xref: /openbmc/linux/drivers/pci/hotplug/cpqphp_ctrl.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28 
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/types.h>
32 #include <linux/slab.h>
33 #include <linux/workqueue.h>
34 #include <linux/interrupt.h>
35 #include <linux/delay.h>
36 #include <linux/wait.h>
37 #include <linux/smp_lock.h>
38 #include <linux/pci.h>
39 #include <linux/pci_hotplug.h>
40 #include <linux/kthread.h>
41 #include "cpqphp.h"
42 
43 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
44 			u8 behind_bridge, struct resource_lists *resources);
45 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
46 			u8 behind_bridge, struct resource_lists *resources);
47 static void interrupt_event_handler(struct controller *ctrl);
48 
49 
50 static struct task_struct *cpqhp_event_thread;
51 static unsigned long pushbutton_pending;	/* = 0 */
52 
53 /* delay is in jiffies to wait for */
54 static void long_delay(int delay)
55 {
56 	/*
57 	 * XXX(hch): if someone is bored please convert all callers
58 	 * to call msleep_interruptible directly.  They really want
59 	 * to specify timeouts in natural units and spend a lot of
60 	 * effort converting them to jiffies..
61 	 */
62 	msleep_interruptible(jiffies_to_msecs(delay));
63 }
64 
65 
66 /* FIXME: The following line needs to be somewhere else... */
67 #define WRONG_BUS_FREQUENCY 0x07
68 static u8 handle_switch_change(u8 change, struct controller * ctrl)
69 {
70 	int hp_slot;
71 	u8 rc = 0;
72 	u16 temp_word;
73 	struct pci_func *func;
74 	struct event_info *taskInfo;
75 
76 	if (!change)
77 		return 0;
78 
79 	/* Switch Change */
80 	dbg("cpqsbd:  Switch interrupt received.\n");
81 
82 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
83 		if (change & (0x1L << hp_slot)) {
84 			/**********************************
85 			 * this one changed.
86 			 **********************************/
87 			func = cpqhp_slot_find(ctrl->bus,
88 				(hp_slot + ctrl->slot_device_offset), 0);
89 
90 			/* this is the structure that tells the worker thread
91 			 *what to do */
92 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
93 			ctrl->next_event = (ctrl->next_event + 1) % 10;
94 			taskInfo->hp_slot = hp_slot;
95 
96 			rc++;
97 
98 			temp_word = ctrl->ctrl_int_comp >> 16;
99 			func->presence_save = (temp_word >> hp_slot) & 0x01;
100 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
101 
102 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
103 				/**********************************
104 				 * Switch opened
105 				 **********************************/
106 
107 				func->switch_save = 0;
108 
109 				taskInfo->event_type = INT_SWITCH_OPEN;
110 			} else {
111 				/**********************************
112 				 * Switch closed
113 				 **********************************/
114 
115 				func->switch_save = 0x10;
116 
117 				taskInfo->event_type = INT_SWITCH_CLOSE;
118 			}
119 		}
120 	}
121 
122 	return rc;
123 }
124 
125 /**
126  * cpqhp_find_slot - find the struct slot of given device
127  * @ctrl: scan lots of this controller
128  * @device: the device id to find
129  */
130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
131 {
132 	struct slot *slot = ctrl->slot;
133 
134 	while (slot && (slot->device != device)) {
135 		slot = slot->next;
136 	}
137 
138 	return slot;
139 }
140 
141 
142 static u8 handle_presence_change(u16 change, struct controller * ctrl)
143 {
144 	int hp_slot;
145 	u8 rc = 0;
146 	u8 temp_byte;
147 	u16 temp_word;
148 	struct pci_func *func;
149 	struct event_info *taskInfo;
150 	struct slot *p_slot;
151 
152 	if (!change)
153 		return 0;
154 
155 	/**********************************
156 	 * Presence Change
157 	 **********************************/
158 	dbg("cpqsbd:  Presence/Notify input change.\n");
159 	dbg("         Changed bits are 0x%4.4x\n", change );
160 
161 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
162 		if (change & (0x0101 << hp_slot)) {
163 			/**********************************
164 			 * this one changed.
165 			 **********************************/
166 			func = cpqhp_slot_find(ctrl->bus,
167 				(hp_slot + ctrl->slot_device_offset), 0);
168 
169 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
170 			ctrl->next_event = (ctrl->next_event + 1) % 10;
171 			taskInfo->hp_slot = hp_slot;
172 
173 			rc++;
174 
175 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
176 			if (!p_slot)
177 				return 0;
178 
179 			/* If the switch closed, must be a button
180 			 * If not in button mode, nevermind */
181 			if (func->switch_save && (ctrl->push_button == 1)) {
182 				temp_word = ctrl->ctrl_int_comp >> 16;
183 				temp_byte = (temp_word >> hp_slot) & 0x01;
184 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
185 
186 				if (temp_byte != func->presence_save) {
187 					/**************************************
188 					 * button Pressed (doesn't do anything)
189 					 **************************************/
190 					dbg("hp_slot %d button pressed\n", hp_slot);
191 					taskInfo->event_type = INT_BUTTON_PRESS;
192 				} else {
193 					/**********************************
194 					 * button Released - TAKE ACTION!!!!
195 					 **********************************/
196 					dbg("hp_slot %d button released\n", hp_slot);
197 					taskInfo->event_type = INT_BUTTON_RELEASE;
198 
199 					/* Cancel if we are still blinking */
200 					if ((p_slot->state == BLINKINGON_STATE)
201 					    || (p_slot->state == BLINKINGOFF_STATE)) {
202 						taskInfo->event_type = INT_BUTTON_CANCEL;
203 						dbg("hp_slot %d button cancel\n", hp_slot);
204 					} else if ((p_slot->state == POWERON_STATE)
205 						   || (p_slot->state == POWEROFF_STATE)) {
206 						/* info(msg_button_ignore, p_slot->number); */
207 						taskInfo->event_type = INT_BUTTON_IGNORE;
208 						dbg("hp_slot %d button ignore\n", hp_slot);
209 					}
210 				}
211 			} else {
212 				/* Switch is open, assume a presence change
213 				 * Save the presence state */
214 				temp_word = ctrl->ctrl_int_comp >> 16;
215 				func->presence_save = (temp_word >> hp_slot) & 0x01;
216 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
217 
218 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
219 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
220 					/* Present */
221 					taskInfo->event_type = INT_PRESENCE_ON;
222 				} else {
223 					/* Not Present */
224 					taskInfo->event_type = INT_PRESENCE_OFF;
225 				}
226 			}
227 		}
228 	}
229 
230 	return rc;
231 }
232 
233 
234 static u8 handle_power_fault(u8 change, struct controller * ctrl)
235 {
236 	int hp_slot;
237 	u8 rc = 0;
238 	struct pci_func *func;
239 	struct event_info *taskInfo;
240 
241 	if (!change)
242 		return 0;
243 
244 	/**********************************
245 	 * power fault
246 	 **********************************/
247 
248 	info("power fault interrupt\n");
249 
250 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
251 		if (change & (0x01 << hp_slot)) {
252 			/**********************************
253 			 * this one changed.
254 			 **********************************/
255 			func = cpqhp_slot_find(ctrl->bus,
256 				(hp_slot + ctrl->slot_device_offset), 0);
257 
258 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
259 			ctrl->next_event = (ctrl->next_event + 1) % 10;
260 			taskInfo->hp_slot = hp_slot;
261 
262 			rc++;
263 
264 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
265 				/**********************************
266 				 * power fault Cleared
267 				 **********************************/
268 				func->status = 0x00;
269 
270 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
271 			} else {
272 				/**********************************
273 				 * power fault
274 				 **********************************/
275 				taskInfo->event_type = INT_POWER_FAULT;
276 
277 				if (ctrl->rev < 4) {
278 					amber_LED_on (ctrl, hp_slot);
279 					green_LED_off (ctrl, hp_slot);
280 					set_SOGO (ctrl);
281 
282 					/* this is a fatal condition, we want
283 					 * to crash the machine to protect from
284 					 * data corruption. simulated_NMI
285 					 * shouldn't ever return */
286 					/* FIXME
287 					simulated_NMI(hp_slot, ctrl); */
288 
289 					/* The following code causes a software
290 					 * crash just in case simulated_NMI did
291 					 * return */
292 					/*FIXME
293 					panic(msg_power_fault); */
294 				} else {
295 					/* set power fault status for this board */
296 					func->status = 0xFF;
297 					info("power fault bit %x set\n", hp_slot);
298 				}
299 			}
300 		}
301 	}
302 
303 	return rc;
304 }
305 
306 
307 /**
308  * sort_by_size - sort nodes on the list by their length, smallest first.
309  * @head: list to sort
310  */
311 static int sort_by_size(struct pci_resource **head)
312 {
313 	struct pci_resource *current_res;
314 	struct pci_resource *next_res;
315 	int out_of_order = 1;
316 
317 	if (!(*head))
318 		return 1;
319 
320 	if (!((*head)->next))
321 		return 0;
322 
323 	while (out_of_order) {
324 		out_of_order = 0;
325 
326 		/* Special case for swapping list head */
327 		if (((*head)->next) &&
328 		    ((*head)->length > (*head)->next->length)) {
329 			out_of_order++;
330 			current_res = *head;
331 			*head = (*head)->next;
332 			current_res->next = (*head)->next;
333 			(*head)->next = current_res;
334 		}
335 
336 		current_res = *head;
337 
338 		while (current_res->next && current_res->next->next) {
339 			if (current_res->next->length > current_res->next->next->length) {
340 				out_of_order++;
341 				next_res = current_res->next;
342 				current_res->next = current_res->next->next;
343 				current_res = current_res->next;
344 				next_res->next = current_res->next;
345 				current_res->next = next_res;
346 			} else
347 				current_res = current_res->next;
348 		}
349 	}  /* End of out_of_order loop */
350 
351 	return 0;
352 }
353 
354 
355 /**
356  * sort_by_max_size - sort nodes on the list by their length, largest first.
357  * @head: list to sort
358  */
359 static int sort_by_max_size(struct pci_resource **head)
360 {
361 	struct pci_resource *current_res;
362 	struct pci_resource *next_res;
363 	int out_of_order = 1;
364 
365 	if (!(*head))
366 		return 1;
367 
368 	if (!((*head)->next))
369 		return 0;
370 
371 	while (out_of_order) {
372 		out_of_order = 0;
373 
374 		/* Special case for swapping list head */
375 		if (((*head)->next) &&
376 		    ((*head)->length < (*head)->next->length)) {
377 			out_of_order++;
378 			current_res = *head;
379 			*head = (*head)->next;
380 			current_res->next = (*head)->next;
381 			(*head)->next = current_res;
382 		}
383 
384 		current_res = *head;
385 
386 		while (current_res->next && current_res->next->next) {
387 			if (current_res->next->length < current_res->next->next->length) {
388 				out_of_order++;
389 				next_res = current_res->next;
390 				current_res->next = current_res->next->next;
391 				current_res = current_res->next;
392 				next_res->next = current_res->next;
393 				current_res->next = next_res;
394 			} else
395 				current_res = current_res->next;
396 		}
397 	}  /* End of out_of_order loop */
398 
399 	return 0;
400 }
401 
402 
403 /**
404  * do_pre_bridge_resource_split - find node of resources that are unused
405  * @head: new list head
406  * @orig_head: original list head
407  * @alignment: max node size (?)
408  */
409 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
410 				struct pci_resource **orig_head, u32 alignment)
411 {
412 	struct pci_resource *prevnode = NULL;
413 	struct pci_resource *node;
414 	struct pci_resource *split_node;
415 	u32 rc;
416 	u32 temp_dword;
417 	dbg("do_pre_bridge_resource_split\n");
418 
419 	if (!(*head) || !(*orig_head))
420 		return NULL;
421 
422 	rc = cpqhp_resource_sort_and_combine(head);
423 
424 	if (rc)
425 		return NULL;
426 
427 	if ((*head)->base != (*orig_head)->base)
428 		return NULL;
429 
430 	if ((*head)->length == (*orig_head)->length)
431 		return NULL;
432 
433 
434 	/* If we got here, there the bridge requires some of the resource, but
435 	 * we may be able to split some off of the front */
436 
437 	node = *head;
438 
439 	if (node->length & (alignment -1)) {
440 		/* this one isn't an aligned length, so we'll make a new entry
441 		 * and split it up. */
442 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
443 
444 		if (!split_node)
445 			return NULL;
446 
447 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
448 
449 		split_node->base = node->base;
450 		split_node->length = temp_dword;
451 
452 		node->length -= temp_dword;
453 		node->base += split_node->length;
454 
455 		/* Put it in the list */
456 		*head = split_node;
457 		split_node->next = node;
458 	}
459 
460 	if (node->length < alignment)
461 		return NULL;
462 
463 	/* Now unlink it */
464 	if (*head == node) {
465 		*head = node->next;
466 	} else {
467 		prevnode = *head;
468 		while (prevnode->next != node)
469 			prevnode = prevnode->next;
470 
471 		prevnode->next = node->next;
472 	}
473 	node->next = NULL;
474 
475 	return node;
476 }
477 
478 
479 /**
480  * do_bridge_resource_split - find one node of resources that aren't in use
481  * @head: list head
482  * @alignment: max node size (?)
483  */
484 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
485 {
486 	struct pci_resource *prevnode = NULL;
487 	struct pci_resource *node;
488 	u32 rc;
489 	u32 temp_dword;
490 
491 	rc = cpqhp_resource_sort_and_combine(head);
492 
493 	if (rc)
494 		return NULL;
495 
496 	node = *head;
497 
498 	while (node->next) {
499 		prevnode = node;
500 		node = node->next;
501 		kfree(prevnode);
502 	}
503 
504 	if (node->length < alignment)
505 		goto error;
506 
507 	if (node->base & (alignment - 1)) {
508 		/* Short circuit if adjusted size is too small */
509 		temp_dword = (node->base | (alignment-1)) + 1;
510 		if ((node->length - (temp_dword - node->base)) < alignment)
511 			goto error;
512 
513 		node->length -= (temp_dword - node->base);
514 		node->base = temp_dword;
515 	}
516 
517 	if (node->length & (alignment - 1))
518 		/* There's stuff in use after this node */
519 		goto error;
520 
521 	return node;
522 error:
523 	kfree(node);
524 	return NULL;
525 }
526 
527 
528 /**
529  * get_io_resource - find first node of given size not in ISA aliasing window.
530  * @head: list to search
531  * @size: size of node to find, must be a power of two.
532  *
533  * Description: This function sorts the resource list by size and then returns
534  * returns the first node of "size" length that is not in the ISA aliasing
535  * window.  If it finds a node larger than "size" it will split it up.
536  */
537 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
538 {
539 	struct pci_resource *prevnode;
540 	struct pci_resource *node;
541 	struct pci_resource *split_node;
542 	u32 temp_dword;
543 
544 	if (!(*head))
545 		return NULL;
546 
547 	if ( cpqhp_resource_sort_and_combine(head) )
548 		return NULL;
549 
550 	if ( sort_by_size(head) )
551 		return NULL;
552 
553 	for (node = *head; node; node = node->next) {
554 		if (node->length < size)
555 			continue;
556 
557 		if (node->base & (size - 1)) {
558 			/* this one isn't base aligned properly
559 			 * so we'll make a new entry and split it up */
560 			temp_dword = (node->base | (size-1)) + 1;
561 
562 			/* Short circuit if adjusted size is too small */
563 			if ((node->length - (temp_dword - node->base)) < size)
564 				continue;
565 
566 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
567 
568 			if (!split_node)
569 				return NULL;
570 
571 			split_node->base = node->base;
572 			split_node->length = temp_dword - node->base;
573 			node->base = temp_dword;
574 			node->length -= split_node->length;
575 
576 			/* Put it in the list */
577 			split_node->next = node->next;
578 			node->next = split_node;
579 		} /* End of non-aligned base */
580 
581 		/* Don't need to check if too small since we already did */
582 		if (node->length > size) {
583 			/* this one is longer than we need
584 			 * so we'll make a new entry and split it up */
585 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
586 
587 			if (!split_node)
588 				return NULL;
589 
590 			split_node->base = node->base + size;
591 			split_node->length = node->length - size;
592 			node->length = size;
593 
594 			/* Put it in the list */
595 			split_node->next = node->next;
596 			node->next = split_node;
597 		}  /* End of too big on top end */
598 
599 		/* For IO make sure it's not in the ISA aliasing space */
600 		if (node->base & 0x300L)
601 			continue;
602 
603 		/* If we got here, then it is the right size
604 		 * Now take it out of the list and break */
605 		if (*head == node) {
606 			*head = node->next;
607 		} else {
608 			prevnode = *head;
609 			while (prevnode->next != node)
610 				prevnode = prevnode->next;
611 
612 			prevnode->next = node->next;
613 		}
614 		node->next = NULL;
615 		break;
616 	}
617 
618 	return node;
619 }
620 
621 
622 /**
623  * get_max_resource - get largest node which has at least the given size.
624  * @head: the list to search the node in
625  * @size: the minimum size of the node to find
626  *
627  * Description: Gets the largest node that is at least "size" big from the
628  * list pointed to by head.  It aligns the node on top and bottom
629  * to "size" alignment before returning it.
630  */
631 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
632 {
633 	struct pci_resource *max;
634 	struct pci_resource *temp;
635 	struct pci_resource *split_node;
636 	u32 temp_dword;
637 
638 	if (cpqhp_resource_sort_and_combine(head))
639 		return NULL;
640 
641 	if (sort_by_max_size(head))
642 		return NULL;
643 
644 	for (max = *head; max; max = max->next) {
645 		/* If not big enough we could probably just bail,
646 		 * instead we'll continue to the next. */
647 		if (max->length < size)
648 			continue;
649 
650 		if (max->base & (size - 1)) {
651 			/* this one isn't base aligned properly
652 			 * so we'll make a new entry and split it up */
653 			temp_dword = (max->base | (size-1)) + 1;
654 
655 			/* Short circuit if adjusted size is too small */
656 			if ((max->length - (temp_dword - max->base)) < size)
657 				continue;
658 
659 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
660 
661 			if (!split_node)
662 				return NULL;
663 
664 			split_node->base = max->base;
665 			split_node->length = temp_dword - max->base;
666 			max->base = temp_dword;
667 			max->length -= split_node->length;
668 
669 			split_node->next = max->next;
670 			max->next = split_node;
671 		}
672 
673 		if ((max->base + max->length) & (size - 1)) {
674 			/* this one isn't end aligned properly at the top
675 			 * so we'll make a new entry and split it up */
676 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
677 
678 			if (!split_node)
679 				return NULL;
680 			temp_dword = ((max->base + max->length) & ~(size - 1));
681 			split_node->base = temp_dword;
682 			split_node->length = max->length + max->base
683 					     - split_node->base;
684 			max->length -= split_node->length;
685 
686 			split_node->next = max->next;
687 			max->next = split_node;
688 		}
689 
690 		/* Make sure it didn't shrink too much when we aligned it */
691 		if (max->length < size)
692 			continue;
693 
694 		/* Now take it out of the list */
695 		temp = *head;
696 		if (temp == max) {
697 			*head = max->next;
698 		} else {
699 			while (temp && temp->next != max) {
700 				temp = temp->next;
701 			}
702 
703 			temp->next = max->next;
704 		}
705 
706 		max->next = NULL;
707 		break;
708 	}
709 
710 	return max;
711 }
712 
713 
714 /**
715  * get_resource - find resource of given size and split up larger ones.
716  * @head: the list to search for resources
717  * @size: the size limit to use
718  *
719  * Description: This function sorts the resource list by size and then
720  * returns the first node of "size" length.  If it finds a node
721  * larger than "size" it will split it up.
722  *
723  * size must be a power of two.
724  */
725 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
726 {
727 	struct pci_resource *prevnode;
728 	struct pci_resource *node;
729 	struct pci_resource *split_node;
730 	u32 temp_dword;
731 
732 	if (cpqhp_resource_sort_and_combine(head))
733 		return NULL;
734 
735 	if (sort_by_size(head))
736 		return NULL;
737 
738 	for (node = *head; node; node = node->next) {
739 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
740 		    __func__, size, node, node->base, node->length);
741 		if (node->length < size)
742 			continue;
743 
744 		if (node->base & (size - 1)) {
745 			dbg("%s: not aligned\n", __func__);
746 			/* this one isn't base aligned properly
747 			 * so we'll make a new entry and split it up */
748 			temp_dword = (node->base | (size-1)) + 1;
749 
750 			/* Short circuit if adjusted size is too small */
751 			if ((node->length - (temp_dword - node->base)) < size)
752 				continue;
753 
754 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
755 
756 			if (!split_node)
757 				return NULL;
758 
759 			split_node->base = node->base;
760 			split_node->length = temp_dword - node->base;
761 			node->base = temp_dword;
762 			node->length -= split_node->length;
763 
764 			split_node->next = node->next;
765 			node->next = split_node;
766 		} /* End of non-aligned base */
767 
768 		/* Don't need to check if too small since we already did */
769 		if (node->length > size) {
770 			dbg("%s: too big\n", __func__);
771 			/* this one is longer than we need
772 			 * so we'll make a new entry and split it up */
773 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
774 
775 			if (!split_node)
776 				return NULL;
777 
778 			split_node->base = node->base + size;
779 			split_node->length = node->length - size;
780 			node->length = size;
781 
782 			/* Put it in the list */
783 			split_node->next = node->next;
784 			node->next = split_node;
785 		}  /* End of too big on top end */
786 
787 		dbg("%s: got one!!!\n", __func__);
788 		/* If we got here, then it is the right size
789 		 * Now take it out of the list */
790 		if (*head == node) {
791 			*head = node->next;
792 		} else {
793 			prevnode = *head;
794 			while (prevnode->next != node)
795 				prevnode = prevnode->next;
796 
797 			prevnode->next = node->next;
798 		}
799 		node->next = NULL;
800 		break;
801 	}
802 	return node;
803 }
804 
805 
806 /**
807  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
808  * @head: the list to sort and clean up
809  *
810  * Description: Sorts all of the nodes in the list in ascending order by
811  * their base addresses.  Also does garbage collection by
812  * combining adjacent nodes.
813  *
814  * Returns %0 if success.
815  */
816 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
817 {
818 	struct pci_resource *node1;
819 	struct pci_resource *node2;
820 	int out_of_order = 1;
821 
822 	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
823 
824 	if (!(*head))
825 		return 1;
826 
827 	dbg("*head->next = %p\n",(*head)->next);
828 
829 	if (!(*head)->next)
830 		return 0;	/* only one item on the list, already sorted! */
831 
832 	dbg("*head->base = 0x%x\n",(*head)->base);
833 	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
834 	while (out_of_order) {
835 		out_of_order = 0;
836 
837 		/* Special case for swapping list head */
838 		if (((*head)->next) &&
839 		    ((*head)->base > (*head)->next->base)) {
840 			node1 = *head;
841 			(*head) = (*head)->next;
842 			node1->next = (*head)->next;
843 			(*head)->next = node1;
844 			out_of_order++;
845 		}
846 
847 		node1 = (*head);
848 
849 		while (node1->next && node1->next->next) {
850 			if (node1->next->base > node1->next->next->base) {
851 				out_of_order++;
852 				node2 = node1->next;
853 				node1->next = node1->next->next;
854 				node1 = node1->next;
855 				node2->next = node1->next;
856 				node1->next = node2;
857 			} else
858 				node1 = node1->next;
859 		}
860 	}  /* End of out_of_order loop */
861 
862 	node1 = *head;
863 
864 	while (node1 && node1->next) {
865 		if ((node1->base + node1->length) == node1->next->base) {
866 			/* Combine */
867 			dbg("8..\n");
868 			node1->length += node1->next->length;
869 			node2 = node1->next;
870 			node1->next = node1->next->next;
871 			kfree(node2);
872 		} else
873 			node1 = node1->next;
874 	}
875 
876 	return 0;
877 }
878 
879 
880 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
881 {
882 	struct controller *ctrl = data;
883 	u8 schedule_flag = 0;
884 	u8 reset;
885 	u16 misc;
886 	u32 Diff;
887 	u32 temp_dword;
888 
889 
890 	misc = readw(ctrl->hpc_reg + MISC);
891 	/***************************************
892 	 * Check to see if it was our interrupt
893 	 ***************************************/
894 	if (!(misc & 0x000C)) {
895 		return IRQ_NONE;
896 	}
897 
898 	if (misc & 0x0004) {
899 		/**********************************
900 		 * Serial Output interrupt Pending
901 		 **********************************/
902 
903 		/* Clear the interrupt */
904 		misc |= 0x0004;
905 		writew(misc, ctrl->hpc_reg + MISC);
906 
907 		/* Read to clear posted writes */
908 		misc = readw(ctrl->hpc_reg + MISC);
909 
910 		dbg ("%s - waking up\n", __func__);
911 		wake_up_interruptible(&ctrl->queue);
912 	}
913 
914 	if (misc & 0x0008) {
915 		/* General-interrupt-input interrupt Pending */
916 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
917 
918 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
919 
920 		/* Clear the interrupt */
921 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
922 
923 		/* Read it back to clear any posted writes */
924 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
925 
926 		if (!Diff)
927 			/* Clear all interrupts */
928 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
929 
930 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
931 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
932 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
933 	}
934 
935 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
936 	if (reset & 0x40) {
937 		/* Bus reset has completed */
938 		reset &= 0xCF;
939 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
940 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
941 		wake_up_interruptible(&ctrl->queue);
942 	}
943 
944 	if (schedule_flag) {
945 		wake_up_process(cpqhp_event_thread);
946 		dbg("Waking even thread");
947 	}
948 	return IRQ_HANDLED;
949 }
950 
951 
952 /**
953  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
954  * @busnumber: bus where new node is to be located
955  *
956  * Returns pointer to the new node or %NULL if unsuccessful.
957  */
958 struct pci_func *cpqhp_slot_create(u8 busnumber)
959 {
960 	struct pci_func *new_slot;
961 	struct pci_func *next;
962 
963 	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
964 	if (new_slot == NULL) {
965 		/* I'm not dead yet!
966 		 * You will be. */
967 		return new_slot;
968 	}
969 
970 	new_slot->next = NULL;
971 	new_slot->configured = 1;
972 
973 	if (cpqhp_slot_list[busnumber] == NULL) {
974 		cpqhp_slot_list[busnumber] = new_slot;
975 	} else {
976 		next = cpqhp_slot_list[busnumber];
977 		while (next->next != NULL)
978 			next = next->next;
979 		next->next = new_slot;
980 	}
981 	return new_slot;
982 }
983 
984 
985 /**
986  * slot_remove - Removes a node from the linked list of slots.
987  * @old_slot: slot to remove
988  *
989  * Returns %0 if successful, !0 otherwise.
990  */
991 static int slot_remove(struct pci_func * old_slot)
992 {
993 	struct pci_func *next;
994 
995 	if (old_slot == NULL)
996 		return 1;
997 
998 	next = cpqhp_slot_list[old_slot->bus];
999 
1000 	if (next == NULL) {
1001 		return 1;
1002 	}
1003 
1004 	if (next == old_slot) {
1005 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1006 		cpqhp_destroy_board_resources(old_slot);
1007 		kfree(old_slot);
1008 		return 0;
1009 	}
1010 
1011 	while ((next->next != old_slot) && (next->next != NULL)) {
1012 		next = next->next;
1013 	}
1014 
1015 	if (next->next == old_slot) {
1016 		next->next = old_slot->next;
1017 		cpqhp_destroy_board_resources(old_slot);
1018 		kfree(old_slot);
1019 		return 0;
1020 	} else
1021 		return 2;
1022 }
1023 
1024 
1025 /**
1026  * bridge_slot_remove - Removes a node from the linked list of slots.
1027  * @bridge: bridge to remove
1028  *
1029  * Returns %0 if successful, !0 otherwise.
1030  */
1031 static int bridge_slot_remove(struct pci_func *bridge)
1032 {
1033 	u8 subordinateBus, secondaryBus;
1034 	u8 tempBus;
1035 	struct pci_func *next;
1036 
1037 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1038 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1039 
1040 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1041 		next = cpqhp_slot_list[tempBus];
1042 
1043 		while (!slot_remove(next)) {
1044 			next = cpqhp_slot_list[tempBus];
1045 		}
1046 	}
1047 
1048 	next = cpqhp_slot_list[bridge->bus];
1049 
1050 	if (next == NULL)
1051 		return 1;
1052 
1053 	if (next == bridge) {
1054 		cpqhp_slot_list[bridge->bus] = bridge->next;
1055 		goto out;
1056 	}
1057 
1058 	while ((next->next != bridge) && (next->next != NULL))
1059 		next = next->next;
1060 
1061 	if (next->next != bridge)
1062 		return 2;
1063 	next->next = bridge->next;
1064 out:
1065 	kfree(bridge);
1066 	return 0;
1067 }
1068 
1069 
1070 /**
1071  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1072  * @bus: bus to find
1073  * @device: device to find
1074  * @index: is %0 for first function found, %1 for the second...
1075  *
1076  * Returns pointer to the node if successful, %NULL otherwise.
1077  */
1078 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1079 {
1080 	int found = -1;
1081 	struct pci_func *func;
1082 
1083 	func = cpqhp_slot_list[bus];
1084 
1085 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1086 		return func;
1087 
1088 	if (func->device == device)
1089 		found++;
1090 
1091 	while (func->next != NULL) {
1092 		func = func->next;
1093 
1094 		if (func->device == device)
1095 			found++;
1096 
1097 		if (found == index)
1098 			return func;
1099 	}
1100 
1101 	return NULL;
1102 }
1103 
1104 
1105 /* DJZ: I don't think is_bridge will work as is.
1106  * FIXME */
1107 static int is_bridge(struct pci_func * func)
1108 {
1109 	/* Check the header type */
1110 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1111 		return 1;
1112 	else
1113 		return 0;
1114 }
1115 
1116 
1117 /**
1118  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1119  * @ctrl: controller to change frequency/mode for.
1120  * @adapter_speed: the speed of the adapter we want to match.
1121  * @hp_slot: the slot number where the adapter is installed.
1122  *
1123  * Returns %0 if we successfully change frequency and/or mode to match the
1124  * adapter speed.
1125  */
1126 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1127 {
1128 	struct slot *slot;
1129 	u8 reg;
1130 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1131 	u16 reg16;
1132 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1133 
1134 	if (ctrl->speed == adapter_speed)
1135 		return 0;
1136 
1137 	/* We don't allow freq/mode changes if we find another adapter running
1138 	 * in another slot on this controller */
1139 	for(slot = ctrl->slot; slot; slot = slot->next) {
1140 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1141 			continue;
1142 		if (!slot->hotplug_slot || !slot->hotplug_slot->info)
1143 			continue;
1144 		if (slot->hotplug_slot->info->adapter_status == 0)
1145 			continue;
1146 		/* If another adapter is running on the same segment but at a
1147 		 * lower speed/mode, we allow the new adapter to function at
1148 		 * this rate if supported */
1149 		if (ctrl->speed < adapter_speed)
1150 			return 0;
1151 
1152 		return 1;
1153 	}
1154 
1155 	/* If the controller doesn't support freq/mode changes and the
1156 	 * controller is running at a higher mode, we bail */
1157 	if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1158 		return 1;
1159 
1160 	/* But we allow the adapter to run at a lower rate if possible */
1161 	if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1162 		return 0;
1163 
1164 	/* We try to set the max speed supported by both the adapter and
1165 	 * controller */
1166 	if (ctrl->speed_capability < adapter_speed) {
1167 		if (ctrl->speed == ctrl->speed_capability)
1168 			return 0;
1169 		adapter_speed = ctrl->speed_capability;
1170 	}
1171 
1172 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1173 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1174 
1175 	set_SOGO(ctrl);
1176 	wait_for_ctrl_irq(ctrl);
1177 
1178 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1179 		reg = 0xF5;
1180 	else
1181 		reg = 0xF4;
1182 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1183 
1184 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1185 	reg16 &= ~0x000F;
1186 	switch(adapter_speed) {
1187 		case(PCI_SPEED_133MHz_PCIX):
1188 			reg = 0x75;
1189 			reg16 |= 0xB;
1190 			break;
1191 		case(PCI_SPEED_100MHz_PCIX):
1192 			reg = 0x74;
1193 			reg16 |= 0xA;
1194 			break;
1195 		case(PCI_SPEED_66MHz_PCIX):
1196 			reg = 0x73;
1197 			reg16 |= 0x9;
1198 			break;
1199 		case(PCI_SPEED_66MHz):
1200 			reg = 0x73;
1201 			reg16 |= 0x1;
1202 			break;
1203 		default: /* 33MHz PCI 2.2 */
1204 			reg = 0x71;
1205 			break;
1206 
1207 	}
1208 	reg16 |= 0xB << 12;
1209 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1210 
1211 	mdelay(5);
1212 
1213 	/* Reenable interrupts */
1214 	writel(0, ctrl->hpc_reg + INT_MASK);
1215 
1216 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1217 
1218 	/* Restart state machine */
1219 	reg = ~0xF;
1220 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1221 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1222 
1223 	/* Only if mode change...*/
1224 	if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1225 		((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1226 			set_SOGO(ctrl);
1227 
1228 	wait_for_ctrl_irq(ctrl);
1229 	mdelay(1100);
1230 
1231 	/* Restore LED/Slot state */
1232 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1233 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1234 
1235 	set_SOGO(ctrl);
1236 	wait_for_ctrl_irq(ctrl);
1237 
1238 	ctrl->speed = adapter_speed;
1239 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1240 
1241 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1242 			slot->number);
1243 	return 0;
1244 }
1245 
1246 /* the following routines constitute the bulk of the
1247    hotplug controller logic
1248  */
1249 
1250 
1251 /**
1252  * board_replaced - Called after a board has been replaced in the system.
1253  * @func: PCI device/function information
1254  * @ctrl: hotplug controller
1255  *
1256  * This is only used if we don't have resources for hot add.
1257  * Turns power on for the board.
1258  * Checks to see if board is the same.
1259  * If board is same, reconfigures it.
1260  * If board isn't same, turns it back off.
1261  */
1262 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1263 {
1264 	u8 hp_slot;
1265 	u8 temp_byte;
1266 	u8 adapter_speed;
1267 	u32 rc = 0;
1268 
1269 	hp_slot = func->device - ctrl->slot_device_offset;
1270 
1271 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1272 		/**********************************
1273 		 * The switch is open.
1274 		 **********************************/
1275 		rc = INTERLOCK_OPEN;
1276 	} else if (is_slot_enabled (ctrl, hp_slot)) {
1277 		/**********************************
1278 		 * The board is already on
1279 		 **********************************/
1280 		rc = CARD_FUNCTIONING;
1281 	} else {
1282 		mutex_lock(&ctrl->crit_sect);
1283 
1284 		/* turn on board without attaching to the bus */
1285 		enable_slot_power (ctrl, hp_slot);
1286 
1287 		set_SOGO(ctrl);
1288 
1289 		/* Wait for SOBS to be unset */
1290 		wait_for_ctrl_irq (ctrl);
1291 
1292 		/* Change bits in slot power register to force another shift out
1293 		 * NOTE: this is to work around the timer bug */
1294 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1295 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1296 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1297 
1298 		set_SOGO(ctrl);
1299 
1300 		/* Wait for SOBS to be unset */
1301 		wait_for_ctrl_irq (ctrl);
1302 
1303 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1304 		if (ctrl->speed != adapter_speed)
1305 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1306 				rc = WRONG_BUS_FREQUENCY;
1307 
1308 		/* turn off board without attaching to the bus */
1309 		disable_slot_power (ctrl, hp_slot);
1310 
1311 		set_SOGO(ctrl);
1312 
1313 		/* Wait for SOBS to be unset */
1314 		wait_for_ctrl_irq (ctrl);
1315 
1316 		mutex_unlock(&ctrl->crit_sect);
1317 
1318 		if (rc)
1319 			return rc;
1320 
1321 		mutex_lock(&ctrl->crit_sect);
1322 
1323 		slot_enable (ctrl, hp_slot);
1324 		green_LED_blink (ctrl, hp_slot);
1325 
1326 		amber_LED_off (ctrl, hp_slot);
1327 
1328 		set_SOGO(ctrl);
1329 
1330 		/* Wait for SOBS to be unset */
1331 		wait_for_ctrl_irq (ctrl);
1332 
1333 		mutex_unlock(&ctrl->crit_sect);
1334 
1335 		/* Wait for ~1 second because of hot plug spec */
1336 		long_delay(1*HZ);
1337 
1338 		/* Check for a power fault */
1339 		if (func->status == 0xFF) {
1340 			/* power fault occurred, but it was benign */
1341 			rc = POWER_FAILURE;
1342 			func->status = 0;
1343 		} else
1344 			rc = cpqhp_valid_replace(ctrl, func);
1345 
1346 		if (!rc) {
1347 			/* It must be the same board */
1348 
1349 			rc = cpqhp_configure_board(ctrl, func);
1350 
1351 			/* If configuration fails, turn it off
1352 			 * Get slot won't work for devices behind
1353 			 * bridges, but in this case it will always be
1354 			 * called for the "base" bus/dev/func of an
1355 			 * adapter. */
1356 
1357 			mutex_lock(&ctrl->crit_sect);
1358 
1359 			amber_LED_on (ctrl, hp_slot);
1360 			green_LED_off (ctrl, hp_slot);
1361 			slot_disable (ctrl, hp_slot);
1362 
1363 			set_SOGO(ctrl);
1364 
1365 			/* Wait for SOBS to be unset */
1366 			wait_for_ctrl_irq (ctrl);
1367 
1368 			mutex_unlock(&ctrl->crit_sect);
1369 
1370 			if (rc)
1371 				return rc;
1372 			else
1373 				return 1;
1374 
1375 		} else {
1376 			/* Something is wrong
1377 
1378 			 * Get slot won't work for devices behind bridges, but
1379 			 * in this case it will always be called for the "base"
1380 			 * bus/dev/func of an adapter. */
1381 
1382 			mutex_lock(&ctrl->crit_sect);
1383 
1384 			amber_LED_on (ctrl, hp_slot);
1385 			green_LED_off (ctrl, hp_slot);
1386 			slot_disable (ctrl, hp_slot);
1387 
1388 			set_SOGO(ctrl);
1389 
1390 			/* Wait for SOBS to be unset */
1391 			wait_for_ctrl_irq (ctrl);
1392 
1393 			mutex_unlock(&ctrl->crit_sect);
1394 		}
1395 
1396 	}
1397 	return rc;
1398 
1399 }
1400 
1401 
1402 /**
1403  * board_added - Called after a board has been added to the system.
1404  * @func: PCI device/function info
1405  * @ctrl: hotplug controller
1406  *
1407  * Turns power on for the board.
1408  * Configures board.
1409  */
1410 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1411 {
1412 	u8 hp_slot;
1413 	u8 temp_byte;
1414 	u8 adapter_speed;
1415 	int index;
1416 	u32 temp_register = 0xFFFFFFFF;
1417 	u32 rc = 0;
1418 	struct pci_func *new_slot = NULL;
1419 	struct slot *p_slot;
1420 	struct resource_lists res_lists;
1421 
1422 	hp_slot = func->device - ctrl->slot_device_offset;
1423 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1424 	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1425 
1426 	mutex_lock(&ctrl->crit_sect);
1427 
1428 	/* turn on board without attaching to the bus */
1429 	enable_slot_power(ctrl, hp_slot);
1430 
1431 	set_SOGO(ctrl);
1432 
1433 	/* Wait for SOBS to be unset */
1434 	wait_for_ctrl_irq (ctrl);
1435 
1436 	/* Change bits in slot power register to force another shift out
1437 	 * NOTE: this is to work around the timer bug */
1438 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1439 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1440 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1441 
1442 	set_SOGO(ctrl);
1443 
1444 	/* Wait for SOBS to be unset */
1445 	wait_for_ctrl_irq (ctrl);
1446 
1447 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1448 	if (ctrl->speed != adapter_speed)
1449 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1450 			rc = WRONG_BUS_FREQUENCY;
1451 
1452 	/* turn off board without attaching to the bus */
1453 	disable_slot_power (ctrl, hp_slot);
1454 
1455 	set_SOGO(ctrl);
1456 
1457 	/* Wait for SOBS to be unset */
1458 	wait_for_ctrl_irq(ctrl);
1459 
1460 	mutex_unlock(&ctrl->crit_sect);
1461 
1462 	if (rc)
1463 		return rc;
1464 
1465 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1466 
1467 	/* turn on board and blink green LED */
1468 
1469 	dbg("%s: before down\n", __func__);
1470 	mutex_lock(&ctrl->crit_sect);
1471 	dbg("%s: after down\n", __func__);
1472 
1473 	dbg("%s: before slot_enable\n", __func__);
1474 	slot_enable (ctrl, hp_slot);
1475 
1476 	dbg("%s: before green_LED_blink\n", __func__);
1477 	green_LED_blink (ctrl, hp_slot);
1478 
1479 	dbg("%s: before amber_LED_blink\n", __func__);
1480 	amber_LED_off (ctrl, hp_slot);
1481 
1482 	dbg("%s: before set_SOGO\n", __func__);
1483 	set_SOGO(ctrl);
1484 
1485 	/* Wait for SOBS to be unset */
1486 	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1487 	wait_for_ctrl_irq (ctrl);
1488 	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1489 
1490 	dbg("%s: before up\n", __func__);
1491 	mutex_unlock(&ctrl->crit_sect);
1492 	dbg("%s: after up\n", __func__);
1493 
1494 	/* Wait for ~1 second because of hot plug spec */
1495 	dbg("%s: before long_delay\n", __func__);
1496 	long_delay(1*HZ);
1497 	dbg("%s: after long_delay\n", __func__);
1498 
1499 	dbg("%s: func status = %x\n", __func__, func->status);
1500 	/* Check for a power fault */
1501 	if (func->status == 0xFF) {
1502 		/* power fault occurred, but it was benign */
1503 		temp_register = 0xFFFFFFFF;
1504 		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1505 		rc = POWER_FAILURE;
1506 		func->status = 0;
1507 	} else {
1508 		/* Get vendor/device ID u32 */
1509 		ctrl->pci_bus->number = func->bus;
1510 		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1511 		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1512 		dbg("%s: temp_register is %x\n", __func__, temp_register);
1513 
1514 		if (rc != 0) {
1515 			/* Something's wrong here */
1516 			temp_register = 0xFFFFFFFF;
1517 			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1518 		}
1519 		/* Preset return code.  It will be changed later if things go okay. */
1520 		rc = NO_ADAPTER_PRESENT;
1521 	}
1522 
1523 	/* All F's is an empty slot or an invalid board */
1524 	if (temp_register != 0xFFFFFFFF) {	  /* Check for a board in the slot */
1525 		res_lists.io_head = ctrl->io_head;
1526 		res_lists.mem_head = ctrl->mem_head;
1527 		res_lists.p_mem_head = ctrl->p_mem_head;
1528 		res_lists.bus_head = ctrl->bus_head;
1529 		res_lists.irqs = NULL;
1530 
1531 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1532 
1533 		dbg("%s: back from configure_new_device\n", __func__);
1534 		ctrl->io_head = res_lists.io_head;
1535 		ctrl->mem_head = res_lists.mem_head;
1536 		ctrl->p_mem_head = res_lists.p_mem_head;
1537 		ctrl->bus_head = res_lists.bus_head;
1538 
1539 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1540 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1541 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1542 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1543 
1544 		if (rc) {
1545 			mutex_lock(&ctrl->crit_sect);
1546 
1547 			amber_LED_on (ctrl, hp_slot);
1548 			green_LED_off (ctrl, hp_slot);
1549 			slot_disable (ctrl, hp_slot);
1550 
1551 			set_SOGO(ctrl);
1552 
1553 			/* Wait for SOBS to be unset */
1554 			wait_for_ctrl_irq (ctrl);
1555 
1556 			mutex_unlock(&ctrl->crit_sect);
1557 			return rc;
1558 		} else {
1559 			cpqhp_save_slot_config(ctrl, func);
1560 		}
1561 
1562 
1563 		func->status = 0;
1564 		func->switch_save = 0x10;
1565 		func->is_a_board = 0x01;
1566 
1567 		/* next, we will instantiate the linux pci_dev structures (with
1568 		 * appropriate driver notification, if already present) */
1569 		dbg("%s: configure linux pci_dev structure\n", __func__);
1570 		index = 0;
1571 		do {
1572 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1573 			if (new_slot && !new_slot->pci_dev) {
1574 				cpqhp_configure_device(ctrl, new_slot);
1575 			}
1576 		} while (new_slot);
1577 
1578 		mutex_lock(&ctrl->crit_sect);
1579 
1580 		green_LED_on (ctrl, hp_slot);
1581 
1582 		set_SOGO(ctrl);
1583 
1584 		/* Wait for SOBS to be unset */
1585 		wait_for_ctrl_irq (ctrl);
1586 
1587 		mutex_unlock(&ctrl->crit_sect);
1588 	} else {
1589 		mutex_lock(&ctrl->crit_sect);
1590 
1591 		amber_LED_on (ctrl, hp_slot);
1592 		green_LED_off (ctrl, hp_slot);
1593 		slot_disable (ctrl, hp_slot);
1594 
1595 		set_SOGO(ctrl);
1596 
1597 		/* Wait for SOBS to be unset */
1598 		wait_for_ctrl_irq (ctrl);
1599 
1600 		mutex_unlock(&ctrl->crit_sect);
1601 
1602 		return rc;
1603 	}
1604 	return 0;
1605 }
1606 
1607 
1608 /**
1609  * remove_board - Turns off slot and LEDs
1610  * @func: PCI device/function info
1611  * @replace_flag: whether replacing or adding a new device
1612  * @ctrl: target controller
1613  */
1614 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1615 {
1616 	int index;
1617 	u8 skip = 0;
1618 	u8 device;
1619 	u8 hp_slot;
1620 	u8 temp_byte;
1621 	u32 rc;
1622 	struct resource_lists res_lists;
1623 	struct pci_func *temp_func;
1624 
1625 	if (cpqhp_unconfigure_device(func))
1626 		return 1;
1627 
1628 	device = func->device;
1629 
1630 	hp_slot = func->device - ctrl->slot_device_offset;
1631 	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1632 
1633 	/* When we get here, it is safe to change base address registers.
1634 	 * We will attempt to save the base address register lengths */
1635 	if (replace_flag || !ctrl->add_support)
1636 		rc = cpqhp_save_base_addr_length(ctrl, func);
1637 	else if (!func->bus_head && !func->mem_head &&
1638 		 !func->p_mem_head && !func->io_head) {
1639 		/* Here we check to see if we've saved any of the board's
1640 		 * resources already.  If so, we'll skip the attempt to
1641 		 * determine what's being used. */
1642 		index = 0;
1643 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1644 		while (temp_func) {
1645 			if (temp_func->bus_head || temp_func->mem_head
1646 			    || temp_func->p_mem_head || temp_func->io_head) {
1647 				skip = 1;
1648 				break;
1649 			}
1650 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1651 		}
1652 
1653 		if (!skip)
1654 			rc = cpqhp_save_used_resources(ctrl, func);
1655 	}
1656 	/* Change status to shutdown */
1657 	if (func->is_a_board)
1658 		func->status = 0x01;
1659 	func->configured = 0;
1660 
1661 	mutex_lock(&ctrl->crit_sect);
1662 
1663 	green_LED_off (ctrl, hp_slot);
1664 	slot_disable (ctrl, hp_slot);
1665 
1666 	set_SOGO(ctrl);
1667 
1668 	/* turn off SERR for slot */
1669 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1670 	temp_byte &= ~(0x01 << hp_slot);
1671 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1672 
1673 	/* Wait for SOBS to be unset */
1674 	wait_for_ctrl_irq (ctrl);
1675 
1676 	mutex_unlock(&ctrl->crit_sect);
1677 
1678 	if (!replace_flag && ctrl->add_support) {
1679 		while (func) {
1680 			res_lists.io_head = ctrl->io_head;
1681 			res_lists.mem_head = ctrl->mem_head;
1682 			res_lists.p_mem_head = ctrl->p_mem_head;
1683 			res_lists.bus_head = ctrl->bus_head;
1684 
1685 			cpqhp_return_board_resources(func, &res_lists);
1686 
1687 			ctrl->io_head = res_lists.io_head;
1688 			ctrl->mem_head = res_lists.mem_head;
1689 			ctrl->p_mem_head = res_lists.p_mem_head;
1690 			ctrl->bus_head = res_lists.bus_head;
1691 
1692 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1693 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1694 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1695 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1696 
1697 			if (is_bridge(func)) {
1698 				bridge_slot_remove(func);
1699 			} else
1700 				slot_remove(func);
1701 
1702 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1703 		}
1704 
1705 		/* Setup slot structure with entry for empty slot */
1706 		func = cpqhp_slot_create(ctrl->bus);
1707 
1708 		if (func == NULL)
1709 			return 1;
1710 
1711 		func->bus = ctrl->bus;
1712 		func->device = device;
1713 		func->function = 0;
1714 		func->configured = 0;
1715 		func->switch_save = 0x10;
1716 		func->is_a_board = 0;
1717 		func->p_task_event = NULL;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static void pushbutton_helper_thread(unsigned long data)
1724 {
1725 	pushbutton_pending = data;
1726 	wake_up_process(cpqhp_event_thread);
1727 }
1728 
1729 
1730 /* this is the main worker thread */
1731 static int event_thread(void* data)
1732 {
1733 	struct controller *ctrl;
1734 
1735 	while (1) {
1736 		dbg("!!!!event_thread sleeping\n");
1737 		set_current_state(TASK_INTERRUPTIBLE);
1738 		schedule();
1739 
1740 		if (kthread_should_stop())
1741 			break;
1742 		/* Do stuff here */
1743 		if (pushbutton_pending)
1744 			cpqhp_pushbutton_thread(pushbutton_pending);
1745 		else
1746 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1747 				interrupt_event_handler(ctrl);
1748 	}
1749 	dbg("event_thread signals exit\n");
1750 	return 0;
1751 }
1752 
1753 int cpqhp_event_start_thread(void)
1754 {
1755 	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1756 	if (IS_ERR(cpqhp_event_thread)) {
1757 		err ("Can't start up our event thread\n");
1758 		return PTR_ERR(cpqhp_event_thread);
1759 	}
1760 
1761 	return 0;
1762 }
1763 
1764 
1765 void cpqhp_event_stop_thread(void)
1766 {
1767 	kthread_stop(cpqhp_event_thread);
1768 }
1769 
1770 
1771 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1772 {
1773 	struct hotplug_slot_info *info;
1774 	int result;
1775 
1776 	info = kmalloc(sizeof(*info), GFP_KERNEL);
1777 	if (!info)
1778 		return -ENOMEM;
1779 
1780 	info->power_status = get_slot_enabled(ctrl, slot);
1781 	info->attention_status = cpq_get_attention_status(ctrl, slot);
1782 	info->latch_status = cpq_get_latch_status(ctrl, slot);
1783 	info->adapter_status = get_presence_status(ctrl, slot);
1784 	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1785 	kfree (info);
1786 	return result;
1787 }
1788 
1789 static void interrupt_event_handler(struct controller *ctrl)
1790 {
1791 	int loop = 0;
1792 	int change = 1;
1793 	struct pci_func *func;
1794 	u8 hp_slot;
1795 	struct slot *p_slot;
1796 
1797 	while (change) {
1798 		change = 0;
1799 
1800 		for (loop = 0; loop < 10; loop++) {
1801 			/* dbg("loop %d\n", loop); */
1802 			if (ctrl->event_queue[loop].event_type != 0) {
1803 				hp_slot = ctrl->event_queue[loop].hp_slot;
1804 
1805 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1806 				if (!func)
1807 					return;
1808 
1809 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1810 				if (!p_slot)
1811 					return;
1812 
1813 				dbg("hp_slot %d, func %p, p_slot %p\n",
1814 				    hp_slot, func, p_slot);
1815 
1816 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1817 					dbg("button pressed\n");
1818 				} else if (ctrl->event_queue[loop].event_type ==
1819 					   INT_BUTTON_CANCEL) {
1820 					dbg("button cancel\n");
1821 					del_timer(&p_slot->task_event);
1822 
1823 					mutex_lock(&ctrl->crit_sect);
1824 
1825 					if (p_slot->state == BLINKINGOFF_STATE) {
1826 						/* slot is on */
1827 						dbg("turn on green LED\n");
1828 						green_LED_on (ctrl, hp_slot);
1829 					} else if (p_slot->state == BLINKINGON_STATE) {
1830 						/* slot is off */
1831 						dbg("turn off green LED\n");
1832 						green_LED_off (ctrl, hp_slot);
1833 					}
1834 
1835 					info(msg_button_cancel, p_slot->number);
1836 
1837 					p_slot->state = STATIC_STATE;
1838 
1839 					amber_LED_off (ctrl, hp_slot);
1840 
1841 					set_SOGO(ctrl);
1842 
1843 					/* Wait for SOBS to be unset */
1844 					wait_for_ctrl_irq (ctrl);
1845 
1846 					mutex_unlock(&ctrl->crit_sect);
1847 				}
1848 				/*** button Released (No action on press...) */
1849 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1850 					dbg("button release\n");
1851 
1852 					if (is_slot_enabled (ctrl, hp_slot)) {
1853 						dbg("slot is on\n");
1854 						p_slot->state = BLINKINGOFF_STATE;
1855 						info(msg_button_off, p_slot->number);
1856 					} else {
1857 						dbg("slot is off\n");
1858 						p_slot->state = BLINKINGON_STATE;
1859 						info(msg_button_on, p_slot->number);
1860 					}
1861 					mutex_lock(&ctrl->crit_sect);
1862 
1863 					dbg("blink green LED and turn off amber\n");
1864 
1865 					amber_LED_off (ctrl, hp_slot);
1866 					green_LED_blink (ctrl, hp_slot);
1867 
1868 					set_SOGO(ctrl);
1869 
1870 					/* Wait for SOBS to be unset */
1871 					wait_for_ctrl_irq (ctrl);
1872 
1873 					mutex_unlock(&ctrl->crit_sect);
1874 					init_timer(&p_slot->task_event);
1875 					p_slot->hp_slot = hp_slot;
1876 					p_slot->ctrl = ctrl;
1877 /*					p_slot->physical_slot = physical_slot; */
1878 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1879 					p_slot->task_event.function = pushbutton_helper_thread;
1880 					p_slot->task_event.data = (u32) p_slot;
1881 
1882 					dbg("add_timer p_slot = %p\n", p_slot);
1883 					add_timer(&p_slot->task_event);
1884 				}
1885 				/***********POWER FAULT */
1886 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1887 					dbg("power fault\n");
1888 				} else {
1889 					/* refresh notification */
1890 					if (p_slot)
1891 						update_slot_info(ctrl, p_slot);
1892 				}
1893 
1894 				ctrl->event_queue[loop].event_type = 0;
1895 
1896 				change = 1;
1897 			}
1898 		}		/* End of FOR loop */
1899 	}
1900 
1901 	return;
1902 }
1903 
1904 
1905 /**
1906  * cpqhp_pushbutton_thread - handle pushbutton events
1907  * @slot: target slot (struct)
1908  *
1909  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1910  * Handles all pending events and exits.
1911  */
1912 void cpqhp_pushbutton_thread(unsigned long slot)
1913 {
1914 	u8 hp_slot;
1915 	u8 device;
1916 	struct pci_func *func;
1917 	struct slot *p_slot = (struct slot *) slot;
1918 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1919 
1920 	pushbutton_pending = 0;
1921 	hp_slot = p_slot->hp_slot;
1922 
1923 	device = p_slot->device;
1924 
1925 	if (is_slot_enabled(ctrl, hp_slot)) {
1926 		p_slot->state = POWEROFF_STATE;
1927 		/* power Down board */
1928 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1929 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1930 		if (!func) {
1931 			dbg("Error! func NULL in %s\n", __func__);
1932 			return ;
1933 		}
1934 
1935 		if (cpqhp_process_SS(ctrl, func) != 0) {
1936 			amber_LED_on(ctrl, hp_slot);
1937 			green_LED_on(ctrl, hp_slot);
1938 
1939 			set_SOGO(ctrl);
1940 
1941 			/* Wait for SOBS to be unset */
1942 			wait_for_ctrl_irq(ctrl);
1943 		}
1944 
1945 		p_slot->state = STATIC_STATE;
1946 	} else {
1947 		p_slot->state = POWERON_STATE;
1948 		/* slot is off */
1949 
1950 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1951 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1952 		if (!func) {
1953 			dbg("Error! func NULL in %s\n", __func__);
1954 			return ;
1955 		}
1956 
1957 		if (ctrl != NULL) {
1958 			if (cpqhp_process_SI(ctrl, func) != 0) {
1959 				amber_LED_on(ctrl, hp_slot);
1960 				green_LED_off(ctrl, hp_slot);
1961 
1962 				set_SOGO(ctrl);
1963 
1964 				/* Wait for SOBS to be unset */
1965 				wait_for_ctrl_irq (ctrl);
1966 			}
1967 		}
1968 
1969 		p_slot->state = STATIC_STATE;
1970 	}
1971 
1972 	return;
1973 }
1974 
1975 
1976 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1977 {
1978 	u8 device, hp_slot;
1979 	u16 temp_word;
1980 	u32 tempdword;
1981 	int rc;
1982 	struct slot* p_slot;
1983 	int physical_slot = 0;
1984 
1985 	tempdword = 0;
1986 
1987 	device = func->device;
1988 	hp_slot = device - ctrl->slot_device_offset;
1989 	p_slot = cpqhp_find_slot(ctrl, device);
1990 	if (p_slot)
1991 		physical_slot = p_slot->number;
1992 
1993 	/* Check to see if the interlock is closed */
1994 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1995 
1996 	if (tempdword & (0x01 << hp_slot)) {
1997 		return 1;
1998 	}
1999 
2000 	if (func->is_a_board) {
2001 		rc = board_replaced(func, ctrl);
2002 	} else {
2003 		/* add board */
2004 		slot_remove(func);
2005 
2006 		func = cpqhp_slot_create(ctrl->bus);
2007 		if (func == NULL)
2008 			return 1;
2009 
2010 		func->bus = ctrl->bus;
2011 		func->device = device;
2012 		func->function = 0;
2013 		func->configured = 0;
2014 		func->is_a_board = 1;
2015 
2016 		/* We have to save the presence info for these slots */
2017 		temp_word = ctrl->ctrl_int_comp >> 16;
2018 		func->presence_save = (temp_word >> hp_slot) & 0x01;
2019 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2020 
2021 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2022 			func->switch_save = 0;
2023 		} else {
2024 			func->switch_save = 0x10;
2025 		}
2026 
2027 		rc = board_added(func, ctrl);
2028 		if (rc) {
2029 			if (is_bridge(func)) {
2030 				bridge_slot_remove(func);
2031 			} else
2032 				slot_remove(func);
2033 
2034 			/* Setup slot structure with entry for empty slot */
2035 			func = cpqhp_slot_create(ctrl->bus);
2036 
2037 			if (func == NULL)
2038 				return 1;
2039 
2040 			func->bus = ctrl->bus;
2041 			func->device = device;
2042 			func->function = 0;
2043 			func->configured = 0;
2044 			func->is_a_board = 0;
2045 
2046 			/* We have to save the presence info for these slots */
2047 			temp_word = ctrl->ctrl_int_comp >> 16;
2048 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2049 			func->presence_save |=
2050 			(temp_word >> (hp_slot + 7)) & 0x02;
2051 
2052 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2053 				func->switch_save = 0;
2054 			} else {
2055 				func->switch_save = 0x10;
2056 			}
2057 		}
2058 	}
2059 
2060 	if (rc) {
2061 		dbg("%s: rc = %d\n", __func__, rc);
2062 	}
2063 
2064 	if (p_slot)
2065 		update_slot_info(ctrl, p_slot);
2066 
2067 	return rc;
2068 }
2069 
2070 
2071 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2072 {
2073 	u8 device, class_code, header_type, BCR;
2074 	u8 index = 0;
2075 	u8 replace_flag;
2076 	u32 rc = 0;
2077 	unsigned int devfn;
2078 	struct slot* p_slot;
2079 	struct pci_bus *pci_bus = ctrl->pci_bus;
2080 	int physical_slot=0;
2081 
2082 	device = func->device;
2083 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2084 	p_slot = cpqhp_find_slot(ctrl, device);
2085 	if (p_slot) {
2086 		physical_slot = p_slot->number;
2087 	}
2088 
2089 	/* Make sure there are no video controllers here */
2090 	while (func && !rc) {
2091 		pci_bus->number = func->bus;
2092 		devfn = PCI_DEVFN(func->device, func->function);
2093 
2094 		/* Check the Class Code */
2095 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2096 		if (rc)
2097 			return rc;
2098 
2099 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2100 			/* Display/Video adapter (not supported) */
2101 			rc = REMOVE_NOT_SUPPORTED;
2102 		} else {
2103 			/* See if it's a bridge */
2104 			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2105 			if (rc)
2106 				return rc;
2107 
2108 			/* If it's a bridge, check the VGA Enable bit */
2109 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2110 				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2111 				if (rc)
2112 					return rc;
2113 
2114 				/* If the VGA Enable bit is set, remove isn't
2115 				 * supported */
2116 				if (BCR & PCI_BRIDGE_CTL_VGA) {
2117 					rc = REMOVE_NOT_SUPPORTED;
2118 				}
2119 			}
2120 		}
2121 
2122 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2123 	}
2124 
2125 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2126 	if ((func != NULL) && !rc) {
2127 		/* FIXME: Replace flag should be passed into process_SS */
2128 		replace_flag = !(ctrl->add_support);
2129 		rc = remove_board(func, replace_flag, ctrl);
2130 	} else if (!rc) {
2131 		rc = 1;
2132 	}
2133 
2134 	if (p_slot)
2135 		update_slot_info(ctrl, p_slot);
2136 
2137 	return rc;
2138 }
2139 
2140 /**
2141  * switch_leds - switch the leds, go from one site to the other.
2142  * @ctrl: controller to use
2143  * @num_of_slots: number of slots to use
2144  * @work_LED: LED control value
2145  * @direction: 1 to start from the left side, 0 to start right.
2146  */
2147 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2148 			u32 *work_LED, const int direction)
2149 {
2150 	int loop;
2151 
2152 	for (loop = 0; loop < num_of_slots; loop++) {
2153 		if (direction)
2154 			*work_LED = *work_LED >> 1;
2155 		else
2156 			*work_LED = *work_LED << 1;
2157 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2158 
2159 		set_SOGO(ctrl);
2160 
2161 		/* Wait for SOGO interrupt */
2162 		wait_for_ctrl_irq(ctrl);
2163 
2164 		/* Get ready for next iteration */
2165 		long_delay((2*HZ)/10);
2166 	}
2167 }
2168 
2169 /**
2170  * cpqhp_hardware_test - runs hardware tests
2171  * @ctrl: target controller
2172  * @test_num: the number written to the "test" file in sysfs.
2173  *
2174  * For hot plug ctrl folks to play with.
2175  */
2176 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2177 {
2178 	u32 save_LED;
2179 	u32 work_LED;
2180 	int loop;
2181 	int num_of_slots;
2182 
2183 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2184 
2185 	switch (test_num) {
2186 		case 1:
2187 			/* Do stuff here! */
2188 
2189 			/* Do that funky LED thing */
2190 			/* so we can restore them later */
2191 			save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2192 			work_LED = 0x01010101;
2193 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2194 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2195 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2196 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2197 
2198 			work_LED = 0x01010000;
2199 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2200 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2201 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2202 			work_LED = 0x00000101;
2203 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2204 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2205 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2206 
2207 			work_LED = 0x01010000;
2208 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2209 			for (loop = 0; loop < num_of_slots; loop++) {
2210 				set_SOGO(ctrl);
2211 
2212 				/* Wait for SOGO interrupt */
2213 				wait_for_ctrl_irq (ctrl);
2214 
2215 				/* Get ready for next iteration */
2216 				long_delay((3*HZ)/10);
2217 				work_LED = work_LED >> 16;
2218 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2219 
2220 				set_SOGO(ctrl);
2221 
2222 				/* Wait for SOGO interrupt */
2223 				wait_for_ctrl_irq (ctrl);
2224 
2225 				/* Get ready for next iteration */
2226 				long_delay((3*HZ)/10);
2227 				work_LED = work_LED << 16;
2228 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2229 				work_LED = work_LED << 1;
2230 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2231 			}
2232 
2233 			/* put it back the way it was */
2234 			writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2235 
2236 			set_SOGO(ctrl);
2237 
2238 			/* Wait for SOBS to be unset */
2239 			wait_for_ctrl_irq (ctrl);
2240 			break;
2241 		case 2:
2242 			/* Do other stuff here! */
2243 			break;
2244 		case 3:
2245 			/* and more... */
2246 			break;
2247 	}
2248 	return 0;
2249 }
2250 
2251 
2252 /**
2253  * configure_new_device - Configures the PCI header information of one board.
2254  * @ctrl: pointer to controller structure
2255  * @func: pointer to function structure
2256  * @behind_bridge: 1 if this is a recursive call, 0 if not
2257  * @resources: pointer to set of resource lists
2258  *
2259  * Returns 0 if success.
2260  */
2261 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2262 				 u8 behind_bridge, struct resource_lists * resources)
2263 {
2264 	u8 temp_byte, function, max_functions, stop_it;
2265 	int rc;
2266 	u32 ID;
2267 	struct pci_func *new_slot;
2268 	int index;
2269 
2270 	new_slot = func;
2271 
2272 	dbg("%s\n", __func__);
2273 	/* Check for Multi-function device */
2274 	ctrl->pci_bus->number = func->bus;
2275 	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2276 	if (rc) {
2277 		dbg("%s: rc = %d\n", __func__, rc);
2278 		return rc;
2279 	}
2280 
2281 	if (temp_byte & 0x80)	/* Multi-function device */
2282 		max_functions = 8;
2283 	else
2284 		max_functions = 1;
2285 
2286 	function = 0;
2287 
2288 	do {
2289 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2290 
2291 		if (rc) {
2292 			dbg("configure_new_function failed %d\n",rc);
2293 			index = 0;
2294 
2295 			while (new_slot) {
2296 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2297 
2298 				if (new_slot)
2299 					cpqhp_return_board_resources(new_slot, resources);
2300 			}
2301 
2302 			return rc;
2303 		}
2304 
2305 		function++;
2306 
2307 		stop_it = 0;
2308 
2309 		/* The following loop skips to the next present function
2310 		 * and creates a board structure */
2311 
2312 		while ((function < max_functions) && (!stop_it)) {
2313 			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2314 
2315 			if (ID == 0xFFFFFFFF) {	  /* There's nothing there. */
2316 				function++;
2317 			} else {  /* There's something there */
2318 				/* Setup slot structure. */
2319 				new_slot = cpqhp_slot_create(func->bus);
2320 
2321 				if (new_slot == NULL)
2322 					return 1;
2323 
2324 				new_slot->bus = func->bus;
2325 				new_slot->device = func->device;
2326 				new_slot->function = function;
2327 				new_slot->is_a_board = 1;
2328 				new_slot->status = 0;
2329 
2330 				stop_it++;
2331 			}
2332 		}
2333 
2334 	} while (function < max_functions);
2335 	dbg("returning from configure_new_device\n");
2336 
2337 	return 0;
2338 }
2339 
2340 
2341 /*
2342   Configuration logic that involves the hotplug data structures and
2343   their bookkeeping
2344  */
2345 
2346 
2347 /**
2348  * configure_new_function - Configures the PCI header information of one device
2349  * @ctrl: pointer to controller structure
2350  * @func: pointer to function structure
2351  * @behind_bridge: 1 if this is a recursive call, 0 if not
2352  * @resources: pointer to set of resource lists
2353  *
2354  * Calls itself recursively for bridged devices.
2355  * Returns 0 if success.
2356  */
2357 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2358 				   u8 behind_bridge,
2359 				   struct resource_lists *resources)
2360 {
2361 	int cloop;
2362 	u8 IRQ = 0;
2363 	u8 temp_byte;
2364 	u8 device;
2365 	u8 class_code;
2366 	u16 command;
2367 	u16 temp_word;
2368 	u32 temp_dword;
2369 	u32 rc;
2370 	u32 temp_register;
2371 	u32 base;
2372 	u32 ID;
2373 	unsigned int devfn;
2374 	struct pci_resource *mem_node;
2375 	struct pci_resource *p_mem_node;
2376 	struct pci_resource *io_node;
2377 	struct pci_resource *bus_node;
2378 	struct pci_resource *hold_mem_node;
2379 	struct pci_resource *hold_p_mem_node;
2380 	struct pci_resource *hold_IO_node;
2381 	struct pci_resource *hold_bus_node;
2382 	struct irq_mapping irqs;
2383 	struct pci_func *new_slot;
2384 	struct pci_bus *pci_bus;
2385 	struct resource_lists temp_resources;
2386 
2387 	pci_bus = ctrl->pci_bus;
2388 	pci_bus->number = func->bus;
2389 	devfn = PCI_DEVFN(func->device, func->function);
2390 
2391 	/* Check for Bridge */
2392 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2393 	if (rc)
2394 		return rc;
2395 
2396 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2397 		/* set Primary bus */
2398 		dbg("set Primary bus = %d\n", func->bus);
2399 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2400 		if (rc)
2401 			return rc;
2402 
2403 		/* find range of busses to use */
2404 		dbg("find ranges of buses to use\n");
2405 		bus_node = get_max_resource(&(resources->bus_head), 1);
2406 
2407 		/* If we don't have any busses to allocate, we can't continue */
2408 		if (!bus_node)
2409 			return -ENOMEM;
2410 
2411 		/* set Secondary bus */
2412 		temp_byte = bus_node->base;
2413 		dbg("set Secondary bus = %d\n", bus_node->base);
2414 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2415 		if (rc)
2416 			return rc;
2417 
2418 		/* set subordinate bus */
2419 		temp_byte = bus_node->base + bus_node->length - 1;
2420 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2421 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2422 		if (rc)
2423 			return rc;
2424 
2425 		/* set subordinate Latency Timer and base Latency Timer */
2426 		temp_byte = 0x40;
2427 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2428 		if (rc)
2429 			return rc;
2430 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2431 		if (rc)
2432 			return rc;
2433 
2434 		/* set Cache Line size */
2435 		temp_byte = 0x08;
2436 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2437 		if (rc)
2438 			return rc;
2439 
2440 		/* Setup the IO, memory, and prefetchable windows */
2441 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2442 		if (!io_node)
2443 			return -ENOMEM;
2444 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2445 		if (!mem_node)
2446 			return -ENOMEM;
2447 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2448 		if (!p_mem_node)
2449 			return -ENOMEM;
2450 		dbg("Setup the IO, memory, and prefetchable windows\n");
2451 		dbg("io_node\n");
2452 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2453 					io_node->length, io_node->next);
2454 		dbg("mem_node\n");
2455 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2456 					mem_node->length, mem_node->next);
2457 		dbg("p_mem_node\n");
2458 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2459 					p_mem_node->length, p_mem_node->next);
2460 
2461 		/* set up the IRQ info */
2462 		if (!resources->irqs) {
2463 			irqs.barber_pole = 0;
2464 			irqs.interrupt[0] = 0;
2465 			irqs.interrupt[1] = 0;
2466 			irqs.interrupt[2] = 0;
2467 			irqs.interrupt[3] = 0;
2468 			irqs.valid_INT = 0;
2469 		} else {
2470 			irqs.barber_pole = resources->irqs->barber_pole;
2471 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2472 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2473 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2474 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2475 			irqs.valid_INT = resources->irqs->valid_INT;
2476 		}
2477 
2478 		/* set up resource lists that are now aligned on top and bottom
2479 		 * for anything behind the bridge. */
2480 		temp_resources.bus_head = bus_node;
2481 		temp_resources.io_head = io_node;
2482 		temp_resources.mem_head = mem_node;
2483 		temp_resources.p_mem_head = p_mem_node;
2484 		temp_resources.irqs = &irqs;
2485 
2486 		/* Make copies of the nodes we are going to pass down so that
2487 		 * if there is a problem,we can just use these to free resources */
2488 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2489 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2490 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2491 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2492 
2493 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2494 			kfree(hold_bus_node);
2495 			kfree(hold_IO_node);
2496 			kfree(hold_mem_node);
2497 			kfree(hold_p_mem_node);
2498 
2499 			return 1;
2500 		}
2501 
2502 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2503 
2504 		bus_node->base += 1;
2505 		bus_node->length -= 1;
2506 		bus_node->next = NULL;
2507 
2508 		/* If we have IO resources copy them and fill in the bridge's
2509 		 * IO range registers */
2510 		if (io_node) {
2511 			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2512 			io_node->next = NULL;
2513 
2514 			/* set IO base and Limit registers */
2515 			temp_byte = io_node->base >> 8;
2516 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2517 
2518 			temp_byte = (io_node->base + io_node->length - 1) >> 8;
2519 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2520 		} else {
2521 			kfree(hold_IO_node);
2522 			hold_IO_node = NULL;
2523 		}
2524 
2525 		/* If we have memory resources copy them and fill in the
2526 		 * bridge's memory range registers.  Otherwise, fill in the
2527 		 * range registers with values that disable them. */
2528 		if (mem_node) {
2529 			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2530 			mem_node->next = NULL;
2531 
2532 			/* set Mem base and Limit registers */
2533 			temp_word = mem_node->base >> 16;
2534 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2535 
2536 			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2537 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2538 		} else {
2539 			temp_word = 0xFFFF;
2540 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2541 
2542 			temp_word = 0x0000;
2543 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2544 
2545 			kfree(hold_mem_node);
2546 			hold_mem_node = NULL;
2547 		}
2548 
2549 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2550 		p_mem_node->next = NULL;
2551 
2552 		/* set Pre Mem base and Limit registers */
2553 		temp_word = p_mem_node->base >> 16;
2554 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2555 
2556 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2557 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2558 
2559 		/* Adjust this to compensate for extra adjustment in first loop */
2560 		irqs.barber_pole--;
2561 
2562 		rc = 0;
2563 
2564 		/* Here we actually find the devices and configure them */
2565 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2566 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2567 
2568 			ID = 0xFFFFFFFF;
2569 			pci_bus->number = hold_bus_node->base;
2570 			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2571 			pci_bus->number = func->bus;
2572 
2573 			if (ID != 0xFFFFFFFF) {	  /*  device present */
2574 				/* Setup slot structure. */
2575 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2576 
2577 				if (new_slot == NULL) {
2578 					rc = -ENOMEM;
2579 					continue;
2580 				}
2581 
2582 				new_slot->bus = hold_bus_node->base;
2583 				new_slot->device = device;
2584 				new_slot->function = 0;
2585 				new_slot->is_a_board = 1;
2586 				new_slot->status = 0;
2587 
2588 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2589 				dbg("configure_new_device rc=0x%x\n",rc);
2590 			}	/* End of IF (device in slot?) */
2591 		}		/* End of FOR loop */
2592 
2593 		if (rc)
2594 			goto free_and_out;
2595 		/* save the interrupt routing information */
2596 		if (resources->irqs) {
2597 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2598 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2599 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2600 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2601 			resources->irqs->valid_INT = irqs.valid_INT;
2602 		} else if (!behind_bridge) {
2603 			/* We need to hook up the interrupts here */
2604 			for (cloop = 0; cloop < 4; cloop++) {
2605 				if (irqs.valid_INT & (0x01 << cloop)) {
2606 					rc = cpqhp_set_irq(func->bus, func->device,
2607 							   cloop + 1, irqs.interrupt[cloop]);
2608 					if (rc)
2609 						goto free_and_out;
2610 				}
2611 			}	/* end of for loop */
2612 		}
2613 		/* Return unused bus resources
2614 		 * First use the temporary node to store information for
2615 		 * the board */
2616 		if (hold_bus_node && bus_node && temp_resources.bus_head) {
2617 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2618 
2619 			hold_bus_node->next = func->bus_head;
2620 			func->bus_head = hold_bus_node;
2621 
2622 			temp_byte = temp_resources.bus_head->base - 1;
2623 
2624 			/* set subordinate bus */
2625 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2626 
2627 			if (temp_resources.bus_head->length == 0) {
2628 				kfree(temp_resources.bus_head);
2629 				temp_resources.bus_head = NULL;
2630 			} else {
2631 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2632 			}
2633 		}
2634 
2635 		/* If we have IO space available and there is some left,
2636 		 * return the unused portion */
2637 		if (hold_IO_node && temp_resources.io_head) {
2638 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2639 							       &hold_IO_node, 0x1000);
2640 
2641 			/* Check if we were able to split something off */
2642 			if (io_node) {
2643 				hold_IO_node->base = io_node->base + io_node->length;
2644 
2645 				temp_byte = (hold_IO_node->base) >> 8;
2646 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2647 
2648 				return_resource(&(resources->io_head), io_node);
2649 			}
2650 
2651 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2652 
2653 			/* Check if we were able to split something off */
2654 			if (io_node) {
2655 				/* First use the temporary node to store
2656 				 * information for the board */
2657 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2658 
2659 				/* If we used any, add it to the board's list */
2660 				if (hold_IO_node->length) {
2661 					hold_IO_node->next = func->io_head;
2662 					func->io_head = hold_IO_node;
2663 
2664 					temp_byte = (io_node->base - 1) >> 8;
2665 					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2666 
2667 					return_resource(&(resources->io_head), io_node);
2668 				} else {
2669 					/* it doesn't need any IO */
2670 					temp_word = 0x0000;
2671 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2672 
2673 					return_resource(&(resources->io_head), io_node);
2674 					kfree(hold_IO_node);
2675 				}
2676 			} else {
2677 				/* it used most of the range */
2678 				hold_IO_node->next = func->io_head;
2679 				func->io_head = hold_IO_node;
2680 			}
2681 		} else if (hold_IO_node) {
2682 			/* it used the whole range */
2683 			hold_IO_node->next = func->io_head;
2684 			func->io_head = hold_IO_node;
2685 		}
2686 		/* If we have memory space available and there is some left,
2687 		 * return the unused portion */
2688 		if (hold_mem_node && temp_resources.mem_head) {
2689 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2690 								&hold_mem_node, 0x100000);
2691 
2692 			/* Check if we were able to split something off */
2693 			if (mem_node) {
2694 				hold_mem_node->base = mem_node->base + mem_node->length;
2695 
2696 				temp_word = (hold_mem_node->base) >> 16;
2697 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2698 
2699 				return_resource(&(resources->mem_head), mem_node);
2700 			}
2701 
2702 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2703 
2704 			/* Check if we were able to split something off */
2705 			if (mem_node) {
2706 				/* First use the temporary node to store
2707 				 * information for the board */
2708 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2709 
2710 				if (hold_mem_node->length) {
2711 					hold_mem_node->next = func->mem_head;
2712 					func->mem_head = hold_mem_node;
2713 
2714 					/* configure end address */
2715 					temp_word = (mem_node->base - 1) >> 16;
2716 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2717 
2718 					/* Return unused resources to the pool */
2719 					return_resource(&(resources->mem_head), mem_node);
2720 				} else {
2721 					/* it doesn't need any Mem */
2722 					temp_word = 0x0000;
2723 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2724 
2725 					return_resource(&(resources->mem_head), mem_node);
2726 					kfree(hold_mem_node);
2727 				}
2728 			} else {
2729 				/* it used most of the range */
2730 				hold_mem_node->next = func->mem_head;
2731 				func->mem_head = hold_mem_node;
2732 			}
2733 		} else if (hold_mem_node) {
2734 			/* it used the whole range */
2735 			hold_mem_node->next = func->mem_head;
2736 			func->mem_head = hold_mem_node;
2737 		}
2738 		/* If we have prefetchable memory space available and there
2739 		 * is some left at the end, return the unused portion */
2740 		if (hold_p_mem_node && temp_resources.p_mem_head) {
2741 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2742 								  &hold_p_mem_node, 0x100000);
2743 
2744 			/* Check if we were able to split something off */
2745 			if (p_mem_node) {
2746 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2747 
2748 				temp_word = (hold_p_mem_node->base) >> 16;
2749 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2750 
2751 				return_resource(&(resources->p_mem_head), p_mem_node);
2752 			}
2753 
2754 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2755 
2756 			/* Check if we were able to split something off */
2757 			if (p_mem_node) {
2758 				/* First use the temporary node to store
2759 				 * information for the board */
2760 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2761 
2762 				/* If we used any, add it to the board's list */
2763 				if (hold_p_mem_node->length) {
2764 					hold_p_mem_node->next = func->p_mem_head;
2765 					func->p_mem_head = hold_p_mem_node;
2766 
2767 					temp_word = (p_mem_node->base - 1) >> 16;
2768 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2769 
2770 					return_resource(&(resources->p_mem_head), p_mem_node);
2771 				} else {
2772 					/* it doesn't need any PMem */
2773 					temp_word = 0x0000;
2774 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2775 
2776 					return_resource(&(resources->p_mem_head), p_mem_node);
2777 					kfree(hold_p_mem_node);
2778 				}
2779 			} else {
2780 				/* it used the most of the range */
2781 				hold_p_mem_node->next = func->p_mem_head;
2782 				func->p_mem_head = hold_p_mem_node;
2783 			}
2784 		} else if (hold_p_mem_node) {
2785 			/* it used the whole range */
2786 			hold_p_mem_node->next = func->p_mem_head;
2787 			func->p_mem_head = hold_p_mem_node;
2788 		}
2789 		/* We should be configuring an IRQ and the bridge's base address
2790 		 * registers if it needs them.  Although we have never seen such
2791 		 * a device */
2792 
2793 		/* enable card */
2794 		command = 0x0157;	/* = PCI_COMMAND_IO |
2795 					 *   PCI_COMMAND_MEMORY |
2796 					 *   PCI_COMMAND_MASTER |
2797 					 *   PCI_COMMAND_INVALIDATE |
2798 					 *   PCI_COMMAND_PARITY |
2799 					 *   PCI_COMMAND_SERR */
2800 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2801 
2802 		/* set Bridge Control Register */
2803 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2804 					 *   PCI_BRIDGE_CTL_SERR |
2805 					 *   PCI_BRIDGE_CTL_NO_ISA */
2806 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2807 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2808 		/* Standard device */
2809 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2810 
2811 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2812 			/* Display (video) adapter (not supported) */
2813 			return DEVICE_TYPE_NOT_SUPPORTED;
2814 		}
2815 		/* Figure out IO and memory needs */
2816 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2817 			temp_register = 0xFFFFFFFF;
2818 
2819 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2820 			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2821 
2822 			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2823 			dbg("CND: base = 0x%x\n", temp_register);
2824 
2825 			if (temp_register) {	  /* If this register is implemented */
2826 				if ((temp_register & 0x03L) == 0x01) {
2827 					/* Map IO */
2828 
2829 					/* set base = amount of IO space */
2830 					base = temp_register & 0xFFFFFFFC;
2831 					base = ~base + 1;
2832 
2833 					dbg("CND:      length = 0x%x\n", base);
2834 					io_node = get_io_resource(&(resources->io_head), base);
2835 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2836 					    io_node->base, io_node->length, io_node->next);
2837 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2838 
2839 					/* allocate the resource to the board */
2840 					if (io_node) {
2841 						base = io_node->base;
2842 
2843 						io_node->next = func->io_head;
2844 						func->io_head = io_node;
2845 					} else
2846 						return -ENOMEM;
2847 				} else if ((temp_register & 0x0BL) == 0x08) {
2848 					/* Map prefetchable memory */
2849 					base = temp_register & 0xFFFFFFF0;
2850 					base = ~base + 1;
2851 
2852 					dbg("CND:      length = 0x%x\n", base);
2853 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2854 
2855 					/* allocate the resource to the board */
2856 					if (p_mem_node) {
2857 						base = p_mem_node->base;
2858 
2859 						p_mem_node->next = func->p_mem_head;
2860 						func->p_mem_head = p_mem_node;
2861 					} else
2862 						return -ENOMEM;
2863 				} else if ((temp_register & 0x0BL) == 0x00) {
2864 					/* Map memory */
2865 					base = temp_register & 0xFFFFFFF0;
2866 					base = ~base + 1;
2867 
2868 					dbg("CND:      length = 0x%x\n", base);
2869 					mem_node = get_resource(&(resources->mem_head), base);
2870 
2871 					/* allocate the resource to the board */
2872 					if (mem_node) {
2873 						base = mem_node->base;
2874 
2875 						mem_node->next = func->mem_head;
2876 						func->mem_head = mem_node;
2877 					} else
2878 						return -ENOMEM;
2879 				} else if ((temp_register & 0x0BL) == 0x04) {
2880 					/* Map memory */
2881 					base = temp_register & 0xFFFFFFF0;
2882 					base = ~base + 1;
2883 
2884 					dbg("CND:      length = 0x%x\n", base);
2885 					mem_node = get_resource(&(resources->mem_head), base);
2886 
2887 					/* allocate the resource to the board */
2888 					if (mem_node) {
2889 						base = mem_node->base;
2890 
2891 						mem_node->next = func->mem_head;
2892 						func->mem_head = mem_node;
2893 					} else
2894 						return -ENOMEM;
2895 				} else if ((temp_register & 0x0BL) == 0x06) {
2896 					/* Those bits are reserved, we can't handle this */
2897 					return 1;
2898 				} else {
2899 					/* Requesting space below 1M */
2900 					return NOT_ENOUGH_RESOURCES;
2901 				}
2902 
2903 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2904 
2905 				/* Check for 64-bit base */
2906 				if ((temp_register & 0x07L) == 0x04) {
2907 					cloop += 4;
2908 
2909 					/* Upper 32 bits of address always zero
2910 					 * on today's systems */
2911 					/* FIXME this is probably not true on
2912 					 * Alpha and ia64??? */
2913 					base = 0;
2914 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2915 				}
2916 			}
2917 		}		/* End of base register loop */
2918 		if (cpqhp_legacy_mode) {
2919 			/* Figure out which interrupt pin this function uses */
2920 			rc = pci_bus_read_config_byte (pci_bus, devfn,
2921 				PCI_INTERRUPT_PIN, &temp_byte);
2922 
2923 			/* If this function needs an interrupt and we are behind
2924 			 * a bridge and the pin is tied to something that's
2925 			 * alread mapped, set this one the same */
2926 			if (temp_byte && resources->irqs &&
2927 			    (resources->irqs->valid_INT &
2928 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2929 				/* We have to share with something already set up */
2930 				IRQ = resources->irqs->interrupt[(temp_byte +
2931 					resources->irqs->barber_pole - 1) & 0x03];
2932 			} else {
2933 				/* Program IRQ based on card type */
2934 				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2935 
2936 				if (class_code == PCI_BASE_CLASS_STORAGE) {
2937 					IRQ = cpqhp_disk_irq;
2938 				} else {
2939 					IRQ = cpqhp_nic_irq;
2940 				}
2941 			}
2942 
2943 			/* IRQ Line */
2944 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2945 		}
2946 
2947 		if (!behind_bridge) {
2948 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2949 			if (rc)
2950 				return 1;
2951 		} else {
2952 			/* TBD - this code may also belong in the other clause
2953 			 * of this If statement */
2954 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2955 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2956 		}
2957 
2958 		/* Latency Timer */
2959 		temp_byte = 0x40;
2960 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2961 					PCI_LATENCY_TIMER, temp_byte);
2962 
2963 		/* Cache Line size */
2964 		temp_byte = 0x08;
2965 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2966 					PCI_CACHE_LINE_SIZE, temp_byte);
2967 
2968 		/* disable ROM base Address */
2969 		temp_dword = 0x00L;
2970 		rc = pci_bus_write_config_word(pci_bus, devfn,
2971 					PCI_ROM_ADDRESS, temp_dword);
2972 
2973 		/* enable card */
2974 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2975 					 *   PCI_COMMAND_MEMORY |
2976 					 *   PCI_COMMAND_MASTER |
2977 					 *   PCI_COMMAND_INVALIDATE |
2978 					 *   PCI_COMMAND_PARITY |
2979 					 *   PCI_COMMAND_SERR */
2980 		rc = pci_bus_write_config_word (pci_bus, devfn,
2981 					PCI_COMMAND, temp_word);
2982 	} else {		/* End of Not-A-Bridge else */
2983 		/* It's some strange type of PCI adapter (Cardbus?) */
2984 		return DEVICE_TYPE_NOT_SUPPORTED;
2985 	}
2986 
2987 	func->configured = 1;
2988 
2989 	return 0;
2990 free_and_out:
2991 	cpqhp_destroy_resource_list (&temp_resources);
2992 
2993 	return_resource(&(resources-> bus_head), hold_bus_node);
2994 	return_resource(&(resources-> io_head), hold_IO_node);
2995 	return_resource(&(resources-> mem_head), hold_mem_node);
2996 	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
2997 	return rc;
2998 }
2999