1 /* 2 * Compaq Hot Plug Controller Driver 3 * 4 * Copyright (C) 1995,2001 Compaq Computer Corporation 5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 6 * Copyright (C) 2001 IBM Corp. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 18 * NON INFRINGEMENT. See the GNU General Public License for more 19 * details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Send feedback to <greg@kroah.com> 26 * 27 */ 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/wait.h> 37 #include <linux/pci.h> 38 #include <linux/pci_hotplug.h> 39 #include <linux/kthread.h> 40 #include "cpqphp.h" 41 42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func, 43 u8 behind_bridge, struct resource_lists *resources); 44 static int configure_new_function(struct controller* ctrl, struct pci_func *func, 45 u8 behind_bridge, struct resource_lists *resources); 46 static void interrupt_event_handler(struct controller *ctrl); 47 48 49 static struct task_struct *cpqhp_event_thread; 50 static unsigned long pushbutton_pending; /* = 0 */ 51 52 /* delay is in jiffies to wait for */ 53 static void long_delay(int delay) 54 { 55 /* 56 * XXX(hch): if someone is bored please convert all callers 57 * to call msleep_interruptible directly. They really want 58 * to specify timeouts in natural units and spend a lot of 59 * effort converting them to jiffies.. 60 */ 61 msleep_interruptible(jiffies_to_msecs(delay)); 62 } 63 64 65 /* FIXME: The following line needs to be somewhere else... */ 66 #define WRONG_BUS_FREQUENCY 0x07 67 static u8 handle_switch_change(u8 change, struct controller * ctrl) 68 { 69 int hp_slot; 70 u8 rc = 0; 71 u16 temp_word; 72 struct pci_func *func; 73 struct event_info *taskInfo; 74 75 if (!change) 76 return 0; 77 78 /* Switch Change */ 79 dbg("cpqsbd: Switch interrupt received.\n"); 80 81 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 82 if (change & (0x1L << hp_slot)) { 83 /* 84 * this one changed. 85 */ 86 func = cpqhp_slot_find(ctrl->bus, 87 (hp_slot + ctrl->slot_device_offset), 0); 88 89 /* this is the structure that tells the worker thread 90 * what to do 91 */ 92 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 93 ctrl->next_event = (ctrl->next_event + 1) % 10; 94 taskInfo->hp_slot = hp_slot; 95 96 rc++; 97 98 temp_word = ctrl->ctrl_int_comp >> 16; 99 func->presence_save = (temp_word >> hp_slot) & 0x01; 100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 101 102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 103 /* 104 * Switch opened 105 */ 106 107 func->switch_save = 0; 108 109 taskInfo->event_type = INT_SWITCH_OPEN; 110 } else { 111 /* 112 * Switch closed 113 */ 114 115 func->switch_save = 0x10; 116 117 taskInfo->event_type = INT_SWITCH_CLOSE; 118 } 119 } 120 } 121 122 return rc; 123 } 124 125 /** 126 * cpqhp_find_slot - find the struct slot of given device 127 * @ctrl: scan lots of this controller 128 * @device: the device id to find 129 */ 130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 131 { 132 struct slot *slot = ctrl->slot; 133 134 while (slot && (slot->device != device)) 135 slot = slot->next; 136 137 return slot; 138 } 139 140 141 static u8 handle_presence_change(u16 change, struct controller * ctrl) 142 { 143 int hp_slot; 144 u8 rc = 0; 145 u8 temp_byte; 146 u16 temp_word; 147 struct pci_func *func; 148 struct event_info *taskInfo; 149 struct slot *p_slot; 150 151 if (!change) 152 return 0; 153 154 /* 155 * Presence Change 156 */ 157 dbg("cpqsbd: Presence/Notify input change.\n"); 158 dbg(" Changed bits are 0x%4.4x\n", change ); 159 160 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 161 if (change & (0x0101 << hp_slot)) { 162 /* 163 * this one changed. 164 */ 165 func = cpqhp_slot_find(ctrl->bus, 166 (hp_slot + ctrl->slot_device_offset), 0); 167 168 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 169 ctrl->next_event = (ctrl->next_event + 1) % 10; 170 taskInfo->hp_slot = hp_slot; 171 172 rc++; 173 174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 175 if (!p_slot) 176 return 0; 177 178 /* If the switch closed, must be a button 179 * If not in button mode, nevermind 180 */ 181 if (func->switch_save && (ctrl->push_button == 1)) { 182 temp_word = ctrl->ctrl_int_comp >> 16; 183 temp_byte = (temp_word >> hp_slot) & 0x01; 184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 185 186 if (temp_byte != func->presence_save) { 187 /* 188 * button Pressed (doesn't do anything) 189 */ 190 dbg("hp_slot %d button pressed\n", hp_slot); 191 taskInfo->event_type = INT_BUTTON_PRESS; 192 } else { 193 /* 194 * button Released - TAKE ACTION!!!! 195 */ 196 dbg("hp_slot %d button released\n", hp_slot); 197 taskInfo->event_type = INT_BUTTON_RELEASE; 198 199 /* Cancel if we are still blinking */ 200 if ((p_slot->state == BLINKINGON_STATE) 201 || (p_slot->state == BLINKINGOFF_STATE)) { 202 taskInfo->event_type = INT_BUTTON_CANCEL; 203 dbg("hp_slot %d button cancel\n", hp_slot); 204 } else if ((p_slot->state == POWERON_STATE) 205 || (p_slot->state == POWEROFF_STATE)) { 206 /* info(msg_button_ignore, p_slot->number); */ 207 taskInfo->event_type = INT_BUTTON_IGNORE; 208 dbg("hp_slot %d button ignore\n", hp_slot); 209 } 210 } 211 } else { 212 /* Switch is open, assume a presence change 213 * Save the presence state 214 */ 215 temp_word = ctrl->ctrl_int_comp >> 16; 216 func->presence_save = (temp_word >> hp_slot) & 0x01; 217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 218 219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 221 /* Present */ 222 taskInfo->event_type = INT_PRESENCE_ON; 223 } else { 224 /* Not Present */ 225 taskInfo->event_type = INT_PRESENCE_OFF; 226 } 227 } 228 } 229 } 230 231 return rc; 232 } 233 234 235 static u8 handle_power_fault(u8 change, struct controller * ctrl) 236 { 237 int hp_slot; 238 u8 rc = 0; 239 struct pci_func *func; 240 struct event_info *taskInfo; 241 242 if (!change) 243 return 0; 244 245 /* 246 * power fault 247 */ 248 249 info("power fault interrupt\n"); 250 251 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 252 if (change & (0x01 << hp_slot)) { 253 /* 254 * this one changed. 255 */ 256 func = cpqhp_slot_find(ctrl->bus, 257 (hp_slot + ctrl->slot_device_offset), 0); 258 259 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 260 ctrl->next_event = (ctrl->next_event + 1) % 10; 261 taskInfo->hp_slot = hp_slot; 262 263 rc++; 264 265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 266 /* 267 * power fault Cleared 268 */ 269 func->status = 0x00; 270 271 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 272 } else { 273 /* 274 * power fault 275 */ 276 taskInfo->event_type = INT_POWER_FAULT; 277 278 if (ctrl->rev < 4) { 279 amber_LED_on (ctrl, hp_slot); 280 green_LED_off (ctrl, hp_slot); 281 set_SOGO (ctrl); 282 283 /* this is a fatal condition, we want 284 * to crash the machine to protect from 285 * data corruption. simulated_NMI 286 * shouldn't ever return */ 287 /* FIXME 288 simulated_NMI(hp_slot, ctrl); */ 289 290 /* The following code causes a software 291 * crash just in case simulated_NMI did 292 * return */ 293 /*FIXME 294 panic(msg_power_fault); */ 295 } else { 296 /* set power fault status for this board */ 297 func->status = 0xFF; 298 info("power fault bit %x set\n", hp_slot); 299 } 300 } 301 } 302 } 303 304 return rc; 305 } 306 307 308 /** 309 * sort_by_size - sort nodes on the list by their length, smallest first. 310 * @head: list to sort 311 */ 312 static int sort_by_size(struct pci_resource **head) 313 { 314 struct pci_resource *current_res; 315 struct pci_resource *next_res; 316 int out_of_order = 1; 317 318 if (!(*head)) 319 return 1; 320 321 if (!((*head)->next)) 322 return 0; 323 324 while (out_of_order) { 325 out_of_order = 0; 326 327 /* Special case for swapping list head */ 328 if (((*head)->next) && 329 ((*head)->length > (*head)->next->length)) { 330 out_of_order++; 331 current_res = *head; 332 *head = (*head)->next; 333 current_res->next = (*head)->next; 334 (*head)->next = current_res; 335 } 336 337 current_res = *head; 338 339 while (current_res->next && current_res->next->next) { 340 if (current_res->next->length > current_res->next->next->length) { 341 out_of_order++; 342 next_res = current_res->next; 343 current_res->next = current_res->next->next; 344 current_res = current_res->next; 345 next_res->next = current_res->next; 346 current_res->next = next_res; 347 } else 348 current_res = current_res->next; 349 } 350 } /* End of out_of_order loop */ 351 352 return 0; 353 } 354 355 356 /** 357 * sort_by_max_size - sort nodes on the list by their length, largest first. 358 * @head: list to sort 359 */ 360 static int sort_by_max_size(struct pci_resource **head) 361 { 362 struct pci_resource *current_res; 363 struct pci_resource *next_res; 364 int out_of_order = 1; 365 366 if (!(*head)) 367 return 1; 368 369 if (!((*head)->next)) 370 return 0; 371 372 while (out_of_order) { 373 out_of_order = 0; 374 375 /* Special case for swapping list head */ 376 if (((*head)->next) && 377 ((*head)->length < (*head)->next->length)) { 378 out_of_order++; 379 current_res = *head; 380 *head = (*head)->next; 381 current_res->next = (*head)->next; 382 (*head)->next = current_res; 383 } 384 385 current_res = *head; 386 387 while (current_res->next && current_res->next->next) { 388 if (current_res->next->length < current_res->next->next->length) { 389 out_of_order++; 390 next_res = current_res->next; 391 current_res->next = current_res->next->next; 392 current_res = current_res->next; 393 next_res->next = current_res->next; 394 current_res->next = next_res; 395 } else 396 current_res = current_res->next; 397 } 398 } /* End of out_of_order loop */ 399 400 return 0; 401 } 402 403 404 /** 405 * do_pre_bridge_resource_split - find node of resources that are unused 406 * @head: new list head 407 * @orig_head: original list head 408 * @alignment: max node size (?) 409 */ 410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 411 struct pci_resource **orig_head, u32 alignment) 412 { 413 struct pci_resource *prevnode = NULL; 414 struct pci_resource *node; 415 struct pci_resource *split_node; 416 u32 rc; 417 u32 temp_dword; 418 dbg("do_pre_bridge_resource_split\n"); 419 420 if (!(*head) || !(*orig_head)) 421 return NULL; 422 423 rc = cpqhp_resource_sort_and_combine(head); 424 425 if (rc) 426 return NULL; 427 428 if ((*head)->base != (*orig_head)->base) 429 return NULL; 430 431 if ((*head)->length == (*orig_head)->length) 432 return NULL; 433 434 435 /* If we got here, there the bridge requires some of the resource, but 436 * we may be able to split some off of the front 437 */ 438 439 node = *head; 440 441 if (node->length & (alignment -1)) { 442 /* this one isn't an aligned length, so we'll make a new entry 443 * and split it up. 444 */ 445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 446 447 if (!split_node) 448 return NULL; 449 450 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 451 452 split_node->base = node->base; 453 split_node->length = temp_dword; 454 455 node->length -= temp_dword; 456 node->base += split_node->length; 457 458 /* Put it in the list */ 459 *head = split_node; 460 split_node->next = node; 461 } 462 463 if (node->length < alignment) 464 return NULL; 465 466 /* Now unlink it */ 467 if (*head == node) { 468 *head = node->next; 469 } else { 470 prevnode = *head; 471 while (prevnode->next != node) 472 prevnode = prevnode->next; 473 474 prevnode->next = node->next; 475 } 476 node->next = NULL; 477 478 return node; 479 } 480 481 482 /** 483 * do_bridge_resource_split - find one node of resources that aren't in use 484 * @head: list head 485 * @alignment: max node size (?) 486 */ 487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 488 { 489 struct pci_resource *prevnode = NULL; 490 struct pci_resource *node; 491 u32 rc; 492 u32 temp_dword; 493 494 rc = cpqhp_resource_sort_and_combine(head); 495 496 if (rc) 497 return NULL; 498 499 node = *head; 500 501 while (node->next) { 502 prevnode = node; 503 node = node->next; 504 kfree(prevnode); 505 } 506 507 if (node->length < alignment) 508 goto error; 509 510 if (node->base & (alignment - 1)) { 511 /* Short circuit if adjusted size is too small */ 512 temp_dword = (node->base | (alignment-1)) + 1; 513 if ((node->length - (temp_dword - node->base)) < alignment) 514 goto error; 515 516 node->length -= (temp_dword - node->base); 517 node->base = temp_dword; 518 } 519 520 if (node->length & (alignment - 1)) 521 /* There's stuff in use after this node */ 522 goto error; 523 524 return node; 525 error: 526 kfree(node); 527 return NULL; 528 } 529 530 531 /** 532 * get_io_resource - find first node of given size not in ISA aliasing window. 533 * @head: list to search 534 * @size: size of node to find, must be a power of two. 535 * 536 * Description: This function sorts the resource list by size and then returns 537 * returns the first node of "size" length that is not in the ISA aliasing 538 * window. If it finds a node larger than "size" it will split it up. 539 */ 540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 541 { 542 struct pci_resource *prevnode; 543 struct pci_resource *node; 544 struct pci_resource *split_node; 545 u32 temp_dword; 546 547 if (!(*head)) 548 return NULL; 549 550 if (cpqhp_resource_sort_and_combine(head)) 551 return NULL; 552 553 if (sort_by_size(head)) 554 return NULL; 555 556 for (node = *head; node; node = node->next) { 557 if (node->length < size) 558 continue; 559 560 if (node->base & (size - 1)) { 561 /* this one isn't base aligned properly 562 * so we'll make a new entry and split it up 563 */ 564 temp_dword = (node->base | (size-1)) + 1; 565 566 /* Short circuit if adjusted size is too small */ 567 if ((node->length - (temp_dword - node->base)) < size) 568 continue; 569 570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 571 572 if (!split_node) 573 return NULL; 574 575 split_node->base = node->base; 576 split_node->length = temp_dword - node->base; 577 node->base = temp_dword; 578 node->length -= split_node->length; 579 580 /* Put it in the list */ 581 split_node->next = node->next; 582 node->next = split_node; 583 } /* End of non-aligned base */ 584 585 /* Don't need to check if too small since we already did */ 586 if (node->length > size) { 587 /* this one is longer than we need 588 * so we'll make a new entry and split it up 589 */ 590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 591 592 if (!split_node) 593 return NULL; 594 595 split_node->base = node->base + size; 596 split_node->length = node->length - size; 597 node->length = size; 598 599 /* Put it in the list */ 600 split_node->next = node->next; 601 node->next = split_node; 602 } /* End of too big on top end */ 603 604 /* For IO make sure it's not in the ISA aliasing space */ 605 if (node->base & 0x300L) 606 continue; 607 608 /* If we got here, then it is the right size 609 * Now take it out of the list and break 610 */ 611 if (*head == node) { 612 *head = node->next; 613 } else { 614 prevnode = *head; 615 while (prevnode->next != node) 616 prevnode = prevnode->next; 617 618 prevnode->next = node->next; 619 } 620 node->next = NULL; 621 break; 622 } 623 624 return node; 625 } 626 627 628 /** 629 * get_max_resource - get largest node which has at least the given size. 630 * @head: the list to search the node in 631 * @size: the minimum size of the node to find 632 * 633 * Description: Gets the largest node that is at least "size" big from the 634 * list pointed to by head. It aligns the node on top and bottom 635 * to "size" alignment before returning it. 636 */ 637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 638 { 639 struct pci_resource *max; 640 struct pci_resource *temp; 641 struct pci_resource *split_node; 642 u32 temp_dword; 643 644 if (cpqhp_resource_sort_and_combine(head)) 645 return NULL; 646 647 if (sort_by_max_size(head)) 648 return NULL; 649 650 for (max = *head; max; max = max->next) { 651 /* If not big enough we could probably just bail, 652 * instead we'll continue to the next. 653 */ 654 if (max->length < size) 655 continue; 656 657 if (max->base & (size - 1)) { 658 /* this one isn't base aligned properly 659 * so we'll make a new entry and split it up 660 */ 661 temp_dword = (max->base | (size-1)) + 1; 662 663 /* Short circuit if adjusted size is too small */ 664 if ((max->length - (temp_dword - max->base)) < size) 665 continue; 666 667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 668 669 if (!split_node) 670 return NULL; 671 672 split_node->base = max->base; 673 split_node->length = temp_dword - max->base; 674 max->base = temp_dword; 675 max->length -= split_node->length; 676 677 split_node->next = max->next; 678 max->next = split_node; 679 } 680 681 if ((max->base + max->length) & (size - 1)) { 682 /* this one isn't end aligned properly at the top 683 * so we'll make a new entry and split it up 684 */ 685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 686 687 if (!split_node) 688 return NULL; 689 temp_dword = ((max->base + max->length) & ~(size - 1)); 690 split_node->base = temp_dword; 691 split_node->length = max->length + max->base 692 - split_node->base; 693 max->length -= split_node->length; 694 695 split_node->next = max->next; 696 max->next = split_node; 697 } 698 699 /* Make sure it didn't shrink too much when we aligned it */ 700 if (max->length < size) 701 continue; 702 703 /* Now take it out of the list */ 704 temp = *head; 705 if (temp == max) { 706 *head = max->next; 707 } else { 708 while (temp && temp->next != max) { 709 temp = temp->next; 710 } 711 712 temp->next = max->next; 713 } 714 715 max->next = NULL; 716 break; 717 } 718 719 return max; 720 } 721 722 723 /** 724 * get_resource - find resource of given size and split up larger ones. 725 * @head: the list to search for resources 726 * @size: the size limit to use 727 * 728 * Description: This function sorts the resource list by size and then 729 * returns the first node of "size" length. If it finds a node 730 * larger than "size" it will split it up. 731 * 732 * size must be a power of two. 733 */ 734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 735 { 736 struct pci_resource *prevnode; 737 struct pci_resource *node; 738 struct pci_resource *split_node; 739 u32 temp_dword; 740 741 if (cpqhp_resource_sort_and_combine(head)) 742 return NULL; 743 744 if (sort_by_size(head)) 745 return NULL; 746 747 for (node = *head; node; node = node->next) { 748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 749 __func__, size, node, node->base, node->length); 750 if (node->length < size) 751 continue; 752 753 if (node->base & (size - 1)) { 754 dbg("%s: not aligned\n", __func__); 755 /* this one isn't base aligned properly 756 * so we'll make a new entry and split it up 757 */ 758 temp_dword = (node->base | (size-1)) + 1; 759 760 /* Short circuit if adjusted size is too small */ 761 if ((node->length - (temp_dword - node->base)) < size) 762 continue; 763 764 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 765 766 if (!split_node) 767 return NULL; 768 769 split_node->base = node->base; 770 split_node->length = temp_dword - node->base; 771 node->base = temp_dword; 772 node->length -= split_node->length; 773 774 split_node->next = node->next; 775 node->next = split_node; 776 } /* End of non-aligned base */ 777 778 /* Don't need to check if too small since we already did */ 779 if (node->length > size) { 780 dbg("%s: too big\n", __func__); 781 /* this one is longer than we need 782 * so we'll make a new entry and split it up 783 */ 784 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 785 786 if (!split_node) 787 return NULL; 788 789 split_node->base = node->base + size; 790 split_node->length = node->length - size; 791 node->length = size; 792 793 /* Put it in the list */ 794 split_node->next = node->next; 795 node->next = split_node; 796 } /* End of too big on top end */ 797 798 dbg("%s: got one!!!\n", __func__); 799 /* If we got here, then it is the right size 800 * Now take it out of the list */ 801 if (*head == node) { 802 *head = node->next; 803 } else { 804 prevnode = *head; 805 while (prevnode->next != node) 806 prevnode = prevnode->next; 807 808 prevnode->next = node->next; 809 } 810 node->next = NULL; 811 break; 812 } 813 return node; 814 } 815 816 817 /** 818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 819 * @head: the list to sort and clean up 820 * 821 * Description: Sorts all of the nodes in the list in ascending order by 822 * their base addresses. Also does garbage collection by 823 * combining adjacent nodes. 824 * 825 * Returns %0 if success. 826 */ 827 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 828 { 829 struct pci_resource *node1; 830 struct pci_resource *node2; 831 int out_of_order = 1; 832 833 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 834 835 if (!(*head)) 836 return 1; 837 838 dbg("*head->next = %p\n",(*head)->next); 839 840 if (!(*head)->next) 841 return 0; /* only one item on the list, already sorted! */ 842 843 dbg("*head->base = 0x%x\n",(*head)->base); 844 dbg("*head->next->base = 0x%x\n",(*head)->next->base); 845 while (out_of_order) { 846 out_of_order = 0; 847 848 /* Special case for swapping list head */ 849 if (((*head)->next) && 850 ((*head)->base > (*head)->next->base)) { 851 node1 = *head; 852 (*head) = (*head)->next; 853 node1->next = (*head)->next; 854 (*head)->next = node1; 855 out_of_order++; 856 } 857 858 node1 = (*head); 859 860 while (node1->next && node1->next->next) { 861 if (node1->next->base > node1->next->next->base) { 862 out_of_order++; 863 node2 = node1->next; 864 node1->next = node1->next->next; 865 node1 = node1->next; 866 node2->next = node1->next; 867 node1->next = node2; 868 } else 869 node1 = node1->next; 870 } 871 } /* End of out_of_order loop */ 872 873 node1 = *head; 874 875 while (node1 && node1->next) { 876 if ((node1->base + node1->length) == node1->next->base) { 877 /* Combine */ 878 dbg("8..\n"); 879 node1->length += node1->next->length; 880 node2 = node1->next; 881 node1->next = node1->next->next; 882 kfree(node2); 883 } else 884 node1 = node1->next; 885 } 886 887 return 0; 888 } 889 890 891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 892 { 893 struct controller *ctrl = data; 894 u8 schedule_flag = 0; 895 u8 reset; 896 u16 misc; 897 u32 Diff; 898 u32 temp_dword; 899 900 901 misc = readw(ctrl->hpc_reg + MISC); 902 /* 903 * Check to see if it was our interrupt 904 */ 905 if (!(misc & 0x000C)) { 906 return IRQ_NONE; 907 } 908 909 if (misc & 0x0004) { 910 /* 911 * Serial Output interrupt Pending 912 */ 913 914 /* Clear the interrupt */ 915 misc |= 0x0004; 916 writew(misc, ctrl->hpc_reg + MISC); 917 918 /* Read to clear posted writes */ 919 misc = readw(ctrl->hpc_reg + MISC); 920 921 dbg ("%s - waking up\n", __func__); 922 wake_up_interruptible(&ctrl->queue); 923 } 924 925 if (misc & 0x0008) { 926 /* General-interrupt-input interrupt Pending */ 927 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 928 929 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 930 931 /* Clear the interrupt */ 932 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 933 934 /* Read it back to clear any posted writes */ 935 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 936 937 if (!Diff) 938 /* Clear all interrupts */ 939 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 940 941 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 942 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 943 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 944 } 945 946 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 947 if (reset & 0x40) { 948 /* Bus reset has completed */ 949 reset &= 0xCF; 950 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 951 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 952 wake_up_interruptible(&ctrl->queue); 953 } 954 955 if (schedule_flag) { 956 wake_up_process(cpqhp_event_thread); 957 dbg("Waking even thread"); 958 } 959 return IRQ_HANDLED; 960 } 961 962 963 /** 964 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 965 * @busnumber: bus where new node is to be located 966 * 967 * Returns pointer to the new node or %NULL if unsuccessful. 968 */ 969 struct pci_func *cpqhp_slot_create(u8 busnumber) 970 { 971 struct pci_func *new_slot; 972 struct pci_func *next; 973 974 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 975 if (new_slot == NULL) 976 return new_slot; 977 978 new_slot->next = NULL; 979 new_slot->configured = 1; 980 981 if (cpqhp_slot_list[busnumber] == NULL) { 982 cpqhp_slot_list[busnumber] = new_slot; 983 } else { 984 next = cpqhp_slot_list[busnumber]; 985 while (next->next != NULL) 986 next = next->next; 987 next->next = new_slot; 988 } 989 return new_slot; 990 } 991 992 993 /** 994 * slot_remove - Removes a node from the linked list of slots. 995 * @old_slot: slot to remove 996 * 997 * Returns %0 if successful, !0 otherwise. 998 */ 999 static int slot_remove(struct pci_func * old_slot) 1000 { 1001 struct pci_func *next; 1002 1003 if (old_slot == NULL) 1004 return 1; 1005 1006 next = cpqhp_slot_list[old_slot->bus]; 1007 if (next == NULL) 1008 return 1; 1009 1010 if (next == old_slot) { 1011 cpqhp_slot_list[old_slot->bus] = old_slot->next; 1012 cpqhp_destroy_board_resources(old_slot); 1013 kfree(old_slot); 1014 return 0; 1015 } 1016 1017 while ((next->next != old_slot) && (next->next != NULL)) 1018 next = next->next; 1019 1020 if (next->next == old_slot) { 1021 next->next = old_slot->next; 1022 cpqhp_destroy_board_resources(old_slot); 1023 kfree(old_slot); 1024 return 0; 1025 } else 1026 return 2; 1027 } 1028 1029 1030 /** 1031 * bridge_slot_remove - Removes a node from the linked list of slots. 1032 * @bridge: bridge to remove 1033 * 1034 * Returns %0 if successful, !0 otherwise. 1035 */ 1036 static int bridge_slot_remove(struct pci_func *bridge) 1037 { 1038 u8 subordinateBus, secondaryBus; 1039 u8 tempBus; 1040 struct pci_func *next; 1041 1042 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1043 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1044 1045 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1046 next = cpqhp_slot_list[tempBus]; 1047 1048 while (!slot_remove(next)) 1049 next = cpqhp_slot_list[tempBus]; 1050 } 1051 1052 next = cpqhp_slot_list[bridge->bus]; 1053 1054 if (next == NULL) 1055 return 1; 1056 1057 if (next == bridge) { 1058 cpqhp_slot_list[bridge->bus] = bridge->next; 1059 goto out; 1060 } 1061 1062 while ((next->next != bridge) && (next->next != NULL)) 1063 next = next->next; 1064 1065 if (next->next != bridge) 1066 return 2; 1067 next->next = bridge->next; 1068 out: 1069 kfree(bridge); 1070 return 0; 1071 } 1072 1073 1074 /** 1075 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1076 * @bus: bus to find 1077 * @device: device to find 1078 * @index: is %0 for first function found, %1 for the second... 1079 * 1080 * Returns pointer to the node if successful, %NULL otherwise. 1081 */ 1082 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1083 { 1084 int found = -1; 1085 struct pci_func *func; 1086 1087 func = cpqhp_slot_list[bus]; 1088 1089 if ((func == NULL) || ((func->device == device) && (index == 0))) 1090 return func; 1091 1092 if (func->device == device) 1093 found++; 1094 1095 while (func->next != NULL) { 1096 func = func->next; 1097 1098 if (func->device == device) 1099 found++; 1100 1101 if (found == index) 1102 return func; 1103 } 1104 1105 return NULL; 1106 } 1107 1108 1109 /* DJZ: I don't think is_bridge will work as is. 1110 * FIXME */ 1111 static int is_bridge(struct pci_func * func) 1112 { 1113 /* Check the header type */ 1114 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1115 return 1; 1116 else 1117 return 0; 1118 } 1119 1120 1121 /** 1122 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1123 * @ctrl: controller to change frequency/mode for. 1124 * @adapter_speed: the speed of the adapter we want to match. 1125 * @hp_slot: the slot number where the adapter is installed. 1126 * 1127 * Returns %0 if we successfully change frequency and/or mode to match the 1128 * adapter speed. 1129 */ 1130 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1131 { 1132 struct slot *slot; 1133 struct pci_bus *bus = ctrl->pci_bus; 1134 u8 reg; 1135 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1136 u16 reg16; 1137 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1138 1139 if (bus->cur_bus_speed == adapter_speed) 1140 return 0; 1141 1142 /* We don't allow freq/mode changes if we find another adapter running 1143 * in another slot on this controller 1144 */ 1145 for(slot = ctrl->slot; slot; slot = slot->next) { 1146 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1147 continue; 1148 if (!slot->hotplug_slot || !slot->hotplug_slot->info) 1149 continue; 1150 if (slot->hotplug_slot->info->adapter_status == 0) 1151 continue; 1152 /* If another adapter is running on the same segment but at a 1153 * lower speed/mode, we allow the new adapter to function at 1154 * this rate if supported 1155 */ 1156 if (bus->cur_bus_speed < adapter_speed) 1157 return 0; 1158 1159 return 1; 1160 } 1161 1162 /* If the controller doesn't support freq/mode changes and the 1163 * controller is running at a higher mode, we bail 1164 */ 1165 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1166 return 1; 1167 1168 /* But we allow the adapter to run at a lower rate if possible */ 1169 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1170 return 0; 1171 1172 /* We try to set the max speed supported by both the adapter and 1173 * controller 1174 */ 1175 if (bus->max_bus_speed < adapter_speed) { 1176 if (bus->cur_bus_speed == bus->max_bus_speed) 1177 return 0; 1178 adapter_speed = bus->max_bus_speed; 1179 } 1180 1181 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1182 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1183 1184 set_SOGO(ctrl); 1185 wait_for_ctrl_irq(ctrl); 1186 1187 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1188 reg = 0xF5; 1189 else 1190 reg = 0xF4; 1191 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1192 1193 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1194 reg16 &= ~0x000F; 1195 switch(adapter_speed) { 1196 case(PCI_SPEED_133MHz_PCIX): 1197 reg = 0x75; 1198 reg16 |= 0xB; 1199 break; 1200 case(PCI_SPEED_100MHz_PCIX): 1201 reg = 0x74; 1202 reg16 |= 0xA; 1203 break; 1204 case(PCI_SPEED_66MHz_PCIX): 1205 reg = 0x73; 1206 reg16 |= 0x9; 1207 break; 1208 case(PCI_SPEED_66MHz): 1209 reg = 0x73; 1210 reg16 |= 0x1; 1211 break; 1212 default: /* 33MHz PCI 2.2 */ 1213 reg = 0x71; 1214 break; 1215 1216 } 1217 reg16 |= 0xB << 12; 1218 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1219 1220 mdelay(5); 1221 1222 /* Reenable interrupts */ 1223 writel(0, ctrl->hpc_reg + INT_MASK); 1224 1225 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1226 1227 /* Restart state machine */ 1228 reg = ~0xF; 1229 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1230 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1231 1232 /* Only if mode change...*/ 1233 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1234 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1235 set_SOGO(ctrl); 1236 1237 wait_for_ctrl_irq(ctrl); 1238 mdelay(1100); 1239 1240 /* Restore LED/Slot state */ 1241 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1242 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1243 1244 set_SOGO(ctrl); 1245 wait_for_ctrl_irq(ctrl); 1246 1247 bus->cur_bus_speed = adapter_speed; 1248 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1249 1250 info("Successfully changed frequency/mode for adapter in slot %d\n", 1251 slot->number); 1252 return 0; 1253 } 1254 1255 /* the following routines constitute the bulk of the 1256 * hotplug controller logic 1257 */ 1258 1259 1260 /** 1261 * board_replaced - Called after a board has been replaced in the system. 1262 * @func: PCI device/function information 1263 * @ctrl: hotplug controller 1264 * 1265 * This is only used if we don't have resources for hot add. 1266 * Turns power on for the board. 1267 * Checks to see if board is the same. 1268 * If board is same, reconfigures it. 1269 * If board isn't same, turns it back off. 1270 */ 1271 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1272 { 1273 struct pci_bus *bus = ctrl->pci_bus; 1274 u8 hp_slot; 1275 u8 temp_byte; 1276 u8 adapter_speed; 1277 u32 rc = 0; 1278 1279 hp_slot = func->device - ctrl->slot_device_offset; 1280 1281 /* 1282 * The switch is open. 1283 */ 1284 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1285 rc = INTERLOCK_OPEN; 1286 /* 1287 * The board is already on 1288 */ 1289 else if (is_slot_enabled (ctrl, hp_slot)) 1290 rc = CARD_FUNCTIONING; 1291 else { 1292 mutex_lock(&ctrl->crit_sect); 1293 1294 /* turn on board without attaching to the bus */ 1295 enable_slot_power (ctrl, hp_slot); 1296 1297 set_SOGO(ctrl); 1298 1299 /* Wait for SOBS to be unset */ 1300 wait_for_ctrl_irq (ctrl); 1301 1302 /* Change bits in slot power register to force another shift out 1303 * NOTE: this is to work around the timer bug */ 1304 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1305 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1306 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1307 1308 set_SOGO(ctrl); 1309 1310 /* Wait for SOBS to be unset */ 1311 wait_for_ctrl_irq (ctrl); 1312 1313 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1314 if (bus->cur_bus_speed != adapter_speed) 1315 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1316 rc = WRONG_BUS_FREQUENCY; 1317 1318 /* turn off board without attaching to the bus */ 1319 disable_slot_power (ctrl, hp_slot); 1320 1321 set_SOGO(ctrl); 1322 1323 /* Wait for SOBS to be unset */ 1324 wait_for_ctrl_irq (ctrl); 1325 1326 mutex_unlock(&ctrl->crit_sect); 1327 1328 if (rc) 1329 return rc; 1330 1331 mutex_lock(&ctrl->crit_sect); 1332 1333 slot_enable (ctrl, hp_slot); 1334 green_LED_blink (ctrl, hp_slot); 1335 1336 amber_LED_off (ctrl, hp_slot); 1337 1338 set_SOGO(ctrl); 1339 1340 /* Wait for SOBS to be unset */ 1341 wait_for_ctrl_irq (ctrl); 1342 1343 mutex_unlock(&ctrl->crit_sect); 1344 1345 /* Wait for ~1 second because of hot plug spec */ 1346 long_delay(1*HZ); 1347 1348 /* Check for a power fault */ 1349 if (func->status == 0xFF) { 1350 /* power fault occurred, but it was benign */ 1351 rc = POWER_FAILURE; 1352 func->status = 0; 1353 } else 1354 rc = cpqhp_valid_replace(ctrl, func); 1355 1356 if (!rc) { 1357 /* It must be the same board */ 1358 1359 rc = cpqhp_configure_board(ctrl, func); 1360 1361 /* If configuration fails, turn it off 1362 * Get slot won't work for devices behind 1363 * bridges, but in this case it will always be 1364 * called for the "base" bus/dev/func of an 1365 * adapter. 1366 */ 1367 1368 mutex_lock(&ctrl->crit_sect); 1369 1370 amber_LED_on (ctrl, hp_slot); 1371 green_LED_off (ctrl, hp_slot); 1372 slot_disable (ctrl, hp_slot); 1373 1374 set_SOGO(ctrl); 1375 1376 /* Wait for SOBS to be unset */ 1377 wait_for_ctrl_irq (ctrl); 1378 1379 mutex_unlock(&ctrl->crit_sect); 1380 1381 if (rc) 1382 return rc; 1383 else 1384 return 1; 1385 1386 } else { 1387 /* Something is wrong 1388 1389 * Get slot won't work for devices behind bridges, but 1390 * in this case it will always be called for the "base" 1391 * bus/dev/func of an adapter. 1392 */ 1393 1394 mutex_lock(&ctrl->crit_sect); 1395 1396 amber_LED_on (ctrl, hp_slot); 1397 green_LED_off (ctrl, hp_slot); 1398 slot_disable (ctrl, hp_slot); 1399 1400 set_SOGO(ctrl); 1401 1402 /* Wait for SOBS to be unset */ 1403 wait_for_ctrl_irq (ctrl); 1404 1405 mutex_unlock(&ctrl->crit_sect); 1406 } 1407 1408 } 1409 return rc; 1410 1411 } 1412 1413 1414 /** 1415 * board_added - Called after a board has been added to the system. 1416 * @func: PCI device/function info 1417 * @ctrl: hotplug controller 1418 * 1419 * Turns power on for the board. 1420 * Configures board. 1421 */ 1422 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1423 { 1424 u8 hp_slot; 1425 u8 temp_byte; 1426 u8 adapter_speed; 1427 int index; 1428 u32 temp_register = 0xFFFFFFFF; 1429 u32 rc = 0; 1430 struct pci_func *new_slot = NULL; 1431 struct pci_bus *bus = ctrl->pci_bus; 1432 struct slot *p_slot; 1433 struct resource_lists res_lists; 1434 1435 hp_slot = func->device - ctrl->slot_device_offset; 1436 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1437 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1438 1439 mutex_lock(&ctrl->crit_sect); 1440 1441 /* turn on board without attaching to the bus */ 1442 enable_slot_power(ctrl, hp_slot); 1443 1444 set_SOGO(ctrl); 1445 1446 /* Wait for SOBS to be unset */ 1447 wait_for_ctrl_irq (ctrl); 1448 1449 /* Change bits in slot power register to force another shift out 1450 * NOTE: this is to work around the timer bug 1451 */ 1452 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1453 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1454 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1455 1456 set_SOGO(ctrl); 1457 1458 /* Wait for SOBS to be unset */ 1459 wait_for_ctrl_irq (ctrl); 1460 1461 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1462 if (bus->cur_bus_speed != adapter_speed) 1463 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1464 rc = WRONG_BUS_FREQUENCY; 1465 1466 /* turn off board without attaching to the bus */ 1467 disable_slot_power (ctrl, hp_slot); 1468 1469 set_SOGO(ctrl); 1470 1471 /* Wait for SOBS to be unset */ 1472 wait_for_ctrl_irq(ctrl); 1473 1474 mutex_unlock(&ctrl->crit_sect); 1475 1476 if (rc) 1477 return rc; 1478 1479 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1480 1481 /* turn on board and blink green LED */ 1482 1483 dbg("%s: before down\n", __func__); 1484 mutex_lock(&ctrl->crit_sect); 1485 dbg("%s: after down\n", __func__); 1486 1487 dbg("%s: before slot_enable\n", __func__); 1488 slot_enable (ctrl, hp_slot); 1489 1490 dbg("%s: before green_LED_blink\n", __func__); 1491 green_LED_blink (ctrl, hp_slot); 1492 1493 dbg("%s: before amber_LED_blink\n", __func__); 1494 amber_LED_off (ctrl, hp_slot); 1495 1496 dbg("%s: before set_SOGO\n", __func__); 1497 set_SOGO(ctrl); 1498 1499 /* Wait for SOBS to be unset */ 1500 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1501 wait_for_ctrl_irq (ctrl); 1502 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1503 1504 dbg("%s: before up\n", __func__); 1505 mutex_unlock(&ctrl->crit_sect); 1506 dbg("%s: after up\n", __func__); 1507 1508 /* Wait for ~1 second because of hot plug spec */ 1509 dbg("%s: before long_delay\n", __func__); 1510 long_delay(1*HZ); 1511 dbg("%s: after long_delay\n", __func__); 1512 1513 dbg("%s: func status = %x\n", __func__, func->status); 1514 /* Check for a power fault */ 1515 if (func->status == 0xFF) { 1516 /* power fault occurred, but it was benign */ 1517 temp_register = 0xFFFFFFFF; 1518 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1519 rc = POWER_FAILURE; 1520 func->status = 0; 1521 } else { 1522 /* Get vendor/device ID u32 */ 1523 ctrl->pci_bus->number = func->bus; 1524 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1525 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1526 dbg("%s: temp_register is %x\n", __func__, temp_register); 1527 1528 if (rc != 0) { 1529 /* Something's wrong here */ 1530 temp_register = 0xFFFFFFFF; 1531 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1532 } 1533 /* Preset return code. It will be changed later if things go okay. */ 1534 rc = NO_ADAPTER_PRESENT; 1535 } 1536 1537 /* All F's is an empty slot or an invalid board */ 1538 if (temp_register != 0xFFFFFFFF) { 1539 res_lists.io_head = ctrl->io_head; 1540 res_lists.mem_head = ctrl->mem_head; 1541 res_lists.p_mem_head = ctrl->p_mem_head; 1542 res_lists.bus_head = ctrl->bus_head; 1543 res_lists.irqs = NULL; 1544 1545 rc = configure_new_device(ctrl, func, 0, &res_lists); 1546 1547 dbg("%s: back from configure_new_device\n", __func__); 1548 ctrl->io_head = res_lists.io_head; 1549 ctrl->mem_head = res_lists.mem_head; 1550 ctrl->p_mem_head = res_lists.p_mem_head; 1551 ctrl->bus_head = res_lists.bus_head; 1552 1553 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1554 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1555 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1556 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1557 1558 if (rc) { 1559 mutex_lock(&ctrl->crit_sect); 1560 1561 amber_LED_on (ctrl, hp_slot); 1562 green_LED_off (ctrl, hp_slot); 1563 slot_disable (ctrl, hp_slot); 1564 1565 set_SOGO(ctrl); 1566 1567 /* Wait for SOBS to be unset */ 1568 wait_for_ctrl_irq (ctrl); 1569 1570 mutex_unlock(&ctrl->crit_sect); 1571 return rc; 1572 } else { 1573 cpqhp_save_slot_config(ctrl, func); 1574 } 1575 1576 1577 func->status = 0; 1578 func->switch_save = 0x10; 1579 func->is_a_board = 0x01; 1580 1581 /* next, we will instantiate the linux pci_dev structures (with 1582 * appropriate driver notification, if already present) */ 1583 dbg("%s: configure linux pci_dev structure\n", __func__); 1584 index = 0; 1585 do { 1586 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1587 if (new_slot && !new_slot->pci_dev) 1588 cpqhp_configure_device(ctrl, new_slot); 1589 } while (new_slot); 1590 1591 mutex_lock(&ctrl->crit_sect); 1592 1593 green_LED_on (ctrl, hp_slot); 1594 1595 set_SOGO(ctrl); 1596 1597 /* Wait for SOBS to be unset */ 1598 wait_for_ctrl_irq (ctrl); 1599 1600 mutex_unlock(&ctrl->crit_sect); 1601 } else { 1602 mutex_lock(&ctrl->crit_sect); 1603 1604 amber_LED_on (ctrl, hp_slot); 1605 green_LED_off (ctrl, hp_slot); 1606 slot_disable (ctrl, hp_slot); 1607 1608 set_SOGO(ctrl); 1609 1610 /* Wait for SOBS to be unset */ 1611 wait_for_ctrl_irq (ctrl); 1612 1613 mutex_unlock(&ctrl->crit_sect); 1614 1615 return rc; 1616 } 1617 return 0; 1618 } 1619 1620 1621 /** 1622 * remove_board - Turns off slot and LEDs 1623 * @func: PCI device/function info 1624 * @replace_flag: whether replacing or adding a new device 1625 * @ctrl: target controller 1626 */ 1627 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) 1628 { 1629 int index; 1630 u8 skip = 0; 1631 u8 device; 1632 u8 hp_slot; 1633 u8 temp_byte; 1634 u32 rc; 1635 struct resource_lists res_lists; 1636 struct pci_func *temp_func; 1637 1638 if (cpqhp_unconfigure_device(func)) 1639 return 1; 1640 1641 device = func->device; 1642 1643 hp_slot = func->device - ctrl->slot_device_offset; 1644 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1645 1646 /* When we get here, it is safe to change base address registers. 1647 * We will attempt to save the base address register lengths */ 1648 if (replace_flag || !ctrl->add_support) 1649 rc = cpqhp_save_base_addr_length(ctrl, func); 1650 else if (!func->bus_head && !func->mem_head && 1651 !func->p_mem_head && !func->io_head) { 1652 /* Here we check to see if we've saved any of the board's 1653 * resources already. If so, we'll skip the attempt to 1654 * determine what's being used. */ 1655 index = 0; 1656 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1657 while (temp_func) { 1658 if (temp_func->bus_head || temp_func->mem_head 1659 || temp_func->p_mem_head || temp_func->io_head) { 1660 skip = 1; 1661 break; 1662 } 1663 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1664 } 1665 1666 if (!skip) 1667 rc = cpqhp_save_used_resources(ctrl, func); 1668 } 1669 /* Change status to shutdown */ 1670 if (func->is_a_board) 1671 func->status = 0x01; 1672 func->configured = 0; 1673 1674 mutex_lock(&ctrl->crit_sect); 1675 1676 green_LED_off (ctrl, hp_slot); 1677 slot_disable (ctrl, hp_slot); 1678 1679 set_SOGO(ctrl); 1680 1681 /* turn off SERR for slot */ 1682 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1683 temp_byte &= ~(0x01 << hp_slot); 1684 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1685 1686 /* Wait for SOBS to be unset */ 1687 wait_for_ctrl_irq (ctrl); 1688 1689 mutex_unlock(&ctrl->crit_sect); 1690 1691 if (!replace_flag && ctrl->add_support) { 1692 while (func) { 1693 res_lists.io_head = ctrl->io_head; 1694 res_lists.mem_head = ctrl->mem_head; 1695 res_lists.p_mem_head = ctrl->p_mem_head; 1696 res_lists.bus_head = ctrl->bus_head; 1697 1698 cpqhp_return_board_resources(func, &res_lists); 1699 1700 ctrl->io_head = res_lists.io_head; 1701 ctrl->mem_head = res_lists.mem_head; 1702 ctrl->p_mem_head = res_lists.p_mem_head; 1703 ctrl->bus_head = res_lists.bus_head; 1704 1705 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1706 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1707 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1708 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1709 1710 if (is_bridge(func)) { 1711 bridge_slot_remove(func); 1712 } else 1713 slot_remove(func); 1714 1715 func = cpqhp_slot_find(ctrl->bus, device, 0); 1716 } 1717 1718 /* Setup slot structure with entry for empty slot */ 1719 func = cpqhp_slot_create(ctrl->bus); 1720 1721 if (func == NULL) 1722 return 1; 1723 1724 func->bus = ctrl->bus; 1725 func->device = device; 1726 func->function = 0; 1727 func->configured = 0; 1728 func->switch_save = 0x10; 1729 func->is_a_board = 0; 1730 func->p_task_event = NULL; 1731 } 1732 1733 return 0; 1734 } 1735 1736 static void pushbutton_helper_thread(unsigned long data) 1737 { 1738 pushbutton_pending = data; 1739 wake_up_process(cpqhp_event_thread); 1740 } 1741 1742 1743 /* this is the main worker thread */ 1744 static int event_thread(void* data) 1745 { 1746 struct controller *ctrl; 1747 1748 while (1) { 1749 dbg("!!!!event_thread sleeping\n"); 1750 set_current_state(TASK_INTERRUPTIBLE); 1751 schedule(); 1752 1753 if (kthread_should_stop()) 1754 break; 1755 /* Do stuff here */ 1756 if (pushbutton_pending) 1757 cpqhp_pushbutton_thread(pushbutton_pending); 1758 else 1759 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) 1760 interrupt_event_handler(ctrl); 1761 } 1762 dbg("event_thread signals exit\n"); 1763 return 0; 1764 } 1765 1766 int cpqhp_event_start_thread(void) 1767 { 1768 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1769 if (IS_ERR(cpqhp_event_thread)) { 1770 err ("Can't start up our event thread\n"); 1771 return PTR_ERR(cpqhp_event_thread); 1772 } 1773 1774 return 0; 1775 } 1776 1777 1778 void cpqhp_event_stop_thread(void) 1779 { 1780 kthread_stop(cpqhp_event_thread); 1781 } 1782 1783 1784 static int update_slot_info(struct controller *ctrl, struct slot *slot) 1785 { 1786 struct hotplug_slot_info *info; 1787 int result; 1788 1789 info = kmalloc(sizeof(*info), GFP_KERNEL); 1790 if (!info) 1791 return -ENOMEM; 1792 1793 info->power_status = get_slot_enabled(ctrl, slot); 1794 info->attention_status = cpq_get_attention_status(ctrl, slot); 1795 info->latch_status = cpq_get_latch_status(ctrl, slot); 1796 info->adapter_status = get_presence_status(ctrl, slot); 1797 result = pci_hp_change_slot_info(slot->hotplug_slot, info); 1798 kfree (info); 1799 return result; 1800 } 1801 1802 static void interrupt_event_handler(struct controller *ctrl) 1803 { 1804 int loop = 0; 1805 int change = 1; 1806 struct pci_func *func; 1807 u8 hp_slot; 1808 struct slot *p_slot; 1809 1810 while (change) { 1811 change = 0; 1812 1813 for (loop = 0; loop < 10; loop++) { 1814 /* dbg("loop %d\n", loop); */ 1815 if (ctrl->event_queue[loop].event_type != 0) { 1816 hp_slot = ctrl->event_queue[loop].hp_slot; 1817 1818 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1819 if (!func) 1820 return; 1821 1822 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1823 if (!p_slot) 1824 return; 1825 1826 dbg("hp_slot %d, func %p, p_slot %p\n", 1827 hp_slot, func, p_slot); 1828 1829 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1830 dbg("button pressed\n"); 1831 } else if (ctrl->event_queue[loop].event_type == 1832 INT_BUTTON_CANCEL) { 1833 dbg("button cancel\n"); 1834 del_timer(&p_slot->task_event); 1835 1836 mutex_lock(&ctrl->crit_sect); 1837 1838 if (p_slot->state == BLINKINGOFF_STATE) { 1839 /* slot is on */ 1840 dbg("turn on green LED\n"); 1841 green_LED_on (ctrl, hp_slot); 1842 } else if (p_slot->state == BLINKINGON_STATE) { 1843 /* slot is off */ 1844 dbg("turn off green LED\n"); 1845 green_LED_off (ctrl, hp_slot); 1846 } 1847 1848 info(msg_button_cancel, p_slot->number); 1849 1850 p_slot->state = STATIC_STATE; 1851 1852 amber_LED_off (ctrl, hp_slot); 1853 1854 set_SOGO(ctrl); 1855 1856 /* Wait for SOBS to be unset */ 1857 wait_for_ctrl_irq (ctrl); 1858 1859 mutex_unlock(&ctrl->crit_sect); 1860 } 1861 /*** button Released (No action on press...) */ 1862 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1863 dbg("button release\n"); 1864 1865 if (is_slot_enabled (ctrl, hp_slot)) { 1866 dbg("slot is on\n"); 1867 p_slot->state = BLINKINGOFF_STATE; 1868 info(msg_button_off, p_slot->number); 1869 } else { 1870 dbg("slot is off\n"); 1871 p_slot->state = BLINKINGON_STATE; 1872 info(msg_button_on, p_slot->number); 1873 } 1874 mutex_lock(&ctrl->crit_sect); 1875 1876 dbg("blink green LED and turn off amber\n"); 1877 1878 amber_LED_off (ctrl, hp_slot); 1879 green_LED_blink (ctrl, hp_slot); 1880 1881 set_SOGO(ctrl); 1882 1883 /* Wait for SOBS to be unset */ 1884 wait_for_ctrl_irq (ctrl); 1885 1886 mutex_unlock(&ctrl->crit_sect); 1887 init_timer(&p_slot->task_event); 1888 p_slot->hp_slot = hp_slot; 1889 p_slot->ctrl = ctrl; 1890 /* p_slot->physical_slot = physical_slot; */ 1891 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1892 p_slot->task_event.function = pushbutton_helper_thread; 1893 p_slot->task_event.data = (u32) p_slot; 1894 1895 dbg("add_timer p_slot = %p\n", p_slot); 1896 add_timer(&p_slot->task_event); 1897 } 1898 /***********POWER FAULT */ 1899 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1900 dbg("power fault\n"); 1901 } else { 1902 /* refresh notification */ 1903 if (p_slot) 1904 update_slot_info(ctrl, p_slot); 1905 } 1906 1907 ctrl->event_queue[loop].event_type = 0; 1908 1909 change = 1; 1910 } 1911 } /* End of FOR loop */ 1912 } 1913 1914 return; 1915 } 1916 1917 1918 /** 1919 * cpqhp_pushbutton_thread - handle pushbutton events 1920 * @slot: target slot (struct) 1921 * 1922 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1923 * Handles all pending events and exits. 1924 */ 1925 void cpqhp_pushbutton_thread(unsigned long slot) 1926 { 1927 u8 hp_slot; 1928 u8 device; 1929 struct pci_func *func; 1930 struct slot *p_slot = (struct slot *) slot; 1931 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1932 1933 pushbutton_pending = 0; 1934 hp_slot = p_slot->hp_slot; 1935 1936 device = p_slot->device; 1937 1938 if (is_slot_enabled(ctrl, hp_slot)) { 1939 p_slot->state = POWEROFF_STATE; 1940 /* power Down board */ 1941 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1942 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1943 if (!func) { 1944 dbg("Error! func NULL in %s\n", __func__); 1945 return ; 1946 } 1947 1948 if (cpqhp_process_SS(ctrl, func) != 0) { 1949 amber_LED_on(ctrl, hp_slot); 1950 green_LED_on(ctrl, hp_slot); 1951 1952 set_SOGO(ctrl); 1953 1954 /* Wait for SOBS to be unset */ 1955 wait_for_ctrl_irq(ctrl); 1956 } 1957 1958 p_slot->state = STATIC_STATE; 1959 } else { 1960 p_slot->state = POWERON_STATE; 1961 /* slot is off */ 1962 1963 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1964 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1965 if (!func) { 1966 dbg("Error! func NULL in %s\n", __func__); 1967 return ; 1968 } 1969 1970 if (ctrl != NULL) { 1971 if (cpqhp_process_SI(ctrl, func) != 0) { 1972 amber_LED_on(ctrl, hp_slot); 1973 green_LED_off(ctrl, hp_slot); 1974 1975 set_SOGO(ctrl); 1976 1977 /* Wait for SOBS to be unset */ 1978 wait_for_ctrl_irq (ctrl); 1979 } 1980 } 1981 1982 p_slot->state = STATIC_STATE; 1983 } 1984 1985 return; 1986 } 1987 1988 1989 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1990 { 1991 u8 device, hp_slot; 1992 u16 temp_word; 1993 u32 tempdword; 1994 int rc; 1995 struct slot* p_slot; 1996 int physical_slot = 0; 1997 1998 tempdword = 0; 1999 2000 device = func->device; 2001 hp_slot = device - ctrl->slot_device_offset; 2002 p_slot = cpqhp_find_slot(ctrl, device); 2003 if (p_slot) 2004 physical_slot = p_slot->number; 2005 2006 /* Check to see if the interlock is closed */ 2007 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 2008 2009 if (tempdword & (0x01 << hp_slot)) { 2010 return 1; 2011 } 2012 2013 if (func->is_a_board) { 2014 rc = board_replaced(func, ctrl); 2015 } else { 2016 /* add board */ 2017 slot_remove(func); 2018 2019 func = cpqhp_slot_create(ctrl->bus); 2020 if (func == NULL) 2021 return 1; 2022 2023 func->bus = ctrl->bus; 2024 func->device = device; 2025 func->function = 0; 2026 func->configured = 0; 2027 func->is_a_board = 1; 2028 2029 /* We have to save the presence info for these slots */ 2030 temp_word = ctrl->ctrl_int_comp >> 16; 2031 func->presence_save = (temp_word >> hp_slot) & 0x01; 2032 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 2033 2034 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2035 func->switch_save = 0; 2036 } else { 2037 func->switch_save = 0x10; 2038 } 2039 2040 rc = board_added(func, ctrl); 2041 if (rc) { 2042 if (is_bridge(func)) { 2043 bridge_slot_remove(func); 2044 } else 2045 slot_remove(func); 2046 2047 /* Setup slot structure with entry for empty slot */ 2048 func = cpqhp_slot_create(ctrl->bus); 2049 2050 if (func == NULL) 2051 return 1; 2052 2053 func->bus = ctrl->bus; 2054 func->device = device; 2055 func->function = 0; 2056 func->configured = 0; 2057 func->is_a_board = 0; 2058 2059 /* We have to save the presence info for these slots */ 2060 temp_word = ctrl->ctrl_int_comp >> 16; 2061 func->presence_save = (temp_word >> hp_slot) & 0x01; 2062 func->presence_save |= 2063 (temp_word >> (hp_slot + 7)) & 0x02; 2064 2065 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2066 func->switch_save = 0; 2067 } else { 2068 func->switch_save = 0x10; 2069 } 2070 } 2071 } 2072 2073 if (rc) { 2074 dbg("%s: rc = %d\n", __func__, rc); 2075 } 2076 2077 if (p_slot) 2078 update_slot_info(ctrl, p_slot); 2079 2080 return rc; 2081 } 2082 2083 2084 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2085 { 2086 u8 device, class_code, header_type, BCR; 2087 u8 index = 0; 2088 u8 replace_flag; 2089 u32 rc = 0; 2090 unsigned int devfn; 2091 struct slot* p_slot; 2092 struct pci_bus *pci_bus = ctrl->pci_bus; 2093 int physical_slot=0; 2094 2095 device = func->device; 2096 func = cpqhp_slot_find(ctrl->bus, device, index++); 2097 p_slot = cpqhp_find_slot(ctrl, device); 2098 if (p_slot) { 2099 physical_slot = p_slot->number; 2100 } 2101 2102 /* Make sure there are no video controllers here */ 2103 while (func && !rc) { 2104 pci_bus->number = func->bus; 2105 devfn = PCI_DEVFN(func->device, func->function); 2106 2107 /* Check the Class Code */ 2108 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2109 if (rc) 2110 return rc; 2111 2112 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2113 /* Display/Video adapter (not supported) */ 2114 rc = REMOVE_NOT_SUPPORTED; 2115 } else { 2116 /* See if it's a bridge */ 2117 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2118 if (rc) 2119 return rc; 2120 2121 /* If it's a bridge, check the VGA Enable bit */ 2122 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2123 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2124 if (rc) 2125 return rc; 2126 2127 /* If the VGA Enable bit is set, remove isn't 2128 * supported */ 2129 if (BCR & PCI_BRIDGE_CTL_VGA) 2130 rc = REMOVE_NOT_SUPPORTED; 2131 } 2132 } 2133 2134 func = cpqhp_slot_find(ctrl->bus, device, index++); 2135 } 2136 2137 func = cpqhp_slot_find(ctrl->bus, device, 0); 2138 if ((func != NULL) && !rc) { 2139 /* FIXME: Replace flag should be passed into process_SS */ 2140 replace_flag = !(ctrl->add_support); 2141 rc = remove_board(func, replace_flag, ctrl); 2142 } else if (!rc) { 2143 rc = 1; 2144 } 2145 2146 if (p_slot) 2147 update_slot_info(ctrl, p_slot); 2148 2149 return rc; 2150 } 2151 2152 /** 2153 * switch_leds - switch the leds, go from one site to the other. 2154 * @ctrl: controller to use 2155 * @num_of_slots: number of slots to use 2156 * @work_LED: LED control value 2157 * @direction: 1 to start from the left side, 0 to start right. 2158 */ 2159 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2160 u32 *work_LED, const int direction) 2161 { 2162 int loop; 2163 2164 for (loop = 0; loop < num_of_slots; loop++) { 2165 if (direction) 2166 *work_LED = *work_LED >> 1; 2167 else 2168 *work_LED = *work_LED << 1; 2169 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2170 2171 set_SOGO(ctrl); 2172 2173 /* Wait for SOGO interrupt */ 2174 wait_for_ctrl_irq(ctrl); 2175 2176 /* Get ready for next iteration */ 2177 long_delay((2*HZ)/10); 2178 } 2179 } 2180 2181 /** 2182 * cpqhp_hardware_test - runs hardware tests 2183 * @ctrl: target controller 2184 * @test_num: the number written to the "test" file in sysfs. 2185 * 2186 * For hot plug ctrl folks to play with. 2187 */ 2188 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2189 { 2190 u32 save_LED; 2191 u32 work_LED; 2192 int loop; 2193 int num_of_slots; 2194 2195 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2196 2197 switch (test_num) { 2198 case 1: 2199 /* Do stuff here! */ 2200 2201 /* Do that funky LED thing */ 2202 /* so we can restore them later */ 2203 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2204 work_LED = 0x01010101; 2205 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2206 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2207 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2208 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2209 2210 work_LED = 0x01010000; 2211 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2212 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2213 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2214 work_LED = 0x00000101; 2215 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2216 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2217 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2218 2219 work_LED = 0x01010000; 2220 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2221 for (loop = 0; loop < num_of_slots; loop++) { 2222 set_SOGO(ctrl); 2223 2224 /* Wait for SOGO interrupt */ 2225 wait_for_ctrl_irq (ctrl); 2226 2227 /* Get ready for next iteration */ 2228 long_delay((3*HZ)/10); 2229 work_LED = work_LED >> 16; 2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2231 2232 set_SOGO(ctrl); 2233 2234 /* Wait for SOGO interrupt */ 2235 wait_for_ctrl_irq (ctrl); 2236 2237 /* Get ready for next iteration */ 2238 long_delay((3*HZ)/10); 2239 work_LED = work_LED << 16; 2240 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2241 work_LED = work_LED << 1; 2242 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2243 } 2244 2245 /* put it back the way it was */ 2246 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2247 2248 set_SOGO(ctrl); 2249 2250 /* Wait for SOBS to be unset */ 2251 wait_for_ctrl_irq (ctrl); 2252 break; 2253 case 2: 2254 /* Do other stuff here! */ 2255 break; 2256 case 3: 2257 /* and more... */ 2258 break; 2259 } 2260 return 0; 2261 } 2262 2263 2264 /** 2265 * configure_new_device - Configures the PCI header information of one board. 2266 * @ctrl: pointer to controller structure 2267 * @func: pointer to function structure 2268 * @behind_bridge: 1 if this is a recursive call, 0 if not 2269 * @resources: pointer to set of resource lists 2270 * 2271 * Returns 0 if success. 2272 */ 2273 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, 2274 u8 behind_bridge, struct resource_lists * resources) 2275 { 2276 u8 temp_byte, function, max_functions, stop_it; 2277 int rc; 2278 u32 ID; 2279 struct pci_func *new_slot; 2280 int index; 2281 2282 new_slot = func; 2283 2284 dbg("%s\n", __func__); 2285 /* Check for Multi-function device */ 2286 ctrl->pci_bus->number = func->bus; 2287 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2288 if (rc) { 2289 dbg("%s: rc = %d\n", __func__, rc); 2290 return rc; 2291 } 2292 2293 if (temp_byte & 0x80) /* Multi-function device */ 2294 max_functions = 8; 2295 else 2296 max_functions = 1; 2297 2298 function = 0; 2299 2300 do { 2301 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2302 2303 if (rc) { 2304 dbg("configure_new_function failed %d\n",rc); 2305 index = 0; 2306 2307 while (new_slot) { 2308 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2309 2310 if (new_slot) 2311 cpqhp_return_board_resources(new_slot, resources); 2312 } 2313 2314 return rc; 2315 } 2316 2317 function++; 2318 2319 stop_it = 0; 2320 2321 /* The following loop skips to the next present function 2322 * and creates a board structure */ 2323 2324 while ((function < max_functions) && (!stop_it)) { 2325 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2326 2327 if (ID == 0xFFFFFFFF) { 2328 function++; 2329 } else { 2330 /* Setup slot structure. */ 2331 new_slot = cpqhp_slot_create(func->bus); 2332 2333 if (new_slot == NULL) 2334 return 1; 2335 2336 new_slot->bus = func->bus; 2337 new_slot->device = func->device; 2338 new_slot->function = function; 2339 new_slot->is_a_board = 1; 2340 new_slot->status = 0; 2341 2342 stop_it++; 2343 } 2344 } 2345 2346 } while (function < max_functions); 2347 dbg("returning from configure_new_device\n"); 2348 2349 return 0; 2350 } 2351 2352 2353 /* 2354 * Configuration logic that involves the hotplug data structures and 2355 * their bookkeeping 2356 */ 2357 2358 2359 /** 2360 * configure_new_function - Configures the PCI header information of one device 2361 * @ctrl: pointer to controller structure 2362 * @func: pointer to function structure 2363 * @behind_bridge: 1 if this is a recursive call, 0 if not 2364 * @resources: pointer to set of resource lists 2365 * 2366 * Calls itself recursively for bridged devices. 2367 * Returns 0 if success. 2368 */ 2369 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2370 u8 behind_bridge, 2371 struct resource_lists *resources) 2372 { 2373 int cloop; 2374 u8 IRQ = 0; 2375 u8 temp_byte; 2376 u8 device; 2377 u8 class_code; 2378 u16 command; 2379 u16 temp_word; 2380 u32 temp_dword; 2381 u32 rc; 2382 u32 temp_register; 2383 u32 base; 2384 u32 ID; 2385 unsigned int devfn; 2386 struct pci_resource *mem_node; 2387 struct pci_resource *p_mem_node; 2388 struct pci_resource *io_node; 2389 struct pci_resource *bus_node; 2390 struct pci_resource *hold_mem_node; 2391 struct pci_resource *hold_p_mem_node; 2392 struct pci_resource *hold_IO_node; 2393 struct pci_resource *hold_bus_node; 2394 struct irq_mapping irqs; 2395 struct pci_func *new_slot; 2396 struct pci_bus *pci_bus; 2397 struct resource_lists temp_resources; 2398 2399 pci_bus = ctrl->pci_bus; 2400 pci_bus->number = func->bus; 2401 devfn = PCI_DEVFN(func->device, func->function); 2402 2403 /* Check for Bridge */ 2404 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2405 if (rc) 2406 return rc; 2407 2408 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2409 /* set Primary bus */ 2410 dbg("set Primary bus = %d\n", func->bus); 2411 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2412 if (rc) 2413 return rc; 2414 2415 /* find range of busses to use */ 2416 dbg("find ranges of buses to use\n"); 2417 bus_node = get_max_resource(&(resources->bus_head), 1); 2418 2419 /* If we don't have any busses to allocate, we can't continue */ 2420 if (!bus_node) 2421 return -ENOMEM; 2422 2423 /* set Secondary bus */ 2424 temp_byte = bus_node->base; 2425 dbg("set Secondary bus = %d\n", bus_node->base); 2426 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2427 if (rc) 2428 return rc; 2429 2430 /* set subordinate bus */ 2431 temp_byte = bus_node->base + bus_node->length - 1; 2432 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2433 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2434 if (rc) 2435 return rc; 2436 2437 /* set subordinate Latency Timer and base Latency Timer */ 2438 temp_byte = 0x40; 2439 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2440 if (rc) 2441 return rc; 2442 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2443 if (rc) 2444 return rc; 2445 2446 /* set Cache Line size */ 2447 temp_byte = 0x08; 2448 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2449 if (rc) 2450 return rc; 2451 2452 /* Setup the IO, memory, and prefetchable windows */ 2453 io_node = get_max_resource(&(resources->io_head), 0x1000); 2454 if (!io_node) 2455 return -ENOMEM; 2456 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2457 if (!mem_node) 2458 return -ENOMEM; 2459 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2460 if (!p_mem_node) 2461 return -ENOMEM; 2462 dbg("Setup the IO, memory, and prefetchable windows\n"); 2463 dbg("io_node\n"); 2464 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2465 io_node->length, io_node->next); 2466 dbg("mem_node\n"); 2467 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2468 mem_node->length, mem_node->next); 2469 dbg("p_mem_node\n"); 2470 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2471 p_mem_node->length, p_mem_node->next); 2472 2473 /* set up the IRQ info */ 2474 if (!resources->irqs) { 2475 irqs.barber_pole = 0; 2476 irqs.interrupt[0] = 0; 2477 irqs.interrupt[1] = 0; 2478 irqs.interrupt[2] = 0; 2479 irqs.interrupt[3] = 0; 2480 irqs.valid_INT = 0; 2481 } else { 2482 irqs.barber_pole = resources->irqs->barber_pole; 2483 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2484 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2485 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2486 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2487 irqs.valid_INT = resources->irqs->valid_INT; 2488 } 2489 2490 /* set up resource lists that are now aligned on top and bottom 2491 * for anything behind the bridge. */ 2492 temp_resources.bus_head = bus_node; 2493 temp_resources.io_head = io_node; 2494 temp_resources.mem_head = mem_node; 2495 temp_resources.p_mem_head = p_mem_node; 2496 temp_resources.irqs = &irqs; 2497 2498 /* Make copies of the nodes we are going to pass down so that 2499 * if there is a problem,we can just use these to free resources 2500 */ 2501 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2502 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2503 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2504 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2505 2506 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2507 kfree(hold_bus_node); 2508 kfree(hold_IO_node); 2509 kfree(hold_mem_node); 2510 kfree(hold_p_mem_node); 2511 2512 return 1; 2513 } 2514 2515 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2516 2517 bus_node->base += 1; 2518 bus_node->length -= 1; 2519 bus_node->next = NULL; 2520 2521 /* If we have IO resources copy them and fill in the bridge's 2522 * IO range registers */ 2523 if (io_node) { 2524 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2525 io_node->next = NULL; 2526 2527 /* set IO base and Limit registers */ 2528 temp_byte = io_node->base >> 8; 2529 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2530 2531 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2532 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2533 } else { 2534 kfree(hold_IO_node); 2535 hold_IO_node = NULL; 2536 } 2537 2538 /* If we have memory resources copy them and fill in the 2539 * bridge's memory range registers. Otherwise, fill in the 2540 * range registers with values that disable them. */ 2541 if (mem_node) { 2542 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2543 mem_node->next = NULL; 2544 2545 /* set Mem base and Limit registers */ 2546 temp_word = mem_node->base >> 16; 2547 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2548 2549 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2550 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2551 } else { 2552 temp_word = 0xFFFF; 2553 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2554 2555 temp_word = 0x0000; 2556 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2557 2558 kfree(hold_mem_node); 2559 hold_mem_node = NULL; 2560 } 2561 2562 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2563 p_mem_node->next = NULL; 2564 2565 /* set Pre Mem base and Limit registers */ 2566 temp_word = p_mem_node->base >> 16; 2567 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2568 2569 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2570 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2571 2572 /* Adjust this to compensate for extra adjustment in first loop 2573 */ 2574 irqs.barber_pole--; 2575 2576 rc = 0; 2577 2578 /* Here we actually find the devices and configure them */ 2579 for (device = 0; (device <= 0x1F) && !rc; device++) { 2580 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2581 2582 ID = 0xFFFFFFFF; 2583 pci_bus->number = hold_bus_node->base; 2584 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2585 pci_bus->number = func->bus; 2586 2587 if (ID != 0xFFFFFFFF) { /* device present */ 2588 /* Setup slot structure. */ 2589 new_slot = cpqhp_slot_create(hold_bus_node->base); 2590 2591 if (new_slot == NULL) { 2592 rc = -ENOMEM; 2593 continue; 2594 } 2595 2596 new_slot->bus = hold_bus_node->base; 2597 new_slot->device = device; 2598 new_slot->function = 0; 2599 new_slot->is_a_board = 1; 2600 new_slot->status = 0; 2601 2602 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2603 dbg("configure_new_device rc=0x%x\n",rc); 2604 } /* End of IF (device in slot?) */ 2605 } /* End of FOR loop */ 2606 2607 if (rc) 2608 goto free_and_out; 2609 /* save the interrupt routing information */ 2610 if (resources->irqs) { 2611 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2612 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2613 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2614 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2615 resources->irqs->valid_INT = irqs.valid_INT; 2616 } else if (!behind_bridge) { 2617 /* We need to hook up the interrupts here */ 2618 for (cloop = 0; cloop < 4; cloop++) { 2619 if (irqs.valid_INT & (0x01 << cloop)) { 2620 rc = cpqhp_set_irq(func->bus, func->device, 2621 cloop + 1, irqs.interrupt[cloop]); 2622 if (rc) 2623 goto free_and_out; 2624 } 2625 } /* end of for loop */ 2626 } 2627 /* Return unused bus resources 2628 * First use the temporary node to store information for 2629 * the board */ 2630 if (hold_bus_node && bus_node && temp_resources.bus_head) { 2631 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2632 2633 hold_bus_node->next = func->bus_head; 2634 func->bus_head = hold_bus_node; 2635 2636 temp_byte = temp_resources.bus_head->base - 1; 2637 2638 /* set subordinate bus */ 2639 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2640 2641 if (temp_resources.bus_head->length == 0) { 2642 kfree(temp_resources.bus_head); 2643 temp_resources.bus_head = NULL; 2644 } else { 2645 return_resource(&(resources->bus_head), temp_resources.bus_head); 2646 } 2647 } 2648 2649 /* If we have IO space available and there is some left, 2650 * return the unused portion */ 2651 if (hold_IO_node && temp_resources.io_head) { 2652 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2653 &hold_IO_node, 0x1000); 2654 2655 /* Check if we were able to split something off */ 2656 if (io_node) { 2657 hold_IO_node->base = io_node->base + io_node->length; 2658 2659 temp_byte = (hold_IO_node->base) >> 8; 2660 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); 2661 2662 return_resource(&(resources->io_head), io_node); 2663 } 2664 2665 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2666 2667 /* Check if we were able to split something off */ 2668 if (io_node) { 2669 /* First use the temporary node to store 2670 * information for the board */ 2671 hold_IO_node->length = io_node->base - hold_IO_node->base; 2672 2673 /* If we used any, add it to the board's list */ 2674 if (hold_IO_node->length) { 2675 hold_IO_node->next = func->io_head; 2676 func->io_head = hold_IO_node; 2677 2678 temp_byte = (io_node->base - 1) >> 8; 2679 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2680 2681 return_resource(&(resources->io_head), io_node); 2682 } else { 2683 /* it doesn't need any IO */ 2684 temp_word = 0x0000; 2685 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2686 2687 return_resource(&(resources->io_head), io_node); 2688 kfree(hold_IO_node); 2689 } 2690 } else { 2691 /* it used most of the range */ 2692 hold_IO_node->next = func->io_head; 2693 func->io_head = hold_IO_node; 2694 } 2695 } else if (hold_IO_node) { 2696 /* it used the whole range */ 2697 hold_IO_node->next = func->io_head; 2698 func->io_head = hold_IO_node; 2699 } 2700 /* If we have memory space available and there is some left, 2701 * return the unused portion */ 2702 if (hold_mem_node && temp_resources.mem_head) { 2703 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2704 &hold_mem_node, 0x100000); 2705 2706 /* Check if we were able to split something off */ 2707 if (mem_node) { 2708 hold_mem_node->base = mem_node->base + mem_node->length; 2709 2710 temp_word = (hold_mem_node->base) >> 16; 2711 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2712 2713 return_resource(&(resources->mem_head), mem_node); 2714 } 2715 2716 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2717 2718 /* Check if we were able to split something off */ 2719 if (mem_node) { 2720 /* First use the temporary node to store 2721 * information for the board */ 2722 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2723 2724 if (hold_mem_node->length) { 2725 hold_mem_node->next = func->mem_head; 2726 func->mem_head = hold_mem_node; 2727 2728 /* configure end address */ 2729 temp_word = (mem_node->base - 1) >> 16; 2730 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2731 2732 /* Return unused resources to the pool */ 2733 return_resource(&(resources->mem_head), mem_node); 2734 } else { 2735 /* it doesn't need any Mem */ 2736 temp_word = 0x0000; 2737 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2738 2739 return_resource(&(resources->mem_head), mem_node); 2740 kfree(hold_mem_node); 2741 } 2742 } else { 2743 /* it used most of the range */ 2744 hold_mem_node->next = func->mem_head; 2745 func->mem_head = hold_mem_node; 2746 } 2747 } else if (hold_mem_node) { 2748 /* it used the whole range */ 2749 hold_mem_node->next = func->mem_head; 2750 func->mem_head = hold_mem_node; 2751 } 2752 /* If we have prefetchable memory space available and there 2753 * is some left at the end, return the unused portion */ 2754 if (hold_p_mem_node && temp_resources.p_mem_head) { 2755 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2756 &hold_p_mem_node, 0x100000); 2757 2758 /* Check if we were able to split something off */ 2759 if (p_mem_node) { 2760 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2761 2762 temp_word = (hold_p_mem_node->base) >> 16; 2763 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2764 2765 return_resource(&(resources->p_mem_head), p_mem_node); 2766 } 2767 2768 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2769 2770 /* Check if we were able to split something off */ 2771 if (p_mem_node) { 2772 /* First use the temporary node to store 2773 * information for the board */ 2774 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2775 2776 /* If we used any, add it to the board's list */ 2777 if (hold_p_mem_node->length) { 2778 hold_p_mem_node->next = func->p_mem_head; 2779 func->p_mem_head = hold_p_mem_node; 2780 2781 temp_word = (p_mem_node->base - 1) >> 16; 2782 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2783 2784 return_resource(&(resources->p_mem_head), p_mem_node); 2785 } else { 2786 /* it doesn't need any PMem */ 2787 temp_word = 0x0000; 2788 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2789 2790 return_resource(&(resources->p_mem_head), p_mem_node); 2791 kfree(hold_p_mem_node); 2792 } 2793 } else { 2794 /* it used the most of the range */ 2795 hold_p_mem_node->next = func->p_mem_head; 2796 func->p_mem_head = hold_p_mem_node; 2797 } 2798 } else if (hold_p_mem_node) { 2799 /* it used the whole range */ 2800 hold_p_mem_node->next = func->p_mem_head; 2801 func->p_mem_head = hold_p_mem_node; 2802 } 2803 /* We should be configuring an IRQ and the bridge's base address 2804 * registers if it needs them. Although we have never seen such 2805 * a device */ 2806 2807 /* enable card */ 2808 command = 0x0157; /* = PCI_COMMAND_IO | 2809 * PCI_COMMAND_MEMORY | 2810 * PCI_COMMAND_MASTER | 2811 * PCI_COMMAND_INVALIDATE | 2812 * PCI_COMMAND_PARITY | 2813 * PCI_COMMAND_SERR */ 2814 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); 2815 2816 /* set Bridge Control Register */ 2817 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2818 * PCI_BRIDGE_CTL_SERR | 2819 * PCI_BRIDGE_CTL_NO_ISA */ 2820 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2821 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2822 /* Standard device */ 2823 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2824 2825 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2826 /* Display (video) adapter (not supported) */ 2827 return DEVICE_TYPE_NOT_SUPPORTED; 2828 } 2829 /* Figure out IO and memory needs */ 2830 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2831 temp_register = 0xFFFFFFFF; 2832 2833 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2834 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); 2835 2836 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); 2837 dbg("CND: base = 0x%x\n", temp_register); 2838 2839 if (temp_register) { /* If this register is implemented */ 2840 if ((temp_register & 0x03L) == 0x01) { 2841 /* Map IO */ 2842 2843 /* set base = amount of IO space */ 2844 base = temp_register & 0xFFFFFFFC; 2845 base = ~base + 1; 2846 2847 dbg("CND: length = 0x%x\n", base); 2848 io_node = get_io_resource(&(resources->io_head), base); 2849 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2850 io_node->base, io_node->length, io_node->next); 2851 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2852 2853 /* allocate the resource to the board */ 2854 if (io_node) { 2855 base = io_node->base; 2856 2857 io_node->next = func->io_head; 2858 func->io_head = io_node; 2859 } else 2860 return -ENOMEM; 2861 } else if ((temp_register & 0x0BL) == 0x08) { 2862 /* Map prefetchable memory */ 2863 base = temp_register & 0xFFFFFFF0; 2864 base = ~base + 1; 2865 2866 dbg("CND: length = 0x%x\n", base); 2867 p_mem_node = get_resource(&(resources->p_mem_head), base); 2868 2869 /* allocate the resource to the board */ 2870 if (p_mem_node) { 2871 base = p_mem_node->base; 2872 2873 p_mem_node->next = func->p_mem_head; 2874 func->p_mem_head = p_mem_node; 2875 } else 2876 return -ENOMEM; 2877 } else if ((temp_register & 0x0BL) == 0x00) { 2878 /* Map memory */ 2879 base = temp_register & 0xFFFFFFF0; 2880 base = ~base + 1; 2881 2882 dbg("CND: length = 0x%x\n", base); 2883 mem_node = get_resource(&(resources->mem_head), base); 2884 2885 /* allocate the resource to the board */ 2886 if (mem_node) { 2887 base = mem_node->base; 2888 2889 mem_node->next = func->mem_head; 2890 func->mem_head = mem_node; 2891 } else 2892 return -ENOMEM; 2893 } else if ((temp_register & 0x0BL) == 0x04) { 2894 /* Map memory */ 2895 base = temp_register & 0xFFFFFFF0; 2896 base = ~base + 1; 2897 2898 dbg("CND: length = 0x%x\n", base); 2899 mem_node = get_resource(&(resources->mem_head), base); 2900 2901 /* allocate the resource to the board */ 2902 if (mem_node) { 2903 base = mem_node->base; 2904 2905 mem_node->next = func->mem_head; 2906 func->mem_head = mem_node; 2907 } else 2908 return -ENOMEM; 2909 } else if ((temp_register & 0x0BL) == 0x06) { 2910 /* Those bits are reserved, we can't handle this */ 2911 return 1; 2912 } else { 2913 /* Requesting space below 1M */ 2914 return NOT_ENOUGH_RESOURCES; 2915 } 2916 2917 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2918 2919 /* Check for 64-bit base */ 2920 if ((temp_register & 0x07L) == 0x04) { 2921 cloop += 4; 2922 2923 /* Upper 32 bits of address always zero 2924 * on today's systems */ 2925 /* FIXME this is probably not true on 2926 * Alpha and ia64??? */ 2927 base = 0; 2928 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2929 } 2930 } 2931 } /* End of base register loop */ 2932 if (cpqhp_legacy_mode) { 2933 /* Figure out which interrupt pin this function uses */ 2934 rc = pci_bus_read_config_byte (pci_bus, devfn, 2935 PCI_INTERRUPT_PIN, &temp_byte); 2936 2937 /* If this function needs an interrupt and we are behind 2938 * a bridge and the pin is tied to something that's 2939 * alread mapped, set this one the same */ 2940 if (temp_byte && resources->irqs && 2941 (resources->irqs->valid_INT & 2942 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2943 /* We have to share with something already set up */ 2944 IRQ = resources->irqs->interrupt[(temp_byte + 2945 resources->irqs->barber_pole - 1) & 0x03]; 2946 } else { 2947 /* Program IRQ based on card type */ 2948 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2949 2950 if (class_code == PCI_BASE_CLASS_STORAGE) 2951 IRQ = cpqhp_disk_irq; 2952 else 2953 IRQ = cpqhp_nic_irq; 2954 } 2955 2956 /* IRQ Line */ 2957 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2958 } 2959 2960 if (!behind_bridge) { 2961 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2962 if (rc) 2963 return 1; 2964 } else { 2965 /* TBD - this code may also belong in the other clause 2966 * of this If statement */ 2967 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2968 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2969 } 2970 2971 /* Latency Timer */ 2972 temp_byte = 0x40; 2973 rc = pci_bus_write_config_byte(pci_bus, devfn, 2974 PCI_LATENCY_TIMER, temp_byte); 2975 2976 /* Cache Line size */ 2977 temp_byte = 0x08; 2978 rc = pci_bus_write_config_byte(pci_bus, devfn, 2979 PCI_CACHE_LINE_SIZE, temp_byte); 2980 2981 /* disable ROM base Address */ 2982 temp_dword = 0x00L; 2983 rc = pci_bus_write_config_word(pci_bus, devfn, 2984 PCI_ROM_ADDRESS, temp_dword); 2985 2986 /* enable card */ 2987 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2988 * PCI_COMMAND_MEMORY | 2989 * PCI_COMMAND_MASTER | 2990 * PCI_COMMAND_INVALIDATE | 2991 * PCI_COMMAND_PARITY | 2992 * PCI_COMMAND_SERR */ 2993 rc = pci_bus_write_config_word (pci_bus, devfn, 2994 PCI_COMMAND, temp_word); 2995 } else { /* End of Not-A-Bridge else */ 2996 /* It's some strange type of PCI adapter (Cardbus?) */ 2997 return DEVICE_TYPE_NOT_SUPPORTED; 2998 } 2999 3000 func->configured = 1; 3001 3002 return 0; 3003 free_and_out: 3004 cpqhp_destroy_resource_list (&temp_resources); 3005 3006 return_resource(&(resources-> bus_head), hold_bus_node); 3007 return_resource(&(resources-> io_head), hold_IO_node); 3008 return_resource(&(resources-> mem_head), hold_mem_node); 3009 return_resource(&(resources-> p_mem_head), hold_p_mem_node); 3010 return rc; 3011 } 3012