
2912 				}
2913 
2914 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2915 
2916 				/* Check for 64-bit base */
2917 				if ((temp_register & 0x07L) == 0x04) {
2918 					cloop += 4;
2919 
2920 					/* Upper 32 bits of address always zero
2921 					 * on today's systems */
2922 					/* FIXME this is probably not true on
2923 					 * Alpha and ia64??? */
2924 					base = 0;
2925 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2926 				}
2927 			}
2928 		}		/* End of base register loop */
2929 		if (cpqhp_legacy_mode) {
2930 			/* Figure out which interrupt pin this function uses */
2931 			rc = pci_bus_read_config_byte (pci_bus, devfn,
2932 				PCI_INTERRUPT_PIN, &temp_byte);
2933 
2934 			/* If this function needs an interrupt and we are behind
2935 			 * a bridge and the pin is tied to something that's
2936 			 * alread mapped, set this one the same */
2937 			if (temp_byte && resources->irqs &&
2938 			    (resources->irqs->valid_INT &
2939 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2940 				/* We have to share with something already set up */
2941 				IRQ = resources->irqs->interrupt[(temp_byte +
2942 					resources->irqs->barber_pole - 1) & 0x03];
2943 			} else {
2944 				/* Program IRQ based on card type */
2945 				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2946 
2947 				if (class_code == PCI_BASE_CLASS_STORAGE)
2948 					IRQ = cpqhp_disk_irq;
2949 				else
2950 					IRQ = cpqhp_nic_irq;
2951 			}
2952 
2953 			/* IRQ Line */
2954 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2955 		}
2956 
2957 		if (!behind_bridge) {
2958 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2959 			if (rc)
2960 				return 1;
2961 		} else {
2962 			/* TBD - this code may also belong in the other clause
2963 			 * of this If statement */
2964 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2965 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2966 		}
2967 
2968 		/* Latency Timer */
2969 		temp_byte = 0x40;
2970 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2971 					PCI_LATENCY_TIMER, temp_byte);
2972 
2973 		/* Cache Line size */
2974 		temp_byte = 0x08;
2975 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2976 					PCI_CACHE_LINE_SIZE, temp_byte);
2977 
2978 		/* disable ROM base Address */
2979 		temp_dword = 0x00L;
2980 		rc = pci_bus_write_config_word(pci_bus, devfn,
2981 					PCI_ROM_ADDRESS, temp_dword);
2982 
2983 		/* enable card */
2984 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2985 					 *   PCI_COMMAND_MEMORY |
2986 					 *   PCI_COMMAND_MASTER |
2987 					 *   PCI_COMMAND_INVALIDATE |
2988 					 *   PCI_COMMAND_PARITY |
2989 					 *   PCI_COMMAND_SERR */
2990 		rc = pci_bus_write_config_word (pci_bus, devfn,
2991 					PCI_COMMAND, temp_word);
2992 	} else {		/* End of Not-A-Bridge else */
2993 		/* It's some strange type of PCI adapter (Cardbus?) */
2994 		return DEVICE_TYPE_NOT_SUPPORTED;
2995 	}
2996 
2997 	func->configured = 1;
2998 
2999 	return 0;
3000 free_and_out:
3001 	cpqhp_destroy_resource_list (&temp_resources);
3002 
3003 	return_resource(&(resources-> bus_head), hold_bus_node);
3004 	return_resource(&(resources-> io_head), hold_IO_node);
3005 	return_resource(&(resources-> mem_head), hold_mem_node);
3006 	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3007 	return rc;
3008 }
3009