1 /* 2 * Compaq Hot Plug Controller Driver 3 * 4 * Copyright (C) 1995,2001 Compaq Computer Corporation 5 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 6 * Copyright (C) 2001 IBM Corp. 7 * 8 * All rights reserved. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; either version 2 of the License, or (at 13 * your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, but 16 * WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or 18 * NON INFRINGEMENT. See the GNU General Public License for more 19 * details. 20 * 21 * You should have received a copy of the GNU General Public License 22 * along with this program; if not, write to the Free Software 23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 24 * 25 * Send feedback to <greg@kroah.com> 26 * 27 */ 28 29 #include <linux/module.h> 30 #include <linux/kernel.h> 31 #include <linux/types.h> 32 #include <linux/slab.h> 33 #include <linux/workqueue.h> 34 #include <linux/interrupt.h> 35 #include <linux/delay.h> 36 #include <linux/wait.h> 37 #include <linux/pci.h> 38 #include <linux/pci_hotplug.h> 39 #include <linux/kthread.h> 40 #include "cpqphp.h" 41 42 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 43 u8 behind_bridge, struct resource_lists *resources); 44 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 45 u8 behind_bridge, struct resource_lists *resources); 46 static void interrupt_event_handler(struct controller *ctrl); 47 48 49 static struct task_struct *cpqhp_event_thread; 50 static unsigned long pushbutton_pending; /* = 0 */ 51 52 /* delay is in jiffies to wait for */ 53 static void long_delay(int delay) 54 { 55 /* 56 * XXX(hch): if someone is bored please convert all callers 57 * to call msleep_interruptible directly. They really want 58 * to specify timeouts in natural units and spend a lot of 59 * effort converting them to jiffies.. 60 */ 61 msleep_interruptible(jiffies_to_msecs(delay)); 62 } 63 64 65 /* FIXME: The following line needs to be somewhere else... */ 66 #define WRONG_BUS_FREQUENCY 0x07 67 static u8 handle_switch_change(u8 change, struct controller *ctrl) 68 { 69 int hp_slot; 70 u8 rc = 0; 71 u16 temp_word; 72 struct pci_func *func; 73 struct event_info *taskInfo; 74 75 if (!change) 76 return 0; 77 78 /* Switch Change */ 79 dbg("cpqsbd: Switch interrupt received.\n"); 80 81 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 82 if (change & (0x1L << hp_slot)) { 83 /* 84 * this one changed. 85 */ 86 func = cpqhp_slot_find(ctrl->bus, 87 (hp_slot + ctrl->slot_device_offset), 0); 88 89 /* this is the structure that tells the worker thread 90 * what to do 91 */ 92 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 93 ctrl->next_event = (ctrl->next_event + 1) % 10; 94 taskInfo->hp_slot = hp_slot; 95 96 rc++; 97 98 temp_word = ctrl->ctrl_int_comp >> 16; 99 func->presence_save = (temp_word >> hp_slot) & 0x01; 100 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 101 102 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 103 /* 104 * Switch opened 105 */ 106 107 func->switch_save = 0; 108 109 taskInfo->event_type = INT_SWITCH_OPEN; 110 } else { 111 /* 112 * Switch closed 113 */ 114 115 func->switch_save = 0x10; 116 117 taskInfo->event_type = INT_SWITCH_CLOSE; 118 } 119 } 120 } 121 122 return rc; 123 } 124 125 /** 126 * cpqhp_find_slot - find the struct slot of given device 127 * @ctrl: scan lots of this controller 128 * @device: the device id to find 129 */ 130 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 131 { 132 struct slot *slot = ctrl->slot; 133 134 while (slot && (slot->device != device)) 135 slot = slot->next; 136 137 return slot; 138 } 139 140 141 static u8 handle_presence_change(u16 change, struct controller *ctrl) 142 { 143 int hp_slot; 144 u8 rc = 0; 145 u8 temp_byte; 146 u16 temp_word; 147 struct pci_func *func; 148 struct event_info *taskInfo; 149 struct slot *p_slot; 150 151 if (!change) 152 return 0; 153 154 /* 155 * Presence Change 156 */ 157 dbg("cpqsbd: Presence/Notify input change.\n"); 158 dbg(" Changed bits are 0x%4.4x\n", change); 159 160 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 161 if (change & (0x0101 << hp_slot)) { 162 /* 163 * this one changed. 164 */ 165 func = cpqhp_slot_find(ctrl->bus, 166 (hp_slot + ctrl->slot_device_offset), 0); 167 168 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 169 ctrl->next_event = (ctrl->next_event + 1) % 10; 170 taskInfo->hp_slot = hp_slot; 171 172 rc++; 173 174 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 175 if (!p_slot) 176 return 0; 177 178 /* If the switch closed, must be a button 179 * If not in button mode, nevermind 180 */ 181 if (func->switch_save && (ctrl->push_button == 1)) { 182 temp_word = ctrl->ctrl_int_comp >> 16; 183 temp_byte = (temp_word >> hp_slot) & 0x01; 184 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 185 186 if (temp_byte != func->presence_save) { 187 /* 188 * button Pressed (doesn't do anything) 189 */ 190 dbg("hp_slot %d button pressed\n", hp_slot); 191 taskInfo->event_type = INT_BUTTON_PRESS; 192 } else { 193 /* 194 * button Released - TAKE ACTION!!!! 195 */ 196 dbg("hp_slot %d button released\n", hp_slot); 197 taskInfo->event_type = INT_BUTTON_RELEASE; 198 199 /* Cancel if we are still blinking */ 200 if ((p_slot->state == BLINKINGON_STATE) 201 || (p_slot->state == BLINKINGOFF_STATE)) { 202 taskInfo->event_type = INT_BUTTON_CANCEL; 203 dbg("hp_slot %d button cancel\n", hp_slot); 204 } else if ((p_slot->state == POWERON_STATE) 205 || (p_slot->state == POWEROFF_STATE)) { 206 /* info(msg_button_ignore, p_slot->number); */ 207 taskInfo->event_type = INT_BUTTON_IGNORE; 208 dbg("hp_slot %d button ignore\n", hp_slot); 209 } 210 } 211 } else { 212 /* Switch is open, assume a presence change 213 * Save the presence state 214 */ 215 temp_word = ctrl->ctrl_int_comp >> 16; 216 func->presence_save = (temp_word >> hp_slot) & 0x01; 217 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 218 219 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 220 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 221 /* Present */ 222 taskInfo->event_type = INT_PRESENCE_ON; 223 } else { 224 /* Not Present */ 225 taskInfo->event_type = INT_PRESENCE_OFF; 226 } 227 } 228 } 229 } 230 231 return rc; 232 } 233 234 235 static u8 handle_power_fault(u8 change, struct controller *ctrl) 236 { 237 int hp_slot; 238 u8 rc = 0; 239 struct pci_func *func; 240 struct event_info *taskInfo; 241 242 if (!change) 243 return 0; 244 245 /* 246 * power fault 247 */ 248 249 info("power fault interrupt\n"); 250 251 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 252 if (change & (0x01 << hp_slot)) { 253 /* 254 * this one changed. 255 */ 256 func = cpqhp_slot_find(ctrl->bus, 257 (hp_slot + ctrl->slot_device_offset), 0); 258 259 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 260 ctrl->next_event = (ctrl->next_event + 1) % 10; 261 taskInfo->hp_slot = hp_slot; 262 263 rc++; 264 265 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 266 /* 267 * power fault Cleared 268 */ 269 func->status = 0x00; 270 271 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 272 } else { 273 /* 274 * power fault 275 */ 276 taskInfo->event_type = INT_POWER_FAULT; 277 278 if (ctrl->rev < 4) { 279 amber_LED_on(ctrl, hp_slot); 280 green_LED_off(ctrl, hp_slot); 281 set_SOGO(ctrl); 282 283 /* this is a fatal condition, we want 284 * to crash the machine to protect from 285 * data corruption. simulated_NMI 286 * shouldn't ever return */ 287 /* FIXME 288 simulated_NMI(hp_slot, ctrl); */ 289 290 /* The following code causes a software 291 * crash just in case simulated_NMI did 292 * return */ 293 /*FIXME 294 panic(msg_power_fault); */ 295 } else { 296 /* set power fault status for this board */ 297 func->status = 0xFF; 298 info("power fault bit %x set\n", hp_slot); 299 } 300 } 301 } 302 } 303 304 return rc; 305 } 306 307 308 /** 309 * sort_by_size - sort nodes on the list by their length, smallest first. 310 * @head: list to sort 311 */ 312 static int sort_by_size(struct pci_resource **head) 313 { 314 struct pci_resource *current_res; 315 struct pci_resource *next_res; 316 int out_of_order = 1; 317 318 if (!(*head)) 319 return 1; 320 321 if (!((*head)->next)) 322 return 0; 323 324 while (out_of_order) { 325 out_of_order = 0; 326 327 /* Special case for swapping list head */ 328 if (((*head)->next) && 329 ((*head)->length > (*head)->next->length)) { 330 out_of_order++; 331 current_res = *head; 332 *head = (*head)->next; 333 current_res->next = (*head)->next; 334 (*head)->next = current_res; 335 } 336 337 current_res = *head; 338 339 while (current_res->next && current_res->next->next) { 340 if (current_res->next->length > current_res->next->next->length) { 341 out_of_order++; 342 next_res = current_res->next; 343 current_res->next = current_res->next->next; 344 current_res = current_res->next; 345 next_res->next = current_res->next; 346 current_res->next = next_res; 347 } else 348 current_res = current_res->next; 349 } 350 } /* End of out_of_order loop */ 351 352 return 0; 353 } 354 355 356 /** 357 * sort_by_max_size - sort nodes on the list by their length, largest first. 358 * @head: list to sort 359 */ 360 static int sort_by_max_size(struct pci_resource **head) 361 { 362 struct pci_resource *current_res; 363 struct pci_resource *next_res; 364 int out_of_order = 1; 365 366 if (!(*head)) 367 return 1; 368 369 if (!((*head)->next)) 370 return 0; 371 372 while (out_of_order) { 373 out_of_order = 0; 374 375 /* Special case for swapping list head */ 376 if (((*head)->next) && 377 ((*head)->length < (*head)->next->length)) { 378 out_of_order++; 379 current_res = *head; 380 *head = (*head)->next; 381 current_res->next = (*head)->next; 382 (*head)->next = current_res; 383 } 384 385 current_res = *head; 386 387 while (current_res->next && current_res->next->next) { 388 if (current_res->next->length < current_res->next->next->length) { 389 out_of_order++; 390 next_res = current_res->next; 391 current_res->next = current_res->next->next; 392 current_res = current_res->next; 393 next_res->next = current_res->next; 394 current_res->next = next_res; 395 } else 396 current_res = current_res->next; 397 } 398 } /* End of out_of_order loop */ 399 400 return 0; 401 } 402 403 404 /** 405 * do_pre_bridge_resource_split - find node of resources that are unused 406 * @head: new list head 407 * @orig_head: original list head 408 * @alignment: max node size (?) 409 */ 410 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 411 struct pci_resource **orig_head, u32 alignment) 412 { 413 struct pci_resource *prevnode = NULL; 414 struct pci_resource *node; 415 struct pci_resource *split_node; 416 u32 rc; 417 u32 temp_dword; 418 dbg("do_pre_bridge_resource_split\n"); 419 420 if (!(*head) || !(*orig_head)) 421 return NULL; 422 423 rc = cpqhp_resource_sort_and_combine(head); 424 425 if (rc) 426 return NULL; 427 428 if ((*head)->base != (*orig_head)->base) 429 return NULL; 430 431 if ((*head)->length == (*orig_head)->length) 432 return NULL; 433 434 435 /* If we got here, there the bridge requires some of the resource, but 436 * we may be able to split some off of the front 437 */ 438 439 node = *head; 440 441 if (node->length & (alignment - 1)) { 442 /* this one isn't an aligned length, so we'll make a new entry 443 * and split it up. 444 */ 445 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 446 447 if (!split_node) 448 return NULL; 449 450 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 451 452 split_node->base = node->base; 453 split_node->length = temp_dword; 454 455 node->length -= temp_dword; 456 node->base += split_node->length; 457 458 /* Put it in the list */ 459 *head = split_node; 460 split_node->next = node; 461 } 462 463 if (node->length < alignment) 464 return NULL; 465 466 /* Now unlink it */ 467 if (*head == node) { 468 *head = node->next; 469 } else { 470 prevnode = *head; 471 while (prevnode->next != node) 472 prevnode = prevnode->next; 473 474 prevnode->next = node->next; 475 } 476 node->next = NULL; 477 478 return node; 479 } 480 481 482 /** 483 * do_bridge_resource_split - find one node of resources that aren't in use 484 * @head: list head 485 * @alignment: max node size (?) 486 */ 487 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 488 { 489 struct pci_resource *prevnode = NULL; 490 struct pci_resource *node; 491 u32 rc; 492 u32 temp_dword; 493 494 rc = cpqhp_resource_sort_and_combine(head); 495 496 if (rc) 497 return NULL; 498 499 node = *head; 500 501 while (node->next) { 502 prevnode = node; 503 node = node->next; 504 kfree(prevnode); 505 } 506 507 if (node->length < alignment) 508 goto error; 509 510 if (node->base & (alignment - 1)) { 511 /* Short circuit if adjusted size is too small */ 512 temp_dword = (node->base | (alignment-1)) + 1; 513 if ((node->length - (temp_dword - node->base)) < alignment) 514 goto error; 515 516 node->length -= (temp_dword - node->base); 517 node->base = temp_dword; 518 } 519 520 if (node->length & (alignment - 1)) 521 /* There's stuff in use after this node */ 522 goto error; 523 524 return node; 525 error: 526 kfree(node); 527 return NULL; 528 } 529 530 531 /** 532 * get_io_resource - find first node of given size not in ISA aliasing window. 533 * @head: list to search 534 * @size: size of node to find, must be a power of two. 535 * 536 * Description: This function sorts the resource list by size and then returns 537 * returns the first node of "size" length that is not in the ISA aliasing 538 * window. If it finds a node larger than "size" it will split it up. 539 */ 540 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 541 { 542 struct pci_resource *prevnode; 543 struct pci_resource *node; 544 struct pci_resource *split_node; 545 u32 temp_dword; 546 547 if (!(*head)) 548 return NULL; 549 550 if (cpqhp_resource_sort_and_combine(head)) 551 return NULL; 552 553 if (sort_by_size(head)) 554 return NULL; 555 556 for (node = *head; node; node = node->next) { 557 if (node->length < size) 558 continue; 559 560 if (node->base & (size - 1)) { 561 /* this one isn't base aligned properly 562 * so we'll make a new entry and split it up 563 */ 564 temp_dword = (node->base | (size-1)) + 1; 565 566 /* Short circuit if adjusted size is too small */ 567 if ((node->length - (temp_dword - node->base)) < size) 568 continue; 569 570 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 571 572 if (!split_node) 573 return NULL; 574 575 split_node->base = node->base; 576 split_node->length = temp_dword - node->base; 577 node->base = temp_dword; 578 node->length -= split_node->length; 579 580 /* Put it in the list */ 581 split_node->next = node->next; 582 node->next = split_node; 583 } /* End of non-aligned base */ 584 585 /* Don't need to check if too small since we already did */ 586 if (node->length > size) { 587 /* this one is longer than we need 588 * so we'll make a new entry and split it up 589 */ 590 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 591 592 if (!split_node) 593 return NULL; 594 595 split_node->base = node->base + size; 596 split_node->length = node->length - size; 597 node->length = size; 598 599 /* Put it in the list */ 600 split_node->next = node->next; 601 node->next = split_node; 602 } /* End of too big on top end */ 603 604 /* For IO make sure it's not in the ISA aliasing space */ 605 if (node->base & 0x300L) 606 continue; 607 608 /* If we got here, then it is the right size 609 * Now take it out of the list and break 610 */ 611 if (*head == node) { 612 *head = node->next; 613 } else { 614 prevnode = *head; 615 while (prevnode->next != node) 616 prevnode = prevnode->next; 617 618 prevnode->next = node->next; 619 } 620 node->next = NULL; 621 break; 622 } 623 624 return node; 625 } 626 627 628 /** 629 * get_max_resource - get largest node which has at least the given size. 630 * @head: the list to search the node in 631 * @size: the minimum size of the node to find 632 * 633 * Description: Gets the largest node that is at least "size" big from the 634 * list pointed to by head. It aligns the node on top and bottom 635 * to "size" alignment before returning it. 636 */ 637 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 638 { 639 struct pci_resource *max; 640 struct pci_resource *temp; 641 struct pci_resource *split_node; 642 u32 temp_dword; 643 644 if (cpqhp_resource_sort_and_combine(head)) 645 return NULL; 646 647 if (sort_by_max_size(head)) 648 return NULL; 649 650 for (max = *head; max; max = max->next) { 651 /* If not big enough we could probably just bail, 652 * instead we'll continue to the next. 653 */ 654 if (max->length < size) 655 continue; 656 657 if (max->base & (size - 1)) { 658 /* this one isn't base aligned properly 659 * so we'll make a new entry and split it up 660 */ 661 temp_dword = (max->base | (size-1)) + 1; 662 663 /* Short circuit if adjusted size is too small */ 664 if ((max->length - (temp_dword - max->base)) < size) 665 continue; 666 667 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 668 669 if (!split_node) 670 return NULL; 671 672 split_node->base = max->base; 673 split_node->length = temp_dword - max->base; 674 max->base = temp_dword; 675 max->length -= split_node->length; 676 677 split_node->next = max->next; 678 max->next = split_node; 679 } 680 681 if ((max->base + max->length) & (size - 1)) { 682 /* this one isn't end aligned properly at the top 683 * so we'll make a new entry and split it up 684 */ 685 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 686 687 if (!split_node) 688 return NULL; 689 temp_dword = ((max->base + max->length) & ~(size - 1)); 690 split_node->base = temp_dword; 691 split_node->length = max->length + max->base 692 - split_node->base; 693 max->length -= split_node->length; 694 695 split_node->next = max->next; 696 max->next = split_node; 697 } 698 699 /* Make sure it didn't shrink too much when we aligned it */ 700 if (max->length < size) 701 continue; 702 703 /* Now take it out of the list */ 704 temp = *head; 705 if (temp == max) { 706 *head = max->next; 707 } else { 708 while (temp && temp->next != max) 709 temp = temp->next; 710 711 if (temp) 712 temp->next = max->next; 713 } 714 715 max->next = NULL; 716 break; 717 } 718 719 return max; 720 } 721 722 723 /** 724 * get_resource - find resource of given size and split up larger ones. 725 * @head: the list to search for resources 726 * @size: the size limit to use 727 * 728 * Description: This function sorts the resource list by size and then 729 * returns the first node of "size" length. If it finds a node 730 * larger than "size" it will split it up. 731 * 732 * size must be a power of two. 733 */ 734 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 735 { 736 struct pci_resource *prevnode; 737 struct pci_resource *node; 738 struct pci_resource *split_node; 739 u32 temp_dword; 740 741 if (cpqhp_resource_sort_and_combine(head)) 742 return NULL; 743 744 if (sort_by_size(head)) 745 return NULL; 746 747 for (node = *head; node; node = node->next) { 748 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 749 __func__, size, node, node->base, node->length); 750 if (node->length < size) 751 continue; 752 753 if (node->base & (size - 1)) { 754 dbg("%s: not aligned\n", __func__); 755 /* this one isn't base aligned properly 756 * so we'll make a new entry and split it up 757 */ 758 temp_dword = (node->base | (size-1)) + 1; 759 760 /* Short circuit if adjusted size is too small */ 761 if ((node->length - (temp_dword - node->base)) < size) 762 continue; 763 764 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 765 766 if (!split_node) 767 return NULL; 768 769 split_node->base = node->base; 770 split_node->length = temp_dword - node->base; 771 node->base = temp_dword; 772 node->length -= split_node->length; 773 774 split_node->next = node->next; 775 node->next = split_node; 776 } /* End of non-aligned base */ 777 778 /* Don't need to check if too small since we already did */ 779 if (node->length > size) { 780 dbg("%s: too big\n", __func__); 781 /* this one is longer than we need 782 * so we'll make a new entry and split it up 783 */ 784 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 785 786 if (!split_node) 787 return NULL; 788 789 split_node->base = node->base + size; 790 split_node->length = node->length - size; 791 node->length = size; 792 793 /* Put it in the list */ 794 split_node->next = node->next; 795 node->next = split_node; 796 } /* End of too big on top end */ 797 798 dbg("%s: got one!!!\n", __func__); 799 /* If we got here, then it is the right size 800 * Now take it out of the list */ 801 if (*head == node) { 802 *head = node->next; 803 } else { 804 prevnode = *head; 805 while (prevnode->next != node) 806 prevnode = prevnode->next; 807 808 prevnode->next = node->next; 809 } 810 node->next = NULL; 811 break; 812 } 813 return node; 814 } 815 816 817 /** 818 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 819 * @head: the list to sort and clean up 820 * 821 * Description: Sorts all of the nodes in the list in ascending order by 822 * their base addresses. Also does garbage collection by 823 * combining adjacent nodes. 824 * 825 * Returns %0 if success. 826 */ 827 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 828 { 829 struct pci_resource *node1; 830 struct pci_resource *node2; 831 int out_of_order = 1; 832 833 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 834 835 if (!(*head)) 836 return 1; 837 838 dbg("*head->next = %p\n", (*head)->next); 839 840 if (!(*head)->next) 841 return 0; /* only one item on the list, already sorted! */ 842 843 dbg("*head->base = 0x%x\n", (*head)->base); 844 dbg("*head->next->base = 0x%x\n", (*head)->next->base); 845 while (out_of_order) { 846 out_of_order = 0; 847 848 /* Special case for swapping list head */ 849 if (((*head)->next) && 850 ((*head)->base > (*head)->next->base)) { 851 node1 = *head; 852 (*head) = (*head)->next; 853 node1->next = (*head)->next; 854 (*head)->next = node1; 855 out_of_order++; 856 } 857 858 node1 = (*head); 859 860 while (node1->next && node1->next->next) { 861 if (node1->next->base > node1->next->next->base) { 862 out_of_order++; 863 node2 = node1->next; 864 node1->next = node1->next->next; 865 node1 = node1->next; 866 node2->next = node1->next; 867 node1->next = node2; 868 } else 869 node1 = node1->next; 870 } 871 } /* End of out_of_order loop */ 872 873 node1 = *head; 874 875 while (node1 && node1->next) { 876 if ((node1->base + node1->length) == node1->next->base) { 877 /* Combine */ 878 dbg("8..\n"); 879 node1->length += node1->next->length; 880 node2 = node1->next; 881 node1->next = node1->next->next; 882 kfree(node2); 883 } else 884 node1 = node1->next; 885 } 886 887 return 0; 888 } 889 890 891 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 892 { 893 struct controller *ctrl = data; 894 u8 schedule_flag = 0; 895 u8 reset; 896 u16 misc; 897 u32 Diff; 898 u32 temp_dword; 899 900 901 misc = readw(ctrl->hpc_reg + MISC); 902 /* 903 * Check to see if it was our interrupt 904 */ 905 if (!(misc & 0x000C)) 906 return IRQ_NONE; 907 908 if (misc & 0x0004) { 909 /* 910 * Serial Output interrupt Pending 911 */ 912 913 /* Clear the interrupt */ 914 misc |= 0x0004; 915 writew(misc, ctrl->hpc_reg + MISC); 916 917 /* Read to clear posted writes */ 918 misc = readw(ctrl->hpc_reg + MISC); 919 920 dbg("%s - waking up\n", __func__); 921 wake_up_interruptible(&ctrl->queue); 922 } 923 924 if (misc & 0x0008) { 925 /* General-interrupt-input interrupt Pending */ 926 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 927 928 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 929 930 /* Clear the interrupt */ 931 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 932 933 /* Read it back to clear any posted writes */ 934 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 935 936 if (!Diff) 937 /* Clear all interrupts */ 938 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 939 940 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 941 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 942 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 943 } 944 945 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 946 if (reset & 0x40) { 947 /* Bus reset has completed */ 948 reset &= 0xCF; 949 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 950 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 951 wake_up_interruptible(&ctrl->queue); 952 } 953 954 if (schedule_flag) { 955 wake_up_process(cpqhp_event_thread); 956 dbg("Waking even thread"); 957 } 958 return IRQ_HANDLED; 959 } 960 961 962 /** 963 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 964 * @busnumber: bus where new node is to be located 965 * 966 * Returns pointer to the new node or %NULL if unsuccessful. 967 */ 968 struct pci_func *cpqhp_slot_create(u8 busnumber) 969 { 970 struct pci_func *new_slot; 971 struct pci_func *next; 972 973 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 974 if (new_slot == NULL) 975 return new_slot; 976 977 new_slot->next = NULL; 978 new_slot->configured = 1; 979 980 if (cpqhp_slot_list[busnumber] == NULL) { 981 cpqhp_slot_list[busnumber] = new_slot; 982 } else { 983 next = cpqhp_slot_list[busnumber]; 984 while (next->next != NULL) 985 next = next->next; 986 next->next = new_slot; 987 } 988 return new_slot; 989 } 990 991 992 /** 993 * slot_remove - Removes a node from the linked list of slots. 994 * @old_slot: slot to remove 995 * 996 * Returns %0 if successful, !0 otherwise. 997 */ 998 static int slot_remove(struct pci_func *old_slot) 999 { 1000 struct pci_func *next; 1001 1002 if (old_slot == NULL) 1003 return 1; 1004 1005 next = cpqhp_slot_list[old_slot->bus]; 1006 if (next == NULL) 1007 return 1; 1008 1009 if (next == old_slot) { 1010 cpqhp_slot_list[old_slot->bus] = old_slot->next; 1011 cpqhp_destroy_board_resources(old_slot); 1012 kfree(old_slot); 1013 return 0; 1014 } 1015 1016 while ((next->next != old_slot) && (next->next != NULL)) 1017 next = next->next; 1018 1019 if (next->next == old_slot) { 1020 next->next = old_slot->next; 1021 cpqhp_destroy_board_resources(old_slot); 1022 kfree(old_slot); 1023 return 0; 1024 } else 1025 return 2; 1026 } 1027 1028 1029 /** 1030 * bridge_slot_remove - Removes a node from the linked list of slots. 1031 * @bridge: bridge to remove 1032 * 1033 * Returns %0 if successful, !0 otherwise. 1034 */ 1035 static int bridge_slot_remove(struct pci_func *bridge) 1036 { 1037 u8 subordinateBus, secondaryBus; 1038 u8 tempBus; 1039 struct pci_func *next; 1040 1041 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1042 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1043 1044 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1045 next = cpqhp_slot_list[tempBus]; 1046 1047 while (!slot_remove(next)) 1048 next = cpqhp_slot_list[tempBus]; 1049 } 1050 1051 next = cpqhp_slot_list[bridge->bus]; 1052 1053 if (next == NULL) 1054 return 1; 1055 1056 if (next == bridge) { 1057 cpqhp_slot_list[bridge->bus] = bridge->next; 1058 goto out; 1059 } 1060 1061 while ((next->next != bridge) && (next->next != NULL)) 1062 next = next->next; 1063 1064 if (next->next != bridge) 1065 return 2; 1066 next->next = bridge->next; 1067 out: 1068 kfree(bridge); 1069 return 0; 1070 } 1071 1072 1073 /** 1074 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1075 * @bus: bus to find 1076 * @device: device to find 1077 * @index: is %0 for first function found, %1 for the second... 1078 * 1079 * Returns pointer to the node if successful, %NULL otherwise. 1080 */ 1081 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1082 { 1083 int found = -1; 1084 struct pci_func *func; 1085 1086 func = cpqhp_slot_list[bus]; 1087 1088 if ((func == NULL) || ((func->device == device) && (index == 0))) 1089 return func; 1090 1091 if (func->device == device) 1092 found++; 1093 1094 while (func->next != NULL) { 1095 func = func->next; 1096 1097 if (func->device == device) 1098 found++; 1099 1100 if (found == index) 1101 return func; 1102 } 1103 1104 return NULL; 1105 } 1106 1107 1108 /* DJZ: I don't think is_bridge will work as is. 1109 * FIXME */ 1110 static int is_bridge(struct pci_func *func) 1111 { 1112 /* Check the header type */ 1113 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1114 return 1; 1115 else 1116 return 0; 1117 } 1118 1119 1120 /** 1121 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1122 * @ctrl: controller to change frequency/mode for. 1123 * @adapter_speed: the speed of the adapter we want to match. 1124 * @hp_slot: the slot number where the adapter is installed. 1125 * 1126 * Returns %0 if we successfully change frequency and/or mode to match the 1127 * adapter speed. 1128 */ 1129 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1130 { 1131 struct slot *slot; 1132 struct pci_bus *bus = ctrl->pci_bus; 1133 u8 reg; 1134 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1135 u16 reg16; 1136 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1137 1138 if (bus->cur_bus_speed == adapter_speed) 1139 return 0; 1140 1141 /* We don't allow freq/mode changes if we find another adapter running 1142 * in another slot on this controller 1143 */ 1144 for (slot = ctrl->slot; slot; slot = slot->next) { 1145 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1146 continue; 1147 if (!slot->hotplug_slot || !slot->hotplug_slot->info) 1148 continue; 1149 if (slot->hotplug_slot->info->adapter_status == 0) 1150 continue; 1151 /* If another adapter is running on the same segment but at a 1152 * lower speed/mode, we allow the new adapter to function at 1153 * this rate if supported 1154 */ 1155 if (bus->cur_bus_speed < adapter_speed) 1156 return 0; 1157 1158 return 1; 1159 } 1160 1161 /* If the controller doesn't support freq/mode changes and the 1162 * controller is running at a higher mode, we bail 1163 */ 1164 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1165 return 1; 1166 1167 /* But we allow the adapter to run at a lower rate if possible */ 1168 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1169 return 0; 1170 1171 /* We try to set the max speed supported by both the adapter and 1172 * controller 1173 */ 1174 if (bus->max_bus_speed < adapter_speed) { 1175 if (bus->cur_bus_speed == bus->max_bus_speed) 1176 return 0; 1177 adapter_speed = bus->max_bus_speed; 1178 } 1179 1180 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1181 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1182 1183 set_SOGO(ctrl); 1184 wait_for_ctrl_irq(ctrl); 1185 1186 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1187 reg = 0xF5; 1188 else 1189 reg = 0xF4; 1190 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1191 1192 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1193 reg16 &= ~0x000F; 1194 switch (adapter_speed) { 1195 case(PCI_SPEED_133MHz_PCIX): 1196 reg = 0x75; 1197 reg16 |= 0xB; 1198 break; 1199 case(PCI_SPEED_100MHz_PCIX): 1200 reg = 0x74; 1201 reg16 |= 0xA; 1202 break; 1203 case(PCI_SPEED_66MHz_PCIX): 1204 reg = 0x73; 1205 reg16 |= 0x9; 1206 break; 1207 case(PCI_SPEED_66MHz): 1208 reg = 0x73; 1209 reg16 |= 0x1; 1210 break; 1211 default: /* 33MHz PCI 2.2 */ 1212 reg = 0x71; 1213 break; 1214 1215 } 1216 reg16 |= 0xB << 12; 1217 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1218 1219 mdelay(5); 1220 1221 /* Reenable interrupts */ 1222 writel(0, ctrl->hpc_reg + INT_MASK); 1223 1224 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1225 1226 /* Restart state machine */ 1227 reg = ~0xF; 1228 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1229 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1230 1231 /* Only if mode change...*/ 1232 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1233 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1234 set_SOGO(ctrl); 1235 1236 wait_for_ctrl_irq(ctrl); 1237 mdelay(1100); 1238 1239 /* Restore LED/Slot state */ 1240 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1241 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1242 1243 set_SOGO(ctrl); 1244 wait_for_ctrl_irq(ctrl); 1245 1246 bus->cur_bus_speed = adapter_speed; 1247 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1248 1249 info("Successfully changed frequency/mode for adapter in slot %d\n", 1250 slot->number); 1251 return 0; 1252 } 1253 1254 /* the following routines constitute the bulk of the 1255 * hotplug controller logic 1256 */ 1257 1258 1259 /** 1260 * board_replaced - Called after a board has been replaced in the system. 1261 * @func: PCI device/function information 1262 * @ctrl: hotplug controller 1263 * 1264 * This is only used if we don't have resources for hot add. 1265 * Turns power on for the board. 1266 * Checks to see if board is the same. 1267 * If board is same, reconfigures it. 1268 * If board isn't same, turns it back off. 1269 */ 1270 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1271 { 1272 struct pci_bus *bus = ctrl->pci_bus; 1273 u8 hp_slot; 1274 u8 temp_byte; 1275 u8 adapter_speed; 1276 u32 rc = 0; 1277 1278 hp_slot = func->device - ctrl->slot_device_offset; 1279 1280 /* 1281 * The switch is open. 1282 */ 1283 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1284 rc = INTERLOCK_OPEN; 1285 /* 1286 * The board is already on 1287 */ 1288 else if (is_slot_enabled(ctrl, hp_slot)) 1289 rc = CARD_FUNCTIONING; 1290 else { 1291 mutex_lock(&ctrl->crit_sect); 1292 1293 /* turn on board without attaching to the bus */ 1294 enable_slot_power(ctrl, hp_slot); 1295 1296 set_SOGO(ctrl); 1297 1298 /* Wait for SOBS to be unset */ 1299 wait_for_ctrl_irq(ctrl); 1300 1301 /* Change bits in slot power register to force another shift out 1302 * NOTE: this is to work around the timer bug */ 1303 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1304 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1305 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1306 1307 set_SOGO(ctrl); 1308 1309 /* Wait for SOBS to be unset */ 1310 wait_for_ctrl_irq(ctrl); 1311 1312 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1313 if (bus->cur_bus_speed != adapter_speed) 1314 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1315 rc = WRONG_BUS_FREQUENCY; 1316 1317 /* turn off board without attaching to the bus */ 1318 disable_slot_power(ctrl, hp_slot); 1319 1320 set_SOGO(ctrl); 1321 1322 /* Wait for SOBS to be unset */ 1323 wait_for_ctrl_irq(ctrl); 1324 1325 mutex_unlock(&ctrl->crit_sect); 1326 1327 if (rc) 1328 return rc; 1329 1330 mutex_lock(&ctrl->crit_sect); 1331 1332 slot_enable(ctrl, hp_slot); 1333 green_LED_blink(ctrl, hp_slot); 1334 1335 amber_LED_off(ctrl, hp_slot); 1336 1337 set_SOGO(ctrl); 1338 1339 /* Wait for SOBS to be unset */ 1340 wait_for_ctrl_irq(ctrl); 1341 1342 mutex_unlock(&ctrl->crit_sect); 1343 1344 /* Wait for ~1 second because of hot plug spec */ 1345 long_delay(1*HZ); 1346 1347 /* Check for a power fault */ 1348 if (func->status == 0xFF) { 1349 /* power fault occurred, but it was benign */ 1350 rc = POWER_FAILURE; 1351 func->status = 0; 1352 } else 1353 rc = cpqhp_valid_replace(ctrl, func); 1354 1355 if (!rc) { 1356 /* It must be the same board */ 1357 1358 rc = cpqhp_configure_board(ctrl, func); 1359 1360 /* If configuration fails, turn it off 1361 * Get slot won't work for devices behind 1362 * bridges, but in this case it will always be 1363 * called for the "base" bus/dev/func of an 1364 * adapter. 1365 */ 1366 1367 mutex_lock(&ctrl->crit_sect); 1368 1369 amber_LED_on(ctrl, hp_slot); 1370 green_LED_off(ctrl, hp_slot); 1371 slot_disable(ctrl, hp_slot); 1372 1373 set_SOGO(ctrl); 1374 1375 /* Wait for SOBS to be unset */ 1376 wait_for_ctrl_irq(ctrl); 1377 1378 mutex_unlock(&ctrl->crit_sect); 1379 1380 if (rc) 1381 return rc; 1382 else 1383 return 1; 1384 1385 } else { 1386 /* Something is wrong 1387 1388 * Get slot won't work for devices behind bridges, but 1389 * in this case it will always be called for the "base" 1390 * bus/dev/func of an adapter. 1391 */ 1392 1393 mutex_lock(&ctrl->crit_sect); 1394 1395 amber_LED_on(ctrl, hp_slot); 1396 green_LED_off(ctrl, hp_slot); 1397 slot_disable(ctrl, hp_slot); 1398 1399 set_SOGO(ctrl); 1400 1401 /* Wait for SOBS to be unset */ 1402 wait_for_ctrl_irq(ctrl); 1403 1404 mutex_unlock(&ctrl->crit_sect); 1405 } 1406 1407 } 1408 return rc; 1409 1410 } 1411 1412 1413 /** 1414 * board_added - Called after a board has been added to the system. 1415 * @func: PCI device/function info 1416 * @ctrl: hotplug controller 1417 * 1418 * Turns power on for the board. 1419 * Configures board. 1420 */ 1421 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1422 { 1423 u8 hp_slot; 1424 u8 temp_byte; 1425 u8 adapter_speed; 1426 int index; 1427 u32 temp_register = 0xFFFFFFFF; 1428 u32 rc = 0; 1429 struct pci_func *new_slot = NULL; 1430 struct pci_bus *bus = ctrl->pci_bus; 1431 struct slot *p_slot; 1432 struct resource_lists res_lists; 1433 1434 hp_slot = func->device - ctrl->slot_device_offset; 1435 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1436 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1437 1438 mutex_lock(&ctrl->crit_sect); 1439 1440 /* turn on board without attaching to the bus */ 1441 enable_slot_power(ctrl, hp_slot); 1442 1443 set_SOGO(ctrl); 1444 1445 /* Wait for SOBS to be unset */ 1446 wait_for_ctrl_irq(ctrl); 1447 1448 /* Change bits in slot power register to force another shift out 1449 * NOTE: this is to work around the timer bug 1450 */ 1451 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1452 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1453 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1454 1455 set_SOGO(ctrl); 1456 1457 /* Wait for SOBS to be unset */ 1458 wait_for_ctrl_irq(ctrl); 1459 1460 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1461 if (bus->cur_bus_speed != adapter_speed) 1462 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1463 rc = WRONG_BUS_FREQUENCY; 1464 1465 /* turn off board without attaching to the bus */ 1466 disable_slot_power(ctrl, hp_slot); 1467 1468 set_SOGO(ctrl); 1469 1470 /* Wait for SOBS to be unset */ 1471 wait_for_ctrl_irq(ctrl); 1472 1473 mutex_unlock(&ctrl->crit_sect); 1474 1475 if (rc) 1476 return rc; 1477 1478 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1479 1480 /* turn on board and blink green LED */ 1481 1482 dbg("%s: before down\n", __func__); 1483 mutex_lock(&ctrl->crit_sect); 1484 dbg("%s: after down\n", __func__); 1485 1486 dbg("%s: before slot_enable\n", __func__); 1487 slot_enable(ctrl, hp_slot); 1488 1489 dbg("%s: before green_LED_blink\n", __func__); 1490 green_LED_blink(ctrl, hp_slot); 1491 1492 dbg("%s: before amber_LED_blink\n", __func__); 1493 amber_LED_off(ctrl, hp_slot); 1494 1495 dbg("%s: before set_SOGO\n", __func__); 1496 set_SOGO(ctrl); 1497 1498 /* Wait for SOBS to be unset */ 1499 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1500 wait_for_ctrl_irq(ctrl); 1501 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1502 1503 dbg("%s: before up\n", __func__); 1504 mutex_unlock(&ctrl->crit_sect); 1505 dbg("%s: after up\n", __func__); 1506 1507 /* Wait for ~1 second because of hot plug spec */ 1508 dbg("%s: before long_delay\n", __func__); 1509 long_delay(1*HZ); 1510 dbg("%s: after long_delay\n", __func__); 1511 1512 dbg("%s: func status = %x\n", __func__, func->status); 1513 /* Check for a power fault */ 1514 if (func->status == 0xFF) { 1515 /* power fault occurred, but it was benign */ 1516 temp_register = 0xFFFFFFFF; 1517 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1518 rc = POWER_FAILURE; 1519 func->status = 0; 1520 } else { 1521 /* Get vendor/device ID u32 */ 1522 ctrl->pci_bus->number = func->bus; 1523 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1524 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1525 dbg("%s: temp_register is %x\n", __func__, temp_register); 1526 1527 if (rc != 0) { 1528 /* Something's wrong here */ 1529 temp_register = 0xFFFFFFFF; 1530 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1531 } 1532 /* Preset return code. It will be changed later if things go okay. */ 1533 rc = NO_ADAPTER_PRESENT; 1534 } 1535 1536 /* All F's is an empty slot or an invalid board */ 1537 if (temp_register != 0xFFFFFFFF) { 1538 res_lists.io_head = ctrl->io_head; 1539 res_lists.mem_head = ctrl->mem_head; 1540 res_lists.p_mem_head = ctrl->p_mem_head; 1541 res_lists.bus_head = ctrl->bus_head; 1542 res_lists.irqs = NULL; 1543 1544 rc = configure_new_device(ctrl, func, 0, &res_lists); 1545 1546 dbg("%s: back from configure_new_device\n", __func__); 1547 ctrl->io_head = res_lists.io_head; 1548 ctrl->mem_head = res_lists.mem_head; 1549 ctrl->p_mem_head = res_lists.p_mem_head; 1550 ctrl->bus_head = res_lists.bus_head; 1551 1552 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1553 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1554 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1555 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1556 1557 if (rc) { 1558 mutex_lock(&ctrl->crit_sect); 1559 1560 amber_LED_on(ctrl, hp_slot); 1561 green_LED_off(ctrl, hp_slot); 1562 slot_disable(ctrl, hp_slot); 1563 1564 set_SOGO(ctrl); 1565 1566 /* Wait for SOBS to be unset */ 1567 wait_for_ctrl_irq(ctrl); 1568 1569 mutex_unlock(&ctrl->crit_sect); 1570 return rc; 1571 } else { 1572 cpqhp_save_slot_config(ctrl, func); 1573 } 1574 1575 1576 func->status = 0; 1577 func->switch_save = 0x10; 1578 func->is_a_board = 0x01; 1579 1580 /* next, we will instantiate the linux pci_dev structures (with 1581 * appropriate driver notification, if already present) */ 1582 dbg("%s: configure linux pci_dev structure\n", __func__); 1583 index = 0; 1584 do { 1585 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1586 if (new_slot && !new_slot->pci_dev) 1587 cpqhp_configure_device(ctrl, new_slot); 1588 } while (new_slot); 1589 1590 mutex_lock(&ctrl->crit_sect); 1591 1592 green_LED_on(ctrl, hp_slot); 1593 1594 set_SOGO(ctrl); 1595 1596 /* Wait for SOBS to be unset */ 1597 wait_for_ctrl_irq(ctrl); 1598 1599 mutex_unlock(&ctrl->crit_sect); 1600 } else { 1601 mutex_lock(&ctrl->crit_sect); 1602 1603 amber_LED_on(ctrl, hp_slot); 1604 green_LED_off(ctrl, hp_slot); 1605 slot_disable(ctrl, hp_slot); 1606 1607 set_SOGO(ctrl); 1608 1609 /* Wait for SOBS to be unset */ 1610 wait_for_ctrl_irq(ctrl); 1611 1612 mutex_unlock(&ctrl->crit_sect); 1613 1614 return rc; 1615 } 1616 return 0; 1617 } 1618 1619 1620 /** 1621 * remove_board - Turns off slot and LEDs 1622 * @func: PCI device/function info 1623 * @replace_flag: whether replacing or adding a new device 1624 * @ctrl: target controller 1625 */ 1626 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl) 1627 { 1628 int index; 1629 u8 skip = 0; 1630 u8 device; 1631 u8 hp_slot; 1632 u8 temp_byte; 1633 u32 rc; 1634 struct resource_lists res_lists; 1635 struct pci_func *temp_func; 1636 1637 if (cpqhp_unconfigure_device(func)) 1638 return 1; 1639 1640 device = func->device; 1641 1642 hp_slot = func->device - ctrl->slot_device_offset; 1643 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1644 1645 /* When we get here, it is safe to change base address registers. 1646 * We will attempt to save the base address register lengths */ 1647 if (replace_flag || !ctrl->add_support) 1648 rc = cpqhp_save_base_addr_length(ctrl, func); 1649 else if (!func->bus_head && !func->mem_head && 1650 !func->p_mem_head && !func->io_head) { 1651 /* Here we check to see if we've saved any of the board's 1652 * resources already. If so, we'll skip the attempt to 1653 * determine what's being used. */ 1654 index = 0; 1655 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1656 while (temp_func) { 1657 if (temp_func->bus_head || temp_func->mem_head 1658 || temp_func->p_mem_head || temp_func->io_head) { 1659 skip = 1; 1660 break; 1661 } 1662 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1663 } 1664 1665 if (!skip) 1666 rc = cpqhp_save_used_resources(ctrl, func); 1667 } 1668 /* Change status to shutdown */ 1669 if (func->is_a_board) 1670 func->status = 0x01; 1671 func->configured = 0; 1672 1673 mutex_lock(&ctrl->crit_sect); 1674 1675 green_LED_off(ctrl, hp_slot); 1676 slot_disable(ctrl, hp_slot); 1677 1678 set_SOGO(ctrl); 1679 1680 /* turn off SERR for slot */ 1681 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1682 temp_byte &= ~(0x01 << hp_slot); 1683 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1684 1685 /* Wait for SOBS to be unset */ 1686 wait_for_ctrl_irq(ctrl); 1687 1688 mutex_unlock(&ctrl->crit_sect); 1689 1690 if (!replace_flag && ctrl->add_support) { 1691 while (func) { 1692 res_lists.io_head = ctrl->io_head; 1693 res_lists.mem_head = ctrl->mem_head; 1694 res_lists.p_mem_head = ctrl->p_mem_head; 1695 res_lists.bus_head = ctrl->bus_head; 1696 1697 cpqhp_return_board_resources(func, &res_lists); 1698 1699 ctrl->io_head = res_lists.io_head; 1700 ctrl->mem_head = res_lists.mem_head; 1701 ctrl->p_mem_head = res_lists.p_mem_head; 1702 ctrl->bus_head = res_lists.bus_head; 1703 1704 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1705 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1706 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1707 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1708 1709 if (is_bridge(func)) { 1710 bridge_slot_remove(func); 1711 } else 1712 slot_remove(func); 1713 1714 func = cpqhp_slot_find(ctrl->bus, device, 0); 1715 } 1716 1717 /* Setup slot structure with entry for empty slot */ 1718 func = cpqhp_slot_create(ctrl->bus); 1719 1720 if (func == NULL) 1721 return 1; 1722 1723 func->bus = ctrl->bus; 1724 func->device = device; 1725 func->function = 0; 1726 func->configured = 0; 1727 func->switch_save = 0x10; 1728 func->is_a_board = 0; 1729 func->p_task_event = NULL; 1730 } 1731 1732 return 0; 1733 } 1734 1735 static void pushbutton_helper_thread(unsigned long data) 1736 { 1737 pushbutton_pending = data; 1738 wake_up_process(cpqhp_event_thread); 1739 } 1740 1741 1742 /* this is the main worker thread */ 1743 static int event_thread(void *data) 1744 { 1745 struct controller *ctrl; 1746 1747 while (1) { 1748 dbg("!!!!event_thread sleeping\n"); 1749 set_current_state(TASK_INTERRUPTIBLE); 1750 schedule(); 1751 1752 if (kthread_should_stop()) 1753 break; 1754 /* Do stuff here */ 1755 if (pushbutton_pending) 1756 cpqhp_pushbutton_thread(pushbutton_pending); 1757 else 1758 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next) 1759 interrupt_event_handler(ctrl); 1760 } 1761 dbg("event_thread signals exit\n"); 1762 return 0; 1763 } 1764 1765 int cpqhp_event_start_thread(void) 1766 { 1767 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1768 if (IS_ERR(cpqhp_event_thread)) { 1769 err("Can't start up our event thread\n"); 1770 return PTR_ERR(cpqhp_event_thread); 1771 } 1772 1773 return 0; 1774 } 1775 1776 1777 void cpqhp_event_stop_thread(void) 1778 { 1779 kthread_stop(cpqhp_event_thread); 1780 } 1781 1782 1783 static int update_slot_info(struct controller *ctrl, struct slot *slot) 1784 { 1785 struct hotplug_slot_info *info; 1786 int result; 1787 1788 info = kmalloc(sizeof(*info), GFP_KERNEL); 1789 if (!info) 1790 return -ENOMEM; 1791 1792 info->power_status = get_slot_enabled(ctrl, slot); 1793 info->attention_status = cpq_get_attention_status(ctrl, slot); 1794 info->latch_status = cpq_get_latch_status(ctrl, slot); 1795 info->adapter_status = get_presence_status(ctrl, slot); 1796 result = pci_hp_change_slot_info(slot->hotplug_slot, info); 1797 kfree(info); 1798 return result; 1799 } 1800 1801 static void interrupt_event_handler(struct controller *ctrl) 1802 { 1803 int loop = 0; 1804 int change = 1; 1805 struct pci_func *func; 1806 u8 hp_slot; 1807 struct slot *p_slot; 1808 1809 while (change) { 1810 change = 0; 1811 1812 for (loop = 0; loop < 10; loop++) { 1813 /* dbg("loop %d\n", loop); */ 1814 if (ctrl->event_queue[loop].event_type != 0) { 1815 hp_slot = ctrl->event_queue[loop].hp_slot; 1816 1817 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1818 if (!func) 1819 return; 1820 1821 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1822 if (!p_slot) 1823 return; 1824 1825 dbg("hp_slot %d, func %p, p_slot %p\n", 1826 hp_slot, func, p_slot); 1827 1828 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1829 dbg("button pressed\n"); 1830 } else if (ctrl->event_queue[loop].event_type == 1831 INT_BUTTON_CANCEL) { 1832 dbg("button cancel\n"); 1833 del_timer(&p_slot->task_event); 1834 1835 mutex_lock(&ctrl->crit_sect); 1836 1837 if (p_slot->state == BLINKINGOFF_STATE) { 1838 /* slot is on */ 1839 dbg("turn on green LED\n"); 1840 green_LED_on(ctrl, hp_slot); 1841 } else if (p_slot->state == BLINKINGON_STATE) { 1842 /* slot is off */ 1843 dbg("turn off green LED\n"); 1844 green_LED_off(ctrl, hp_slot); 1845 } 1846 1847 info(msg_button_cancel, p_slot->number); 1848 1849 p_slot->state = STATIC_STATE; 1850 1851 amber_LED_off(ctrl, hp_slot); 1852 1853 set_SOGO(ctrl); 1854 1855 /* Wait for SOBS to be unset */ 1856 wait_for_ctrl_irq(ctrl); 1857 1858 mutex_unlock(&ctrl->crit_sect); 1859 } 1860 /*** button Released (No action on press...) */ 1861 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1862 dbg("button release\n"); 1863 1864 if (is_slot_enabled(ctrl, hp_slot)) { 1865 dbg("slot is on\n"); 1866 p_slot->state = BLINKINGOFF_STATE; 1867 info(msg_button_off, p_slot->number); 1868 } else { 1869 dbg("slot is off\n"); 1870 p_slot->state = BLINKINGON_STATE; 1871 info(msg_button_on, p_slot->number); 1872 } 1873 mutex_lock(&ctrl->crit_sect); 1874 1875 dbg("blink green LED and turn off amber\n"); 1876 1877 amber_LED_off(ctrl, hp_slot); 1878 green_LED_blink(ctrl, hp_slot); 1879 1880 set_SOGO(ctrl); 1881 1882 /* Wait for SOBS to be unset */ 1883 wait_for_ctrl_irq(ctrl); 1884 1885 mutex_unlock(&ctrl->crit_sect); 1886 init_timer(&p_slot->task_event); 1887 p_slot->hp_slot = hp_slot; 1888 p_slot->ctrl = ctrl; 1889 /* p_slot->physical_slot = physical_slot; */ 1890 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1891 p_slot->task_event.function = pushbutton_helper_thread; 1892 p_slot->task_event.data = (u32) p_slot; 1893 1894 dbg("add_timer p_slot = %p\n", p_slot); 1895 add_timer(&p_slot->task_event); 1896 } 1897 /***********POWER FAULT */ 1898 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1899 dbg("power fault\n"); 1900 } else { 1901 /* refresh notification */ 1902 update_slot_info(ctrl, p_slot); 1903 } 1904 1905 ctrl->event_queue[loop].event_type = 0; 1906 1907 change = 1; 1908 } 1909 } /* End of FOR loop */ 1910 } 1911 1912 return; 1913 } 1914 1915 1916 /** 1917 * cpqhp_pushbutton_thread - handle pushbutton events 1918 * @slot: target slot (struct) 1919 * 1920 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1921 * Handles all pending events and exits. 1922 */ 1923 void cpqhp_pushbutton_thread(unsigned long slot) 1924 { 1925 u8 hp_slot; 1926 u8 device; 1927 struct pci_func *func; 1928 struct slot *p_slot = (struct slot *) slot; 1929 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1930 1931 pushbutton_pending = 0; 1932 hp_slot = p_slot->hp_slot; 1933 1934 device = p_slot->device; 1935 1936 if (is_slot_enabled(ctrl, hp_slot)) { 1937 p_slot->state = POWEROFF_STATE; 1938 /* power Down board */ 1939 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1940 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1941 if (!func) { 1942 dbg("Error! func NULL in %s\n", __func__); 1943 return; 1944 } 1945 1946 if (cpqhp_process_SS(ctrl, func) != 0) { 1947 amber_LED_on(ctrl, hp_slot); 1948 green_LED_on(ctrl, hp_slot); 1949 1950 set_SOGO(ctrl); 1951 1952 /* Wait for SOBS to be unset */ 1953 wait_for_ctrl_irq(ctrl); 1954 } 1955 1956 p_slot->state = STATIC_STATE; 1957 } else { 1958 p_slot->state = POWERON_STATE; 1959 /* slot is off */ 1960 1961 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1962 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1963 if (!func) { 1964 dbg("Error! func NULL in %s\n", __func__); 1965 return; 1966 } 1967 1968 if (ctrl != NULL) { 1969 if (cpqhp_process_SI(ctrl, func) != 0) { 1970 amber_LED_on(ctrl, hp_slot); 1971 green_LED_off(ctrl, hp_slot); 1972 1973 set_SOGO(ctrl); 1974 1975 /* Wait for SOBS to be unset */ 1976 wait_for_ctrl_irq(ctrl); 1977 } 1978 } 1979 1980 p_slot->state = STATIC_STATE; 1981 } 1982 1983 return; 1984 } 1985 1986 1987 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1988 { 1989 u8 device, hp_slot; 1990 u16 temp_word; 1991 u32 tempdword; 1992 int rc; 1993 struct slot *p_slot; 1994 int physical_slot = 0; 1995 1996 tempdword = 0; 1997 1998 device = func->device; 1999 hp_slot = device - ctrl->slot_device_offset; 2000 p_slot = cpqhp_find_slot(ctrl, device); 2001 if (p_slot) 2002 physical_slot = p_slot->number; 2003 2004 /* Check to see if the interlock is closed */ 2005 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 2006 2007 if (tempdword & (0x01 << hp_slot)) 2008 return 1; 2009 2010 if (func->is_a_board) { 2011 rc = board_replaced(func, ctrl); 2012 } else { 2013 /* add board */ 2014 slot_remove(func); 2015 2016 func = cpqhp_slot_create(ctrl->bus); 2017 if (func == NULL) 2018 return 1; 2019 2020 func->bus = ctrl->bus; 2021 func->device = device; 2022 func->function = 0; 2023 func->configured = 0; 2024 func->is_a_board = 1; 2025 2026 /* We have to save the presence info for these slots */ 2027 temp_word = ctrl->ctrl_int_comp >> 16; 2028 func->presence_save = (temp_word >> hp_slot) & 0x01; 2029 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 2030 2031 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2032 func->switch_save = 0; 2033 } else { 2034 func->switch_save = 0x10; 2035 } 2036 2037 rc = board_added(func, ctrl); 2038 if (rc) { 2039 if (is_bridge(func)) { 2040 bridge_slot_remove(func); 2041 } else 2042 slot_remove(func); 2043 2044 /* Setup slot structure with entry for empty slot */ 2045 func = cpqhp_slot_create(ctrl->bus); 2046 2047 if (func == NULL) 2048 return 1; 2049 2050 func->bus = ctrl->bus; 2051 func->device = device; 2052 func->function = 0; 2053 func->configured = 0; 2054 func->is_a_board = 0; 2055 2056 /* We have to save the presence info for these slots */ 2057 temp_word = ctrl->ctrl_int_comp >> 16; 2058 func->presence_save = (temp_word >> hp_slot) & 0x01; 2059 func->presence_save |= 2060 (temp_word >> (hp_slot + 7)) & 0x02; 2061 2062 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2063 func->switch_save = 0; 2064 } else { 2065 func->switch_save = 0x10; 2066 } 2067 } 2068 } 2069 2070 if (rc) 2071 dbg("%s: rc = %d\n", __func__, rc); 2072 2073 if (p_slot) 2074 update_slot_info(ctrl, p_slot); 2075 2076 return rc; 2077 } 2078 2079 2080 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2081 { 2082 u8 device, class_code, header_type, BCR; 2083 u8 index = 0; 2084 u8 replace_flag; 2085 u32 rc = 0; 2086 unsigned int devfn; 2087 struct slot *p_slot; 2088 struct pci_bus *pci_bus = ctrl->pci_bus; 2089 int physical_slot = 0; 2090 2091 device = func->device; 2092 func = cpqhp_slot_find(ctrl->bus, device, index++); 2093 p_slot = cpqhp_find_slot(ctrl, device); 2094 if (p_slot) 2095 physical_slot = p_slot->number; 2096 2097 /* Make sure there are no video controllers here */ 2098 while (func && !rc) { 2099 pci_bus->number = func->bus; 2100 devfn = PCI_DEVFN(func->device, func->function); 2101 2102 /* Check the Class Code */ 2103 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2104 if (rc) 2105 return rc; 2106 2107 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2108 /* Display/Video adapter (not supported) */ 2109 rc = REMOVE_NOT_SUPPORTED; 2110 } else { 2111 /* See if it's a bridge */ 2112 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2113 if (rc) 2114 return rc; 2115 2116 /* If it's a bridge, check the VGA Enable bit */ 2117 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2118 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2119 if (rc) 2120 return rc; 2121 2122 /* If the VGA Enable bit is set, remove isn't 2123 * supported */ 2124 if (BCR & PCI_BRIDGE_CTL_VGA) 2125 rc = REMOVE_NOT_SUPPORTED; 2126 } 2127 } 2128 2129 func = cpqhp_slot_find(ctrl->bus, device, index++); 2130 } 2131 2132 func = cpqhp_slot_find(ctrl->bus, device, 0); 2133 if ((func != NULL) && !rc) { 2134 /* FIXME: Replace flag should be passed into process_SS */ 2135 replace_flag = !(ctrl->add_support); 2136 rc = remove_board(func, replace_flag, ctrl); 2137 } else if (!rc) { 2138 rc = 1; 2139 } 2140 2141 if (p_slot) 2142 update_slot_info(ctrl, p_slot); 2143 2144 return rc; 2145 } 2146 2147 /** 2148 * switch_leds - switch the leds, go from one site to the other. 2149 * @ctrl: controller to use 2150 * @num_of_slots: number of slots to use 2151 * @work_LED: LED control value 2152 * @direction: 1 to start from the left side, 0 to start right. 2153 */ 2154 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2155 u32 *work_LED, const int direction) 2156 { 2157 int loop; 2158 2159 for (loop = 0; loop < num_of_slots; loop++) { 2160 if (direction) 2161 *work_LED = *work_LED >> 1; 2162 else 2163 *work_LED = *work_LED << 1; 2164 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2165 2166 set_SOGO(ctrl); 2167 2168 /* Wait for SOGO interrupt */ 2169 wait_for_ctrl_irq(ctrl); 2170 2171 /* Get ready for next iteration */ 2172 long_delay((2*HZ)/10); 2173 } 2174 } 2175 2176 /** 2177 * cpqhp_hardware_test - runs hardware tests 2178 * @ctrl: target controller 2179 * @test_num: the number written to the "test" file in sysfs. 2180 * 2181 * For hot plug ctrl folks to play with. 2182 */ 2183 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2184 { 2185 u32 save_LED; 2186 u32 work_LED; 2187 int loop; 2188 int num_of_slots; 2189 2190 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2191 2192 switch (test_num) { 2193 case 1: 2194 /* Do stuff here! */ 2195 2196 /* Do that funky LED thing */ 2197 /* so we can restore them later */ 2198 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2199 work_LED = 0x01010101; 2200 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2201 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2202 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2203 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2204 2205 work_LED = 0x01010000; 2206 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2207 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2208 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2209 work_LED = 0x00000101; 2210 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2211 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2212 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2213 2214 work_LED = 0x01010000; 2215 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2216 for (loop = 0; loop < num_of_slots; loop++) { 2217 set_SOGO(ctrl); 2218 2219 /* Wait for SOGO interrupt */ 2220 wait_for_ctrl_irq(ctrl); 2221 2222 /* Get ready for next iteration */ 2223 long_delay((3*HZ)/10); 2224 work_LED = work_LED >> 16; 2225 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2226 2227 set_SOGO(ctrl); 2228 2229 /* Wait for SOGO interrupt */ 2230 wait_for_ctrl_irq(ctrl); 2231 2232 /* Get ready for next iteration */ 2233 long_delay((3*HZ)/10); 2234 work_LED = work_LED << 16; 2235 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2236 work_LED = work_LED << 1; 2237 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2238 } 2239 2240 /* put it back the way it was */ 2241 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2242 2243 set_SOGO(ctrl); 2244 2245 /* Wait for SOBS to be unset */ 2246 wait_for_ctrl_irq(ctrl); 2247 break; 2248 case 2: 2249 /* Do other stuff here! */ 2250 break; 2251 case 3: 2252 /* and more... */ 2253 break; 2254 } 2255 return 0; 2256 } 2257 2258 2259 /** 2260 * configure_new_device - Configures the PCI header information of one board. 2261 * @ctrl: pointer to controller structure 2262 * @func: pointer to function structure 2263 * @behind_bridge: 1 if this is a recursive call, 0 if not 2264 * @resources: pointer to set of resource lists 2265 * 2266 * Returns 0 if success. 2267 */ 2268 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 2269 u8 behind_bridge, struct resource_lists *resources) 2270 { 2271 u8 temp_byte, function, max_functions, stop_it; 2272 int rc; 2273 u32 ID; 2274 struct pci_func *new_slot; 2275 int index; 2276 2277 new_slot = func; 2278 2279 dbg("%s\n", __func__); 2280 /* Check for Multi-function device */ 2281 ctrl->pci_bus->number = func->bus; 2282 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2283 if (rc) { 2284 dbg("%s: rc = %d\n", __func__, rc); 2285 return rc; 2286 } 2287 2288 if (temp_byte & 0x80) /* Multi-function device */ 2289 max_functions = 8; 2290 else 2291 max_functions = 1; 2292 2293 function = 0; 2294 2295 do { 2296 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2297 2298 if (rc) { 2299 dbg("configure_new_function failed %d\n", rc); 2300 index = 0; 2301 2302 while (new_slot) { 2303 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2304 2305 if (new_slot) 2306 cpqhp_return_board_resources(new_slot, resources); 2307 } 2308 2309 return rc; 2310 } 2311 2312 function++; 2313 2314 stop_it = 0; 2315 2316 /* The following loop skips to the next present function 2317 * and creates a board structure */ 2318 2319 while ((function < max_functions) && (!stop_it)) { 2320 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2321 2322 if (ID == 0xFFFFFFFF) { 2323 function++; 2324 } else { 2325 /* Setup slot structure. */ 2326 new_slot = cpqhp_slot_create(func->bus); 2327 2328 if (new_slot == NULL) 2329 return 1; 2330 2331 new_slot->bus = func->bus; 2332 new_slot->device = func->device; 2333 new_slot->function = function; 2334 new_slot->is_a_board = 1; 2335 new_slot->status = 0; 2336 2337 stop_it++; 2338 } 2339 } 2340 2341 } while (function < max_functions); 2342 dbg("returning from configure_new_device\n"); 2343 2344 return 0; 2345 } 2346 2347 2348 /* 2349 * Configuration logic that involves the hotplug data structures and 2350 * their bookkeeping 2351 */ 2352 2353 2354 /** 2355 * configure_new_function - Configures the PCI header information of one device 2356 * @ctrl: pointer to controller structure 2357 * @func: pointer to function structure 2358 * @behind_bridge: 1 if this is a recursive call, 0 if not 2359 * @resources: pointer to set of resource lists 2360 * 2361 * Calls itself recursively for bridged devices. 2362 * Returns 0 if success. 2363 */ 2364 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2365 u8 behind_bridge, 2366 struct resource_lists *resources) 2367 { 2368 int cloop; 2369 u8 IRQ = 0; 2370 u8 temp_byte; 2371 u8 device; 2372 u8 class_code; 2373 u16 command; 2374 u16 temp_word; 2375 u32 temp_dword; 2376 u32 rc; 2377 u32 temp_register; 2378 u32 base; 2379 u32 ID; 2380 unsigned int devfn; 2381 struct pci_resource *mem_node; 2382 struct pci_resource *p_mem_node; 2383 struct pci_resource *io_node; 2384 struct pci_resource *bus_node; 2385 struct pci_resource *hold_mem_node; 2386 struct pci_resource *hold_p_mem_node; 2387 struct pci_resource *hold_IO_node; 2388 struct pci_resource *hold_bus_node; 2389 struct irq_mapping irqs; 2390 struct pci_func *new_slot; 2391 struct pci_bus *pci_bus; 2392 struct resource_lists temp_resources; 2393 2394 pci_bus = ctrl->pci_bus; 2395 pci_bus->number = func->bus; 2396 devfn = PCI_DEVFN(func->device, func->function); 2397 2398 /* Check for Bridge */ 2399 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2400 if (rc) 2401 return rc; 2402 2403 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2404 /* set Primary bus */ 2405 dbg("set Primary bus = %d\n", func->bus); 2406 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2407 if (rc) 2408 return rc; 2409 2410 /* find range of buses to use */ 2411 dbg("find ranges of buses to use\n"); 2412 bus_node = get_max_resource(&(resources->bus_head), 1); 2413 2414 /* If we don't have any buses to allocate, we can't continue */ 2415 if (!bus_node) 2416 return -ENOMEM; 2417 2418 /* set Secondary bus */ 2419 temp_byte = bus_node->base; 2420 dbg("set Secondary bus = %d\n", bus_node->base); 2421 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2422 if (rc) 2423 return rc; 2424 2425 /* set subordinate bus */ 2426 temp_byte = bus_node->base + bus_node->length - 1; 2427 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2428 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2429 if (rc) 2430 return rc; 2431 2432 /* set subordinate Latency Timer and base Latency Timer */ 2433 temp_byte = 0x40; 2434 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2435 if (rc) 2436 return rc; 2437 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2438 if (rc) 2439 return rc; 2440 2441 /* set Cache Line size */ 2442 temp_byte = 0x08; 2443 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2444 if (rc) 2445 return rc; 2446 2447 /* Setup the IO, memory, and prefetchable windows */ 2448 io_node = get_max_resource(&(resources->io_head), 0x1000); 2449 if (!io_node) 2450 return -ENOMEM; 2451 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2452 if (!mem_node) 2453 return -ENOMEM; 2454 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2455 if (!p_mem_node) 2456 return -ENOMEM; 2457 dbg("Setup the IO, memory, and prefetchable windows\n"); 2458 dbg("io_node\n"); 2459 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2460 io_node->length, io_node->next); 2461 dbg("mem_node\n"); 2462 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2463 mem_node->length, mem_node->next); 2464 dbg("p_mem_node\n"); 2465 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2466 p_mem_node->length, p_mem_node->next); 2467 2468 /* set up the IRQ info */ 2469 if (!resources->irqs) { 2470 irqs.barber_pole = 0; 2471 irqs.interrupt[0] = 0; 2472 irqs.interrupt[1] = 0; 2473 irqs.interrupt[2] = 0; 2474 irqs.interrupt[3] = 0; 2475 irqs.valid_INT = 0; 2476 } else { 2477 irqs.barber_pole = resources->irqs->barber_pole; 2478 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2479 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2480 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2481 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2482 irqs.valid_INT = resources->irqs->valid_INT; 2483 } 2484 2485 /* set up resource lists that are now aligned on top and bottom 2486 * for anything behind the bridge. */ 2487 temp_resources.bus_head = bus_node; 2488 temp_resources.io_head = io_node; 2489 temp_resources.mem_head = mem_node; 2490 temp_resources.p_mem_head = p_mem_node; 2491 temp_resources.irqs = &irqs; 2492 2493 /* Make copies of the nodes we are going to pass down so that 2494 * if there is a problem,we can just use these to free resources 2495 */ 2496 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2497 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2498 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2499 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2500 2501 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2502 kfree(hold_bus_node); 2503 kfree(hold_IO_node); 2504 kfree(hold_mem_node); 2505 kfree(hold_p_mem_node); 2506 2507 return 1; 2508 } 2509 2510 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2511 2512 bus_node->base += 1; 2513 bus_node->length -= 1; 2514 bus_node->next = NULL; 2515 2516 /* If we have IO resources copy them and fill in the bridge's 2517 * IO range registers */ 2518 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2519 io_node->next = NULL; 2520 2521 /* set IO base and Limit registers */ 2522 temp_byte = io_node->base >> 8; 2523 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2524 2525 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2526 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2527 2528 /* Copy the memory resources and fill in the bridge's memory 2529 * range registers. 2530 */ 2531 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2532 mem_node->next = NULL; 2533 2534 /* set Mem base and Limit registers */ 2535 temp_word = mem_node->base >> 16; 2536 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2537 2538 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2539 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2540 2541 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2542 p_mem_node->next = NULL; 2543 2544 /* set Pre Mem base and Limit registers */ 2545 temp_word = p_mem_node->base >> 16; 2546 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2547 2548 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2549 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2550 2551 /* Adjust this to compensate for extra adjustment in first loop 2552 */ 2553 irqs.barber_pole--; 2554 2555 rc = 0; 2556 2557 /* Here we actually find the devices and configure them */ 2558 for (device = 0; (device <= 0x1F) && !rc; device++) { 2559 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2560 2561 ID = 0xFFFFFFFF; 2562 pci_bus->number = hold_bus_node->base; 2563 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2564 pci_bus->number = func->bus; 2565 2566 if (ID != 0xFFFFFFFF) { /* device present */ 2567 /* Setup slot structure. */ 2568 new_slot = cpqhp_slot_create(hold_bus_node->base); 2569 2570 if (new_slot == NULL) { 2571 rc = -ENOMEM; 2572 continue; 2573 } 2574 2575 new_slot->bus = hold_bus_node->base; 2576 new_slot->device = device; 2577 new_slot->function = 0; 2578 new_slot->is_a_board = 1; 2579 new_slot->status = 0; 2580 2581 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2582 dbg("configure_new_device rc=0x%x\n", rc); 2583 } /* End of IF (device in slot?) */ 2584 } /* End of FOR loop */ 2585 2586 if (rc) 2587 goto free_and_out; 2588 /* save the interrupt routing information */ 2589 if (resources->irqs) { 2590 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2591 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2592 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2593 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2594 resources->irqs->valid_INT = irqs.valid_INT; 2595 } else if (!behind_bridge) { 2596 /* We need to hook up the interrupts here */ 2597 for (cloop = 0; cloop < 4; cloop++) { 2598 if (irqs.valid_INT & (0x01 << cloop)) { 2599 rc = cpqhp_set_irq(func->bus, func->device, 2600 cloop + 1, irqs.interrupt[cloop]); 2601 if (rc) 2602 goto free_and_out; 2603 } 2604 } /* end of for loop */ 2605 } 2606 /* Return unused bus resources 2607 * First use the temporary node to store information for 2608 * the board */ 2609 if (bus_node && temp_resources.bus_head) { 2610 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2611 2612 hold_bus_node->next = func->bus_head; 2613 func->bus_head = hold_bus_node; 2614 2615 temp_byte = temp_resources.bus_head->base - 1; 2616 2617 /* set subordinate bus */ 2618 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2619 2620 if (temp_resources.bus_head->length == 0) { 2621 kfree(temp_resources.bus_head); 2622 temp_resources.bus_head = NULL; 2623 } else { 2624 return_resource(&(resources->bus_head), temp_resources.bus_head); 2625 } 2626 } 2627 2628 /* If we have IO space available and there is some left, 2629 * return the unused portion */ 2630 if (hold_IO_node && temp_resources.io_head) { 2631 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2632 &hold_IO_node, 0x1000); 2633 2634 /* Check if we were able to split something off */ 2635 if (io_node) { 2636 hold_IO_node->base = io_node->base + io_node->length; 2637 2638 temp_byte = (hold_IO_node->base) >> 8; 2639 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2640 2641 return_resource(&(resources->io_head), io_node); 2642 } 2643 2644 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2645 2646 /* Check if we were able to split something off */ 2647 if (io_node) { 2648 /* First use the temporary node to store 2649 * information for the board */ 2650 hold_IO_node->length = io_node->base - hold_IO_node->base; 2651 2652 /* If we used any, add it to the board's list */ 2653 if (hold_IO_node->length) { 2654 hold_IO_node->next = func->io_head; 2655 func->io_head = hold_IO_node; 2656 2657 temp_byte = (io_node->base - 1) >> 8; 2658 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2659 2660 return_resource(&(resources->io_head), io_node); 2661 } else { 2662 /* it doesn't need any IO */ 2663 temp_word = 0x0000; 2664 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2665 2666 return_resource(&(resources->io_head), io_node); 2667 kfree(hold_IO_node); 2668 } 2669 } else { 2670 /* it used most of the range */ 2671 hold_IO_node->next = func->io_head; 2672 func->io_head = hold_IO_node; 2673 } 2674 } else if (hold_IO_node) { 2675 /* it used the whole range */ 2676 hold_IO_node->next = func->io_head; 2677 func->io_head = hold_IO_node; 2678 } 2679 /* If we have memory space available and there is some left, 2680 * return the unused portion */ 2681 if (hold_mem_node && temp_resources.mem_head) { 2682 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2683 &hold_mem_node, 0x100000); 2684 2685 /* Check if we were able to split something off */ 2686 if (mem_node) { 2687 hold_mem_node->base = mem_node->base + mem_node->length; 2688 2689 temp_word = (hold_mem_node->base) >> 16; 2690 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2691 2692 return_resource(&(resources->mem_head), mem_node); 2693 } 2694 2695 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2696 2697 /* Check if we were able to split something off */ 2698 if (mem_node) { 2699 /* First use the temporary node to store 2700 * information for the board */ 2701 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2702 2703 if (hold_mem_node->length) { 2704 hold_mem_node->next = func->mem_head; 2705 func->mem_head = hold_mem_node; 2706 2707 /* configure end address */ 2708 temp_word = (mem_node->base - 1) >> 16; 2709 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2710 2711 /* Return unused resources to the pool */ 2712 return_resource(&(resources->mem_head), mem_node); 2713 } else { 2714 /* it doesn't need any Mem */ 2715 temp_word = 0x0000; 2716 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2717 2718 return_resource(&(resources->mem_head), mem_node); 2719 kfree(hold_mem_node); 2720 } 2721 } else { 2722 /* it used most of the range */ 2723 hold_mem_node->next = func->mem_head; 2724 func->mem_head = hold_mem_node; 2725 } 2726 } else if (hold_mem_node) { 2727 /* it used the whole range */ 2728 hold_mem_node->next = func->mem_head; 2729 func->mem_head = hold_mem_node; 2730 } 2731 /* If we have prefetchable memory space available and there 2732 * is some left at the end, return the unused portion */ 2733 if (temp_resources.p_mem_head) { 2734 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2735 &hold_p_mem_node, 0x100000); 2736 2737 /* Check if we were able to split something off */ 2738 if (p_mem_node) { 2739 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2740 2741 temp_word = (hold_p_mem_node->base) >> 16; 2742 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2743 2744 return_resource(&(resources->p_mem_head), p_mem_node); 2745 } 2746 2747 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2748 2749 /* Check if we were able to split something off */ 2750 if (p_mem_node) { 2751 /* First use the temporary node to store 2752 * information for the board */ 2753 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2754 2755 /* If we used any, add it to the board's list */ 2756 if (hold_p_mem_node->length) { 2757 hold_p_mem_node->next = func->p_mem_head; 2758 func->p_mem_head = hold_p_mem_node; 2759 2760 temp_word = (p_mem_node->base - 1) >> 16; 2761 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2762 2763 return_resource(&(resources->p_mem_head), p_mem_node); 2764 } else { 2765 /* it doesn't need any PMem */ 2766 temp_word = 0x0000; 2767 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2768 2769 return_resource(&(resources->p_mem_head), p_mem_node); 2770 kfree(hold_p_mem_node); 2771 } 2772 } else { 2773 /* it used the most of the range */ 2774 hold_p_mem_node->next = func->p_mem_head; 2775 func->p_mem_head = hold_p_mem_node; 2776 } 2777 } else if (hold_p_mem_node) { 2778 /* it used the whole range */ 2779 hold_p_mem_node->next = func->p_mem_head; 2780 func->p_mem_head = hold_p_mem_node; 2781 } 2782 /* We should be configuring an IRQ and the bridge's base address 2783 * registers if it needs them. Although we have never seen such 2784 * a device */ 2785 2786 /* enable card */ 2787 command = 0x0157; /* = PCI_COMMAND_IO | 2788 * PCI_COMMAND_MEMORY | 2789 * PCI_COMMAND_MASTER | 2790 * PCI_COMMAND_INVALIDATE | 2791 * PCI_COMMAND_PARITY | 2792 * PCI_COMMAND_SERR */ 2793 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); 2794 2795 /* set Bridge Control Register */ 2796 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2797 * PCI_BRIDGE_CTL_SERR | 2798 * PCI_BRIDGE_CTL_NO_ISA */ 2799 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2800 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2801 /* Standard device */ 2802 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2803 2804 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2805 /* Display (video) adapter (not supported) */ 2806 return DEVICE_TYPE_NOT_SUPPORTED; 2807 } 2808 /* Figure out IO and memory needs */ 2809 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2810 temp_register = 0xFFFFFFFF; 2811 2812 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2813 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 2814 2815 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); 2816 dbg("CND: base = 0x%x\n", temp_register); 2817 2818 if (temp_register) { /* If this register is implemented */ 2819 if ((temp_register & 0x03L) == 0x01) { 2820 /* Map IO */ 2821 2822 /* set base = amount of IO space */ 2823 base = temp_register & 0xFFFFFFFC; 2824 base = ~base + 1; 2825 2826 dbg("CND: length = 0x%x\n", base); 2827 io_node = get_io_resource(&(resources->io_head), base); 2828 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2829 io_node->base, io_node->length, io_node->next); 2830 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2831 2832 /* allocate the resource to the board */ 2833 if (io_node) { 2834 base = io_node->base; 2835 2836 io_node->next = func->io_head; 2837 func->io_head = io_node; 2838 } else 2839 return -ENOMEM; 2840 } else if ((temp_register & 0x0BL) == 0x08) { 2841 /* Map prefetchable memory */ 2842 base = temp_register & 0xFFFFFFF0; 2843 base = ~base + 1; 2844 2845 dbg("CND: length = 0x%x\n", base); 2846 p_mem_node = get_resource(&(resources->p_mem_head), base); 2847 2848 /* allocate the resource to the board */ 2849 if (p_mem_node) { 2850 base = p_mem_node->base; 2851 2852 p_mem_node->next = func->p_mem_head; 2853 func->p_mem_head = p_mem_node; 2854 } else 2855 return -ENOMEM; 2856 } else if ((temp_register & 0x0BL) == 0x00) { 2857 /* Map memory */ 2858 base = temp_register & 0xFFFFFFF0; 2859 base = ~base + 1; 2860 2861 dbg("CND: length = 0x%x\n", base); 2862 mem_node = get_resource(&(resources->mem_head), base); 2863 2864 /* allocate the resource to the board */ 2865 if (mem_node) { 2866 base = mem_node->base; 2867 2868 mem_node->next = func->mem_head; 2869 func->mem_head = mem_node; 2870 } else 2871 return -ENOMEM; 2872 } else { 2873 /* Reserved bits or requesting space below 1M */ 2874 return NOT_ENOUGH_RESOURCES; 2875 } 2876 2877 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2878 2879 /* Check for 64-bit base */ 2880 if ((temp_register & 0x07L) == 0x04) { 2881 cloop += 4; 2882 2883 /* Upper 32 bits of address always zero 2884 * on today's systems */ 2885 /* FIXME this is probably not true on 2886 * Alpha and ia64??? */ 2887 base = 0; 2888 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2889 } 2890 } 2891 } /* End of base register loop */ 2892 if (cpqhp_legacy_mode) { 2893 /* Figure out which interrupt pin this function uses */ 2894 rc = pci_bus_read_config_byte(pci_bus, devfn, 2895 PCI_INTERRUPT_PIN, &temp_byte); 2896 2897 /* If this function needs an interrupt and we are behind 2898 * a bridge and the pin is tied to something that's 2899 * already mapped, set this one the same */ 2900 if (temp_byte && resources->irqs && 2901 (resources->irqs->valid_INT & 2902 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2903 /* We have to share with something already set up */ 2904 IRQ = resources->irqs->interrupt[(temp_byte + 2905 resources->irqs->barber_pole - 1) & 0x03]; 2906 } else { 2907 /* Program IRQ based on card type */ 2908 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2909 2910 if (class_code == PCI_BASE_CLASS_STORAGE) 2911 IRQ = cpqhp_disk_irq; 2912 else 2913 IRQ = cpqhp_nic_irq; 2914 } 2915 2916 /* IRQ Line */ 2917 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2918 } 2919 2920 if (!behind_bridge) { 2921 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2922 if (rc) 2923 return 1; 2924 } else { 2925 /* TBD - this code may also belong in the other clause 2926 * of this If statement */ 2927 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2928 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2929 } 2930 2931 /* Latency Timer */ 2932 temp_byte = 0x40; 2933 rc = pci_bus_write_config_byte(pci_bus, devfn, 2934 PCI_LATENCY_TIMER, temp_byte); 2935 2936 /* Cache Line size */ 2937 temp_byte = 0x08; 2938 rc = pci_bus_write_config_byte(pci_bus, devfn, 2939 PCI_CACHE_LINE_SIZE, temp_byte); 2940 2941 /* disable ROM base Address */ 2942 temp_dword = 0x00L; 2943 rc = pci_bus_write_config_word(pci_bus, devfn, 2944 PCI_ROM_ADDRESS, temp_dword); 2945 2946 /* enable card */ 2947 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2948 * PCI_COMMAND_MEMORY | 2949 * PCI_COMMAND_MASTER | 2950 * PCI_COMMAND_INVALIDATE | 2951 * PCI_COMMAND_PARITY | 2952 * PCI_COMMAND_SERR */ 2953 rc = pci_bus_write_config_word(pci_bus, devfn, 2954 PCI_COMMAND, temp_word); 2955 } else { /* End of Not-A-Bridge else */ 2956 /* It's some strange type of PCI adapter (Cardbus?) */ 2957 return DEVICE_TYPE_NOT_SUPPORTED; 2958 } 2959 2960 func->configured = 1; 2961 2962 return 0; 2963 free_and_out: 2964 cpqhp_destroy_resource_list(&temp_resources); 2965 2966 return_resource(&(resources->bus_head), hold_bus_node); 2967 return_resource(&(resources->io_head), hold_IO_node); 2968 return_resource(&(resources->mem_head), hold_mem_node); 2969 return_resource(&(resources->p_mem_head), hold_p_mem_node); 2970 return rc; 2971 } 2972