1 /* 2 * Compaq Hot Plug Controller Driver 3 * 4 * Copyright (C) 1995,2001 Compaq Computer Corporation 5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 6 * Copyright (C) 2001 IBM Corp. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 18 * NON INFRINGEMENT. See the GNU General Public License for more 19 * details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Send feedback to <greg@kroah.com> 26 * 27 */ 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/wait.h> 37 #include <linux/pci.h> 38 #include <linux/pci_hotplug.h> 39 #include <linux/kthread.h> 40 #include "cpqphp.h" 41 42 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 43 u8 behind_bridge, struct resource_lists *resources); 44 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 45 u8 behind_bridge, struct resource_lists *resources); 46 static void interrupt_event_handler(struct controller *ctrl); 47 48 49 static struct task_struct *cpqhp_event_thread; 50 static unsigned long pushbutton_pending; /* = 0 */ 51 52 /* delay is in jiffies to wait for */ 53 static void long_delay(int delay) 54 { 55 /* 56 * XXX(hch): if someone is bored please convert all callers 57 * to call msleep_interruptible directly. They really want 58 * to specify timeouts in natural units and spend a lot of 59 * effort converting them to jiffies.. 60 */ 61 msleep_interruptible(jiffies_to_msecs(delay)); 62 } 63 64 65 /* FIXME: The following line needs to be somewhere else... */ 66 #define WRONG_BUS_FREQUENCY 0x07 67 static u8 handle_switch_change(u8 change, struct controller *ctrl) 68 { 69 int hp_slot; 70 u8 rc = 0; 71 u16 temp_word; 72 struct pci_func *func; 73 struct event_info *taskInfo; 74 75 if (!change) 76 return 0; 77 78 /* Switch Change */ 79 dbg("cpqsbd: Switch interrupt received.\n"); 80 81 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 82 if (change & (0x1L << hp_slot)) { 83 /* 84 * this one changed. 85 */ 86 func = cpqhp_slot_find(ctrl->bus, 87 (hp_slot + ctrl->slot_device_offset), 0); 88 89 /* this is the structure that tells the worker thread 90 * what to do 91 */ 92 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 93 ctrl->next_event = (ctrl->next_event + 1) % 10; 94 taskInfo->hp_slot = hp_slot; 95 96 rc++; 97 98 temp_word = ctrl->ctrl_int_comp >> 16; 99 func->presence_save = (temp_word >> hp_slot) & 0x01; 100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 101 102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 103 /* 104 * Switch opened 105 */ 106 107 func->switch_save = 0; 108 109 taskInfo->event_type = INT_SWITCH_OPEN; 110 } else { 111 /* 112 * Switch closed 113 */ 114 115 func->switch_save = 0x10; 116 117 taskInfo->event_type = INT_SWITCH_CLOSE; 118 } 119 } 120 } 121 122 return rc; 123 } 124 125 /** 126 * cpqhp_find_slot - find the struct slot of given device 127 * @ctrl: scan lots of this controller 128 * @device: the device id to find 129 */ 130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 131 { 132 struct slot *slot = ctrl->slot; 133 134 while (slot && (slot->device != device)) 135 slot = slot->next; 136 137 return slot; 138 } 139 140 141 static u8 handle_presence_change(u16 change, struct controller *ctrl) 142 { 143 int hp_slot; 144 u8 rc = 0; 145 u8 temp_byte; 146 u16 temp_word; 147 struct pci_func *func; 148 struct event_info *taskInfo; 149 struct slot *p_slot; 150 151 if (!change) 152 return 0; 153 154 /* 155 * Presence Change 156 */ 157 dbg("cpqsbd: Presence/Notify input change.\n"); 158 dbg(" Changed bits are 0x%4.4x\n", change ); 159 160 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 161 if (change & (0x0101 << hp_slot)) { 162 /* 163 * this one changed. 164 */ 165 func = cpqhp_slot_find(ctrl->bus, 166 (hp_slot + ctrl->slot_device_offset), 0); 167 168 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 169 ctrl->next_event = (ctrl->next_event + 1) % 10; 170 taskInfo->hp_slot = hp_slot; 171 172 rc++; 173 174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 175 if (!p_slot) 176 return 0; 177 178 /* If the switch closed, must be a button 179 * If not in button mode, nevermind 180 */ 181 if (func->switch_save && (ctrl->push_button == 1)) { 182 temp_word = ctrl->ctrl_int_comp >> 16; 183 temp_byte = (temp_word >> hp_slot) & 0x01; 184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 185 186 if (temp_byte != func->presence_save) { 187 /* 188 * button Pressed (doesn't do anything) 189 */ 190 dbg("hp_slot %d button pressed\n", hp_slot); 191 taskInfo->event_type = INT_BUTTON_PRESS; 192 } else { 193 /* 194 * button Released - TAKE ACTION!!!! 195 */ 196 dbg("hp_slot %d button released\n", hp_slot); 197 taskInfo->event_type = INT_BUTTON_RELEASE; 198 199 /* Cancel if we are still blinking */ 200 if ((p_slot->state == BLINKINGON_STATE) 201 || (p_slot->state == BLINKINGOFF_STATE)) { 202 taskInfo->event_type = INT_BUTTON_CANCEL; 203 dbg("hp_slot %d button cancel\n", hp_slot); 204 } else if ((p_slot->state == POWERON_STATE) 205 || (p_slot->state == POWEROFF_STATE)) { 206 /* info(msg_button_ignore, p_slot->number); */ 207 taskInfo->event_type = INT_BUTTON_IGNORE; 208 dbg("hp_slot %d button ignore\n", hp_slot); 209 } 210 } 211 } else { 212 /* Switch is open, assume a presence change 213 * Save the presence state 214 */ 215 temp_word = ctrl->ctrl_int_comp >> 16; 216 func->presence_save = (temp_word >> hp_slot) & 0x01; 217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 218 219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 221 /* Present */ 222 taskInfo->event_type = INT_PRESENCE_ON; 223 } else { 224 /* Not Present */ 225 taskInfo->event_type = INT_PRESENCE_OFF; 226 } 227 } 228 } 229 } 230 231 return rc; 232 } 233 234 235 static u8 handle_power_fault(u8 change, struct controller *ctrl) 236 { 237 int hp_slot; 238 u8 rc = 0; 239 struct pci_func *func; 240 struct event_info *taskInfo; 241 242 if (!change) 243 return 0; 244 245 /* 246 * power fault 247 */ 248 249 info("power fault interrupt\n"); 250 251 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 252 if (change & (0x01 << hp_slot)) { 253 /* 254 * this one changed. 255 */ 256 func = cpqhp_slot_find(ctrl->bus, 257 (hp_slot + ctrl->slot_device_offset), 0); 258 259 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 260 ctrl->next_event = (ctrl->next_event + 1) % 10; 261 taskInfo->hp_slot = hp_slot; 262 263 rc++; 264 265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 266 /* 267 * power fault Cleared 268 */ 269 func->status = 0x00; 270 271 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 272 } else { 273 /* 274 * power fault 275 */ 276 taskInfo->event_type = INT_POWER_FAULT; 277 278 if (ctrl->rev < 4) { 279 amber_LED_on (ctrl, hp_slot); 280 green_LED_off (ctrl, hp_slot); 281 set_SOGO (ctrl); 282 283 /* this is a fatal condition, we want 284 * to crash the machine to protect from 285 * data corruption. simulated_NMI 286 * shouldn't ever return */ 287 /* FIXME 288 simulated_NMI(hp_slot, ctrl); */ 289 290 /* The following code causes a software 291 * crash just in case simulated_NMI did 292 * return */ 293 /*FIXME 294 panic(msg_power_fault); */ 295 } else { 296 /* set power fault status for this board */ 297 func->status = 0xFF; 298 info("power fault bit %x set\n", hp_slot); 299 } 300 } 301 } 302 } 303 304 return rc; 305 } 306 307 308 /** 309 * sort_by_size - sort nodes on the list by their length, smallest first. 310 * @head: list to sort 311 */ 312 static int sort_by_size(struct pci_resource **head) 313 { 314 struct pci_resource *current_res; 315 struct pci_resource *next_res; 316 int out_of_order = 1; 317 318 if (!(*head)) 319 return 1; 320 321 if (!((*head)->next)) 322 return 0; 323 324 while (out_of_order) { 325 out_of_order = 0; 326 327 /* Special case for swapping list head */ 328 if (((*head)->next) && 329 ((*head)->length > (*head)->next->length)) { 330 out_of_order++; 331 current_res = *head; 332 *head = (*head)->next; 333 current_res->next = (*head)->next; 334 (*head)->next = current_res; 335 } 336 337 current_res = *head; 338 339 while (current_res->next && current_res->next->next) { 340 if (current_res->next->length > current_res->next->next->length) { 341 out_of_order++; 342 next_res = current_res->next; 343 current_res->next = current_res->next->next; 344 current_res = current_res->next; 345 next_res->next = current_res->next; 346 current_res->next = next_res; 347 } else 348 current_res = current_res->next; 349 } 350 } /* End of out_of_order loop */ 351 352 return 0; 353 } 354 355 356 /** 357 * sort_by_max_size - sort nodes on the list by their length, largest first. 358 * @head: list to sort 359 */ 360 static int sort_by_max_size(struct pci_resource **head) 361 { 362 struct pci_resource *current_res; 363 struct pci_resource *next_res; 364 int out_of_order = 1; 365 366 if (!(*head)) 367 return 1; 368 369 if (!((*head)->next)) 370 return 0; 371 372 while (out_of_order) { 373 out_of_order = 0; 374 375 /* Special case for swapping list head */ 376 if (((*head)->next) && 377 ((*head)->length < (*head)->next->length)) { 378 out_of_order++; 379 current_res = *head; 380 *head = (*head)->next; 381 current_res->next = (*head)->next; 382 (*head)->next = current_res; 383 } 384 385 current_res = *head; 386 387 while (current_res->next && current_res->next->next) { 388 if (current_res->next->length < current_res->next->next->length) { 389 out_of_order++; 390 next_res = current_res->next; 391 current_res->next = current_res->next->next; 392 current_res = current_res->next; 393 next_res->next = current_res->next; 394 current_res->next = next_res; 395 } else 396 current_res = current_res->next; 397 } 398 } /* End of out_of_order loop */ 399 400 return 0; 401 } 402 403 404 /** 405 * do_pre_bridge_resource_split - find node of resources that are unused 406 * @head: new list head 407 * @orig_head: original list head 408 * @alignment: max node size (?) 409 */ 410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 411 struct pci_resource **orig_head, u32 alignment) 412 { 413 struct pci_resource *prevnode = NULL; 414 struct pci_resource *node; 415 struct pci_resource *split_node; 416 u32 rc; 417 u32 temp_dword; 418 dbg("do_pre_bridge_resource_split\n"); 419 420 if (!(*head) || !(*orig_head)) 421 return NULL; 422 423 rc = cpqhp_resource_sort_and_combine(head); 424 425 if (rc) 426 return NULL; 427 428 if ((*head)->base != (*orig_head)->base) 429 return NULL; 430 431 if ((*head)->length == (*orig_head)->length) 432 return NULL; 433 434 435 /* If we got here, there the bridge requires some of the resource, but 436 * we may be able to split some off of the front 437 */ 438 439 node = *head; 440 441 if (node->length & (alignment -1)) { 442 /* this one isn't an aligned length, so we'll make a new entry 443 * and split it up. 444 */ 445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 446 447 if (!split_node) 448 return NULL; 449 450 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 451 452 split_node->base = node->base; 453 split_node->length = temp_dword; 454 455 node->length -= temp_dword; 456 node->base += split_node->length; 457 458 /* Put it in the list */ 459 *head = split_node; 460 split_node->next = node; 461 } 462 463 if (node->length < alignment) 464 return NULL; 465 466 /* Now unlink it */ 467 if (*head == node) { 468 *head = node->next; 469 } else { 470 prevnode = *head; 471 while (prevnode->next != node) 472 prevnode = prevnode->next; 473 474 prevnode->next = node->next; 475 } 476 node->next = NULL; 477 478 return node; 479 } 480 481 482 /** 483 * do_bridge_resource_split - find one node of resources that aren't in use 484 * @head: list head 485 * @alignment: max node size (?) 486 */ 487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 488 { 489 struct pci_resource *prevnode = NULL; 490 struct pci_resource *node; 491 u32 rc; 492 u32 temp_dword; 493 494 rc = cpqhp_resource_sort_and_combine(head); 495 496 if (rc) 497 return NULL; 498 499 node = *head; 500 501 while (node->next) { 502 prevnode = node; 503 node = node->next; 504 kfree(prevnode); 505 } 506 507 if (node->length < alignment) 508 goto error; 509 510 if (node->base & (alignment - 1)) { 511 /* Short circuit if adjusted size is too small */ 512 temp_dword = (node->base | (alignment-1)) + 1; 513 if ((node->length - (temp_dword - node->base)) < alignment) 514 goto error; 515 516 node->length -= (temp_dword - node->base); 517 node->base = temp_dword; 518 } 519 520 if (node->length & (alignment - 1)) 521 /* There's stuff in use after this node */ 522 goto error; 523 524 return node; 525 error: 526 kfree(node); 527 return NULL; 528 } 529 530 531 /** 532 * get_io_resource - find first node of given size not in ISA aliasing window. 533 * @head: list to search 534 * @size: size of node to find, must be a power of two. 535 * 536 * Description: This function sorts the resource list by size and then returns 537 * returns the first node of "size" length that is not in the ISA aliasing 538 * window. If it finds a node larger than "size" it will split it up. 539 */ 540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 541 { 542 struct pci_resource *prevnode; 543 struct pci_resource *node; 544 struct pci_resource *split_node; 545 u32 temp_dword; 546 547 if (!(*head)) 548 return NULL; 549 550 if (cpqhp_resource_sort_and_combine(head)) 551 return NULL; 552 553 if (sort_by_size(head)) 554 return NULL; 555 556 for (node = *head; node; node = node->next) { 557 if (node->length < size) 558 continue; 559 560 if (node->base & (size - 1)) { 561 /* this one isn't base aligned properly 562 * so we'll make a new entry and split it up 563 */ 564 temp_dword = (node->base | (size-1)) + 1; 565 566 /* Short circuit if adjusted size is too small */ 567 if ((node->length - (temp_dword - node->base)) < size) 568 continue; 569 570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 571 572 if (!split_node) 573 return NULL; 574 575 split_node->base = node->base; 576 split_node->length = temp_dword - node->base; 577 node->base = temp_dword; 578 node->length -= split_node->length; 579 580 /* Put it in the list */ 581 split_node->next = node->next; 582 node->next = split_node; 583 } /* End of non-aligned base */ 584 585 /* Don't need to check if too small since we already did */ 586 if (node->length > size) { 587 /* this one is longer than we need 588 * so we'll make a new entry and split it up 589 */ 590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 591 592 if (!split_node) 593 return NULL; 594 595 split_node->base = node->base + size; 596 split_node->length = node->length - size; 597 node->length = size; 598 599 /* Put it in the list */ 600 split_node->next = node->next; 601 node->next = split_node; 602 } /* End of too big on top end */ 603 604 /* For IO make sure it's not in the ISA aliasing space */ 605 if (node->base & 0x300L) 606 continue; 607 608 /* If we got here, then it is the right size 609 * Now take it out of the list and break 610 */ 611 if (*head == node) { 612 *head = node->next; 613 } else { 614 prevnode = *head; 615 while (prevnode->next != node) 616 prevnode = prevnode->next; 617 618 prevnode->next = node->next; 619 } 620 node->next = NULL; 621 break; 622 } 623 624 return node; 625 } 626 627 628 /** 629 * get_max_resource - get largest node which has at least the given size. 630 * @head: the list to search the node in 631 * @size: the minimum size of the node to find 632 * 633 * Description: Gets the largest node that is at least "size" big from the 634 * list pointed to by head. It aligns the node on top and bottom 635 * to "size" alignment before returning it. 636 */ 637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 638 { 639 struct pci_resource *max; 640 struct pci_resource *temp; 641 struct pci_resource *split_node; 642 u32 temp_dword; 643 644 if (cpqhp_resource_sort_and_combine(head)) 645 return NULL; 646 647 if (sort_by_max_size(head)) 648 return NULL; 649 650 for (max = *head; max; max = max->next) { 651 /* If not big enough we could probably just bail, 652 * instead we'll continue to the next. 653 */ 654 if (max->length < size) 655 continue; 656 657 if (max->base & (size - 1)) { 658 /* this one isn't base aligned properly 659 * so we'll make a new entry and split it up 660 */ 661 temp_dword = (max->base | (size-1)) + 1; 662 663 /* Short circuit if adjusted size is too small */ 664 if ((max->length - (temp_dword - max->base)) < size) 665 continue; 666 667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 668 669 if (!split_node) 670 return NULL; 671 672 split_node->base = max->base; 673 split_node->length = temp_dword - max->base; 674 max->base = temp_dword; 675 max->length -= split_node->length; 676 677 split_node->next = max->next; 678 max->next = split_node; 679 } 680 681 if ((max->base + max->length) & (size - 1)) { 682 /* this one isn't end aligned properly at the top 683 * so we'll make a new entry and split it up 684 */ 685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 686 687 if (!split_node) 688 return NULL; 689 temp_dword = ((max->base + max->length) & ~(size - 1)); 690 split_node->base = temp_dword; 691 split_node->length = max->length + max->base 692 - split_node->base; 693 max->length -= split_node->length; 694 695 split_node->next = max->next; 696 max->next = split_node; 697 } 698 699 /* Make sure it didn't shrink too much when we aligned it */ 700 if (max->length < size) 701 continue; 702 703 /* Now take it out of the list */ 704 temp = *head; 705 if (temp == max) { 706 *head = max->next; 707 } else { 708 while (temp && temp->next != max) { 709 temp = temp->next; 710 } 711 712 if (temp) 713 temp->next = max->next; 714 } 715 716 max->next = NULL; 717 break; 718 } 719 720 return max; 721 } 722 723 724 /** 725 * get_resource - find resource of given size and split up larger ones. 726 * @head: the list to search for resources 727 * @size: the size limit to use 728 * 729 * Description: This function sorts the resource list by size and then 730 * returns the first node of "size" length. If it finds a node 731 * larger than "size" it will split it up. 732 * 733 * size must be a power of two. 734 */ 735 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 736 { 737 struct pci_resource *prevnode; 738 struct pci_resource *node; 739 struct pci_resource *split_node; 740 u32 temp_dword; 741 742 if (cpqhp_resource_sort_and_combine(head)) 743 return NULL; 744 745 if (sort_by_size(head)) 746 return NULL; 747 748 for (node = *head; node; node = node->next) { 749 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 750 __func__, size, node, node->base, node->length); 751 if (node->length < size) 752 continue; 753 754 if (node->base & (size - 1)) { 755 dbg("%s: not aligned\n", __func__); 756 /* this one isn't base aligned properly 757 * so we'll make a new entry and split it up 758 */ 759 temp_dword = (node->base | (size-1)) + 1; 760 761 /* Short circuit if adjusted size is too small */ 762 if ((node->length - (temp_dword - node->base)) < size) 763 continue; 764 765 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 766 767 if (!split_node) 768 return NULL; 769 770 split_node->base = node->base; 771 split_node->length = temp_dword - node->base; 772 node->base = temp_dword; 773 node->length -= split_node->length; 774 775 split_node->next = node->next; 776 node->next = split_node; 777 } /* End of non-aligned base */ 778 779 /* Don't need to check if too small since we already did */ 780 if (node->length > size) { 781 dbg("%s: too big\n", __func__); 782 /* this one is longer than we need 783 * so we'll make a new entry and split it up 784 */ 785 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 786 787 if (!split_node) 788 return NULL; 789 790 split_node->base = node->base + size; 791 split_node->length = node->length - size; 792 node->length = size; 793 794 /* Put it in the list */ 795 split_node->next = node->next; 796 node->next = split_node; 797 } /* End of too big on top end */ 798 799 dbg("%s: got one!!!\n", __func__); 800 /* If we got here, then it is the right size 801 * Now take it out of the list */ 802 if (*head == node) { 803 *head = node->next; 804 } else { 805 prevnode = *head; 806 while (prevnode->next != node) 807 prevnode = prevnode->next; 808 809 prevnode->next = node->next; 810 } 811 node->next = NULL; 812 break; 813 } 814 return node; 815 } 816 817 818 /** 819 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 820 * @head: the list to sort and clean up 821 * 822 * Description: Sorts all of the nodes in the list in ascending order by 823 * their base addresses. Also does garbage collection by 824 * combining adjacent nodes. 825 * 826 * Returns %0 if success. 827 */ 828 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 829 { 830 struct pci_resource *node1; 831 struct pci_resource *node2; 832 int out_of_order = 1; 833 834 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 835 836 if (!(*head)) 837 return 1; 838 839 dbg("*head->next = %p\n",(*head)->next); 840 841 if (!(*head)->next) 842 return 0; /* only one item on the list, already sorted! */ 843 844 dbg("*head->base = 0x%x\n",(*head)->base); 845 dbg("*head->next->base = 0x%x\n",(*head)->next->base); 846 while (out_of_order) { 847 out_of_order = 0; 848 849 /* Special case for swapping list head */ 850 if (((*head)->next) && 851 ((*head)->base > (*head)->next->base)) { 852 node1 = *head; 853 (*head) = (*head)->next; 854 node1->next = (*head)->next; 855 (*head)->next = node1; 856 out_of_order++; 857 } 858 859 node1 = (*head); 860 861 while (node1->next && node1->next->next) { 862 if (node1->next->base > node1->next->next->base) { 863 out_of_order++; 864 node2 = node1->next; 865 node1->next = node1->next->next; 866 node1 = node1->next; 867 node2->next = node1->next; 868 node1->next = node2; 869 } else 870 node1 = node1->next; 871 } 872 } /* End of out_of_order loop */ 873 874 node1 = *head; 875 876 while (node1 && node1->next) { 877 if ((node1->base + node1->length) == node1->next->base) { 878 /* Combine */ 879 dbg("8..\n"); 880 node1->length += node1->next->length; 881 node2 = node1->next; 882 node1->next = node1->next->next; 883 kfree(node2); 884 } else 885 node1 = node1->next; 886 } 887 888 return 0; 889 } 890 891 892 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 893 { 894 struct controller *ctrl = data; 895 u8 schedule_flag = 0; 896 u8 reset; 897 u16 misc; 898 u32 Diff; 899 u32 temp_dword; 900 901 902 misc = readw(ctrl->hpc_reg + MISC); 903 /* 904 * Check to see if it was our interrupt 905 */ 906 if (!(misc & 0x000C)) { 907 return IRQ_NONE; 908 } 909 910 if (misc & 0x0004) { 911 /* 912 * Serial Output interrupt Pending 913 */ 914 915 /* Clear the interrupt */ 916 misc |= 0x0004; 917 writew(misc, ctrl->hpc_reg + MISC); 918 919 /* Read to clear posted writes */ 920 misc = readw(ctrl->hpc_reg + MISC); 921 922 dbg ("%s - waking up\n", __func__); 923 wake_up_interruptible(&ctrl->queue); 924 } 925 926 if (misc & 0x0008) { 927 /* General-interrupt-input interrupt Pending */ 928 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 929 930 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 931 932 /* Clear the interrupt */ 933 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 934 935 /* Read it back to clear any posted writes */ 936 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 937 938 if (!Diff) 939 /* Clear all interrupts */ 940 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 941 942 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 943 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 944 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 945 } 946 947 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 948 if (reset & 0x40) { 949 /* Bus reset has completed */ 950 reset &= 0xCF; 951 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 952 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 953 wake_up_interruptible(&ctrl->queue); 954 } 955 956 if (schedule_flag) { 957 wake_up_process(cpqhp_event_thread); 958 dbg("Waking even thread"); 959 } 960 return IRQ_HANDLED; 961 } 962 963 964 /** 965 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 966 * @busnumber: bus where new node is to be located 967 * 968 * Returns pointer to the new node or %NULL if unsuccessful. 969 */ 970 struct pci_func *cpqhp_slot_create(u8 busnumber) 971 { 972 struct pci_func *new_slot; 973 struct pci_func *next; 974 975 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 976 if (new_slot == NULL) 977 return new_slot; 978 979 new_slot->next = NULL; 980 new_slot->configured = 1; 981 982 if (cpqhp_slot_list[busnumber] == NULL) { 983 cpqhp_slot_list[busnumber] = new_slot; 984 } else { 985 next = cpqhp_slot_list[busnumber]; 986 while (next->next != NULL) 987 next = next->next; 988 next->next = new_slot; 989 } 990 return new_slot; 991 } 992 993 994 /** 995 * slot_remove - Removes a node from the linked list of slots. 996 * @old_slot: slot to remove 997 * 998 * Returns %0 if successful, !0 otherwise. 999 */ 1000 static int slot_remove(struct pci_func *old_slot) 1001 { 1002 struct pci_func *next; 1003 1004 if (old_slot == NULL) 1005 return 1; 1006 1007 next = cpqhp_slot_list[old_slot->bus]; 1008 if (next == NULL) 1009 return 1; 1010 1011 if (next == old_slot) { 1012 cpqhp_slot_list[old_slot->bus] = old_slot->next; 1013 cpqhp_destroy_board_resources(old_slot); 1014 kfree(old_slot); 1015 return 0; 1016 } 1017 1018 while ((next->next != old_slot) && (next->next != NULL)) 1019 next = next->next; 1020 1021 if (next->next == old_slot) { 1022 next->next = old_slot->next; 1023 cpqhp_destroy_board_resources(old_slot); 1024 kfree(old_slot); 1025 return 0; 1026 } else 1027 return 2; 1028 } 1029 1030 1031 /** 1032 * bridge_slot_remove - Removes a node from the linked list of slots. 1033 * @bridge: bridge to remove 1034 * 1035 * Returns %0 if successful, !0 otherwise. 1036 */ 1037 static int bridge_slot_remove(struct pci_func *bridge) 1038 { 1039 u8 subordinateBus, secondaryBus; 1040 u8 tempBus; 1041 struct pci_func *next; 1042 1043 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1044 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1045 1046 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1047 next = cpqhp_slot_list[tempBus]; 1048 1049 while (!slot_remove(next)) 1050 next = cpqhp_slot_list[tempBus]; 1051 } 1052 1053 next = cpqhp_slot_list[bridge->bus]; 1054 1055 if (next == NULL) 1056 return 1; 1057 1058 if (next == bridge) { 1059 cpqhp_slot_list[bridge->bus] = bridge->next; 1060 goto out; 1061 } 1062 1063 while ((next->next != bridge) && (next->next != NULL)) 1064 next = next->next; 1065 1066 if (next->next != bridge) 1067 return 2; 1068 next->next = bridge->next; 1069 out: 1070 kfree(bridge); 1071 return 0; 1072 } 1073 1074 1075 /** 1076 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1077 * @bus: bus to find 1078 * @device: device to find 1079 * @index: is %0 for first function found, %1 for the second... 1080 * 1081 * Returns pointer to the node if successful, %NULL otherwise. 1082 */ 1083 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1084 { 1085 int found = -1; 1086 struct pci_func *func; 1087 1088 func = cpqhp_slot_list[bus]; 1089 1090 if ((func == NULL) || ((func->device == device) && (index == 0))) 1091 return func; 1092 1093 if (func->device == device) 1094 found++; 1095 1096 while (func->next != NULL) { 1097 func = func->next; 1098 1099 if (func->device == device) 1100 found++; 1101 1102 if (found == index) 1103 return func; 1104 } 1105 1106 return NULL; 1107 } 1108 1109 1110 /* DJZ: I don't think is_bridge will work as is. 1111 * FIXME */ 1112 static int is_bridge(struct pci_func *func) 1113 { 1114 /* Check the header type */ 1115 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1116 return 1; 1117 else 1118 return 0; 1119 } 1120 1121 1122 /** 1123 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1124 * @ctrl: controller to change frequency/mode for. 1125 * @adapter_speed: the speed of the adapter we want to match. 1126 * @hp_slot: the slot number where the adapter is installed. 1127 * 1128 * Returns %0 if we successfully change frequency and/or mode to match the 1129 * adapter speed. 1130 */ 1131 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1132 { 1133 struct slot *slot; 1134 struct pci_bus *bus = ctrl->pci_bus; 1135 u8 reg; 1136 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1137 u16 reg16; 1138 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1139 1140 if (bus->cur_bus_speed == adapter_speed) 1141 return 0; 1142 1143 /* We don't allow freq/mode changes if we find another adapter running 1144 * in another slot on this controller 1145 */ 1146 for(slot = ctrl->slot; slot; slot = slot->next) { 1147 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1148 continue; 1149 if (!slot->hotplug_slot || !slot->hotplug_slot->info) 1150 continue; 1151 if (slot->hotplug_slot->info->adapter_status == 0) 1152 continue; 1153 /* If another adapter is running on the same segment but at a 1154 * lower speed/mode, we allow the new adapter to function at 1155 * this rate if supported 1156 */ 1157 if (bus->cur_bus_speed < adapter_speed) 1158 return 0; 1159 1160 return 1; 1161 } 1162 1163 /* If the controller doesn't support freq/mode changes and the 1164 * controller is running at a higher mode, we bail 1165 */ 1166 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1167 return 1; 1168 1169 /* But we allow the adapter to run at a lower rate if possible */ 1170 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1171 return 0; 1172 1173 /* We try to set the max speed supported by both the adapter and 1174 * controller 1175 */ 1176 if (bus->max_bus_speed < adapter_speed) { 1177 if (bus->cur_bus_speed == bus->max_bus_speed) 1178 return 0; 1179 adapter_speed = bus->max_bus_speed; 1180 } 1181 1182 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1183 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1184 1185 set_SOGO(ctrl); 1186 wait_for_ctrl_irq(ctrl); 1187 1188 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1189 reg = 0xF5; 1190 else 1191 reg = 0xF4; 1192 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1193 1194 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1195 reg16 &= ~0x000F; 1196 switch(adapter_speed) { 1197 case(PCI_SPEED_133MHz_PCIX): 1198 reg = 0x75; 1199 reg16 |= 0xB; 1200 break; 1201 case(PCI_SPEED_100MHz_PCIX): 1202 reg = 0x74; 1203 reg16 |= 0xA; 1204 break; 1205 case(PCI_SPEED_66MHz_PCIX): 1206 reg = 0x73; 1207 reg16 |= 0x9; 1208 break; 1209 case(PCI_SPEED_66MHz): 1210 reg = 0x73; 1211 reg16 |= 0x1; 1212 break; 1213 default: /* 33MHz PCI 2.2 */ 1214 reg = 0x71; 1215 break; 1216 1217 } 1218 reg16 |= 0xB << 12; 1219 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1220 1221 mdelay(5); 1222 1223 /* Reenable interrupts */ 1224 writel(0, ctrl->hpc_reg + INT_MASK); 1225 1226 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1227 1228 /* Restart state machine */ 1229 reg = ~0xF; 1230 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1231 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1232 1233 /* Only if mode change...*/ 1234 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1235 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1236 set_SOGO(ctrl); 1237 1238 wait_for_ctrl_irq(ctrl); 1239 mdelay(1100); 1240 1241 /* Restore LED/Slot state */ 1242 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1243 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1244 1245 set_SOGO(ctrl); 1246 wait_for_ctrl_irq(ctrl); 1247 1248 bus->cur_bus_speed = adapter_speed; 1249 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1250 1251 info("Successfully changed frequency/mode for adapter in slot %d\n", 1252 slot->number); 1253 return 0; 1254 } 1255 1256 /* the following routines constitute the bulk of the 1257 * hotplug controller logic 1258 */ 1259 1260 1261 /** 1262 * board_replaced - Called after a board has been replaced in the system. 1263 * @func: PCI device/function information 1264 * @ctrl: hotplug controller 1265 * 1266 * This is only used if we don't have resources for hot add. 1267 * Turns power on for the board. 1268 * Checks to see if board is the same. 1269 * If board is same, reconfigures it. 1270 * If board isn't same, turns it back off. 1271 */ 1272 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1273 { 1274 struct pci_bus *bus = ctrl->pci_bus; 1275 u8 hp_slot; 1276 u8 temp_byte; 1277 u8 adapter_speed; 1278 u32 rc = 0; 1279 1280 hp_slot = func->device - ctrl->slot_device_offset; 1281 1282 /* 1283 * The switch is open. 1284 */ 1285 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1286 rc = INTERLOCK_OPEN; 1287 /* 1288 * The board is already on 1289 */ 1290 else if (is_slot_enabled (ctrl, hp_slot)) 1291 rc = CARD_FUNCTIONING; 1292 else { 1293 mutex_lock(&ctrl->crit_sect); 1294 1295 /* turn on board without attaching to the bus */ 1296 enable_slot_power (ctrl, hp_slot); 1297 1298 set_SOGO(ctrl); 1299 1300 /* Wait for SOBS to be unset */ 1301 wait_for_ctrl_irq (ctrl); 1302 1303 /* Change bits in slot power register to force another shift out 1304 * NOTE: this is to work around the timer bug */ 1305 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1306 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1307 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1308 1309 set_SOGO(ctrl); 1310 1311 /* Wait for SOBS to be unset */ 1312 wait_for_ctrl_irq (ctrl); 1313 1314 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1315 if (bus->cur_bus_speed != adapter_speed) 1316 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1317 rc = WRONG_BUS_FREQUENCY; 1318 1319 /* turn off board without attaching to the bus */ 1320 disable_slot_power (ctrl, hp_slot); 1321 1322 set_SOGO(ctrl); 1323 1324 /* Wait for SOBS to be unset */ 1325 wait_for_ctrl_irq (ctrl); 1326 1327 mutex_unlock(&ctrl->crit_sect); 1328 1329 if (rc) 1330 return rc; 1331 1332 mutex_lock(&ctrl->crit_sect); 1333 1334 slot_enable (ctrl, hp_slot); 1335 green_LED_blink (ctrl, hp_slot); 1336 1337 amber_LED_off (ctrl, hp_slot); 1338 1339 set_SOGO(ctrl); 1340 1341 /* Wait for SOBS to be unset */ 1342 wait_for_ctrl_irq (ctrl); 1343 1344 mutex_unlock(&ctrl->crit_sect); 1345 1346 /* Wait for ~1 second because of hot plug spec */ 1347 long_delay(1*HZ); 1348 1349 /* Check for a power fault */ 1350 if (func->status == 0xFF) { 1351 /* power fault occurred, but it was benign */ 1352 rc = POWER_FAILURE; 1353 func->status = 0; 1354 } else 1355 rc = cpqhp_valid_replace(ctrl, func); 1356 1357 if (!rc) { 1358 /* It must be the same board */ 1359 1360 rc = cpqhp_configure_board(ctrl, func); 1361 1362 /* If configuration fails, turn it off 1363 * Get slot won't work for devices behind 1364 * bridges, but in this case it will always be 1365 * called for the "base" bus/dev/func of an 1366 * adapter. 1367 */ 1368 1369 mutex_lock(&ctrl->crit_sect); 1370 1371 amber_LED_on (ctrl, hp_slot); 1372 green_LED_off (ctrl, hp_slot); 1373 slot_disable (ctrl, hp_slot); 1374 1375 set_SOGO(ctrl); 1376 1377 /* Wait for SOBS to be unset */ 1378 wait_for_ctrl_irq (ctrl); 1379 1380 mutex_unlock(&ctrl->crit_sect); 1381 1382 if (rc) 1383 return rc; 1384 else 1385 return 1; 1386 1387 } else { 1388 /* Something is wrong 1389 1390 * Get slot won't work for devices behind bridges, but 1391 * in this case it will always be called for the "base" 1392 * bus/dev/func of an adapter. 1393 */ 1394 1395 mutex_lock(&ctrl->crit_sect); 1396 1397 amber_LED_on (ctrl, hp_slot); 1398 green_LED_off (ctrl, hp_slot); 1399 slot_disable (ctrl, hp_slot); 1400 1401 set_SOGO(ctrl); 1402 1403 /* Wait for SOBS to be unset */ 1404 wait_for_ctrl_irq (ctrl); 1405 1406 mutex_unlock(&ctrl->crit_sect); 1407 } 1408 1409 } 1410 return rc; 1411 1412 } 1413 1414 1415 /** 1416 * board_added - Called after a board has been added to the system. 1417 * @func: PCI device/function info 1418 * @ctrl: hotplug controller 1419 * 1420 * Turns power on for the board. 1421 * Configures board. 1422 */ 1423 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1424 { 1425 u8 hp_slot; 1426 u8 temp_byte; 1427 u8 adapter_speed; 1428 int index; 1429 u32 temp_register = 0xFFFFFFFF; 1430 u32 rc = 0; 1431 struct pci_func *new_slot = NULL; 1432 struct pci_bus *bus = ctrl->pci_bus; 1433 struct slot *p_slot; 1434 struct resource_lists res_lists; 1435 1436 hp_slot = func->device - ctrl->slot_device_offset; 1437 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1438 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1439 1440 mutex_lock(&ctrl->crit_sect); 1441 1442 /* turn on board without attaching to the bus */ 1443 enable_slot_power(ctrl, hp_slot); 1444 1445 set_SOGO(ctrl); 1446 1447 /* Wait for SOBS to be unset */ 1448 wait_for_ctrl_irq (ctrl); 1449 1450 /* Change bits in slot power register to force another shift out 1451 * NOTE: this is to work around the timer bug 1452 */ 1453 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1454 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1455 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1456 1457 set_SOGO(ctrl); 1458 1459 /* Wait for SOBS to be unset */ 1460 wait_for_ctrl_irq (ctrl); 1461 1462 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1463 if (bus->cur_bus_speed != adapter_speed) 1464 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1465 rc = WRONG_BUS_FREQUENCY; 1466 1467 /* turn off board without attaching to the bus */ 1468 disable_slot_power (ctrl, hp_slot); 1469 1470 set_SOGO(ctrl); 1471 1472 /* Wait for SOBS to be unset */ 1473 wait_for_ctrl_irq(ctrl); 1474 1475 mutex_unlock(&ctrl->crit_sect); 1476 1477 if (rc) 1478 return rc; 1479 1480 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1481 1482 /* turn on board and blink green LED */ 1483 1484 dbg("%s: before down\n", __func__); 1485 mutex_lock(&ctrl->crit_sect); 1486 dbg("%s: after down\n", __func__); 1487 1488 dbg("%s: before slot_enable\n", __func__); 1489 slot_enable (ctrl, hp_slot); 1490 1491 dbg("%s: before green_LED_blink\n", __func__); 1492 green_LED_blink (ctrl, hp_slot); 1493 1494 dbg("%s: before amber_LED_blink\n", __func__); 1495 amber_LED_off (ctrl, hp_slot); 1496 1497 dbg("%s: before set_SOGO\n", __func__); 1498 set_SOGO(ctrl); 1499 1500 /* Wait for SOBS to be unset */ 1501 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1502 wait_for_ctrl_irq (ctrl); 1503 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1504 1505 dbg("%s: before up\n", __func__); 1506 mutex_unlock(&ctrl->crit_sect); 1507 dbg("%s: after up\n", __func__); 1508 1509 /* Wait for ~1 second because of hot plug spec */ 1510 dbg("%s: before long_delay\n", __func__); 1511 long_delay(1*HZ); 1512 dbg("%s: after long_delay\n", __func__); 1513 1514 dbg("%s: func status = %x\n", __func__, func->status); 1515 /* Check for a power fault */ 1516 if (func->status == 0xFF) { 1517 /* power fault occurred, but it was benign */ 1518 temp_register = 0xFFFFFFFF; 1519 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1520 rc = POWER_FAILURE; 1521 func->status = 0; 1522 } else { 1523 /* Get vendor/device ID u32 */ 1524 ctrl->pci_bus->number = func->bus; 1525 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1526 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1527 dbg("%s: temp_register is %x\n", __func__, temp_register); 1528 1529 if (rc != 0) { 1530 /* Something's wrong here */ 1531 temp_register = 0xFFFFFFFF; 1532 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1533 } 1534 /* Preset return code. It will be changed later if things go okay. */ 1535 rc = NO_ADAPTER_PRESENT; 1536 } 1537 1538 /* All F's is an empty slot or an invalid board */ 1539 if (temp_register != 0xFFFFFFFF) { 1540 res_lists.io_head = ctrl->io_head; 1541 res_lists.mem_head = ctrl->mem_head; 1542 res_lists.p_mem_head = ctrl->p_mem_head; 1543 res_lists.bus_head = ctrl->bus_head; 1544 res_lists.irqs = NULL; 1545 1546 rc = configure_new_device(ctrl, func, 0, &res_lists); 1547 1548 dbg("%s: back from configure_new_device\n", __func__); 1549 ctrl->io_head = res_lists.io_head; 1550 ctrl->mem_head = res_lists.mem_head; 1551 ctrl->p_mem_head = res_lists.p_mem_head; 1552 ctrl->bus_head = res_lists.bus_head; 1553 1554 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1555 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1556 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1557 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1558 1559 if (rc) { 1560 mutex_lock(&ctrl->crit_sect); 1561 1562 amber_LED_on (ctrl, hp_slot); 1563 green_LED_off (ctrl, hp_slot); 1564 slot_disable (ctrl, hp_slot); 1565 1566 set_SOGO(ctrl); 1567 1568 /* Wait for SOBS to be unset */ 1569 wait_for_ctrl_irq (ctrl); 1570 1571 mutex_unlock(&ctrl->crit_sect); 1572 return rc; 1573 } else { 1574 cpqhp_save_slot_config(ctrl, func); 1575 } 1576 1577 1578 func->status = 0; 1579 func->switch_save = 0x10; 1580 func->is_a_board = 0x01; 1581 1582 /* next, we will instantiate the linux pci_dev structures (with 1583 * appropriate driver notification, if already present) */ 1584 dbg("%s: configure linux pci_dev structure\n", __func__); 1585 index = 0; 1586 do { 1587 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1588 if (new_slot && !new_slot->pci_dev) 1589 cpqhp_configure_device(ctrl, new_slot); 1590 } while (new_slot); 1591 1592 mutex_lock(&ctrl->crit_sect); 1593 1594 green_LED_on (ctrl, hp_slot); 1595 1596 set_SOGO(ctrl); 1597 1598 /* Wait for SOBS to be unset */ 1599 wait_for_ctrl_irq (ctrl); 1600 1601 mutex_unlock(&ctrl->crit_sect); 1602 } else { 1603 mutex_lock(&ctrl->crit_sect); 1604 1605 amber_LED_on (ctrl, hp_slot); 1606 green_LED_off (ctrl, hp_slot); 1607 slot_disable (ctrl, hp_slot); 1608 1609 set_SOGO(ctrl); 1610 1611 /* Wait for SOBS to be unset */ 1612 wait_for_ctrl_irq (ctrl); 1613 1614 mutex_unlock(&ctrl->crit_sect); 1615 1616 return rc; 1617 } 1618 return 0; 1619 } 1620 1621 1622 /** 1623 * remove_board - Turns off slot and LEDs 1624 * @func: PCI device/function info 1625 * @replace_flag: whether replacing or adding a new device 1626 * @ctrl: target controller 1627 */ 1628 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl) 1629 { 1630 int index; 1631 u8 skip = 0; 1632 u8 device; 1633 u8 hp_slot; 1634 u8 temp_byte; 1635 u32 rc; 1636 struct resource_lists res_lists; 1637 struct pci_func *temp_func; 1638 1639 if (cpqhp_unconfigure_device(func)) 1640 return 1; 1641 1642 device = func->device; 1643 1644 hp_slot = func->device - ctrl->slot_device_offset; 1645 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1646 1647 /* When we get here, it is safe to change base address registers. 1648 * We will attempt to save the base address register lengths */ 1649 if (replace_flag || !ctrl->add_support) 1650 rc = cpqhp_save_base_addr_length(ctrl, func); 1651 else if (!func->bus_head && !func->mem_head && 1652 !func->p_mem_head && !func->io_head) { 1653 /* Here we check to see if we've saved any of the board's 1654 * resources already. If so, we'll skip the attempt to 1655 * determine what's being used. */ 1656 index = 0; 1657 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1658 while (temp_func) { 1659 if (temp_func->bus_head || temp_func->mem_head 1660 || temp_func->p_mem_head || temp_func->io_head) { 1661 skip = 1; 1662 break; 1663 } 1664 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1665 } 1666 1667 if (!skip) 1668 rc = cpqhp_save_used_resources(ctrl, func); 1669 } 1670 /* Change status to shutdown */ 1671 if (func->is_a_board) 1672 func->status = 0x01; 1673 func->configured = 0; 1674 1675 mutex_lock(&ctrl->crit_sect); 1676 1677 green_LED_off (ctrl, hp_slot); 1678 slot_disable (ctrl, hp_slot); 1679 1680 set_SOGO(ctrl); 1681 1682 /* turn off SERR for slot */ 1683 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1684 temp_byte &= ~(0x01 << hp_slot); 1685 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1686 1687 /* Wait for SOBS to be unset */ 1688 wait_for_ctrl_irq (ctrl); 1689 1690 mutex_unlock(&ctrl->crit_sect); 1691 1692 if (!replace_flag && ctrl->add_support) { 1693 while (func) { 1694 res_lists.io_head = ctrl->io_head; 1695 res_lists.mem_head = ctrl->mem_head; 1696 res_lists.p_mem_head = ctrl->p_mem_head; 1697 res_lists.bus_head = ctrl->bus_head; 1698 1699 cpqhp_return_board_resources(func, &res_lists); 1700 1701 ctrl->io_head = res_lists.io_head; 1702 ctrl->mem_head = res_lists.mem_head; 1703 ctrl->p_mem_head = res_lists.p_mem_head; 1704 ctrl->bus_head = res_lists.bus_head; 1705 1706 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1707 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1708 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1709 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1710 1711 if (is_bridge(func)) { 1712 bridge_slot_remove(func); 1713 } else 1714 slot_remove(func); 1715 1716 func = cpqhp_slot_find(ctrl->bus, device, 0); 1717 } 1718 1719 /* Setup slot structure with entry for empty slot */ 1720 func = cpqhp_slot_create(ctrl->bus); 1721 1722 if (func == NULL) 1723 return 1; 1724 1725 func->bus = ctrl->bus; 1726 func->device = device; 1727 func->function = 0; 1728 func->configured = 0; 1729 func->switch_save = 0x10; 1730 func->is_a_board = 0; 1731 func->p_task_event = NULL; 1732 } 1733 1734 return 0; 1735 } 1736 1737 static void pushbutton_helper_thread(unsigned long data) 1738 { 1739 pushbutton_pending = data; 1740 wake_up_process(cpqhp_event_thread); 1741 } 1742 1743 1744 /* this is the main worker thread */ 1745 static int event_thread(void *data) 1746 { 1747 struct controller *ctrl; 1748 1749 while (1) { 1750 dbg("!!!!event_thread sleeping\n"); 1751 set_current_state(TASK_INTERRUPTIBLE); 1752 schedule(); 1753 1754 if (kthread_should_stop()) 1755 break; 1756 /* Do stuff here */ 1757 if (pushbutton_pending) 1758 cpqhp_pushbutton_thread(pushbutton_pending); 1759 else 1760 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) 1761 interrupt_event_handler(ctrl); 1762 } 1763 dbg("event_thread signals exit\n"); 1764 return 0; 1765 } 1766 1767 int cpqhp_event_start_thread(void) 1768 { 1769 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1770 if (IS_ERR(cpqhp_event_thread)) { 1771 err ("Can't start up our event thread\n"); 1772 return PTR_ERR(cpqhp_event_thread); 1773 } 1774 1775 return 0; 1776 } 1777 1778 1779 void cpqhp_event_stop_thread(void) 1780 { 1781 kthread_stop(cpqhp_event_thread); 1782 } 1783 1784 1785 static int update_slot_info(struct controller *ctrl, struct slot *slot) 1786 { 1787 struct hotplug_slot_info *info; 1788 int result; 1789 1790 info = kmalloc(sizeof(*info), GFP_KERNEL); 1791 if (!info) 1792 return -ENOMEM; 1793 1794 info->power_status = get_slot_enabled(ctrl, slot); 1795 info->attention_status = cpq_get_attention_status(ctrl, slot); 1796 info->latch_status = cpq_get_latch_status(ctrl, slot); 1797 info->adapter_status = get_presence_status(ctrl, slot); 1798 result = pci_hp_change_slot_info(slot->hotplug_slot, info); 1799 kfree (info); 1800 return result; 1801 } 1802 1803 static void interrupt_event_handler(struct controller *ctrl) 1804 { 1805 int loop = 0; 1806 int change = 1; 1807 struct pci_func *func; 1808 u8 hp_slot; 1809 struct slot *p_slot; 1810 1811 while (change) { 1812 change = 0; 1813 1814 for (loop = 0; loop < 10; loop++) { 1815 /* dbg("loop %d\n", loop); */ 1816 if (ctrl->event_queue[loop].event_type != 0) { 1817 hp_slot = ctrl->event_queue[loop].hp_slot; 1818 1819 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1820 if (!func) 1821 return; 1822 1823 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1824 if (!p_slot) 1825 return; 1826 1827 dbg("hp_slot %d, func %p, p_slot %p\n", 1828 hp_slot, func, p_slot); 1829 1830 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1831 dbg("button pressed\n"); 1832 } else if (ctrl->event_queue[loop].event_type == 1833 INT_BUTTON_CANCEL) { 1834 dbg("button cancel\n"); 1835 del_timer(&p_slot->task_event); 1836 1837 mutex_lock(&ctrl->crit_sect); 1838 1839 if (p_slot->state == BLINKINGOFF_STATE) { 1840 /* slot is on */ 1841 dbg("turn on green LED\n"); 1842 green_LED_on (ctrl, hp_slot); 1843 } else if (p_slot->state == BLINKINGON_STATE) { 1844 /* slot is off */ 1845 dbg("turn off green LED\n"); 1846 green_LED_off (ctrl, hp_slot); 1847 } 1848 1849 info(msg_button_cancel, p_slot->number); 1850 1851 p_slot->state = STATIC_STATE; 1852 1853 amber_LED_off (ctrl, hp_slot); 1854 1855 set_SOGO(ctrl); 1856 1857 /* Wait for SOBS to be unset */ 1858 wait_for_ctrl_irq (ctrl); 1859 1860 mutex_unlock(&ctrl->crit_sect); 1861 } 1862 /*** button Released (No action on press...) */ 1863 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1864 dbg("button release\n"); 1865 1866 if (is_slot_enabled (ctrl, hp_slot)) { 1867 dbg("slot is on\n"); 1868 p_slot->state = BLINKINGOFF_STATE; 1869 info(msg_button_off, p_slot->number); 1870 } else { 1871 dbg("slot is off\n"); 1872 p_slot->state = BLINKINGON_STATE; 1873 info(msg_button_on, p_slot->number); 1874 } 1875 mutex_lock(&ctrl->crit_sect); 1876 1877 dbg("blink green LED and turn off amber\n"); 1878 1879 amber_LED_off (ctrl, hp_slot); 1880 green_LED_blink (ctrl, hp_slot); 1881 1882 set_SOGO(ctrl); 1883 1884 /* Wait for SOBS to be unset */ 1885 wait_for_ctrl_irq (ctrl); 1886 1887 mutex_unlock(&ctrl->crit_sect); 1888 init_timer(&p_slot->task_event); 1889 p_slot->hp_slot = hp_slot; 1890 p_slot->ctrl = ctrl; 1891 /* p_slot->physical_slot = physical_slot; */ 1892 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1893 p_slot->task_event.function = pushbutton_helper_thread; 1894 p_slot->task_event.data = (u32) p_slot; 1895 1896 dbg("add_timer p_slot = %p\n", p_slot); 1897 add_timer(&p_slot->task_event); 1898 } 1899 /***********POWER FAULT */ 1900 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1901 dbg("power fault\n"); 1902 } else { 1903 /* refresh notification */ 1904 update_slot_info(ctrl, p_slot); 1905 } 1906 1907 ctrl->event_queue[loop].event_type = 0; 1908 1909 change = 1; 1910 } 1911 } /* End of FOR loop */ 1912 } 1913 1914 return; 1915 } 1916 1917 1918 /** 1919 * cpqhp_pushbutton_thread - handle pushbutton events 1920 * @slot: target slot (struct) 1921 * 1922 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1923 * Handles all pending events and exits. 1924 */ 1925 void cpqhp_pushbutton_thread(unsigned long slot) 1926 { 1927 u8 hp_slot; 1928 u8 device; 1929 struct pci_func *func; 1930 struct slot *p_slot = (struct slot *) slot; 1931 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1932 1933 pushbutton_pending = 0; 1934 hp_slot = p_slot->hp_slot; 1935 1936 device = p_slot->device; 1937 1938 if (is_slot_enabled(ctrl, hp_slot)) { 1939 p_slot->state = POWEROFF_STATE; 1940 /* power Down board */ 1941 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1942 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1943 if (!func) { 1944 dbg("Error! func NULL in %s\n", __func__); 1945 return ; 1946 } 1947 1948 if (cpqhp_process_SS(ctrl, func) != 0) { 1949 amber_LED_on(ctrl, hp_slot); 1950 green_LED_on(ctrl, hp_slot); 1951 1952 set_SOGO(ctrl); 1953 1954 /* Wait for SOBS to be unset */ 1955 wait_for_ctrl_irq(ctrl); 1956 } 1957 1958 p_slot->state = STATIC_STATE; 1959 } else { 1960 p_slot->state = POWERON_STATE; 1961 /* slot is off */ 1962 1963 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1964 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1965 if (!func) { 1966 dbg("Error! func NULL in %s\n", __func__); 1967 return ; 1968 } 1969 1970 if (ctrl != NULL) { 1971 if (cpqhp_process_SI(ctrl, func) != 0) { 1972 amber_LED_on(ctrl, hp_slot); 1973 green_LED_off(ctrl, hp_slot); 1974 1975 set_SOGO(ctrl); 1976 1977 /* Wait for SOBS to be unset */ 1978 wait_for_ctrl_irq (ctrl); 1979 } 1980 } 1981 1982 p_slot->state = STATIC_STATE; 1983 } 1984 1985 return; 1986 } 1987 1988 1989 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1990 { 1991 u8 device, hp_slot; 1992 u16 temp_word; 1993 u32 tempdword; 1994 int rc; 1995 struct slot *p_slot; 1996 int physical_slot = 0; 1997 1998 tempdword = 0; 1999 2000 device = func->device; 2001 hp_slot = device - ctrl->slot_device_offset; 2002 p_slot = cpqhp_find_slot(ctrl, device); 2003 if (p_slot) 2004 physical_slot = p_slot->number; 2005 2006 /* Check to see if the interlock is closed */ 2007 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 2008 2009 if (tempdword & (0x01 << hp_slot)) { 2010 return 1; 2011 } 2012 2013 if (func->is_a_board) { 2014 rc = board_replaced(func, ctrl); 2015 } else { 2016 /* add board */ 2017 slot_remove(func); 2018 2019 func = cpqhp_slot_create(ctrl->bus); 2020 if (func == NULL) 2021 return 1; 2022 2023 func->bus = ctrl->bus; 2024 func->device = device; 2025 func->function = 0; 2026 func->configured = 0; 2027 func->is_a_board = 1; 2028 2029 /* We have to save the presence info for these slots */ 2030 temp_word = ctrl->ctrl_int_comp >> 16; 2031 func->presence_save = (temp_word >> hp_slot) & 0x01; 2032 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 2033 2034 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2035 func->switch_save = 0; 2036 } else { 2037 func->switch_save = 0x10; 2038 } 2039 2040 rc = board_added(func, ctrl); 2041 if (rc) { 2042 if (is_bridge(func)) { 2043 bridge_slot_remove(func); 2044 } else 2045 slot_remove(func); 2046 2047 /* Setup slot structure with entry for empty slot */ 2048 func = cpqhp_slot_create(ctrl->bus); 2049 2050 if (func == NULL) 2051 return 1; 2052 2053 func->bus = ctrl->bus; 2054 func->device = device; 2055 func->function = 0; 2056 func->configured = 0; 2057 func->is_a_board = 0; 2058 2059 /* We have to save the presence info for these slots */ 2060 temp_word = ctrl->ctrl_int_comp >> 16; 2061 func->presence_save = (temp_word >> hp_slot) & 0x01; 2062 func->presence_save |= 2063 (temp_word >> (hp_slot + 7)) & 0x02; 2064 2065 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2066 func->switch_save = 0; 2067 } else { 2068 func->switch_save = 0x10; 2069 } 2070 } 2071 } 2072 2073 if (rc) { 2074 dbg("%s: rc = %d\n", __func__, rc); 2075 } 2076 2077 if (p_slot) 2078 update_slot_info(ctrl, p_slot); 2079 2080 return rc; 2081 } 2082 2083 2084 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2085 { 2086 u8 device, class_code, header_type, BCR; 2087 u8 index = 0; 2088 u8 replace_flag; 2089 u32 rc = 0; 2090 unsigned int devfn; 2091 struct slot *p_slot; 2092 struct pci_bus *pci_bus = ctrl->pci_bus; 2093 int physical_slot=0; 2094 2095 device = func->device; 2096 func = cpqhp_slot_find(ctrl->bus, device, index++); 2097 p_slot = cpqhp_find_slot(ctrl, device); 2098 if (p_slot) { 2099 physical_slot = p_slot->number; 2100 } 2101 2102 /* Make sure there are no video controllers here */ 2103 while (func && !rc) { 2104 pci_bus->number = func->bus; 2105 devfn = PCI_DEVFN(func->device, func->function); 2106 2107 /* Check the Class Code */ 2108 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2109 if (rc) 2110 return rc; 2111 2112 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2113 /* Display/Video adapter (not supported) */ 2114 rc = REMOVE_NOT_SUPPORTED; 2115 } else { 2116 /* See if it's a bridge */ 2117 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2118 if (rc) 2119 return rc; 2120 2121 /* If it's a bridge, check the VGA Enable bit */ 2122 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2123 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2124 if (rc) 2125 return rc; 2126 2127 /* If the VGA Enable bit is set, remove isn't 2128 * supported */ 2129 if (BCR & PCI_BRIDGE_CTL_VGA) 2130 rc = REMOVE_NOT_SUPPORTED; 2131 } 2132 } 2133 2134 func = cpqhp_slot_find(ctrl->bus, device, index++); 2135 } 2136 2137 func = cpqhp_slot_find(ctrl->bus, device, 0); 2138 if ((func != NULL) && !rc) { 2139 /* FIXME: Replace flag should be passed into process_SS */ 2140 replace_flag = !(ctrl->add_support); 2141 rc = remove_board(func, replace_flag, ctrl); 2142 } else if (!rc) { 2143 rc = 1; 2144 } 2145 2146 if (p_slot) 2147 update_slot_info(ctrl, p_slot); 2148 2149 return rc; 2150 } 2151 2152 /** 2153 * switch_leds - switch the leds, go from one site to the other. 2154 * @ctrl: controller to use 2155 * @num_of_slots: number of slots to use 2156 * @work_LED: LED control value 2157 * @direction: 1 to start from the left side, 0 to start right. 2158 */ 2159 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2160 u32 *work_LED, const int direction) 2161 { 2162 int loop; 2163 2164 for (loop = 0; loop < num_of_slots; loop++) { 2165 if (direction) 2166 *work_LED = *work_LED >> 1; 2167 else 2168 *work_LED = *work_LED << 1; 2169 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2170 2171 set_SOGO(ctrl); 2172 2173 /* Wait for SOGO interrupt */ 2174 wait_for_ctrl_irq(ctrl); 2175 2176 /* Get ready for next iteration */ 2177 long_delay((2*HZ)/10); 2178 } 2179 } 2180 2181 /** 2182 * cpqhp_hardware_test - runs hardware tests 2183 * @ctrl: target controller 2184 * @test_num: the number written to the "test" file in sysfs. 2185 * 2186 * For hot plug ctrl folks to play with. 2187 */ 2188 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2189 { 2190 u32 save_LED; 2191 u32 work_LED; 2192 int loop; 2193 int num_of_slots; 2194 2195 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2196 2197 switch (test_num) { 2198 case 1: 2199 /* Do stuff here! */ 2200 2201 /* Do that funky LED thing */ 2202 /* so we can restore them later */ 2203 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2204 work_LED = 0x01010101; 2205 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2206 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2207 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2208 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2209 2210 work_LED = 0x01010000; 2211 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2212 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2213 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2214 work_LED = 0x00000101; 2215 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2216 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2217 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2218 2219 work_LED = 0x01010000; 2220 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2221 for (loop = 0; loop < num_of_slots; loop++) { 2222 set_SOGO(ctrl); 2223 2224 /* Wait for SOGO interrupt */ 2225 wait_for_ctrl_irq (ctrl); 2226 2227 /* Get ready for next iteration */ 2228 long_delay((3*HZ)/10); 2229 work_LED = work_LED >> 16; 2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2231 2232 set_SOGO(ctrl); 2233 2234 /* Wait for SOGO interrupt */ 2235 wait_for_ctrl_irq (ctrl); 2236 2237 /* Get ready for next iteration */ 2238 long_delay((3*HZ)/10); 2239 work_LED = work_LED << 16; 2240 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2241 work_LED = work_LED << 1; 2242 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2243 } 2244 2245 /* put it back the way it was */ 2246 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2247 2248 set_SOGO(ctrl); 2249 2250 /* Wait for SOBS to be unset */ 2251 wait_for_ctrl_irq (ctrl); 2252 break; 2253 case 2: 2254 /* Do other stuff here! */ 2255 break; 2256 case 3: 2257 /* and more... */ 2258 break; 2259 } 2260 return 0; 2261 } 2262 2263 2264 /** 2265 * configure_new_device - Configures the PCI header information of one board. 2266 * @ctrl: pointer to controller structure 2267 * @func: pointer to function structure 2268 * @behind_bridge: 1 if this is a recursive call, 0 if not 2269 * @resources: pointer to set of resource lists 2270 * 2271 * Returns 0 if success. 2272 */ 2273 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 2274 u8 behind_bridge, struct resource_lists *resources) 2275 { 2276 u8 temp_byte, function, max_functions, stop_it; 2277 int rc; 2278 u32 ID; 2279 struct pci_func *new_slot; 2280 int index; 2281 2282 new_slot = func; 2283 2284 dbg("%s\n", __func__); 2285 /* Check for Multi-function device */ 2286 ctrl->pci_bus->number = func->bus; 2287 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2288 if (rc) { 2289 dbg("%s: rc = %d\n", __func__, rc); 2290 return rc; 2291 } 2292 2293 if (temp_byte & 0x80) /* Multi-function device */ 2294 max_functions = 8; 2295 else 2296 max_functions = 1; 2297 2298 function = 0; 2299 2300 do { 2301 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2302 2303 if (rc) { 2304 dbg("configure_new_function failed %d\n",rc); 2305 index = 0; 2306 2307 while (new_slot) { 2308 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2309 2310 if (new_slot) 2311 cpqhp_return_board_resources(new_slot, resources); 2312 } 2313 2314 return rc; 2315 } 2316 2317 function++; 2318 2319 stop_it = 0; 2320 2321 /* The following loop skips to the next present function 2322 * and creates a board structure */ 2323 2324 while ((function < max_functions) && (!stop_it)) { 2325 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2326 2327 if (ID == 0xFFFFFFFF) { 2328 function++; 2329 } else { 2330 /* Setup slot structure. */ 2331 new_slot = cpqhp_slot_create(func->bus); 2332 2333 if (new_slot == NULL) 2334 return 1; 2335 2336 new_slot->bus = func->bus; 2337 new_slot->device = func->device; 2338 new_slot->function = function; 2339 new_slot->is_a_board = 1; 2340 new_slot->status = 0; 2341 2342 stop_it++; 2343 } 2344 } 2345 2346 } while (function < max_functions); 2347 dbg("returning from configure_new_device\n"); 2348 2349 return 0; 2350 } 2351 2352 2353 /* 2354 * Configuration logic that involves the hotplug data structures and 2355 * their bookkeeping 2356 */ 2357 2358 2359 /** 2360 * configure_new_function - Configures the PCI header information of one device 2361 * @ctrl: pointer to controller structure 2362 * @func: pointer to function structure 2363 * @behind_bridge: 1 if this is a recursive call, 0 if not 2364 * @resources: pointer to set of resource lists 2365 * 2366 * Calls itself recursively for bridged devices. 2367 * Returns 0 if success. 2368 */ 2369 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2370 u8 behind_bridge, 2371 struct resource_lists *resources) 2372 { 2373 int cloop; 2374 u8 IRQ = 0; 2375 u8 temp_byte; 2376 u8 device; 2377 u8 class_code; 2378 u16 command; 2379 u16 temp_word; 2380 u32 temp_dword; 2381 u32 rc; 2382 u32 temp_register; 2383 u32 base; 2384 u32 ID; 2385 unsigned int devfn; 2386 struct pci_resource *mem_node; 2387 struct pci_resource *p_mem_node; 2388 struct pci_resource *io_node; 2389 struct pci_resource *bus_node; 2390 struct pci_resource *hold_mem_node; 2391 struct pci_resource *hold_p_mem_node; 2392 struct pci_resource *hold_IO_node; 2393 struct pci_resource *hold_bus_node; 2394 struct irq_mapping irqs; 2395 struct pci_func *new_slot; 2396 struct pci_bus *pci_bus; 2397 struct resource_lists temp_resources; 2398 2399 pci_bus = ctrl->pci_bus; 2400 pci_bus->number = func->bus; 2401 devfn = PCI_DEVFN(func->device, func->function); 2402 2403 /* Check for Bridge */ 2404 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2405 if (rc) 2406 return rc; 2407 2408 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2409 /* set Primary bus */ 2410 dbg("set Primary bus = %d\n", func->bus); 2411 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2412 if (rc) 2413 return rc; 2414 2415 /* find range of buses to use */ 2416 dbg("find ranges of buses to use\n"); 2417 bus_node = get_max_resource(&(resources->bus_head), 1); 2418 2419 /* If we don't have any buses to allocate, we can't continue */ 2420 if (!bus_node) 2421 return -ENOMEM; 2422 2423 /* set Secondary bus */ 2424 temp_byte = bus_node->base; 2425 dbg("set Secondary bus = %d\n", bus_node->base); 2426 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2427 if (rc) 2428 return rc; 2429 2430 /* set subordinate bus */ 2431 temp_byte = bus_node->base + bus_node->length - 1; 2432 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2433 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2434 if (rc) 2435 return rc; 2436 2437 /* set subordinate Latency Timer and base Latency Timer */ 2438 temp_byte = 0x40; 2439 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2440 if (rc) 2441 return rc; 2442 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2443 if (rc) 2444 return rc; 2445 2446 /* set Cache Line size */ 2447 temp_byte = 0x08; 2448 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2449 if (rc) 2450 return rc; 2451 2452 /* Setup the IO, memory, and prefetchable windows */ 2453 io_node = get_max_resource(&(resources->io_head), 0x1000); 2454 if (!io_node) 2455 return -ENOMEM; 2456 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2457 if (!mem_node) 2458 return -ENOMEM; 2459 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2460 if (!p_mem_node) 2461 return -ENOMEM; 2462 dbg("Setup the IO, memory, and prefetchable windows\n"); 2463 dbg("io_node\n"); 2464 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2465 io_node->length, io_node->next); 2466 dbg("mem_node\n"); 2467 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2468 mem_node->length, mem_node->next); 2469 dbg("p_mem_node\n"); 2470 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2471 p_mem_node->length, p_mem_node->next); 2472 2473 /* set up the IRQ info */ 2474 if (!resources->irqs) { 2475 irqs.barber_pole = 0; 2476 irqs.interrupt[0] = 0; 2477 irqs.interrupt[1] = 0; 2478 irqs.interrupt[2] = 0; 2479 irqs.interrupt[3] = 0; 2480 irqs.valid_INT = 0; 2481 } else { 2482 irqs.barber_pole = resources->irqs->barber_pole; 2483 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2484 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2485 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2486 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2487 irqs.valid_INT = resources->irqs->valid_INT; 2488 } 2489 2490 /* set up resource lists that are now aligned on top and bottom 2491 * for anything behind the bridge. */ 2492 temp_resources.bus_head = bus_node; 2493 temp_resources.io_head = io_node; 2494 temp_resources.mem_head = mem_node; 2495 temp_resources.p_mem_head = p_mem_node; 2496 temp_resources.irqs = &irqs; 2497 2498 /* Make copies of the nodes we are going to pass down so that 2499 * if there is a problem,we can just use these to free resources 2500 */ 2501 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2502 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2503 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2504 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2505 2506 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2507 kfree(hold_bus_node); 2508 kfree(hold_IO_node); 2509 kfree(hold_mem_node); 2510 kfree(hold_p_mem_node); 2511 2512 return 1; 2513 } 2514 2515 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2516 2517 bus_node->base += 1; 2518 bus_node->length -= 1; 2519 bus_node->next = NULL; 2520 2521 /* If we have IO resources copy them and fill in the bridge's 2522 * IO range registers */ 2523 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2524 io_node->next = NULL; 2525 2526 /* set IO base and Limit registers */ 2527 temp_byte = io_node->base >> 8; 2528 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2529 2530 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2531 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2532 2533 /* Copy the memory resources and fill in the bridge's memory 2534 * range registers. 2535 */ 2536 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2537 mem_node->next = NULL; 2538 2539 /* set Mem base and Limit registers */ 2540 temp_word = mem_node->base >> 16; 2541 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2542 2543 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2544 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2545 2546 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2547 p_mem_node->next = NULL; 2548 2549 /* set Pre Mem base and Limit registers */ 2550 temp_word = p_mem_node->base >> 16; 2551 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2552 2553 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2554 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2555 2556 /* Adjust this to compensate for extra adjustment in first loop 2557 */ 2558 irqs.barber_pole--; 2559 2560 rc = 0; 2561 2562 /* Here we actually find the devices and configure them */ 2563 for (device = 0; (device <= 0x1F) && !rc; device++) { 2564 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2565 2566 ID = 0xFFFFFFFF; 2567 pci_bus->number = hold_bus_node->base; 2568 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2569 pci_bus->number = func->bus; 2570 2571 if (ID != 0xFFFFFFFF) { /* device present */ 2572 /* Setup slot structure. */ 2573 new_slot = cpqhp_slot_create(hold_bus_node->base); 2574 2575 if (new_slot == NULL) { 2576 rc = -ENOMEM; 2577 continue; 2578 } 2579 2580 new_slot->bus = hold_bus_node->base; 2581 new_slot->device = device; 2582 new_slot->function = 0; 2583 new_slot->is_a_board = 1; 2584 new_slot->status = 0; 2585 2586 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2587 dbg("configure_new_device rc=0x%x\n",rc); 2588 } /* End of IF (device in slot?) */ 2589 } /* End of FOR loop */ 2590 2591 if (rc) 2592 goto free_and_out; 2593 /* save the interrupt routing information */ 2594 if (resources->irqs) { 2595 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2596 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2597 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2598 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2599 resources->irqs->valid_INT = irqs.valid_INT; 2600 } else if (!behind_bridge) { 2601 /* We need to hook up the interrupts here */ 2602 for (cloop = 0; cloop < 4; cloop++) { 2603 if (irqs.valid_INT & (0x01 << cloop)) { 2604 rc = cpqhp_set_irq(func->bus, func->device, 2605 cloop + 1, irqs.interrupt[cloop]); 2606 if (rc) 2607 goto free_and_out; 2608 } 2609 } /* end of for loop */ 2610 } 2611 /* Return unused bus resources 2612 * First use the temporary node to store information for 2613 * the board */ 2614 if (bus_node && temp_resources.bus_head) { 2615 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2616 2617 hold_bus_node->next = func->bus_head; 2618 func->bus_head = hold_bus_node; 2619 2620 temp_byte = temp_resources.bus_head->base - 1; 2621 2622 /* set subordinate bus */ 2623 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2624 2625 if (temp_resources.bus_head->length == 0) { 2626 kfree(temp_resources.bus_head); 2627 temp_resources.bus_head = NULL; 2628 } else { 2629 return_resource(&(resources->bus_head), temp_resources.bus_head); 2630 } 2631 } 2632 2633 /* If we have IO space available and there is some left, 2634 * return the unused portion */ 2635 if (hold_IO_node && temp_resources.io_head) { 2636 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2637 &hold_IO_node, 0x1000); 2638 2639 /* Check if we were able to split something off */ 2640 if (io_node) { 2641 hold_IO_node->base = io_node->base + io_node->length; 2642 2643 temp_byte = (hold_IO_node->base) >> 8; 2644 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); 2645 2646 return_resource(&(resources->io_head), io_node); 2647 } 2648 2649 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2650 2651 /* Check if we were able to split something off */ 2652 if (io_node) { 2653 /* First use the temporary node to store 2654 * information for the board */ 2655 hold_IO_node->length = io_node->base - hold_IO_node->base; 2656 2657 /* If we used any, add it to the board's list */ 2658 if (hold_IO_node->length) { 2659 hold_IO_node->next = func->io_head; 2660 func->io_head = hold_IO_node; 2661 2662 temp_byte = (io_node->base - 1) >> 8; 2663 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2664 2665 return_resource(&(resources->io_head), io_node); 2666 } else { 2667 /* it doesn't need any IO */ 2668 temp_word = 0x0000; 2669 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2670 2671 return_resource(&(resources->io_head), io_node); 2672 kfree(hold_IO_node); 2673 } 2674 } else { 2675 /* it used most of the range */ 2676 hold_IO_node->next = func->io_head; 2677 func->io_head = hold_IO_node; 2678 } 2679 } else if (hold_IO_node) { 2680 /* it used the whole range */ 2681 hold_IO_node->next = func->io_head; 2682 func->io_head = hold_IO_node; 2683 } 2684 /* If we have memory space available and there is some left, 2685 * return the unused portion */ 2686 if (hold_mem_node && temp_resources.mem_head) { 2687 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2688 &hold_mem_node, 0x100000); 2689 2690 /* Check if we were able to split something off */ 2691 if (mem_node) { 2692 hold_mem_node->base = mem_node->base + mem_node->length; 2693 2694 temp_word = (hold_mem_node->base) >> 16; 2695 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2696 2697 return_resource(&(resources->mem_head), mem_node); 2698 } 2699 2700 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2701 2702 /* Check if we were able to split something off */ 2703 if (mem_node) { 2704 /* First use the temporary node to store 2705 * information for the board */ 2706 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2707 2708 if (hold_mem_node->length) { 2709 hold_mem_node->next = func->mem_head; 2710 func->mem_head = hold_mem_node; 2711 2712 /* configure end address */ 2713 temp_word = (mem_node->base - 1) >> 16; 2714 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2715 2716 /* Return unused resources to the pool */ 2717 return_resource(&(resources->mem_head), mem_node); 2718 } else { 2719 /* it doesn't need any Mem */ 2720 temp_word = 0x0000; 2721 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2722 2723 return_resource(&(resources->mem_head), mem_node); 2724 kfree(hold_mem_node); 2725 } 2726 } else { 2727 /* it used most of the range */ 2728 hold_mem_node->next = func->mem_head; 2729 func->mem_head = hold_mem_node; 2730 } 2731 } else if (hold_mem_node) { 2732 /* it used the whole range */ 2733 hold_mem_node->next = func->mem_head; 2734 func->mem_head = hold_mem_node; 2735 } 2736 /* If we have prefetchable memory space available and there 2737 * is some left at the end, return the unused portion */ 2738 if (temp_resources.p_mem_head) { 2739 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2740 &hold_p_mem_node, 0x100000); 2741 2742 /* Check if we were able to split something off */ 2743 if (p_mem_node) { 2744 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2745 2746 temp_word = (hold_p_mem_node->base) >> 16; 2747 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2748 2749 return_resource(&(resources->p_mem_head), p_mem_node); 2750 } 2751 2752 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2753 2754 /* Check if we were able to split something off */ 2755 if (p_mem_node) { 2756 /* First use the temporary node to store 2757 * information for the board */ 2758 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2759 2760 /* If we used any, add it to the board's list */ 2761 if (hold_p_mem_node->length) { 2762 hold_p_mem_node->next = func->p_mem_head; 2763 func->p_mem_head = hold_p_mem_node; 2764 2765 temp_word = (p_mem_node->base - 1) >> 16; 2766 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2767 2768 return_resource(&(resources->p_mem_head), p_mem_node); 2769 } else { 2770 /* it doesn't need any PMem */ 2771 temp_word = 0x0000; 2772 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2773 2774 return_resource(&(resources->p_mem_head), p_mem_node); 2775 kfree(hold_p_mem_node); 2776 } 2777 } else { 2778 /* it used the most of the range */ 2779 hold_p_mem_node->next = func->p_mem_head; 2780 func->p_mem_head = hold_p_mem_node; 2781 } 2782 } else if (hold_p_mem_node) { 2783 /* it used the whole range */ 2784 hold_p_mem_node->next = func->p_mem_head; 2785 func->p_mem_head = hold_p_mem_node; 2786 } 2787 /* We should be configuring an IRQ and the bridge's base address 2788 * registers if it needs them. Although we have never seen such 2789 * a device */ 2790 2791 /* enable card */ 2792 command = 0x0157; /* = PCI_COMMAND_IO | 2793 * PCI_COMMAND_MEMORY | 2794 * PCI_COMMAND_MASTER | 2795 * PCI_COMMAND_INVALIDATE | 2796 * PCI_COMMAND_PARITY | 2797 * PCI_COMMAND_SERR */ 2798 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); 2799 2800 /* set Bridge Control Register */ 2801 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2802 * PCI_BRIDGE_CTL_SERR | 2803 * PCI_BRIDGE_CTL_NO_ISA */ 2804 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2805 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2806 /* Standard device */ 2807 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2808 2809 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2810 /* Display (video) adapter (not supported) */ 2811 return DEVICE_TYPE_NOT_SUPPORTED; 2812 } 2813 /* Figure out IO and memory needs */ 2814 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2815 temp_register = 0xFFFFFFFF; 2816 2817 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2818 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); 2819 2820 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); 2821 dbg("CND: base = 0x%x\n", temp_register); 2822 2823 if (temp_register) { /* If this register is implemented */ 2824 if ((temp_register & 0x03L) == 0x01) { 2825 /* Map IO */ 2826 2827 /* set base = amount of IO space */ 2828 base = temp_register & 0xFFFFFFFC; 2829 base = ~base + 1; 2830 2831 dbg("CND: length = 0x%x\n", base); 2832 io_node = get_io_resource(&(resources->io_head), base); 2833 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2834 io_node->base, io_node->length, io_node->next); 2835 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2836 2837 /* allocate the resource to the board */ 2838 if (io_node) { 2839 base = io_node->base; 2840 2841 io_node->next = func->io_head; 2842 func->io_head = io_node; 2843 } else 2844 return -ENOMEM; 2845 } else if ((temp_register & 0x0BL) == 0x08) { 2846 /* Map prefetchable memory */ 2847 base = temp_register & 0xFFFFFFF0; 2848 base = ~base + 1; 2849 2850 dbg("CND: length = 0x%x\n", base); 2851 p_mem_node = get_resource(&(resources->p_mem_head), base); 2852 2853 /* allocate the resource to the board */ 2854 if (p_mem_node) { 2855 base = p_mem_node->base; 2856 2857 p_mem_node->next = func->p_mem_head; 2858 func->p_mem_head = p_mem_node; 2859 } else 2860 return -ENOMEM; 2861 } else if ((temp_register & 0x0BL) == 0x00) { 2862 /* Map memory */ 2863 base = temp_register & 0xFFFFFFF0; 2864 base = ~base + 1; 2865 2866 dbg("CND: length = 0x%x\n", base); 2867 mem_node = get_resource(&(resources->mem_head), base); 2868 2869 /* allocate the resource to the board */ 2870 if (mem_node) { 2871 base = mem_node->base; 2872 2873 mem_node->next = func->mem_head; 2874 func->mem_head = mem_node; 2875 } else 2876 return -ENOMEM; 2877 } else { 2878 /* Reserved bits or requesting space below 1M */ 2879 return NOT_ENOUGH_RESOURCES; 2880 } 2881 2882 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2883 2884 /* Check for 64-bit base */ 2885 if ((temp_register & 0x07L) == 0x04) { 2886 cloop += 4; 2887 2888 /* Upper 32 bits of address always zero 2889 * on today's systems */ 2890 /* FIXME this is probably not true on 2891 * Alpha and ia64??? */ 2892 base = 0; 2893 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2894 } 2895 } 2896 } /* End of base register loop */ 2897 if (cpqhp_legacy_mode) { 2898 /* Figure out which interrupt pin this function uses */ 2899 rc = pci_bus_read_config_byte (pci_bus, devfn, 2900 PCI_INTERRUPT_PIN, &temp_byte); 2901 2902 /* If this function needs an interrupt and we are behind 2903 * a bridge and the pin is tied to something that's 2904 * already mapped, set this one the same */ 2905 if (temp_byte && resources->irqs && 2906 (resources->irqs->valid_INT & 2907 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2908 /* We have to share with something already set up */ 2909 IRQ = resources->irqs->interrupt[(temp_byte + 2910 resources->irqs->barber_pole - 1) & 0x03]; 2911 } else { 2912 /* Program IRQ based on card type */ 2913 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2914 2915 if (class_code == PCI_BASE_CLASS_STORAGE) 2916 IRQ = cpqhp_disk_irq; 2917 else 2918 IRQ = cpqhp_nic_irq; 2919 } 2920 2921 /* IRQ Line */ 2922 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2923 } 2924 2925 if (!behind_bridge) { 2926 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2927 if (rc) 2928 return 1; 2929 } else { 2930 /* TBD - this code may also belong in the other clause 2931 * of this If statement */ 2932 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2933 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2934 } 2935 2936 /* Latency Timer */ 2937 temp_byte = 0x40; 2938 rc = pci_bus_write_config_byte(pci_bus, devfn, 2939 PCI_LATENCY_TIMER, temp_byte); 2940 2941 /* Cache Line size */ 2942 temp_byte = 0x08; 2943 rc = pci_bus_write_config_byte(pci_bus, devfn, 2944 PCI_CACHE_LINE_SIZE, temp_byte); 2945 2946 /* disable ROM base Address */ 2947 temp_dword = 0x00L; 2948 rc = pci_bus_write_config_word(pci_bus, devfn, 2949 PCI_ROM_ADDRESS, temp_dword); 2950 2951 /* enable card */ 2952 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2953 * PCI_COMMAND_MEMORY | 2954 * PCI_COMMAND_MASTER | 2955 * PCI_COMMAND_INVALIDATE | 2956 * PCI_COMMAND_PARITY | 2957 * PCI_COMMAND_SERR */ 2958 rc = pci_bus_write_config_word (pci_bus, devfn, 2959 PCI_COMMAND, temp_word); 2960 } else { /* End of Not-A-Bridge else */ 2961 /* It's some strange type of PCI adapter (Cardbus?) */ 2962 return DEVICE_TYPE_NOT_SUPPORTED; 2963 } 2964 2965 func->configured = 1; 2966 2967 return 0; 2968 free_and_out: 2969 cpqhp_destroy_resource_list (&temp_resources); 2970 2971 return_resource(&(resources-> bus_head), hold_bus_node); 2972 return_resource(&(resources-> io_head), hold_IO_node); 2973 return_resource(&(resources-> mem_head), hold_mem_node); 2974 return_resource(&(resources-> p_mem_head), hold_p_mem_node); 2975 return rc; 2976 } 2977