1 /* 2 * Compaq Hot Plug Controller Driver 3 * 4 * Copyright (C) 1995,2001 Compaq Computer Corporation 5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 6 * Copyright (C) 2001 IBM Corp. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 18 * NON INFRINGEMENT. See the GNU General Public License for more 19 * details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Send feedback to <greg@kroah.com> 26 * 27 */ 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/wait.h> 37 #include <linux/smp_lock.h> 38 #include <linux/pci.h> 39 #include <linux/pci_hotplug.h> 40 #include <linux/kthread.h> 41 #include "cpqphp.h" 42 43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func, 44 u8 behind_bridge, struct resource_lists *resources); 45 static int configure_new_function(struct controller* ctrl, struct pci_func *func, 46 u8 behind_bridge, struct resource_lists *resources); 47 static void interrupt_event_handler(struct controller *ctrl); 48 49 50 static struct task_struct *cpqhp_event_thread; 51 static unsigned long pushbutton_pending; /* = 0 */ 52 53 /* delay is in jiffies to wait for */ 54 static void long_delay(int delay) 55 { 56 /* 57 * XXX(hch): if someone is bored please convert all callers 58 * to call msleep_interruptible directly. They really want 59 * to specify timeouts in natural units and spend a lot of 60 * effort converting them to jiffies.. 61 */ 62 msleep_interruptible(jiffies_to_msecs(delay)); 63 } 64 65 66 /* FIXME: The following line needs to be somewhere else... */ 67 #define WRONG_BUS_FREQUENCY 0x07 68 static u8 handle_switch_change(u8 change, struct controller * ctrl) 69 { 70 int hp_slot; 71 u8 rc = 0; 72 u16 temp_word; 73 struct pci_func *func; 74 struct event_info *taskInfo; 75 76 if (!change) 77 return 0; 78 79 /* Switch Change */ 80 dbg("cpqsbd: Switch interrupt received.\n"); 81 82 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 83 if (change & (0x1L << hp_slot)) { 84 /********************************** 85 * this one changed. 86 **********************************/ 87 func = cpqhp_slot_find(ctrl->bus, 88 (hp_slot + ctrl->slot_device_offset), 0); 89 90 /* this is the structure that tells the worker thread 91 *what to do */ 92 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 93 ctrl->next_event = (ctrl->next_event + 1) % 10; 94 taskInfo->hp_slot = hp_slot; 95 96 rc++; 97 98 temp_word = ctrl->ctrl_int_comp >> 16; 99 func->presence_save = (temp_word >> hp_slot) & 0x01; 100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 101 102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 103 /********************************** 104 * Switch opened 105 **********************************/ 106 107 func->switch_save = 0; 108 109 taskInfo->event_type = INT_SWITCH_OPEN; 110 } else { 111 /********************************** 112 * Switch closed 113 **********************************/ 114 115 func->switch_save = 0x10; 116 117 taskInfo->event_type = INT_SWITCH_CLOSE; 118 } 119 } 120 } 121 122 return rc; 123 } 124 125 /** 126 * cpqhp_find_slot - find the struct slot of given device 127 * @ctrl: scan lots of this controller 128 * @device: the device id to find 129 */ 130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 131 { 132 struct slot *slot = ctrl->slot; 133 134 while (slot && (slot->device != device)) { 135 slot = slot->next; 136 } 137 138 return slot; 139 } 140 141 142 static u8 handle_presence_change(u16 change, struct controller * ctrl) 143 { 144 int hp_slot; 145 u8 rc = 0; 146 u8 temp_byte; 147 u16 temp_word; 148 struct pci_func *func; 149 struct event_info *taskInfo; 150 struct slot *p_slot; 151 152 if (!change) 153 return 0; 154 155 /********************************** 156 * Presence Change 157 **********************************/ 158 dbg("cpqsbd: Presence/Notify input change.\n"); 159 dbg(" Changed bits are 0x%4.4x\n", change ); 160 161 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 162 if (change & (0x0101 << hp_slot)) { 163 /********************************** 164 * this one changed. 165 **********************************/ 166 func = cpqhp_slot_find(ctrl->bus, 167 (hp_slot + ctrl->slot_device_offset), 0); 168 169 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 170 ctrl->next_event = (ctrl->next_event + 1) % 10; 171 taskInfo->hp_slot = hp_slot; 172 173 rc++; 174 175 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 176 if (!p_slot) 177 return 0; 178 179 /* If the switch closed, must be a button 180 * If not in button mode, nevermind */ 181 if (func->switch_save && (ctrl->push_button == 1)) { 182 temp_word = ctrl->ctrl_int_comp >> 16; 183 temp_byte = (temp_word >> hp_slot) & 0x01; 184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 185 186 if (temp_byte != func->presence_save) { 187 /************************************** 188 * button Pressed (doesn't do anything) 189 **************************************/ 190 dbg("hp_slot %d button pressed\n", hp_slot); 191 taskInfo->event_type = INT_BUTTON_PRESS; 192 } else { 193 /********************************** 194 * button Released - TAKE ACTION!!!! 195 **********************************/ 196 dbg("hp_slot %d button released\n", hp_slot); 197 taskInfo->event_type = INT_BUTTON_RELEASE; 198 199 /* Cancel if we are still blinking */ 200 if ((p_slot->state == BLINKINGON_STATE) 201 || (p_slot->state == BLINKINGOFF_STATE)) { 202 taskInfo->event_type = INT_BUTTON_CANCEL; 203 dbg("hp_slot %d button cancel\n", hp_slot); 204 } else if ((p_slot->state == POWERON_STATE) 205 || (p_slot->state == POWEROFF_STATE)) { 206 /* info(msg_button_ignore, p_slot->number); */ 207 taskInfo->event_type = INT_BUTTON_IGNORE; 208 dbg("hp_slot %d button ignore\n", hp_slot); 209 } 210 } 211 } else { 212 /* Switch is open, assume a presence change 213 * Save the presence state */ 214 temp_word = ctrl->ctrl_int_comp >> 16; 215 func->presence_save = (temp_word >> hp_slot) & 0x01; 216 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 217 218 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 219 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 220 /* Present */ 221 taskInfo->event_type = INT_PRESENCE_ON; 222 } else { 223 /* Not Present */ 224 taskInfo->event_type = INT_PRESENCE_OFF; 225 } 226 } 227 } 228 } 229 230 return rc; 231 } 232 233 234 static u8 handle_power_fault(u8 change, struct controller * ctrl) 235 { 236 int hp_slot; 237 u8 rc = 0; 238 struct pci_func *func; 239 struct event_info *taskInfo; 240 241 if (!change) 242 return 0; 243 244 /********************************** 245 * power fault 246 **********************************/ 247 248 info("power fault interrupt\n"); 249 250 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 251 if (change & (0x01 << hp_slot)) { 252 /********************************** 253 * this one changed. 254 **********************************/ 255 func = cpqhp_slot_find(ctrl->bus, 256 (hp_slot + ctrl->slot_device_offset), 0); 257 258 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 259 ctrl->next_event = (ctrl->next_event + 1) % 10; 260 taskInfo->hp_slot = hp_slot; 261 262 rc++; 263 264 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 265 /********************************** 266 * power fault Cleared 267 **********************************/ 268 func->status = 0x00; 269 270 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 271 } else { 272 /********************************** 273 * power fault 274 **********************************/ 275 taskInfo->event_type = INT_POWER_FAULT; 276 277 if (ctrl->rev < 4) { 278 amber_LED_on (ctrl, hp_slot); 279 green_LED_off (ctrl, hp_slot); 280 set_SOGO (ctrl); 281 282 /* this is a fatal condition, we want 283 * to crash the machine to protect from 284 * data corruption. simulated_NMI 285 * shouldn't ever return */ 286 /* FIXME 287 simulated_NMI(hp_slot, ctrl); */ 288 289 /* The following code causes a software 290 * crash just in case simulated_NMI did 291 * return */ 292 /*FIXME 293 panic(msg_power_fault); */ 294 } else { 295 /* set power fault status for this board */ 296 func->status = 0xFF; 297 info("power fault bit %x set\n", hp_slot); 298 } 299 } 300 } 301 } 302 303 return rc; 304 } 305 306 307 /** 308 * sort_by_size - sort nodes on the list by their length, smallest first. 309 * @head: list to sort 310 */ 311 static int sort_by_size(struct pci_resource **head) 312 { 313 struct pci_resource *current_res; 314 struct pci_resource *next_res; 315 int out_of_order = 1; 316 317 if (!(*head)) 318 return 1; 319 320 if (!((*head)->next)) 321 return 0; 322 323 while (out_of_order) { 324 out_of_order = 0; 325 326 /* Special case for swapping list head */ 327 if (((*head)->next) && 328 ((*head)->length > (*head)->next->length)) { 329 out_of_order++; 330 current_res = *head; 331 *head = (*head)->next; 332 current_res->next = (*head)->next; 333 (*head)->next = current_res; 334 } 335 336 current_res = *head; 337 338 while (current_res->next && current_res->next->next) { 339 if (current_res->next->length > current_res->next->next->length) { 340 out_of_order++; 341 next_res = current_res->next; 342 current_res->next = current_res->next->next; 343 current_res = current_res->next; 344 next_res->next = current_res->next; 345 current_res->next = next_res; 346 } else 347 current_res = current_res->next; 348 } 349 } /* End of out_of_order loop */ 350 351 return 0; 352 } 353 354 355 /** 356 * sort_by_max_size - sort nodes on the list by their length, largest first. 357 * @head: list to sort 358 */ 359 static int sort_by_max_size(struct pci_resource **head) 360 { 361 struct pci_resource *current_res; 362 struct pci_resource *next_res; 363 int out_of_order = 1; 364 365 if (!(*head)) 366 return 1; 367 368 if (!((*head)->next)) 369 return 0; 370 371 while (out_of_order) { 372 out_of_order = 0; 373 374 /* Special case for swapping list head */ 375 if (((*head)->next) && 376 ((*head)->length < (*head)->next->length)) { 377 out_of_order++; 378 current_res = *head; 379 *head = (*head)->next; 380 current_res->next = (*head)->next; 381 (*head)->next = current_res; 382 } 383 384 current_res = *head; 385 386 while (current_res->next && current_res->next->next) { 387 if (current_res->next->length < current_res->next->next->length) { 388 out_of_order++; 389 next_res = current_res->next; 390 current_res->next = current_res->next->next; 391 current_res = current_res->next; 392 next_res->next = current_res->next; 393 current_res->next = next_res; 394 } else 395 current_res = current_res->next; 396 } 397 } /* End of out_of_order loop */ 398 399 return 0; 400 } 401 402 403 /** 404 * do_pre_bridge_resource_split - find node of resources that are unused 405 * @head: new list head 406 * @orig_head: original list head 407 * @alignment: max node size (?) 408 */ 409 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 410 struct pci_resource **orig_head, u32 alignment) 411 { 412 struct pci_resource *prevnode = NULL; 413 struct pci_resource *node; 414 struct pci_resource *split_node; 415 u32 rc; 416 u32 temp_dword; 417 dbg("do_pre_bridge_resource_split\n"); 418 419 if (!(*head) || !(*orig_head)) 420 return NULL; 421 422 rc = cpqhp_resource_sort_and_combine(head); 423 424 if (rc) 425 return NULL; 426 427 if ((*head)->base != (*orig_head)->base) 428 return NULL; 429 430 if ((*head)->length == (*orig_head)->length) 431 return NULL; 432 433 434 /* If we got here, there the bridge requires some of the resource, but 435 * we may be able to split some off of the front */ 436 437 node = *head; 438 439 if (node->length & (alignment -1)) { 440 /* this one isn't an aligned length, so we'll make a new entry 441 * and split it up. */ 442 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 443 444 if (!split_node) 445 return NULL; 446 447 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 448 449 split_node->base = node->base; 450 split_node->length = temp_dword; 451 452 node->length -= temp_dword; 453 node->base += split_node->length; 454 455 /* Put it in the list */ 456 *head = split_node; 457 split_node->next = node; 458 } 459 460 if (node->length < alignment) 461 return NULL; 462 463 /* Now unlink it */ 464 if (*head == node) { 465 *head = node->next; 466 } else { 467 prevnode = *head; 468 while (prevnode->next != node) 469 prevnode = prevnode->next; 470 471 prevnode->next = node->next; 472 } 473 node->next = NULL; 474 475 return node; 476 } 477 478 479 /** 480 * do_bridge_resource_split - find one node of resources that aren't in use 481 * @head: list head 482 * @alignment: max node size (?) 483 */ 484 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 485 { 486 struct pci_resource *prevnode = NULL; 487 struct pci_resource *node; 488 u32 rc; 489 u32 temp_dword; 490 491 rc = cpqhp_resource_sort_and_combine(head); 492 493 if (rc) 494 return NULL; 495 496 node = *head; 497 498 while (node->next) { 499 prevnode = node; 500 node = node->next; 501 kfree(prevnode); 502 } 503 504 if (node->length < alignment) 505 goto error; 506 507 if (node->base & (alignment - 1)) { 508 /* Short circuit if adjusted size is too small */ 509 temp_dword = (node->base | (alignment-1)) + 1; 510 if ((node->length - (temp_dword - node->base)) < alignment) 511 goto error; 512 513 node->length -= (temp_dword - node->base); 514 node->base = temp_dword; 515 } 516 517 if (node->length & (alignment - 1)) 518 /* There's stuff in use after this node */ 519 goto error; 520 521 return node; 522 error: 523 kfree(node); 524 return NULL; 525 } 526 527 528 /** 529 * get_io_resource - find first node of given size not in ISA aliasing window. 530 * @head: list to search 531 * @size: size of node to find, must be a power of two. 532 * 533 * Description: This function sorts the resource list by size and then returns 534 * returns the first node of "size" length that is not in the ISA aliasing 535 * window. If it finds a node larger than "size" it will split it up. 536 */ 537 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 538 { 539 struct pci_resource *prevnode; 540 struct pci_resource *node; 541 struct pci_resource *split_node; 542 u32 temp_dword; 543 544 if (!(*head)) 545 return NULL; 546 547 if ( cpqhp_resource_sort_and_combine(head) ) 548 return NULL; 549 550 if ( sort_by_size(head) ) 551 return NULL; 552 553 for (node = *head; node; node = node->next) { 554 if (node->length < size) 555 continue; 556 557 if (node->base & (size - 1)) { 558 /* this one isn't base aligned properly 559 * so we'll make a new entry and split it up */ 560 temp_dword = (node->base | (size-1)) + 1; 561 562 /* Short circuit if adjusted size is too small */ 563 if ((node->length - (temp_dword - node->base)) < size) 564 continue; 565 566 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 567 568 if (!split_node) 569 return NULL; 570 571 split_node->base = node->base; 572 split_node->length = temp_dword - node->base; 573 node->base = temp_dword; 574 node->length -= split_node->length; 575 576 /* Put it in the list */ 577 split_node->next = node->next; 578 node->next = split_node; 579 } /* End of non-aligned base */ 580 581 /* Don't need to check if too small since we already did */ 582 if (node->length > size) { 583 /* this one is longer than we need 584 * so we'll make a new entry and split it up */ 585 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 586 587 if (!split_node) 588 return NULL; 589 590 split_node->base = node->base + size; 591 split_node->length = node->length - size; 592 node->length = size; 593 594 /* Put it in the list */ 595 split_node->next = node->next; 596 node->next = split_node; 597 } /* End of too big on top end */ 598 599 /* For IO make sure it's not in the ISA aliasing space */ 600 if (node->base & 0x300L) 601 continue; 602 603 /* If we got here, then it is the right size 604 * Now take it out of the list and break */ 605 if (*head == node) { 606 *head = node->next; 607 } else { 608 prevnode = *head; 609 while (prevnode->next != node) 610 prevnode = prevnode->next; 611 612 prevnode->next = node->next; 613 } 614 node->next = NULL; 615 break; 616 } 617 618 return node; 619 } 620 621 622 /** 623 * get_max_resource - get largest node which has at least the given size. 624 * @head: the list to search the node in 625 * @size: the minimum size of the node to find 626 * 627 * Description: Gets the largest node that is at least "size" big from the 628 * list pointed to by head. It aligns the node on top and bottom 629 * to "size" alignment before returning it. 630 */ 631 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 632 { 633 struct pci_resource *max; 634 struct pci_resource *temp; 635 struct pci_resource *split_node; 636 u32 temp_dword; 637 638 if (cpqhp_resource_sort_and_combine(head)) 639 return NULL; 640 641 if (sort_by_max_size(head)) 642 return NULL; 643 644 for (max = *head; max; max = max->next) { 645 /* If not big enough we could probably just bail, 646 * instead we'll continue to the next. */ 647 if (max->length < size) 648 continue; 649 650 if (max->base & (size - 1)) { 651 /* this one isn't base aligned properly 652 * so we'll make a new entry and split it up */ 653 temp_dword = (max->base | (size-1)) + 1; 654 655 /* Short circuit if adjusted size is too small */ 656 if ((max->length - (temp_dword - max->base)) < size) 657 continue; 658 659 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 660 661 if (!split_node) 662 return NULL; 663 664 split_node->base = max->base; 665 split_node->length = temp_dword - max->base; 666 max->base = temp_dword; 667 max->length -= split_node->length; 668 669 split_node->next = max->next; 670 max->next = split_node; 671 } 672 673 if ((max->base + max->length) & (size - 1)) { 674 /* this one isn't end aligned properly at the top 675 * so we'll make a new entry and split it up */ 676 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 677 678 if (!split_node) 679 return NULL; 680 temp_dword = ((max->base + max->length) & ~(size - 1)); 681 split_node->base = temp_dword; 682 split_node->length = max->length + max->base 683 - split_node->base; 684 max->length -= split_node->length; 685 686 split_node->next = max->next; 687 max->next = split_node; 688 } 689 690 /* Make sure it didn't shrink too much when we aligned it */ 691 if (max->length < size) 692 continue; 693 694 /* Now take it out of the list */ 695 temp = *head; 696 if (temp == max) { 697 *head = max->next; 698 } else { 699 while (temp && temp->next != max) { 700 temp = temp->next; 701 } 702 703 temp->next = max->next; 704 } 705 706 max->next = NULL; 707 break; 708 } 709 710 return max; 711 } 712 713 714 /** 715 * get_resource - find resource of given size and split up larger ones. 716 * @head: the list to search for resources 717 * @size: the size limit to use 718 * 719 * Description: This function sorts the resource list by size and then 720 * returns the first node of "size" length. If it finds a node 721 * larger than "size" it will split it up. 722 * 723 * size must be a power of two. 724 */ 725 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 726 { 727 struct pci_resource *prevnode; 728 struct pci_resource *node; 729 struct pci_resource *split_node; 730 u32 temp_dword; 731 732 if (cpqhp_resource_sort_and_combine(head)) 733 return NULL; 734 735 if (sort_by_size(head)) 736 return NULL; 737 738 for (node = *head; node; node = node->next) { 739 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 740 __func__, size, node, node->base, node->length); 741 if (node->length < size) 742 continue; 743 744 if (node->base & (size - 1)) { 745 dbg("%s: not aligned\n", __func__); 746 /* this one isn't base aligned properly 747 * so we'll make a new entry and split it up */ 748 temp_dword = (node->base | (size-1)) + 1; 749 750 /* Short circuit if adjusted size is too small */ 751 if ((node->length - (temp_dword - node->base)) < size) 752 continue; 753 754 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 755 756 if (!split_node) 757 return NULL; 758 759 split_node->base = node->base; 760 split_node->length = temp_dword - node->base; 761 node->base = temp_dword; 762 node->length -= split_node->length; 763 764 split_node->next = node->next; 765 node->next = split_node; 766 } /* End of non-aligned base */ 767 768 /* Don't need to check if too small since we already did */ 769 if (node->length > size) { 770 dbg("%s: too big\n", __func__); 771 /* this one is longer than we need 772 * so we'll make a new entry and split it up */ 773 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 774 775 if (!split_node) 776 return NULL; 777 778 split_node->base = node->base + size; 779 split_node->length = node->length - size; 780 node->length = size; 781 782 /* Put it in the list */ 783 split_node->next = node->next; 784 node->next = split_node; 785 } /* End of too big on top end */ 786 787 dbg("%s: got one!!!\n", __func__); 788 /* If we got here, then it is the right size 789 * Now take it out of the list */ 790 if (*head == node) { 791 *head = node->next; 792 } else { 793 prevnode = *head; 794 while (prevnode->next != node) 795 prevnode = prevnode->next; 796 797 prevnode->next = node->next; 798 } 799 node->next = NULL; 800 break; 801 } 802 return node; 803 } 804 805 806 /** 807 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 808 * @head: the list to sort and clean up 809 * 810 * Description: Sorts all of the nodes in the list in ascending order by 811 * their base addresses. Also does garbage collection by 812 * combining adjacent nodes. 813 * 814 * Returns %0 if success. 815 */ 816 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 817 { 818 struct pci_resource *node1; 819 struct pci_resource *node2; 820 int out_of_order = 1; 821 822 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 823 824 if (!(*head)) 825 return 1; 826 827 dbg("*head->next = %p\n",(*head)->next); 828 829 if (!(*head)->next) 830 return 0; /* only one item on the list, already sorted! */ 831 832 dbg("*head->base = 0x%x\n",(*head)->base); 833 dbg("*head->next->base = 0x%x\n",(*head)->next->base); 834 while (out_of_order) { 835 out_of_order = 0; 836 837 /* Special case for swapping list head */ 838 if (((*head)->next) && 839 ((*head)->base > (*head)->next->base)) { 840 node1 = *head; 841 (*head) = (*head)->next; 842 node1->next = (*head)->next; 843 (*head)->next = node1; 844 out_of_order++; 845 } 846 847 node1 = (*head); 848 849 while (node1->next && node1->next->next) { 850 if (node1->next->base > node1->next->next->base) { 851 out_of_order++; 852 node2 = node1->next; 853 node1->next = node1->next->next; 854 node1 = node1->next; 855 node2->next = node1->next; 856 node1->next = node2; 857 } else 858 node1 = node1->next; 859 } 860 } /* End of out_of_order loop */ 861 862 node1 = *head; 863 864 while (node1 && node1->next) { 865 if ((node1->base + node1->length) == node1->next->base) { 866 /* Combine */ 867 dbg("8..\n"); 868 node1->length += node1->next->length; 869 node2 = node1->next; 870 node1->next = node1->next->next; 871 kfree(node2); 872 } else 873 node1 = node1->next; 874 } 875 876 return 0; 877 } 878 879 880 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 881 { 882 struct controller *ctrl = data; 883 u8 schedule_flag = 0; 884 u8 reset; 885 u16 misc; 886 u32 Diff; 887 u32 temp_dword; 888 889 890 misc = readw(ctrl->hpc_reg + MISC); 891 /*************************************** 892 * Check to see if it was our interrupt 893 ***************************************/ 894 if (!(misc & 0x000C)) { 895 return IRQ_NONE; 896 } 897 898 if (misc & 0x0004) { 899 /********************************** 900 * Serial Output interrupt Pending 901 **********************************/ 902 903 /* Clear the interrupt */ 904 misc |= 0x0004; 905 writew(misc, ctrl->hpc_reg + MISC); 906 907 /* Read to clear posted writes */ 908 misc = readw(ctrl->hpc_reg + MISC); 909 910 dbg ("%s - waking up\n", __func__); 911 wake_up_interruptible(&ctrl->queue); 912 } 913 914 if (misc & 0x0008) { 915 /* General-interrupt-input interrupt Pending */ 916 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 917 918 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 919 920 /* Clear the interrupt */ 921 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 922 923 /* Read it back to clear any posted writes */ 924 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 925 926 if (!Diff) 927 /* Clear all interrupts */ 928 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 929 930 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 931 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 932 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 933 } 934 935 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 936 if (reset & 0x40) { 937 /* Bus reset has completed */ 938 reset &= 0xCF; 939 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 940 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 941 wake_up_interruptible(&ctrl->queue); 942 } 943 944 if (schedule_flag) { 945 wake_up_process(cpqhp_event_thread); 946 dbg("Waking even thread"); 947 } 948 return IRQ_HANDLED; 949 } 950 951 952 /** 953 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 954 * @busnumber: bus where new node is to be located 955 * 956 * Returns pointer to the new node or %NULL if unsuccessful. 957 */ 958 struct pci_func *cpqhp_slot_create(u8 busnumber) 959 { 960 struct pci_func *new_slot; 961 struct pci_func *next; 962 963 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 964 if (new_slot == NULL) { 965 /* I'm not dead yet! 966 * You will be. */ 967 return new_slot; 968 } 969 970 new_slot->next = NULL; 971 new_slot->configured = 1; 972 973 if (cpqhp_slot_list[busnumber] == NULL) { 974 cpqhp_slot_list[busnumber] = new_slot; 975 } else { 976 next = cpqhp_slot_list[busnumber]; 977 while (next->next != NULL) 978 next = next->next; 979 next->next = new_slot; 980 } 981 return new_slot; 982 } 983 984 985 /** 986 * slot_remove - Removes a node from the linked list of slots. 987 * @old_slot: slot to remove 988 * 989 * Returns %0 if successful, !0 otherwise. 990 */ 991 static int slot_remove(struct pci_func * old_slot) 992 { 993 struct pci_func *next; 994 995 if (old_slot == NULL) 996 return 1; 997 998 next = cpqhp_slot_list[old_slot->bus]; 999 1000 if (next == NULL) { 1001 return 1; 1002 } 1003 1004 if (next == old_slot) { 1005 cpqhp_slot_list[old_slot->bus] = old_slot->next; 1006 cpqhp_destroy_board_resources(old_slot); 1007 kfree(old_slot); 1008 return 0; 1009 } 1010 1011 while ((next->next != old_slot) && (next->next != NULL)) { 1012 next = next->next; 1013 } 1014 1015 if (next->next == old_slot) { 1016 next->next = old_slot->next; 1017 cpqhp_destroy_board_resources(old_slot); 1018 kfree(old_slot); 1019 return 0; 1020 } else 1021 return 2; 1022 } 1023 1024 1025 /** 1026 * bridge_slot_remove - Removes a node from the linked list of slots. 1027 * @bridge: bridge to remove 1028 * 1029 * Returns %0 if successful, !0 otherwise. 1030 */ 1031 static int bridge_slot_remove(struct pci_func *bridge) 1032 { 1033 u8 subordinateBus, secondaryBus; 1034 u8 tempBus; 1035 struct pci_func *next; 1036 1037 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1038 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1039 1040 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1041 next = cpqhp_slot_list[tempBus]; 1042 1043 while (!slot_remove(next)) { 1044 next = cpqhp_slot_list[tempBus]; 1045 } 1046 } 1047 1048 next = cpqhp_slot_list[bridge->bus]; 1049 1050 if (next == NULL) 1051 return 1; 1052 1053 if (next == bridge) { 1054 cpqhp_slot_list[bridge->bus] = bridge->next; 1055 goto out; 1056 } 1057 1058 while ((next->next != bridge) && (next->next != NULL)) 1059 next = next->next; 1060 1061 if (next->next != bridge) 1062 return 2; 1063 next->next = bridge->next; 1064 out: 1065 kfree(bridge); 1066 return 0; 1067 } 1068 1069 1070 /** 1071 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1072 * @bus: bus to find 1073 * @device: device to find 1074 * @index: is %0 for first function found, %1 for the second... 1075 * 1076 * Returns pointer to the node if successful, %NULL otherwise. 1077 */ 1078 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1079 { 1080 int found = -1; 1081 struct pci_func *func; 1082 1083 func = cpqhp_slot_list[bus]; 1084 1085 if ((func == NULL) || ((func->device == device) && (index == 0))) 1086 return func; 1087 1088 if (func->device == device) 1089 found++; 1090 1091 while (func->next != NULL) { 1092 func = func->next; 1093 1094 if (func->device == device) 1095 found++; 1096 1097 if (found == index) 1098 return func; 1099 } 1100 1101 return NULL; 1102 } 1103 1104 1105 /* DJZ: I don't think is_bridge will work as is. 1106 * FIXME */ 1107 static int is_bridge(struct pci_func * func) 1108 { 1109 /* Check the header type */ 1110 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1111 return 1; 1112 else 1113 return 0; 1114 } 1115 1116 1117 /** 1118 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1119 * @ctrl: controller to change frequency/mode for. 1120 * @adapter_speed: the speed of the adapter we want to match. 1121 * @hp_slot: the slot number where the adapter is installed. 1122 * 1123 * Returns %0 if we successfully change frequency and/or mode to match the 1124 * adapter speed. 1125 */ 1126 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1127 { 1128 struct slot *slot; 1129 u8 reg; 1130 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1131 u16 reg16; 1132 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1133 1134 if (ctrl->speed == adapter_speed) 1135 return 0; 1136 1137 /* We don't allow freq/mode changes if we find another adapter running 1138 * in another slot on this controller */ 1139 for(slot = ctrl->slot; slot; slot = slot->next) { 1140 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1141 continue; 1142 if (!slot->hotplug_slot || !slot->hotplug_slot->info) 1143 continue; 1144 if (slot->hotplug_slot->info->adapter_status == 0) 1145 continue; 1146 /* If another adapter is running on the same segment but at a 1147 * lower speed/mode, we allow the new adapter to function at 1148 * this rate if supported */ 1149 if (ctrl->speed < adapter_speed) 1150 return 0; 1151 1152 return 1; 1153 } 1154 1155 /* If the controller doesn't support freq/mode changes and the 1156 * controller is running at a higher mode, we bail */ 1157 if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1158 return 1; 1159 1160 /* But we allow the adapter to run at a lower rate if possible */ 1161 if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1162 return 0; 1163 1164 /* We try to set the max speed supported by both the adapter and 1165 * controller */ 1166 if (ctrl->speed_capability < adapter_speed) { 1167 if (ctrl->speed == ctrl->speed_capability) 1168 return 0; 1169 adapter_speed = ctrl->speed_capability; 1170 } 1171 1172 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1173 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1174 1175 set_SOGO(ctrl); 1176 wait_for_ctrl_irq(ctrl); 1177 1178 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1179 reg = 0xF5; 1180 else 1181 reg = 0xF4; 1182 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1183 1184 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1185 reg16 &= ~0x000F; 1186 switch(adapter_speed) { 1187 case(PCI_SPEED_133MHz_PCIX): 1188 reg = 0x75; 1189 reg16 |= 0xB; 1190 break; 1191 case(PCI_SPEED_100MHz_PCIX): 1192 reg = 0x74; 1193 reg16 |= 0xA; 1194 break; 1195 case(PCI_SPEED_66MHz_PCIX): 1196 reg = 0x73; 1197 reg16 |= 0x9; 1198 break; 1199 case(PCI_SPEED_66MHz): 1200 reg = 0x73; 1201 reg16 |= 0x1; 1202 break; 1203 default: /* 33MHz PCI 2.2 */ 1204 reg = 0x71; 1205 break; 1206 1207 } 1208 reg16 |= 0xB << 12; 1209 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1210 1211 mdelay(5); 1212 1213 /* Reenable interrupts */ 1214 writel(0, ctrl->hpc_reg + INT_MASK); 1215 1216 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1217 1218 /* Restart state machine */ 1219 reg = ~0xF; 1220 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1221 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1222 1223 /* Only if mode change...*/ 1224 if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1225 ((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1226 set_SOGO(ctrl); 1227 1228 wait_for_ctrl_irq(ctrl); 1229 mdelay(1100); 1230 1231 /* Restore LED/Slot state */ 1232 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1233 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1234 1235 set_SOGO(ctrl); 1236 wait_for_ctrl_irq(ctrl); 1237 1238 ctrl->speed = adapter_speed; 1239 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1240 1241 info("Successfully changed frequency/mode for adapter in slot %d\n", 1242 slot->number); 1243 return 0; 1244 } 1245 1246 /* the following routines constitute the bulk of the 1247 hotplug controller logic 1248 */ 1249 1250 1251 /** 1252 * board_replaced - Called after a board has been replaced in the system. 1253 * @func: PCI device/function information 1254 * @ctrl: hotplug controller 1255 * 1256 * This is only used if we don't have resources for hot add. 1257 * Turns power on for the board. 1258 * Checks to see if board is the same. 1259 * If board is same, reconfigures it. 1260 * If board isn't same, turns it back off. 1261 */ 1262 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1263 { 1264 u8 hp_slot; 1265 u8 temp_byte; 1266 u8 adapter_speed; 1267 u32 rc = 0; 1268 1269 hp_slot = func->device - ctrl->slot_device_offset; 1270 1271 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) { 1272 /********************************** 1273 * The switch is open. 1274 **********************************/ 1275 rc = INTERLOCK_OPEN; 1276 } else if (is_slot_enabled (ctrl, hp_slot)) { 1277 /********************************** 1278 * The board is already on 1279 **********************************/ 1280 rc = CARD_FUNCTIONING; 1281 } else { 1282 mutex_lock(&ctrl->crit_sect); 1283 1284 /* turn on board without attaching to the bus */ 1285 enable_slot_power (ctrl, hp_slot); 1286 1287 set_SOGO(ctrl); 1288 1289 /* Wait for SOBS to be unset */ 1290 wait_for_ctrl_irq (ctrl); 1291 1292 /* Change bits in slot power register to force another shift out 1293 * NOTE: this is to work around the timer bug */ 1294 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1295 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1296 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1297 1298 set_SOGO(ctrl); 1299 1300 /* Wait for SOBS to be unset */ 1301 wait_for_ctrl_irq (ctrl); 1302 1303 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1304 if (ctrl->speed != adapter_speed) 1305 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1306 rc = WRONG_BUS_FREQUENCY; 1307 1308 /* turn off board without attaching to the bus */ 1309 disable_slot_power (ctrl, hp_slot); 1310 1311 set_SOGO(ctrl); 1312 1313 /* Wait for SOBS to be unset */ 1314 wait_for_ctrl_irq (ctrl); 1315 1316 mutex_unlock(&ctrl->crit_sect); 1317 1318 if (rc) 1319 return rc; 1320 1321 mutex_lock(&ctrl->crit_sect); 1322 1323 slot_enable (ctrl, hp_slot); 1324 green_LED_blink (ctrl, hp_slot); 1325 1326 amber_LED_off (ctrl, hp_slot); 1327 1328 set_SOGO(ctrl); 1329 1330 /* Wait for SOBS to be unset */ 1331 wait_for_ctrl_irq (ctrl); 1332 1333 mutex_unlock(&ctrl->crit_sect); 1334 1335 /* Wait for ~1 second because of hot plug spec */ 1336 long_delay(1*HZ); 1337 1338 /* Check for a power fault */ 1339 if (func->status == 0xFF) { 1340 /* power fault occurred, but it was benign */ 1341 rc = POWER_FAILURE; 1342 func->status = 0; 1343 } else 1344 rc = cpqhp_valid_replace(ctrl, func); 1345 1346 if (!rc) { 1347 /* It must be the same board */ 1348 1349 rc = cpqhp_configure_board(ctrl, func); 1350 1351 /* If configuration fails, turn it off 1352 * Get slot won't work for devices behind 1353 * bridges, but in this case it will always be 1354 * called for the "base" bus/dev/func of an 1355 * adapter. */ 1356 1357 mutex_lock(&ctrl->crit_sect); 1358 1359 amber_LED_on (ctrl, hp_slot); 1360 green_LED_off (ctrl, hp_slot); 1361 slot_disable (ctrl, hp_slot); 1362 1363 set_SOGO(ctrl); 1364 1365 /* Wait for SOBS to be unset */ 1366 wait_for_ctrl_irq (ctrl); 1367 1368 mutex_unlock(&ctrl->crit_sect); 1369 1370 if (rc) 1371 return rc; 1372 else 1373 return 1; 1374 1375 } else { 1376 /* Something is wrong 1377 1378 * Get slot won't work for devices behind bridges, but 1379 * in this case it will always be called for the "base" 1380 * bus/dev/func of an adapter. */ 1381 1382 mutex_lock(&ctrl->crit_sect); 1383 1384 amber_LED_on (ctrl, hp_slot); 1385 green_LED_off (ctrl, hp_slot); 1386 slot_disable (ctrl, hp_slot); 1387 1388 set_SOGO(ctrl); 1389 1390 /* Wait for SOBS to be unset */ 1391 wait_for_ctrl_irq (ctrl); 1392 1393 mutex_unlock(&ctrl->crit_sect); 1394 } 1395 1396 } 1397 return rc; 1398 1399 } 1400 1401 1402 /** 1403 * board_added - Called after a board has been added to the system. 1404 * @func: PCI device/function info 1405 * @ctrl: hotplug controller 1406 * 1407 * Turns power on for the board. 1408 * Configures board. 1409 */ 1410 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1411 { 1412 u8 hp_slot; 1413 u8 temp_byte; 1414 u8 adapter_speed; 1415 int index; 1416 u32 temp_register = 0xFFFFFFFF; 1417 u32 rc = 0; 1418 struct pci_func *new_slot = NULL; 1419 struct slot *p_slot; 1420 struct resource_lists res_lists; 1421 1422 hp_slot = func->device - ctrl->slot_device_offset; 1423 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1424 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1425 1426 mutex_lock(&ctrl->crit_sect); 1427 1428 /* turn on board without attaching to the bus */ 1429 enable_slot_power(ctrl, hp_slot); 1430 1431 set_SOGO(ctrl); 1432 1433 /* Wait for SOBS to be unset */ 1434 wait_for_ctrl_irq (ctrl); 1435 1436 /* Change bits in slot power register to force another shift out 1437 * NOTE: this is to work around the timer bug */ 1438 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1439 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1440 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1441 1442 set_SOGO(ctrl); 1443 1444 /* Wait for SOBS to be unset */ 1445 wait_for_ctrl_irq (ctrl); 1446 1447 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1448 if (ctrl->speed != adapter_speed) 1449 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1450 rc = WRONG_BUS_FREQUENCY; 1451 1452 /* turn off board without attaching to the bus */ 1453 disable_slot_power (ctrl, hp_slot); 1454 1455 set_SOGO(ctrl); 1456 1457 /* Wait for SOBS to be unset */ 1458 wait_for_ctrl_irq(ctrl); 1459 1460 mutex_unlock(&ctrl->crit_sect); 1461 1462 if (rc) 1463 return rc; 1464 1465 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1466 1467 /* turn on board and blink green LED */ 1468 1469 dbg("%s: before down\n", __func__); 1470 mutex_lock(&ctrl->crit_sect); 1471 dbg("%s: after down\n", __func__); 1472 1473 dbg("%s: before slot_enable\n", __func__); 1474 slot_enable (ctrl, hp_slot); 1475 1476 dbg("%s: before green_LED_blink\n", __func__); 1477 green_LED_blink (ctrl, hp_slot); 1478 1479 dbg("%s: before amber_LED_blink\n", __func__); 1480 amber_LED_off (ctrl, hp_slot); 1481 1482 dbg("%s: before set_SOGO\n", __func__); 1483 set_SOGO(ctrl); 1484 1485 /* Wait for SOBS to be unset */ 1486 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1487 wait_for_ctrl_irq (ctrl); 1488 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1489 1490 dbg("%s: before up\n", __func__); 1491 mutex_unlock(&ctrl->crit_sect); 1492 dbg("%s: after up\n", __func__); 1493 1494 /* Wait for ~1 second because of hot plug spec */ 1495 dbg("%s: before long_delay\n", __func__); 1496 long_delay(1*HZ); 1497 dbg("%s: after long_delay\n", __func__); 1498 1499 dbg("%s: func status = %x\n", __func__, func->status); 1500 /* Check for a power fault */ 1501 if (func->status == 0xFF) { 1502 /* power fault occurred, but it was benign */ 1503 temp_register = 0xFFFFFFFF; 1504 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1505 rc = POWER_FAILURE; 1506 func->status = 0; 1507 } else { 1508 /* Get vendor/device ID u32 */ 1509 ctrl->pci_bus->number = func->bus; 1510 rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1511 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1512 dbg("%s: temp_register is %x\n", __func__, temp_register); 1513 1514 if (rc != 0) { 1515 /* Something's wrong here */ 1516 temp_register = 0xFFFFFFFF; 1517 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1518 } 1519 /* Preset return code. It will be changed later if things go okay. */ 1520 rc = NO_ADAPTER_PRESENT; 1521 } 1522 1523 /* All F's is an empty slot or an invalid board */ 1524 if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */ 1525 res_lists.io_head = ctrl->io_head; 1526 res_lists.mem_head = ctrl->mem_head; 1527 res_lists.p_mem_head = ctrl->p_mem_head; 1528 res_lists.bus_head = ctrl->bus_head; 1529 res_lists.irqs = NULL; 1530 1531 rc = configure_new_device(ctrl, func, 0, &res_lists); 1532 1533 dbg("%s: back from configure_new_device\n", __func__); 1534 ctrl->io_head = res_lists.io_head; 1535 ctrl->mem_head = res_lists.mem_head; 1536 ctrl->p_mem_head = res_lists.p_mem_head; 1537 ctrl->bus_head = res_lists.bus_head; 1538 1539 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1540 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1541 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1542 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1543 1544 if (rc) { 1545 mutex_lock(&ctrl->crit_sect); 1546 1547 amber_LED_on (ctrl, hp_slot); 1548 green_LED_off (ctrl, hp_slot); 1549 slot_disable (ctrl, hp_slot); 1550 1551 set_SOGO(ctrl); 1552 1553 /* Wait for SOBS to be unset */ 1554 wait_for_ctrl_irq (ctrl); 1555 1556 mutex_unlock(&ctrl->crit_sect); 1557 return rc; 1558 } else { 1559 cpqhp_save_slot_config(ctrl, func); 1560 } 1561 1562 1563 func->status = 0; 1564 func->switch_save = 0x10; 1565 func->is_a_board = 0x01; 1566 1567 /* next, we will instantiate the linux pci_dev structures (with 1568 * appropriate driver notification, if already present) */ 1569 dbg("%s: configure linux pci_dev structure\n", __func__); 1570 index = 0; 1571 do { 1572 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1573 if (new_slot && !new_slot->pci_dev) { 1574 cpqhp_configure_device(ctrl, new_slot); 1575 } 1576 } while (new_slot); 1577 1578 mutex_lock(&ctrl->crit_sect); 1579 1580 green_LED_on (ctrl, hp_slot); 1581 1582 set_SOGO(ctrl); 1583 1584 /* Wait for SOBS to be unset */ 1585 wait_for_ctrl_irq (ctrl); 1586 1587 mutex_unlock(&ctrl->crit_sect); 1588 } else { 1589 mutex_lock(&ctrl->crit_sect); 1590 1591 amber_LED_on (ctrl, hp_slot); 1592 green_LED_off (ctrl, hp_slot); 1593 slot_disable (ctrl, hp_slot); 1594 1595 set_SOGO(ctrl); 1596 1597 /* Wait for SOBS to be unset */ 1598 wait_for_ctrl_irq (ctrl); 1599 1600 mutex_unlock(&ctrl->crit_sect); 1601 1602 return rc; 1603 } 1604 return 0; 1605 } 1606 1607 1608 /** 1609 * remove_board - Turns off slot and LEDs 1610 * @func: PCI device/function info 1611 * @replace_flag: whether replacing or adding a new device 1612 * @ctrl: target controller 1613 */ 1614 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl) 1615 { 1616 int index; 1617 u8 skip = 0; 1618 u8 device; 1619 u8 hp_slot; 1620 u8 temp_byte; 1621 u32 rc; 1622 struct resource_lists res_lists; 1623 struct pci_func *temp_func; 1624 1625 if (cpqhp_unconfigure_device(func)) 1626 return 1; 1627 1628 device = func->device; 1629 1630 hp_slot = func->device - ctrl->slot_device_offset; 1631 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1632 1633 /* When we get here, it is safe to change base address registers. 1634 * We will attempt to save the base address register lengths */ 1635 if (replace_flag || !ctrl->add_support) 1636 rc = cpqhp_save_base_addr_length(ctrl, func); 1637 else if (!func->bus_head && !func->mem_head && 1638 !func->p_mem_head && !func->io_head) { 1639 /* Here we check to see if we've saved any of the board's 1640 * resources already. If so, we'll skip the attempt to 1641 * determine what's being used. */ 1642 index = 0; 1643 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1644 while (temp_func) { 1645 if (temp_func->bus_head || temp_func->mem_head 1646 || temp_func->p_mem_head || temp_func->io_head) { 1647 skip = 1; 1648 break; 1649 } 1650 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1651 } 1652 1653 if (!skip) 1654 rc = cpqhp_save_used_resources(ctrl, func); 1655 } 1656 /* Change status to shutdown */ 1657 if (func->is_a_board) 1658 func->status = 0x01; 1659 func->configured = 0; 1660 1661 mutex_lock(&ctrl->crit_sect); 1662 1663 green_LED_off (ctrl, hp_slot); 1664 slot_disable (ctrl, hp_slot); 1665 1666 set_SOGO(ctrl); 1667 1668 /* turn off SERR for slot */ 1669 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1670 temp_byte &= ~(0x01 << hp_slot); 1671 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1672 1673 /* Wait for SOBS to be unset */ 1674 wait_for_ctrl_irq (ctrl); 1675 1676 mutex_unlock(&ctrl->crit_sect); 1677 1678 if (!replace_flag && ctrl->add_support) { 1679 while (func) { 1680 res_lists.io_head = ctrl->io_head; 1681 res_lists.mem_head = ctrl->mem_head; 1682 res_lists.p_mem_head = ctrl->p_mem_head; 1683 res_lists.bus_head = ctrl->bus_head; 1684 1685 cpqhp_return_board_resources(func, &res_lists); 1686 1687 ctrl->io_head = res_lists.io_head; 1688 ctrl->mem_head = res_lists.mem_head; 1689 ctrl->p_mem_head = res_lists.p_mem_head; 1690 ctrl->bus_head = res_lists.bus_head; 1691 1692 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1693 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1694 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1695 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1696 1697 if (is_bridge(func)) { 1698 bridge_slot_remove(func); 1699 } else 1700 slot_remove(func); 1701 1702 func = cpqhp_slot_find(ctrl->bus, device, 0); 1703 } 1704 1705 /* Setup slot structure with entry for empty slot */ 1706 func = cpqhp_slot_create(ctrl->bus); 1707 1708 if (func == NULL) 1709 return 1; 1710 1711 func->bus = ctrl->bus; 1712 func->device = device; 1713 func->function = 0; 1714 func->configured = 0; 1715 func->switch_save = 0x10; 1716 func->is_a_board = 0; 1717 func->p_task_event = NULL; 1718 } 1719 1720 return 0; 1721 } 1722 1723 static void pushbutton_helper_thread(unsigned long data) 1724 { 1725 pushbutton_pending = data; 1726 wake_up_process(cpqhp_event_thread); 1727 } 1728 1729 1730 /* this is the main worker thread */ 1731 static int event_thread(void* data) 1732 { 1733 struct controller *ctrl; 1734 1735 while (1) { 1736 dbg("!!!!event_thread sleeping\n"); 1737 set_current_state(TASK_INTERRUPTIBLE); 1738 schedule(); 1739 1740 if (kthread_should_stop()) 1741 break; 1742 /* Do stuff here */ 1743 if (pushbutton_pending) 1744 cpqhp_pushbutton_thread(pushbutton_pending); 1745 else 1746 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next) 1747 interrupt_event_handler(ctrl); 1748 } 1749 dbg("event_thread signals exit\n"); 1750 return 0; 1751 } 1752 1753 int cpqhp_event_start_thread(void) 1754 { 1755 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1756 if (IS_ERR(cpqhp_event_thread)) { 1757 err ("Can't start up our event thread\n"); 1758 return PTR_ERR(cpqhp_event_thread); 1759 } 1760 1761 return 0; 1762 } 1763 1764 1765 void cpqhp_event_stop_thread(void) 1766 { 1767 kthread_stop(cpqhp_event_thread); 1768 } 1769 1770 1771 static int update_slot_info(struct controller *ctrl, struct slot *slot) 1772 { 1773 struct hotplug_slot_info *info; 1774 int result; 1775 1776 info = kmalloc(sizeof(*info), GFP_KERNEL); 1777 if (!info) 1778 return -ENOMEM; 1779 1780 info->power_status = get_slot_enabled(ctrl, slot); 1781 info->attention_status = cpq_get_attention_status(ctrl, slot); 1782 info->latch_status = cpq_get_latch_status(ctrl, slot); 1783 info->adapter_status = get_presence_status(ctrl, slot); 1784 result = pci_hp_change_slot_info(slot->hotplug_slot, info); 1785 kfree (info); 1786 return result; 1787 } 1788 1789 static void interrupt_event_handler(struct controller *ctrl) 1790 { 1791 int loop = 0; 1792 int change = 1; 1793 struct pci_func *func; 1794 u8 hp_slot; 1795 struct slot *p_slot; 1796 1797 while (change) { 1798 change = 0; 1799 1800 for (loop = 0; loop < 10; loop++) { 1801 /* dbg("loop %d\n", loop); */ 1802 if (ctrl->event_queue[loop].event_type != 0) { 1803 hp_slot = ctrl->event_queue[loop].hp_slot; 1804 1805 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1806 if (!func) 1807 return; 1808 1809 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1810 if (!p_slot) 1811 return; 1812 1813 dbg("hp_slot %d, func %p, p_slot %p\n", 1814 hp_slot, func, p_slot); 1815 1816 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1817 dbg("button pressed\n"); 1818 } else if (ctrl->event_queue[loop].event_type == 1819 INT_BUTTON_CANCEL) { 1820 dbg("button cancel\n"); 1821 del_timer(&p_slot->task_event); 1822 1823 mutex_lock(&ctrl->crit_sect); 1824 1825 if (p_slot->state == BLINKINGOFF_STATE) { 1826 /* slot is on */ 1827 dbg("turn on green LED\n"); 1828 green_LED_on (ctrl, hp_slot); 1829 } else if (p_slot->state == BLINKINGON_STATE) { 1830 /* slot is off */ 1831 dbg("turn off green LED\n"); 1832 green_LED_off (ctrl, hp_slot); 1833 } 1834 1835 info(msg_button_cancel, p_slot->number); 1836 1837 p_slot->state = STATIC_STATE; 1838 1839 amber_LED_off (ctrl, hp_slot); 1840 1841 set_SOGO(ctrl); 1842 1843 /* Wait for SOBS to be unset */ 1844 wait_for_ctrl_irq (ctrl); 1845 1846 mutex_unlock(&ctrl->crit_sect); 1847 } 1848 /*** button Released (No action on press...) */ 1849 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1850 dbg("button release\n"); 1851 1852 if (is_slot_enabled (ctrl, hp_slot)) { 1853 dbg("slot is on\n"); 1854 p_slot->state = BLINKINGOFF_STATE; 1855 info(msg_button_off, p_slot->number); 1856 } else { 1857 dbg("slot is off\n"); 1858 p_slot->state = BLINKINGON_STATE; 1859 info(msg_button_on, p_slot->number); 1860 } 1861 mutex_lock(&ctrl->crit_sect); 1862 1863 dbg("blink green LED and turn off amber\n"); 1864 1865 amber_LED_off (ctrl, hp_slot); 1866 green_LED_blink (ctrl, hp_slot); 1867 1868 set_SOGO(ctrl); 1869 1870 /* Wait for SOBS to be unset */ 1871 wait_for_ctrl_irq (ctrl); 1872 1873 mutex_unlock(&ctrl->crit_sect); 1874 init_timer(&p_slot->task_event); 1875 p_slot->hp_slot = hp_slot; 1876 p_slot->ctrl = ctrl; 1877 /* p_slot->physical_slot = physical_slot; */ 1878 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1879 p_slot->task_event.function = pushbutton_helper_thread; 1880 p_slot->task_event.data = (u32) p_slot; 1881 1882 dbg("add_timer p_slot = %p\n", p_slot); 1883 add_timer(&p_slot->task_event); 1884 } 1885 /***********POWER FAULT */ 1886 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1887 dbg("power fault\n"); 1888 } else { 1889 /* refresh notification */ 1890 if (p_slot) 1891 update_slot_info(ctrl, p_slot); 1892 } 1893 1894 ctrl->event_queue[loop].event_type = 0; 1895 1896 change = 1; 1897 } 1898 } /* End of FOR loop */ 1899 } 1900 1901 return; 1902 } 1903 1904 1905 /** 1906 * cpqhp_pushbutton_thread - handle pushbutton events 1907 * @slot: target slot (struct) 1908 * 1909 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1910 * Handles all pending events and exits. 1911 */ 1912 void cpqhp_pushbutton_thread(unsigned long slot) 1913 { 1914 u8 hp_slot; 1915 u8 device; 1916 struct pci_func *func; 1917 struct slot *p_slot = (struct slot *) slot; 1918 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1919 1920 pushbutton_pending = 0; 1921 hp_slot = p_slot->hp_slot; 1922 1923 device = p_slot->device; 1924 1925 if (is_slot_enabled(ctrl, hp_slot)) { 1926 p_slot->state = POWEROFF_STATE; 1927 /* power Down board */ 1928 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1929 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1930 if (!func) { 1931 dbg("Error! func NULL in %s\n", __func__); 1932 return ; 1933 } 1934 1935 if (cpqhp_process_SS(ctrl, func) != 0) { 1936 amber_LED_on(ctrl, hp_slot); 1937 green_LED_on(ctrl, hp_slot); 1938 1939 set_SOGO(ctrl); 1940 1941 /* Wait for SOBS to be unset */ 1942 wait_for_ctrl_irq(ctrl); 1943 } 1944 1945 p_slot->state = STATIC_STATE; 1946 } else { 1947 p_slot->state = POWERON_STATE; 1948 /* slot is off */ 1949 1950 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1951 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1952 if (!func) { 1953 dbg("Error! func NULL in %s\n", __func__); 1954 return ; 1955 } 1956 1957 if (ctrl != NULL) { 1958 if (cpqhp_process_SI(ctrl, func) != 0) { 1959 amber_LED_on(ctrl, hp_slot); 1960 green_LED_off(ctrl, hp_slot); 1961 1962 set_SOGO(ctrl); 1963 1964 /* Wait for SOBS to be unset */ 1965 wait_for_ctrl_irq (ctrl); 1966 } 1967 } 1968 1969 p_slot->state = STATIC_STATE; 1970 } 1971 1972 return; 1973 } 1974 1975 1976 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1977 { 1978 u8 device, hp_slot; 1979 u16 temp_word; 1980 u32 tempdword; 1981 int rc; 1982 struct slot* p_slot; 1983 int physical_slot = 0; 1984 1985 tempdword = 0; 1986 1987 device = func->device; 1988 hp_slot = device - ctrl->slot_device_offset; 1989 p_slot = cpqhp_find_slot(ctrl, device); 1990 if (p_slot) 1991 physical_slot = p_slot->number; 1992 1993 /* Check to see if the interlock is closed */ 1994 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 1995 1996 if (tempdword & (0x01 << hp_slot)) { 1997 return 1; 1998 } 1999 2000 if (func->is_a_board) { 2001 rc = board_replaced(func, ctrl); 2002 } else { 2003 /* add board */ 2004 slot_remove(func); 2005 2006 func = cpqhp_slot_create(ctrl->bus); 2007 if (func == NULL) 2008 return 1; 2009 2010 func->bus = ctrl->bus; 2011 func->device = device; 2012 func->function = 0; 2013 func->configured = 0; 2014 func->is_a_board = 1; 2015 2016 /* We have to save the presence info for these slots */ 2017 temp_word = ctrl->ctrl_int_comp >> 16; 2018 func->presence_save = (temp_word >> hp_slot) & 0x01; 2019 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 2020 2021 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2022 func->switch_save = 0; 2023 } else { 2024 func->switch_save = 0x10; 2025 } 2026 2027 rc = board_added(func, ctrl); 2028 if (rc) { 2029 if (is_bridge(func)) { 2030 bridge_slot_remove(func); 2031 } else 2032 slot_remove(func); 2033 2034 /* Setup slot structure with entry for empty slot */ 2035 func = cpqhp_slot_create(ctrl->bus); 2036 2037 if (func == NULL) 2038 return 1; 2039 2040 func->bus = ctrl->bus; 2041 func->device = device; 2042 func->function = 0; 2043 func->configured = 0; 2044 func->is_a_board = 0; 2045 2046 /* We have to save the presence info for these slots */ 2047 temp_word = ctrl->ctrl_int_comp >> 16; 2048 func->presence_save = (temp_word >> hp_slot) & 0x01; 2049 func->presence_save |= 2050 (temp_word >> (hp_slot + 7)) & 0x02; 2051 2052 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2053 func->switch_save = 0; 2054 } else { 2055 func->switch_save = 0x10; 2056 } 2057 } 2058 } 2059 2060 if (rc) { 2061 dbg("%s: rc = %d\n", __func__, rc); 2062 } 2063 2064 if (p_slot) 2065 update_slot_info(ctrl, p_slot); 2066 2067 return rc; 2068 } 2069 2070 2071 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2072 { 2073 u8 device, class_code, header_type, BCR; 2074 u8 index = 0; 2075 u8 replace_flag; 2076 u32 rc = 0; 2077 unsigned int devfn; 2078 struct slot* p_slot; 2079 struct pci_bus *pci_bus = ctrl->pci_bus; 2080 int physical_slot=0; 2081 2082 device = func->device; 2083 func = cpqhp_slot_find(ctrl->bus, device, index++); 2084 p_slot = cpqhp_find_slot(ctrl, device); 2085 if (p_slot) { 2086 physical_slot = p_slot->number; 2087 } 2088 2089 /* Make sure there are no video controllers here */ 2090 while (func && !rc) { 2091 pci_bus->number = func->bus; 2092 devfn = PCI_DEVFN(func->device, func->function); 2093 2094 /* Check the Class Code */ 2095 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2096 if (rc) 2097 return rc; 2098 2099 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2100 /* Display/Video adapter (not supported) */ 2101 rc = REMOVE_NOT_SUPPORTED; 2102 } else { 2103 /* See if it's a bridge */ 2104 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2105 if (rc) 2106 return rc; 2107 2108 /* If it's a bridge, check the VGA Enable bit */ 2109 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2110 rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2111 if (rc) 2112 return rc; 2113 2114 /* If the VGA Enable bit is set, remove isn't 2115 * supported */ 2116 if (BCR & PCI_BRIDGE_CTL_VGA) { 2117 rc = REMOVE_NOT_SUPPORTED; 2118 } 2119 } 2120 } 2121 2122 func = cpqhp_slot_find(ctrl->bus, device, index++); 2123 } 2124 2125 func = cpqhp_slot_find(ctrl->bus, device, 0); 2126 if ((func != NULL) && !rc) { 2127 /* FIXME: Replace flag should be passed into process_SS */ 2128 replace_flag = !(ctrl->add_support); 2129 rc = remove_board(func, replace_flag, ctrl); 2130 } else if (!rc) { 2131 rc = 1; 2132 } 2133 2134 if (p_slot) 2135 update_slot_info(ctrl, p_slot); 2136 2137 return rc; 2138 } 2139 2140 /** 2141 * switch_leds - switch the leds, go from one site to the other. 2142 * @ctrl: controller to use 2143 * @num_of_slots: number of slots to use 2144 * @work_LED: LED control value 2145 * @direction: 1 to start from the left side, 0 to start right. 2146 */ 2147 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2148 u32 *work_LED, const int direction) 2149 { 2150 int loop; 2151 2152 for (loop = 0; loop < num_of_slots; loop++) { 2153 if (direction) 2154 *work_LED = *work_LED >> 1; 2155 else 2156 *work_LED = *work_LED << 1; 2157 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2158 2159 set_SOGO(ctrl); 2160 2161 /* Wait for SOGO interrupt */ 2162 wait_for_ctrl_irq(ctrl); 2163 2164 /* Get ready for next iteration */ 2165 long_delay((2*HZ)/10); 2166 } 2167 } 2168 2169 /** 2170 * cpqhp_hardware_test - runs hardware tests 2171 * @ctrl: target controller 2172 * @test_num: the number written to the "test" file in sysfs. 2173 * 2174 * For hot plug ctrl folks to play with. 2175 */ 2176 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2177 { 2178 u32 save_LED; 2179 u32 work_LED; 2180 int loop; 2181 int num_of_slots; 2182 2183 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2184 2185 switch (test_num) { 2186 case 1: 2187 /* Do stuff here! */ 2188 2189 /* Do that funky LED thing */ 2190 /* so we can restore them later */ 2191 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2192 work_LED = 0x01010101; 2193 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2194 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2195 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2196 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2197 2198 work_LED = 0x01010000; 2199 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2200 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2201 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2202 work_LED = 0x00000101; 2203 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2204 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2205 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2206 2207 work_LED = 0x01010000; 2208 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2209 for (loop = 0; loop < num_of_slots; loop++) { 2210 set_SOGO(ctrl); 2211 2212 /* Wait for SOGO interrupt */ 2213 wait_for_ctrl_irq (ctrl); 2214 2215 /* Get ready for next iteration */ 2216 long_delay((3*HZ)/10); 2217 work_LED = work_LED >> 16; 2218 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2219 2220 set_SOGO(ctrl); 2221 2222 /* Wait for SOGO interrupt */ 2223 wait_for_ctrl_irq (ctrl); 2224 2225 /* Get ready for next iteration */ 2226 long_delay((3*HZ)/10); 2227 work_LED = work_LED << 16; 2228 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2229 work_LED = work_LED << 1; 2230 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2231 } 2232 2233 /* put it back the way it was */ 2234 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2235 2236 set_SOGO(ctrl); 2237 2238 /* Wait for SOBS to be unset */ 2239 wait_for_ctrl_irq (ctrl); 2240 break; 2241 case 2: 2242 /* Do other stuff here! */ 2243 break; 2244 case 3: 2245 /* and more... */ 2246 break; 2247 } 2248 return 0; 2249 } 2250 2251 2252 /** 2253 * configure_new_device - Configures the PCI header information of one board. 2254 * @ctrl: pointer to controller structure 2255 * @func: pointer to function structure 2256 * @behind_bridge: 1 if this is a recursive call, 0 if not 2257 * @resources: pointer to set of resource lists 2258 * 2259 * Returns 0 if success. 2260 */ 2261 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func, 2262 u8 behind_bridge, struct resource_lists * resources) 2263 { 2264 u8 temp_byte, function, max_functions, stop_it; 2265 int rc; 2266 u32 ID; 2267 struct pci_func *new_slot; 2268 int index; 2269 2270 new_slot = func; 2271 2272 dbg("%s\n", __func__); 2273 /* Check for Multi-function device */ 2274 ctrl->pci_bus->number = func->bus; 2275 rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2276 if (rc) { 2277 dbg("%s: rc = %d\n", __func__, rc); 2278 return rc; 2279 } 2280 2281 if (temp_byte & 0x80) /* Multi-function device */ 2282 max_functions = 8; 2283 else 2284 max_functions = 1; 2285 2286 function = 0; 2287 2288 do { 2289 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2290 2291 if (rc) { 2292 dbg("configure_new_function failed %d\n",rc); 2293 index = 0; 2294 2295 while (new_slot) { 2296 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2297 2298 if (new_slot) 2299 cpqhp_return_board_resources(new_slot, resources); 2300 } 2301 2302 return rc; 2303 } 2304 2305 function++; 2306 2307 stop_it = 0; 2308 2309 /* The following loop skips to the next present function 2310 * and creates a board structure */ 2311 2312 while ((function < max_functions) && (!stop_it)) { 2313 pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2314 2315 if (ID == 0xFFFFFFFF) { /* There's nothing there. */ 2316 function++; 2317 } else { /* There's something there */ 2318 /* Setup slot structure. */ 2319 new_slot = cpqhp_slot_create(func->bus); 2320 2321 if (new_slot == NULL) 2322 return 1; 2323 2324 new_slot->bus = func->bus; 2325 new_slot->device = func->device; 2326 new_slot->function = function; 2327 new_slot->is_a_board = 1; 2328 new_slot->status = 0; 2329 2330 stop_it++; 2331 } 2332 } 2333 2334 } while (function < max_functions); 2335 dbg("returning from configure_new_device\n"); 2336 2337 return 0; 2338 } 2339 2340 2341 /* 2342 Configuration logic that involves the hotplug data structures and 2343 their bookkeeping 2344 */ 2345 2346 2347 /** 2348 * configure_new_function - Configures the PCI header information of one device 2349 * @ctrl: pointer to controller structure 2350 * @func: pointer to function structure 2351 * @behind_bridge: 1 if this is a recursive call, 0 if not 2352 * @resources: pointer to set of resource lists 2353 * 2354 * Calls itself recursively for bridged devices. 2355 * Returns 0 if success. 2356 */ 2357 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2358 u8 behind_bridge, 2359 struct resource_lists *resources) 2360 { 2361 int cloop; 2362 u8 IRQ = 0; 2363 u8 temp_byte; 2364 u8 device; 2365 u8 class_code; 2366 u16 command; 2367 u16 temp_word; 2368 u32 temp_dword; 2369 u32 rc; 2370 u32 temp_register; 2371 u32 base; 2372 u32 ID; 2373 unsigned int devfn; 2374 struct pci_resource *mem_node; 2375 struct pci_resource *p_mem_node; 2376 struct pci_resource *io_node; 2377 struct pci_resource *bus_node; 2378 struct pci_resource *hold_mem_node; 2379 struct pci_resource *hold_p_mem_node; 2380 struct pci_resource *hold_IO_node; 2381 struct pci_resource *hold_bus_node; 2382 struct irq_mapping irqs; 2383 struct pci_func *new_slot; 2384 struct pci_bus *pci_bus; 2385 struct resource_lists temp_resources; 2386 2387 pci_bus = ctrl->pci_bus; 2388 pci_bus->number = func->bus; 2389 devfn = PCI_DEVFN(func->device, func->function); 2390 2391 /* Check for Bridge */ 2392 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2393 if (rc) 2394 return rc; 2395 2396 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */ 2397 /* set Primary bus */ 2398 dbg("set Primary bus = %d\n", func->bus); 2399 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2400 if (rc) 2401 return rc; 2402 2403 /* find range of busses to use */ 2404 dbg("find ranges of buses to use\n"); 2405 bus_node = get_max_resource(&(resources->bus_head), 1); 2406 2407 /* If we don't have any busses to allocate, we can't continue */ 2408 if (!bus_node) 2409 return -ENOMEM; 2410 2411 /* set Secondary bus */ 2412 temp_byte = bus_node->base; 2413 dbg("set Secondary bus = %d\n", bus_node->base); 2414 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2415 if (rc) 2416 return rc; 2417 2418 /* set subordinate bus */ 2419 temp_byte = bus_node->base + bus_node->length - 1; 2420 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2421 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2422 if (rc) 2423 return rc; 2424 2425 /* set subordinate Latency Timer and base Latency Timer */ 2426 temp_byte = 0x40; 2427 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2428 if (rc) 2429 return rc; 2430 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2431 if (rc) 2432 return rc; 2433 2434 /* set Cache Line size */ 2435 temp_byte = 0x08; 2436 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2437 if (rc) 2438 return rc; 2439 2440 /* Setup the IO, memory, and prefetchable windows */ 2441 io_node = get_max_resource(&(resources->io_head), 0x1000); 2442 if (!io_node) 2443 return -ENOMEM; 2444 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2445 if (!mem_node) 2446 return -ENOMEM; 2447 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2448 if (!p_mem_node) 2449 return -ENOMEM; 2450 dbg("Setup the IO, memory, and prefetchable windows\n"); 2451 dbg("io_node\n"); 2452 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2453 io_node->length, io_node->next); 2454 dbg("mem_node\n"); 2455 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2456 mem_node->length, mem_node->next); 2457 dbg("p_mem_node\n"); 2458 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2459 p_mem_node->length, p_mem_node->next); 2460 2461 /* set up the IRQ info */ 2462 if (!resources->irqs) { 2463 irqs.barber_pole = 0; 2464 irqs.interrupt[0] = 0; 2465 irqs.interrupt[1] = 0; 2466 irqs.interrupt[2] = 0; 2467 irqs.interrupt[3] = 0; 2468 irqs.valid_INT = 0; 2469 } else { 2470 irqs.barber_pole = resources->irqs->barber_pole; 2471 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2472 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2473 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2474 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2475 irqs.valid_INT = resources->irqs->valid_INT; 2476 } 2477 2478 /* set up resource lists that are now aligned on top and bottom 2479 * for anything behind the bridge. */ 2480 temp_resources.bus_head = bus_node; 2481 temp_resources.io_head = io_node; 2482 temp_resources.mem_head = mem_node; 2483 temp_resources.p_mem_head = p_mem_node; 2484 temp_resources.irqs = &irqs; 2485 2486 /* Make copies of the nodes we are going to pass down so that 2487 * if there is a problem,we can just use these to free resources */ 2488 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2489 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2490 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2491 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2492 2493 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2494 kfree(hold_bus_node); 2495 kfree(hold_IO_node); 2496 kfree(hold_mem_node); 2497 kfree(hold_p_mem_node); 2498 2499 return 1; 2500 } 2501 2502 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2503 2504 bus_node->base += 1; 2505 bus_node->length -= 1; 2506 bus_node->next = NULL; 2507 2508 /* If we have IO resources copy them and fill in the bridge's 2509 * IO range registers */ 2510 if (io_node) { 2511 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2512 io_node->next = NULL; 2513 2514 /* set IO base and Limit registers */ 2515 temp_byte = io_node->base >> 8; 2516 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2517 2518 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2519 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2520 } else { 2521 kfree(hold_IO_node); 2522 hold_IO_node = NULL; 2523 } 2524 2525 /* If we have memory resources copy them and fill in the 2526 * bridge's memory range registers. Otherwise, fill in the 2527 * range registers with values that disable them. */ 2528 if (mem_node) { 2529 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2530 mem_node->next = NULL; 2531 2532 /* set Mem base and Limit registers */ 2533 temp_word = mem_node->base >> 16; 2534 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2535 2536 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2537 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2538 } else { 2539 temp_word = 0xFFFF; 2540 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2541 2542 temp_word = 0x0000; 2543 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2544 2545 kfree(hold_mem_node); 2546 hold_mem_node = NULL; 2547 } 2548 2549 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2550 p_mem_node->next = NULL; 2551 2552 /* set Pre Mem base and Limit registers */ 2553 temp_word = p_mem_node->base >> 16; 2554 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2555 2556 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2557 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2558 2559 /* Adjust this to compensate for extra adjustment in first loop */ 2560 irqs.barber_pole--; 2561 2562 rc = 0; 2563 2564 /* Here we actually find the devices and configure them */ 2565 for (device = 0; (device <= 0x1F) && !rc; device++) { 2566 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2567 2568 ID = 0xFFFFFFFF; 2569 pci_bus->number = hold_bus_node->base; 2570 pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2571 pci_bus->number = func->bus; 2572 2573 if (ID != 0xFFFFFFFF) { /* device present */ 2574 /* Setup slot structure. */ 2575 new_slot = cpqhp_slot_create(hold_bus_node->base); 2576 2577 if (new_slot == NULL) { 2578 rc = -ENOMEM; 2579 continue; 2580 } 2581 2582 new_slot->bus = hold_bus_node->base; 2583 new_slot->device = device; 2584 new_slot->function = 0; 2585 new_slot->is_a_board = 1; 2586 new_slot->status = 0; 2587 2588 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2589 dbg("configure_new_device rc=0x%x\n",rc); 2590 } /* End of IF (device in slot?) */ 2591 } /* End of FOR loop */ 2592 2593 if (rc) 2594 goto free_and_out; 2595 /* save the interrupt routing information */ 2596 if (resources->irqs) { 2597 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2598 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2599 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2600 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2601 resources->irqs->valid_INT = irqs.valid_INT; 2602 } else if (!behind_bridge) { 2603 /* We need to hook up the interrupts here */ 2604 for (cloop = 0; cloop < 4; cloop++) { 2605 if (irqs.valid_INT & (0x01 << cloop)) { 2606 rc = cpqhp_set_irq(func->bus, func->device, 2607 cloop + 1, irqs.interrupt[cloop]); 2608 if (rc) 2609 goto free_and_out; 2610 } 2611 } /* end of for loop */ 2612 } 2613 /* Return unused bus resources 2614 * First use the temporary node to store information for 2615 * the board */ 2616 if (hold_bus_node && bus_node && temp_resources.bus_head) { 2617 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2618 2619 hold_bus_node->next = func->bus_head; 2620 func->bus_head = hold_bus_node; 2621 2622 temp_byte = temp_resources.bus_head->base - 1; 2623 2624 /* set subordinate bus */ 2625 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2626 2627 if (temp_resources.bus_head->length == 0) { 2628 kfree(temp_resources.bus_head); 2629 temp_resources.bus_head = NULL; 2630 } else { 2631 return_resource(&(resources->bus_head), temp_resources.bus_head); 2632 } 2633 } 2634 2635 /* If we have IO space available and there is some left, 2636 * return the unused portion */ 2637 if (hold_IO_node && temp_resources.io_head) { 2638 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2639 &hold_IO_node, 0x1000); 2640 2641 /* Check if we were able to split something off */ 2642 if (io_node) { 2643 hold_IO_node->base = io_node->base + io_node->length; 2644 2645 temp_byte = (hold_IO_node->base) >> 8; 2646 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte); 2647 2648 return_resource(&(resources->io_head), io_node); 2649 } 2650 2651 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2652 2653 /* Check if we were able to split something off */ 2654 if (io_node) { 2655 /* First use the temporary node to store 2656 * information for the board */ 2657 hold_IO_node->length = io_node->base - hold_IO_node->base; 2658 2659 /* If we used any, add it to the board's list */ 2660 if (hold_IO_node->length) { 2661 hold_IO_node->next = func->io_head; 2662 func->io_head = hold_IO_node; 2663 2664 temp_byte = (io_node->base - 1) >> 8; 2665 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2666 2667 return_resource(&(resources->io_head), io_node); 2668 } else { 2669 /* it doesn't need any IO */ 2670 temp_word = 0x0000; 2671 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2672 2673 return_resource(&(resources->io_head), io_node); 2674 kfree(hold_IO_node); 2675 } 2676 } else { 2677 /* it used most of the range */ 2678 hold_IO_node->next = func->io_head; 2679 func->io_head = hold_IO_node; 2680 } 2681 } else if (hold_IO_node) { 2682 /* it used the whole range */ 2683 hold_IO_node->next = func->io_head; 2684 func->io_head = hold_IO_node; 2685 } 2686 /* If we have memory space available and there is some left, 2687 * return the unused portion */ 2688 if (hold_mem_node && temp_resources.mem_head) { 2689 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2690 &hold_mem_node, 0x100000); 2691 2692 /* Check if we were able to split something off */ 2693 if (mem_node) { 2694 hold_mem_node->base = mem_node->base + mem_node->length; 2695 2696 temp_word = (hold_mem_node->base) >> 16; 2697 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2698 2699 return_resource(&(resources->mem_head), mem_node); 2700 } 2701 2702 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2703 2704 /* Check if we were able to split something off */ 2705 if (mem_node) { 2706 /* First use the temporary node to store 2707 * information for the board */ 2708 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2709 2710 if (hold_mem_node->length) { 2711 hold_mem_node->next = func->mem_head; 2712 func->mem_head = hold_mem_node; 2713 2714 /* configure end address */ 2715 temp_word = (mem_node->base - 1) >> 16; 2716 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2717 2718 /* Return unused resources to the pool */ 2719 return_resource(&(resources->mem_head), mem_node); 2720 } else { 2721 /* it doesn't need any Mem */ 2722 temp_word = 0x0000; 2723 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2724 2725 return_resource(&(resources->mem_head), mem_node); 2726 kfree(hold_mem_node); 2727 } 2728 } else { 2729 /* it used most of the range */ 2730 hold_mem_node->next = func->mem_head; 2731 func->mem_head = hold_mem_node; 2732 } 2733 } else if (hold_mem_node) { 2734 /* it used the whole range */ 2735 hold_mem_node->next = func->mem_head; 2736 func->mem_head = hold_mem_node; 2737 } 2738 /* If we have prefetchable memory space available and there 2739 * is some left at the end, return the unused portion */ 2740 if (hold_p_mem_node && temp_resources.p_mem_head) { 2741 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2742 &hold_p_mem_node, 0x100000); 2743 2744 /* Check if we were able to split something off */ 2745 if (p_mem_node) { 2746 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2747 2748 temp_word = (hold_p_mem_node->base) >> 16; 2749 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2750 2751 return_resource(&(resources->p_mem_head), p_mem_node); 2752 } 2753 2754 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2755 2756 /* Check if we were able to split something off */ 2757 if (p_mem_node) { 2758 /* First use the temporary node to store 2759 * information for the board */ 2760 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2761 2762 /* If we used any, add it to the board's list */ 2763 if (hold_p_mem_node->length) { 2764 hold_p_mem_node->next = func->p_mem_head; 2765 func->p_mem_head = hold_p_mem_node; 2766 2767 temp_word = (p_mem_node->base - 1) >> 16; 2768 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2769 2770 return_resource(&(resources->p_mem_head), p_mem_node); 2771 } else { 2772 /* it doesn't need any PMem */ 2773 temp_word = 0x0000; 2774 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2775 2776 return_resource(&(resources->p_mem_head), p_mem_node); 2777 kfree(hold_p_mem_node); 2778 } 2779 } else { 2780 /* it used the most of the range */ 2781 hold_p_mem_node->next = func->p_mem_head; 2782 func->p_mem_head = hold_p_mem_node; 2783 } 2784 } else if (hold_p_mem_node) { 2785 /* it used the whole range */ 2786 hold_p_mem_node->next = func->p_mem_head; 2787 func->p_mem_head = hold_p_mem_node; 2788 } 2789 /* We should be configuring an IRQ and the bridge's base address 2790 * registers if it needs them. Although we have never seen such 2791 * a device */ 2792 2793 /* enable card */ 2794 command = 0x0157; /* = PCI_COMMAND_IO | 2795 * PCI_COMMAND_MEMORY | 2796 * PCI_COMMAND_MASTER | 2797 * PCI_COMMAND_INVALIDATE | 2798 * PCI_COMMAND_PARITY | 2799 * PCI_COMMAND_SERR */ 2800 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command); 2801 2802 /* set Bridge Control Register */ 2803 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2804 * PCI_BRIDGE_CTL_SERR | 2805 * PCI_BRIDGE_CTL_NO_ISA */ 2806 rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2807 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2808 /* Standard device */ 2809 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2810 2811 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2812 /* Display (video) adapter (not supported) */ 2813 return DEVICE_TYPE_NOT_SUPPORTED; 2814 } 2815 /* Figure out IO and memory needs */ 2816 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2817 temp_register = 0xFFFFFFFF; 2818 2819 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2820 rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register); 2821 2822 rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register); 2823 dbg("CND: base = 0x%x\n", temp_register); 2824 2825 if (temp_register) { /* If this register is implemented */ 2826 if ((temp_register & 0x03L) == 0x01) { 2827 /* Map IO */ 2828 2829 /* set base = amount of IO space */ 2830 base = temp_register & 0xFFFFFFFC; 2831 base = ~base + 1; 2832 2833 dbg("CND: length = 0x%x\n", base); 2834 io_node = get_io_resource(&(resources->io_head), base); 2835 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2836 io_node->base, io_node->length, io_node->next); 2837 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2838 2839 /* allocate the resource to the board */ 2840 if (io_node) { 2841 base = io_node->base; 2842 2843 io_node->next = func->io_head; 2844 func->io_head = io_node; 2845 } else 2846 return -ENOMEM; 2847 } else if ((temp_register & 0x0BL) == 0x08) { 2848 /* Map prefetchable memory */ 2849 base = temp_register & 0xFFFFFFF0; 2850 base = ~base + 1; 2851 2852 dbg("CND: length = 0x%x\n", base); 2853 p_mem_node = get_resource(&(resources->p_mem_head), base); 2854 2855 /* allocate the resource to the board */ 2856 if (p_mem_node) { 2857 base = p_mem_node->base; 2858 2859 p_mem_node->next = func->p_mem_head; 2860 func->p_mem_head = p_mem_node; 2861 } else 2862 return -ENOMEM; 2863 } else if ((temp_register & 0x0BL) == 0x00) { 2864 /* Map memory */ 2865 base = temp_register & 0xFFFFFFF0; 2866 base = ~base + 1; 2867 2868 dbg("CND: length = 0x%x\n", base); 2869 mem_node = get_resource(&(resources->mem_head), base); 2870 2871 /* allocate the resource to the board */ 2872 if (mem_node) { 2873 base = mem_node->base; 2874 2875 mem_node->next = func->mem_head; 2876 func->mem_head = mem_node; 2877 } else 2878 return -ENOMEM; 2879 } else if ((temp_register & 0x0BL) == 0x04) { 2880 /* Map memory */ 2881 base = temp_register & 0xFFFFFFF0; 2882 base = ~base + 1; 2883 2884 dbg("CND: length = 0x%x\n", base); 2885 mem_node = get_resource(&(resources->mem_head), base); 2886 2887 /* allocate the resource to the board */ 2888 if (mem_node) { 2889 base = mem_node->base; 2890 2891 mem_node->next = func->mem_head; 2892 func->mem_head = mem_node; 2893 } else 2894 return -ENOMEM; 2895 } else if ((temp_register & 0x0BL) == 0x06) { 2896 /* Those bits are reserved, we can't handle this */ 2897 return 1; 2898 } else { 2899 /* Requesting space below 1M */ 2900 return NOT_ENOUGH_RESOURCES; 2901 } 2902 2903 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2904 2905 /* Check for 64-bit base */ 2906 if ((temp_register & 0x07L) == 0x04) { 2907 cloop += 4; 2908 2909 /* Upper 32 bits of address always zero 2910 * on today's systems */ 2911 /* FIXME this is probably not true on 2912 * Alpha and ia64??? */ 2913 base = 0; 2914 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2915 } 2916 } 2917 } /* End of base register loop */ 2918 if (cpqhp_legacy_mode) { 2919 /* Figure out which interrupt pin this function uses */ 2920 rc = pci_bus_read_config_byte (pci_bus, devfn, 2921 PCI_INTERRUPT_PIN, &temp_byte); 2922 2923 /* If this function needs an interrupt and we are behind 2924 * a bridge and the pin is tied to something that's 2925 * alread mapped, set this one the same */ 2926 if (temp_byte && resources->irqs && 2927 (resources->irqs->valid_INT & 2928 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2929 /* We have to share with something already set up */ 2930 IRQ = resources->irqs->interrupt[(temp_byte + 2931 resources->irqs->barber_pole - 1) & 0x03]; 2932 } else { 2933 /* Program IRQ based on card type */ 2934 rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code); 2935 2936 if (class_code == PCI_BASE_CLASS_STORAGE) { 2937 IRQ = cpqhp_disk_irq; 2938 } else { 2939 IRQ = cpqhp_nic_irq; 2940 } 2941 } 2942 2943 /* IRQ Line */ 2944 rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2945 } 2946 2947 if (!behind_bridge) { 2948 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2949 if (rc) 2950 return 1; 2951 } else { 2952 /* TBD - this code may also belong in the other clause 2953 * of this If statement */ 2954 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2955 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2956 } 2957 2958 /* Latency Timer */ 2959 temp_byte = 0x40; 2960 rc = pci_bus_write_config_byte(pci_bus, devfn, 2961 PCI_LATENCY_TIMER, temp_byte); 2962 2963 /* Cache Line size */ 2964 temp_byte = 0x08; 2965 rc = pci_bus_write_config_byte(pci_bus, devfn, 2966 PCI_CACHE_LINE_SIZE, temp_byte); 2967 2968 /* disable ROM base Address */ 2969 temp_dword = 0x00L; 2970 rc = pci_bus_write_config_word(pci_bus, devfn, 2971 PCI_ROM_ADDRESS, temp_dword); 2972 2973 /* enable card */ 2974 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2975 * PCI_COMMAND_MEMORY | 2976 * PCI_COMMAND_MASTER | 2977 * PCI_COMMAND_INVALIDATE | 2978 * PCI_COMMAND_PARITY | 2979 * PCI_COMMAND_SERR */ 2980 rc = pci_bus_write_config_word (pci_bus, devfn, 2981 PCI_COMMAND, temp_word); 2982 } else { /* End of Not-A-Bridge else */ 2983 /* It's some strange type of PCI adapter (Cardbus?) */ 2984 return DEVICE_TYPE_NOT_SUPPORTED; 2985 } 2986 2987 func->configured = 1; 2988 2989 return 0; 2990 free_and_out: 2991 cpqhp_destroy_resource_list (&temp_resources); 2992 2993 return_resource(&(resources-> bus_head), hold_bus_node); 2994 return_resource(&(resources-> io_head), hold_IO_node); 2995 return_resource(&(resources-> mem_head), hold_mem_node); 2996 return_resource(&(resources-> p_mem_head), hold_p_mem_node); 2997 return rc; 2998 } 2999