1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
26 #include "cpqphp.h"
27 
28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29 			u8 behind_bridge, struct resource_lists *resources);
30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31 			u8 behind_bridge, struct resource_lists *resources);
32 static void interrupt_event_handler(struct controller *ctrl);
33 
34 
35 static struct task_struct *cpqhp_event_thread;
36 static struct timer_list *pushbutton_pending;	/* = NULL */
37 
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay)
40 {
41 	/*
42 	 * XXX(hch): if someone is bored please convert all callers
43 	 * to call msleep_interruptible directly.  They really want
44 	 * to specify timeouts in natural units and spend a lot of
45 	 * effort converting them to jiffies..
46 	 */
47 	msleep_interruptible(jiffies_to_msecs(delay));
48 }
49 
50 
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
54 {
55 	int hp_slot;
56 	u8 rc = 0;
57 	u16 temp_word;
58 	struct pci_func *func;
59 	struct event_info *taskInfo;
60 
61 	if (!change)
62 		return 0;
63 
64 	/* Switch Change */
65 	dbg("cpqsbd:  Switch interrupt received.\n");
66 
67 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68 		if (change & (0x1L << hp_slot)) {
69 			/*
70 			 * this one changed.
71 			 */
72 			func = cpqhp_slot_find(ctrl->bus,
73 				(hp_slot + ctrl->slot_device_offset), 0);
74 
75 			/* this is the structure that tells the worker thread
76 			 * what to do
77 			 */
78 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79 			ctrl->next_event = (ctrl->next_event + 1) % 10;
80 			taskInfo->hp_slot = hp_slot;
81 
82 			rc++;
83 
84 			temp_word = ctrl->ctrl_int_comp >> 16;
85 			func->presence_save = (temp_word >> hp_slot) & 0x01;
86 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87 
88 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89 				/*
90 				 * Switch opened
91 				 */
92 
93 				func->switch_save = 0;
94 
95 				taskInfo->event_type = INT_SWITCH_OPEN;
96 			} else {
97 				/*
98 				 * Switch closed
99 				 */
100 
101 				func->switch_save = 0x10;
102 
103 				taskInfo->event_type = INT_SWITCH_CLOSE;
104 			}
105 		}
106 	}
107 
108 	return rc;
109 }
110 
111 /**
112  * cpqhp_find_slot - find the struct slot of given device
113  * @ctrl: scan lots of this controller
114  * @device: the device id to find
115  */
116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117 {
118 	struct slot *slot = ctrl->slot;
119 
120 	while (slot && (slot->device != device))
121 		slot = slot->next;
122 
123 	return slot;
124 }
125 
126 
127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
128 {
129 	int hp_slot;
130 	u8 rc = 0;
131 	u8 temp_byte;
132 	u16 temp_word;
133 	struct pci_func *func;
134 	struct event_info *taskInfo;
135 	struct slot *p_slot;
136 
137 	if (!change)
138 		return 0;
139 
140 	/*
141 	 * Presence Change
142 	 */
143 	dbg("cpqsbd:  Presence/Notify input change.\n");
144 	dbg("         Changed bits are 0x%4.4x\n", change);
145 
146 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147 		if (change & (0x0101 << hp_slot)) {
148 			/*
149 			 * this one changed.
150 			 */
151 			func = cpqhp_slot_find(ctrl->bus,
152 				(hp_slot + ctrl->slot_device_offset), 0);
153 
154 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155 			ctrl->next_event = (ctrl->next_event + 1) % 10;
156 			taskInfo->hp_slot = hp_slot;
157 
158 			rc++;
159 
160 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161 			if (!p_slot)
162 				return 0;
163 
164 			/* If the switch closed, must be a button
165 			 * If not in button mode, nevermind
166 			 */
167 			if (func->switch_save && (ctrl->push_button == 1)) {
168 				temp_word = ctrl->ctrl_int_comp >> 16;
169 				temp_byte = (temp_word >> hp_slot) & 0x01;
170 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171 
172 				if (temp_byte != func->presence_save) {
173 					/*
174 					 * button Pressed (doesn't do anything)
175 					 */
176 					dbg("hp_slot %d button pressed\n", hp_slot);
177 					taskInfo->event_type = INT_BUTTON_PRESS;
178 				} else {
179 					/*
180 					 * button Released - TAKE ACTION!!!!
181 					 */
182 					dbg("hp_slot %d button released\n", hp_slot);
183 					taskInfo->event_type = INT_BUTTON_RELEASE;
184 
185 					/* Cancel if we are still blinking */
186 					if ((p_slot->state == BLINKINGON_STATE)
187 					    || (p_slot->state == BLINKINGOFF_STATE)) {
188 						taskInfo->event_type = INT_BUTTON_CANCEL;
189 						dbg("hp_slot %d button cancel\n", hp_slot);
190 					} else if ((p_slot->state == POWERON_STATE)
191 						   || (p_slot->state == POWEROFF_STATE)) {
192 						/* info(msg_button_ignore, p_slot->number); */
193 						taskInfo->event_type = INT_BUTTON_IGNORE;
194 						dbg("hp_slot %d button ignore\n", hp_slot);
195 					}
196 				}
197 			} else {
198 				/* Switch is open, assume a presence change
199 				 * Save the presence state
200 				 */
201 				temp_word = ctrl->ctrl_int_comp >> 16;
202 				func->presence_save = (temp_word >> hp_slot) & 0x01;
203 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204 
205 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207 					/* Present */
208 					taskInfo->event_type = INT_PRESENCE_ON;
209 				} else {
210 					/* Not Present */
211 					taskInfo->event_type = INT_PRESENCE_OFF;
212 				}
213 			}
214 		}
215 	}
216 
217 	return rc;
218 }
219 
220 
221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
222 {
223 	int hp_slot;
224 	u8 rc = 0;
225 	struct pci_func *func;
226 	struct event_info *taskInfo;
227 
228 	if (!change)
229 		return 0;
230 
231 	/*
232 	 * power fault
233 	 */
234 
235 	info("power fault interrupt\n");
236 
237 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238 		if (change & (0x01 << hp_slot)) {
239 			/*
240 			 * this one changed.
241 			 */
242 			func = cpqhp_slot_find(ctrl->bus,
243 				(hp_slot + ctrl->slot_device_offset), 0);
244 
245 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246 			ctrl->next_event = (ctrl->next_event + 1) % 10;
247 			taskInfo->hp_slot = hp_slot;
248 
249 			rc++;
250 
251 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252 				/*
253 				 * power fault Cleared
254 				 */
255 				func->status = 0x00;
256 
257 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258 			} else {
259 				/*
260 				 * power fault
261 				 */
262 				taskInfo->event_type = INT_POWER_FAULT;
263 
264 				if (ctrl->rev < 4) {
265 					amber_LED_on(ctrl, hp_slot);
266 					green_LED_off(ctrl, hp_slot);
267 					set_SOGO(ctrl);
268 
269 					/* this is a fatal condition, we want
270 					 * to crash the machine to protect from
271 					 * data corruption. simulated_NMI
272 					 * shouldn't ever return */
273 					/* FIXME
274 					simulated_NMI(hp_slot, ctrl); */
275 
276 					/* The following code causes a software
277 					 * crash just in case simulated_NMI did
278 					 * return */
279 					/*FIXME
280 					panic(msg_power_fault); */
281 				} else {
282 					/* set power fault status for this board */
283 					func->status = 0xFF;
284 					info("power fault bit %x set\n", hp_slot);
285 				}
286 			}
287 		}
288 	}
289 
290 	return rc;
291 }
292 
293 
294 /**
295  * sort_by_size - sort nodes on the list by their length, smallest first.
296  * @head: list to sort
297  */
298 static int sort_by_size(struct pci_resource **head)
299 {
300 	struct pci_resource *current_res;
301 	struct pci_resource *next_res;
302 	int out_of_order = 1;
303 
304 	if (!(*head))
305 		return 1;
306 
307 	if (!((*head)->next))
308 		return 0;
309 
310 	while (out_of_order) {
311 		out_of_order = 0;
312 
313 		/* Special case for swapping list head */
314 		if (((*head)->next) &&
315 		    ((*head)->length > (*head)->next->length)) {
316 			out_of_order++;
317 			current_res = *head;
318 			*head = (*head)->next;
319 			current_res->next = (*head)->next;
320 			(*head)->next = current_res;
321 		}
322 
323 		current_res = *head;
324 
325 		while (current_res->next && current_res->next->next) {
326 			if (current_res->next->length > current_res->next->next->length) {
327 				out_of_order++;
328 				next_res = current_res->next;
329 				current_res->next = current_res->next->next;
330 				current_res = current_res->next;
331 				next_res->next = current_res->next;
332 				current_res->next = next_res;
333 			} else
334 				current_res = current_res->next;
335 		}
336 	}  /* End of out_of_order loop */
337 
338 	return 0;
339 }
340 
341 
342 /**
343  * sort_by_max_size - sort nodes on the list by their length, largest first.
344  * @head: list to sort
345  */
346 static int sort_by_max_size(struct pci_resource **head)
347 {
348 	struct pci_resource *current_res;
349 	struct pci_resource *next_res;
350 	int out_of_order = 1;
351 
352 	if (!(*head))
353 		return 1;
354 
355 	if (!((*head)->next))
356 		return 0;
357 
358 	while (out_of_order) {
359 		out_of_order = 0;
360 
361 		/* Special case for swapping list head */
362 		if (((*head)->next) &&
363 		    ((*head)->length < (*head)->next->length)) {
364 			out_of_order++;
365 			current_res = *head;
366 			*head = (*head)->next;
367 			current_res->next = (*head)->next;
368 			(*head)->next = current_res;
369 		}
370 
371 		current_res = *head;
372 
373 		while (current_res->next && current_res->next->next) {
374 			if (current_res->next->length < current_res->next->next->length) {
375 				out_of_order++;
376 				next_res = current_res->next;
377 				current_res->next = current_res->next->next;
378 				current_res = current_res->next;
379 				next_res->next = current_res->next;
380 				current_res->next = next_res;
381 			} else
382 				current_res = current_res->next;
383 		}
384 	}  /* End of out_of_order loop */
385 
386 	return 0;
387 }
388 
389 
390 /**
391  * do_pre_bridge_resource_split - find node of resources that are unused
392  * @head: new list head
393  * @orig_head: original list head
394  * @alignment: max node size (?)
395  */
396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397 				struct pci_resource **orig_head, u32 alignment)
398 {
399 	struct pci_resource *prevnode = NULL;
400 	struct pci_resource *node;
401 	struct pci_resource *split_node;
402 	u32 rc;
403 	u32 temp_dword;
404 	dbg("do_pre_bridge_resource_split\n");
405 
406 	if (!(*head) || !(*orig_head))
407 		return NULL;
408 
409 	rc = cpqhp_resource_sort_and_combine(head);
410 
411 	if (rc)
412 		return NULL;
413 
414 	if ((*head)->base != (*orig_head)->base)
415 		return NULL;
416 
417 	if ((*head)->length == (*orig_head)->length)
418 		return NULL;
419 
420 
421 	/* If we got here, there the bridge requires some of the resource, but
422 	 * we may be able to split some off of the front
423 	 */
424 
425 	node = *head;
426 
427 	if (node->length & (alignment - 1)) {
428 		/* this one isn't an aligned length, so we'll make a new entry
429 		 * and split it up.
430 		 */
431 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432 
433 		if (!split_node)
434 			return NULL;
435 
436 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437 
438 		split_node->base = node->base;
439 		split_node->length = temp_dword;
440 
441 		node->length -= temp_dword;
442 		node->base += split_node->length;
443 
444 		/* Put it in the list */
445 		*head = split_node;
446 		split_node->next = node;
447 	}
448 
449 	if (node->length < alignment)
450 		return NULL;
451 
452 	/* Now unlink it */
453 	if (*head == node) {
454 		*head = node->next;
455 	} else {
456 		prevnode = *head;
457 		while (prevnode->next != node)
458 			prevnode = prevnode->next;
459 
460 		prevnode->next = node->next;
461 	}
462 	node->next = NULL;
463 
464 	return node;
465 }
466 
467 
468 /**
469  * do_bridge_resource_split - find one node of resources that aren't in use
470  * @head: list head
471  * @alignment: max node size (?)
472  */
473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474 {
475 	struct pci_resource *prevnode = NULL;
476 	struct pci_resource *node;
477 	u32 rc;
478 	u32 temp_dword;
479 
480 	rc = cpqhp_resource_sort_and_combine(head);
481 
482 	if (rc)
483 		return NULL;
484 
485 	node = *head;
486 
487 	while (node->next) {
488 		prevnode = node;
489 		node = node->next;
490 		kfree(prevnode);
491 	}
492 
493 	if (node->length < alignment)
494 		goto error;
495 
496 	if (node->base & (alignment - 1)) {
497 		/* Short circuit if adjusted size is too small */
498 		temp_dword = (node->base | (alignment-1)) + 1;
499 		if ((node->length - (temp_dword - node->base)) < alignment)
500 			goto error;
501 
502 		node->length -= (temp_dword - node->base);
503 		node->base = temp_dword;
504 	}
505 
506 	if (node->length & (alignment - 1))
507 		/* There's stuff in use after this node */
508 		goto error;
509 
510 	return node;
511 error:
512 	kfree(node);
513 	return NULL;
514 }
515 
516 
517 /**
518  * get_io_resource - find first node of given size not in ISA aliasing window.
519  * @head: list to search
520  * @size: size of node to find, must be a power of two.
521  *
522  * Description: This function sorts the resource list by size and then returns
523  * returns the first node of "size" length that is not in the ISA aliasing
524  * window.  If it finds a node larger than "size" it will split it up.
525  */
526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527 {
528 	struct pci_resource *prevnode;
529 	struct pci_resource *node;
530 	struct pci_resource *split_node;
531 	u32 temp_dword;
532 
533 	if (!(*head))
534 		return NULL;
535 
536 	if (cpqhp_resource_sort_and_combine(head))
537 		return NULL;
538 
539 	if (sort_by_size(head))
540 		return NULL;
541 
542 	for (node = *head; node; node = node->next) {
543 		if (node->length < size)
544 			continue;
545 
546 		if (node->base & (size - 1)) {
547 			/* this one isn't base aligned properly
548 			 * so we'll make a new entry and split it up
549 			 */
550 			temp_dword = (node->base | (size-1)) + 1;
551 
552 			/* Short circuit if adjusted size is too small */
553 			if ((node->length - (temp_dword - node->base)) < size)
554 				continue;
555 
556 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557 
558 			if (!split_node)
559 				return NULL;
560 
561 			split_node->base = node->base;
562 			split_node->length = temp_dword - node->base;
563 			node->base = temp_dword;
564 			node->length -= split_node->length;
565 
566 			/* Put it in the list */
567 			split_node->next = node->next;
568 			node->next = split_node;
569 		} /* End of non-aligned base */
570 
571 		/* Don't need to check if too small since we already did */
572 		if (node->length > size) {
573 			/* this one is longer than we need
574 			 * so we'll make a new entry and split it up
575 			 */
576 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577 
578 			if (!split_node)
579 				return NULL;
580 
581 			split_node->base = node->base + size;
582 			split_node->length = node->length - size;
583 			node->length = size;
584 
585 			/* Put it in the list */
586 			split_node->next = node->next;
587 			node->next = split_node;
588 		}  /* End of too big on top end */
589 
590 		/* For IO make sure it's not in the ISA aliasing space */
591 		if (node->base & 0x300L)
592 			continue;
593 
594 		/* If we got here, then it is the right size
595 		 * Now take it out of the list and break
596 		 */
597 		if (*head == node) {
598 			*head = node->next;
599 		} else {
600 			prevnode = *head;
601 			while (prevnode->next != node)
602 				prevnode = prevnode->next;
603 
604 			prevnode->next = node->next;
605 		}
606 		node->next = NULL;
607 		break;
608 	}
609 
610 	return node;
611 }
612 
613 
614 /**
615  * get_max_resource - get largest node which has at least the given size.
616  * @head: the list to search the node in
617  * @size: the minimum size of the node to find
618  *
619  * Description: Gets the largest node that is at least "size" big from the
620  * list pointed to by head.  It aligns the node on top and bottom
621  * to "size" alignment before returning it.
622  */
623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624 {
625 	struct pci_resource *max;
626 	struct pci_resource *temp;
627 	struct pci_resource *split_node;
628 	u32 temp_dword;
629 
630 	if (cpqhp_resource_sort_and_combine(head))
631 		return NULL;
632 
633 	if (sort_by_max_size(head))
634 		return NULL;
635 
636 	for (max = *head; max; max = max->next) {
637 		/* If not big enough we could probably just bail,
638 		 * instead we'll continue to the next.
639 		 */
640 		if (max->length < size)
641 			continue;
642 
643 		if (max->base & (size - 1)) {
644 			/* this one isn't base aligned properly
645 			 * so we'll make a new entry and split it up
646 			 */
647 			temp_dword = (max->base | (size-1)) + 1;
648 
649 			/* Short circuit if adjusted size is too small */
650 			if ((max->length - (temp_dword - max->base)) < size)
651 				continue;
652 
653 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654 
655 			if (!split_node)
656 				return NULL;
657 
658 			split_node->base = max->base;
659 			split_node->length = temp_dword - max->base;
660 			max->base = temp_dword;
661 			max->length -= split_node->length;
662 
663 			split_node->next = max->next;
664 			max->next = split_node;
665 		}
666 
667 		if ((max->base + max->length) & (size - 1)) {
668 			/* this one isn't end aligned properly at the top
669 			 * so we'll make a new entry and split it up
670 			 */
671 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672 
673 			if (!split_node)
674 				return NULL;
675 			temp_dword = ((max->base + max->length) & ~(size - 1));
676 			split_node->base = temp_dword;
677 			split_node->length = max->length + max->base
678 					     - split_node->base;
679 			max->length -= split_node->length;
680 
681 			split_node->next = max->next;
682 			max->next = split_node;
683 		}
684 
685 		/* Make sure it didn't shrink too much when we aligned it */
686 		if (max->length < size)
687 			continue;
688 
689 		/* Now take it out of the list */
690 		temp = *head;
691 		if (temp == max) {
692 			*head = max->next;
693 		} else {
694 			while (temp && temp->next != max)
695 				temp = temp->next;
696 
697 			if (temp)
698 				temp->next = max->next;
699 		}
700 
701 		max->next = NULL;
702 		break;
703 	}
704 
705 	return max;
706 }
707 
708 
709 /**
710  * get_resource - find resource of given size and split up larger ones.
711  * @head: the list to search for resources
712  * @size: the size limit to use
713  *
714  * Description: This function sorts the resource list by size and then
715  * returns the first node of "size" length.  If it finds a node
716  * larger than "size" it will split it up.
717  *
718  * size must be a power of two.
719  */
720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721 {
722 	struct pci_resource *prevnode;
723 	struct pci_resource *node;
724 	struct pci_resource *split_node;
725 	u32 temp_dword;
726 
727 	if (cpqhp_resource_sort_and_combine(head))
728 		return NULL;
729 
730 	if (sort_by_size(head))
731 		return NULL;
732 
733 	for (node = *head; node; node = node->next) {
734 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 		    __func__, size, node, node->base, node->length);
736 		if (node->length < size)
737 			continue;
738 
739 		if (node->base & (size - 1)) {
740 			dbg("%s: not aligned\n", __func__);
741 			/* this one isn't base aligned properly
742 			 * so we'll make a new entry and split it up
743 			 */
744 			temp_dword = (node->base | (size-1)) + 1;
745 
746 			/* Short circuit if adjusted size is too small */
747 			if ((node->length - (temp_dword - node->base)) < size)
748 				continue;
749 
750 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751 
752 			if (!split_node)
753 				return NULL;
754 
755 			split_node->base = node->base;
756 			split_node->length = temp_dword - node->base;
757 			node->base = temp_dword;
758 			node->length -= split_node->length;
759 
760 			split_node->next = node->next;
761 			node->next = split_node;
762 		} /* End of non-aligned base */
763 
764 		/* Don't need to check if too small since we already did */
765 		if (node->length > size) {
766 			dbg("%s: too big\n", __func__);
767 			/* this one is longer than we need
768 			 * so we'll make a new entry and split it up
769 			 */
770 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771 
772 			if (!split_node)
773 				return NULL;
774 
775 			split_node->base = node->base + size;
776 			split_node->length = node->length - size;
777 			node->length = size;
778 
779 			/* Put it in the list */
780 			split_node->next = node->next;
781 			node->next = split_node;
782 		}  /* End of too big on top end */
783 
784 		dbg("%s: got one!!!\n", __func__);
785 		/* If we got here, then it is the right size
786 		 * Now take it out of the list */
787 		if (*head == node) {
788 			*head = node->next;
789 		} else {
790 			prevnode = *head;
791 			while (prevnode->next != node)
792 				prevnode = prevnode->next;
793 
794 			prevnode->next = node->next;
795 		}
796 		node->next = NULL;
797 		break;
798 	}
799 	return node;
800 }
801 
802 
803 /**
804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805  * @head: the list to sort and clean up
806  *
807  * Description: Sorts all of the nodes in the list in ascending order by
808  * their base addresses.  Also does garbage collection by
809  * combining adjacent nodes.
810  *
811  * Returns %0 if success.
812  */
813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814 {
815 	struct pci_resource *node1;
816 	struct pci_resource *node2;
817 	int out_of_order = 1;
818 
819 	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820 
821 	if (!(*head))
822 		return 1;
823 
824 	dbg("*head->next = %p\n", (*head)->next);
825 
826 	if (!(*head)->next)
827 		return 0;	/* only one item on the list, already sorted! */
828 
829 	dbg("*head->base = 0x%x\n", (*head)->base);
830 	dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831 	while (out_of_order) {
832 		out_of_order = 0;
833 
834 		/* Special case for swapping list head */
835 		if (((*head)->next) &&
836 		    ((*head)->base > (*head)->next->base)) {
837 			node1 = *head;
838 			(*head) = (*head)->next;
839 			node1->next = (*head)->next;
840 			(*head)->next = node1;
841 			out_of_order++;
842 		}
843 
844 		node1 = (*head);
845 
846 		while (node1->next && node1->next->next) {
847 			if (node1->next->base > node1->next->next->base) {
848 				out_of_order++;
849 				node2 = node1->next;
850 				node1->next = node1->next->next;
851 				node1 = node1->next;
852 				node2->next = node1->next;
853 				node1->next = node2;
854 			} else
855 				node1 = node1->next;
856 		}
857 	}  /* End of out_of_order loop */
858 
859 	node1 = *head;
860 
861 	while (node1 && node1->next) {
862 		if ((node1->base + node1->length) == node1->next->base) {
863 			/* Combine */
864 			dbg("8..\n");
865 			node1->length += node1->next->length;
866 			node2 = node1->next;
867 			node1->next = node1->next->next;
868 			kfree(node2);
869 		} else
870 			node1 = node1->next;
871 	}
872 
873 	return 0;
874 }
875 
876 
877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878 {
879 	struct controller *ctrl = data;
880 	u8 schedule_flag = 0;
881 	u8 reset;
882 	u16 misc;
883 	u32 Diff;
884 	u32 temp_dword;
885 
886 
887 	misc = readw(ctrl->hpc_reg + MISC);
888 	/*
889 	 * Check to see if it was our interrupt
890 	 */
891 	if (!(misc & 0x000C))
892 		return IRQ_NONE;
893 
894 	if (misc & 0x0004) {
895 		/*
896 		 * Serial Output interrupt Pending
897 		 */
898 
899 		/* Clear the interrupt */
900 		misc |= 0x0004;
901 		writew(misc, ctrl->hpc_reg + MISC);
902 
903 		/* Read to clear posted writes */
904 		misc = readw(ctrl->hpc_reg + MISC);
905 
906 		dbg("%s - waking up\n", __func__);
907 		wake_up_interruptible(&ctrl->queue);
908 	}
909 
910 	if (misc & 0x0008) {
911 		/* General-interrupt-input interrupt Pending */
912 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
913 
914 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
915 
916 		/* Clear the interrupt */
917 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
918 
919 		/* Read it back to clear any posted writes */
920 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
921 
922 		if (!Diff)
923 			/* Clear all interrupts */
924 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
925 
926 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
927 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
928 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
929 	}
930 
931 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
932 	if (reset & 0x40) {
933 		/* Bus reset has completed */
934 		reset &= 0xCF;
935 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
936 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
937 		wake_up_interruptible(&ctrl->queue);
938 	}
939 
940 	if (schedule_flag) {
941 		wake_up_process(cpqhp_event_thread);
942 		dbg("Waking even thread");
943 	}
944 	return IRQ_HANDLED;
945 }
946 
947 
948 /**
949  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950  * @busnumber: bus where new node is to be located
951  *
952  * Returns pointer to the new node or %NULL if unsuccessful.
953  */
954 struct pci_func *cpqhp_slot_create(u8 busnumber)
955 {
956 	struct pci_func *new_slot;
957 	struct pci_func *next;
958 
959 	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
960 	if (new_slot == NULL)
961 		return new_slot;
962 
963 	new_slot->next = NULL;
964 	new_slot->configured = 1;
965 
966 	if (cpqhp_slot_list[busnumber] == NULL) {
967 		cpqhp_slot_list[busnumber] = new_slot;
968 	} else {
969 		next = cpqhp_slot_list[busnumber];
970 		while (next->next != NULL)
971 			next = next->next;
972 		next->next = new_slot;
973 	}
974 	return new_slot;
975 }
976 
977 
978 /**
979  * slot_remove - Removes a node from the linked list of slots.
980  * @old_slot: slot to remove
981  *
982  * Returns %0 if successful, !0 otherwise.
983  */
984 static int slot_remove(struct pci_func *old_slot)
985 {
986 	struct pci_func *next;
987 
988 	if (old_slot == NULL)
989 		return 1;
990 
991 	next = cpqhp_slot_list[old_slot->bus];
992 	if (next == NULL)
993 		return 1;
994 
995 	if (next == old_slot) {
996 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
997 		cpqhp_destroy_board_resources(old_slot);
998 		kfree(old_slot);
999 		return 0;
1000 	}
1001 
1002 	while ((next->next != old_slot) && (next->next != NULL))
1003 		next = next->next;
1004 
1005 	if (next->next == old_slot) {
1006 		next->next = old_slot->next;
1007 		cpqhp_destroy_board_resources(old_slot);
1008 		kfree(old_slot);
1009 		return 0;
1010 	} else
1011 		return 2;
1012 }
1013 
1014 
1015 /**
1016  * bridge_slot_remove - Removes a node from the linked list of slots.
1017  * @bridge: bridge to remove
1018  *
1019  * Returns %0 if successful, !0 otherwise.
1020  */
1021 static int bridge_slot_remove(struct pci_func *bridge)
1022 {
1023 	u8 subordinateBus, secondaryBus;
1024 	u8 tempBus;
1025 	struct pci_func *next;
1026 
1027 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1029 
1030 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031 		next = cpqhp_slot_list[tempBus];
1032 
1033 		while (!slot_remove(next))
1034 			next = cpqhp_slot_list[tempBus];
1035 	}
1036 
1037 	next = cpqhp_slot_list[bridge->bus];
1038 
1039 	if (next == NULL)
1040 		return 1;
1041 
1042 	if (next == bridge) {
1043 		cpqhp_slot_list[bridge->bus] = bridge->next;
1044 		goto out;
1045 	}
1046 
1047 	while ((next->next != bridge) && (next->next != NULL))
1048 		next = next->next;
1049 
1050 	if (next->next != bridge)
1051 		return 2;
1052 	next->next = bridge->next;
1053 out:
1054 	kfree(bridge);
1055 	return 0;
1056 }
1057 
1058 
1059 /**
1060  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061  * @bus: bus to find
1062  * @device: device to find
1063  * @index: is %0 for first function found, %1 for the second...
1064  *
1065  * Returns pointer to the node if successful, %NULL otherwise.
1066  */
1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1068 {
1069 	int found = -1;
1070 	struct pci_func *func;
1071 
1072 	func = cpqhp_slot_list[bus];
1073 
1074 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1075 		return func;
1076 
1077 	if (func->device == device)
1078 		found++;
1079 
1080 	while (func->next != NULL) {
1081 		func = func->next;
1082 
1083 		if (func->device == device)
1084 			found++;
1085 
1086 		if (found == index)
1087 			return func;
1088 	}
1089 
1090 	return NULL;
1091 }
1092 
1093 
1094 /* DJZ: I don't think is_bridge will work as is.
1095  * FIXME */
1096 static int is_bridge(struct pci_func *func)
1097 {
1098 	/* Check the header type */
1099 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100 		return 1;
1101 	else
1102 		return 0;
1103 }
1104 
1105 
1106 /**
1107  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108  * @ctrl: controller to change frequency/mode for.
1109  * @adapter_speed: the speed of the adapter we want to match.
1110  * @hp_slot: the slot number where the adapter is installed.
1111  *
1112  * Returns %0 if we successfully change frequency and/or mode to match the
1113  * adapter speed.
1114  */
1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1116 {
1117 	struct slot *slot;
1118 	struct pci_bus *bus = ctrl->pci_bus;
1119 	u8 reg;
1120 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121 	u16 reg16;
1122 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1123 
1124 	if (bus->cur_bus_speed == adapter_speed)
1125 		return 0;
1126 
1127 	/* We don't allow freq/mode changes if we find another adapter running
1128 	 * in another slot on this controller
1129 	 */
1130 	for (slot = ctrl->slot; slot; slot = slot->next) {
1131 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132 			continue;
1133 		if (get_presence_status(ctrl, slot) == 0)
1134 			continue;
1135 		/* If another adapter is running on the same segment but at a
1136 		 * lower speed/mode, we allow the new adapter to function at
1137 		 * this rate if supported
1138 		 */
1139 		if (bus->cur_bus_speed < adapter_speed)
1140 			return 0;
1141 
1142 		return 1;
1143 	}
1144 
1145 	/* If the controller doesn't support freq/mode changes and the
1146 	 * controller is running at a higher mode, we bail
1147 	 */
1148 	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1149 		return 1;
1150 
1151 	/* But we allow the adapter to run at a lower rate if possible */
1152 	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1153 		return 0;
1154 
1155 	/* We try to set the max speed supported by both the adapter and
1156 	 * controller
1157 	 */
1158 	if (bus->max_bus_speed < adapter_speed) {
1159 		if (bus->cur_bus_speed == bus->max_bus_speed)
1160 			return 0;
1161 		adapter_speed = bus->max_bus_speed;
1162 	}
1163 
1164 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1165 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1166 
1167 	set_SOGO(ctrl);
1168 	wait_for_ctrl_irq(ctrl);
1169 
1170 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1171 		reg = 0xF5;
1172 	else
1173 		reg = 0xF4;
1174 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1175 
1176 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1177 	reg16 &= ~0x000F;
1178 	switch (adapter_speed) {
1179 		case(PCI_SPEED_133MHz_PCIX):
1180 			reg = 0x75;
1181 			reg16 |= 0xB;
1182 			break;
1183 		case(PCI_SPEED_100MHz_PCIX):
1184 			reg = 0x74;
1185 			reg16 |= 0xA;
1186 			break;
1187 		case(PCI_SPEED_66MHz_PCIX):
1188 			reg = 0x73;
1189 			reg16 |= 0x9;
1190 			break;
1191 		case(PCI_SPEED_66MHz):
1192 			reg = 0x73;
1193 			reg16 |= 0x1;
1194 			break;
1195 		default: /* 33MHz PCI 2.2 */
1196 			reg = 0x71;
1197 			break;
1198 
1199 	}
1200 	reg16 |= 0xB << 12;
1201 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1202 
1203 	mdelay(5);
1204 
1205 	/* Reenable interrupts */
1206 	writel(0, ctrl->hpc_reg + INT_MASK);
1207 
1208 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1209 
1210 	/* Restart state machine */
1211 	reg = ~0xF;
1212 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1213 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1214 
1215 	/* Only if mode change...*/
1216 	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1217 		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1218 			set_SOGO(ctrl);
1219 
1220 	wait_for_ctrl_irq(ctrl);
1221 	mdelay(1100);
1222 
1223 	/* Restore LED/Slot state */
1224 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1225 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1226 
1227 	set_SOGO(ctrl);
1228 	wait_for_ctrl_irq(ctrl);
1229 
1230 	bus->cur_bus_speed = adapter_speed;
1231 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1232 
1233 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1234 			slot->number);
1235 	return 0;
1236 }
1237 
1238 /* the following routines constitute the bulk of the
1239  * hotplug controller logic
1240  */
1241 
1242 
1243 /**
1244  * board_replaced - Called after a board has been replaced in the system.
1245  * @func: PCI device/function information
1246  * @ctrl: hotplug controller
1247  *
1248  * This is only used if we don't have resources for hot add.
1249  * Turns power on for the board.
1250  * Checks to see if board is the same.
1251  * If board is same, reconfigures it.
1252  * If board isn't same, turns it back off.
1253  */
1254 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1255 {
1256 	struct pci_bus *bus = ctrl->pci_bus;
1257 	u8 hp_slot;
1258 	u8 temp_byte;
1259 	u8 adapter_speed;
1260 	u32 rc = 0;
1261 
1262 	hp_slot = func->device - ctrl->slot_device_offset;
1263 
1264 	/*
1265 	 * The switch is open.
1266 	 */
1267 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1268 		rc = INTERLOCK_OPEN;
1269 	/*
1270 	 * The board is already on
1271 	 */
1272 	else if (is_slot_enabled(ctrl, hp_slot))
1273 		rc = CARD_FUNCTIONING;
1274 	else {
1275 		mutex_lock(&ctrl->crit_sect);
1276 
1277 		/* turn on board without attaching to the bus */
1278 		enable_slot_power(ctrl, hp_slot);
1279 
1280 		set_SOGO(ctrl);
1281 
1282 		/* Wait for SOBS to be unset */
1283 		wait_for_ctrl_irq(ctrl);
1284 
1285 		/* Change bits in slot power register to force another shift out
1286 		 * NOTE: this is to work around the timer bug */
1287 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1288 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1289 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1290 
1291 		set_SOGO(ctrl);
1292 
1293 		/* Wait for SOBS to be unset */
1294 		wait_for_ctrl_irq(ctrl);
1295 
1296 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1297 		if (bus->cur_bus_speed != adapter_speed)
1298 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1299 				rc = WRONG_BUS_FREQUENCY;
1300 
1301 		/* turn off board without attaching to the bus */
1302 		disable_slot_power(ctrl, hp_slot);
1303 
1304 		set_SOGO(ctrl);
1305 
1306 		/* Wait for SOBS to be unset */
1307 		wait_for_ctrl_irq(ctrl);
1308 
1309 		mutex_unlock(&ctrl->crit_sect);
1310 
1311 		if (rc)
1312 			return rc;
1313 
1314 		mutex_lock(&ctrl->crit_sect);
1315 
1316 		slot_enable(ctrl, hp_slot);
1317 		green_LED_blink(ctrl, hp_slot);
1318 
1319 		amber_LED_off(ctrl, hp_slot);
1320 
1321 		set_SOGO(ctrl);
1322 
1323 		/* Wait for SOBS to be unset */
1324 		wait_for_ctrl_irq(ctrl);
1325 
1326 		mutex_unlock(&ctrl->crit_sect);
1327 
1328 		/* Wait for ~1 second because of hot plug spec */
1329 		long_delay(1*HZ);
1330 
1331 		/* Check for a power fault */
1332 		if (func->status == 0xFF) {
1333 			/* power fault occurred, but it was benign */
1334 			rc = POWER_FAILURE;
1335 			func->status = 0;
1336 		} else
1337 			rc = cpqhp_valid_replace(ctrl, func);
1338 
1339 		if (!rc) {
1340 			/* It must be the same board */
1341 
1342 			rc = cpqhp_configure_board(ctrl, func);
1343 
1344 			/* If configuration fails, turn it off
1345 			 * Get slot won't work for devices behind
1346 			 * bridges, but in this case it will always be
1347 			 * called for the "base" bus/dev/func of an
1348 			 * adapter.
1349 			 */
1350 
1351 			mutex_lock(&ctrl->crit_sect);
1352 
1353 			amber_LED_on(ctrl, hp_slot);
1354 			green_LED_off(ctrl, hp_slot);
1355 			slot_disable(ctrl, hp_slot);
1356 
1357 			set_SOGO(ctrl);
1358 
1359 			/* Wait for SOBS to be unset */
1360 			wait_for_ctrl_irq(ctrl);
1361 
1362 			mutex_unlock(&ctrl->crit_sect);
1363 
1364 			if (rc)
1365 				return rc;
1366 			else
1367 				return 1;
1368 
1369 		} else {
1370 			/* Something is wrong
1371 
1372 			 * Get slot won't work for devices behind bridges, but
1373 			 * in this case it will always be called for the "base"
1374 			 * bus/dev/func of an adapter.
1375 			 */
1376 
1377 			mutex_lock(&ctrl->crit_sect);
1378 
1379 			amber_LED_on(ctrl, hp_slot);
1380 			green_LED_off(ctrl, hp_slot);
1381 			slot_disable(ctrl, hp_slot);
1382 
1383 			set_SOGO(ctrl);
1384 
1385 			/* Wait for SOBS to be unset */
1386 			wait_for_ctrl_irq(ctrl);
1387 
1388 			mutex_unlock(&ctrl->crit_sect);
1389 		}
1390 
1391 	}
1392 	return rc;
1393 
1394 }
1395 
1396 
1397 /**
1398  * board_added - Called after a board has been added to the system.
1399  * @func: PCI device/function info
1400  * @ctrl: hotplug controller
1401  *
1402  * Turns power on for the board.
1403  * Configures board.
1404  */
1405 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1406 {
1407 	u8 hp_slot;
1408 	u8 temp_byte;
1409 	u8 adapter_speed;
1410 	int index;
1411 	u32 temp_register = 0xFFFFFFFF;
1412 	u32 rc = 0;
1413 	struct pci_func *new_slot = NULL;
1414 	struct pci_bus *bus = ctrl->pci_bus;
1415 	struct slot *p_slot;
1416 	struct resource_lists res_lists;
1417 
1418 	hp_slot = func->device - ctrl->slot_device_offset;
1419 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420 	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1421 
1422 	mutex_lock(&ctrl->crit_sect);
1423 
1424 	/* turn on board without attaching to the bus */
1425 	enable_slot_power(ctrl, hp_slot);
1426 
1427 	set_SOGO(ctrl);
1428 
1429 	/* Wait for SOBS to be unset */
1430 	wait_for_ctrl_irq(ctrl);
1431 
1432 	/* Change bits in slot power register to force another shift out
1433 	 * NOTE: this is to work around the timer bug
1434 	 */
1435 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1436 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1437 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1438 
1439 	set_SOGO(ctrl);
1440 
1441 	/* Wait for SOBS to be unset */
1442 	wait_for_ctrl_irq(ctrl);
1443 
1444 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1445 	if (bus->cur_bus_speed != adapter_speed)
1446 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1447 			rc = WRONG_BUS_FREQUENCY;
1448 
1449 	/* turn off board without attaching to the bus */
1450 	disable_slot_power(ctrl, hp_slot);
1451 
1452 	set_SOGO(ctrl);
1453 
1454 	/* Wait for SOBS to be unset */
1455 	wait_for_ctrl_irq(ctrl);
1456 
1457 	mutex_unlock(&ctrl->crit_sect);
1458 
1459 	if (rc)
1460 		return rc;
1461 
1462 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1463 
1464 	/* turn on board and blink green LED */
1465 
1466 	dbg("%s: before down\n", __func__);
1467 	mutex_lock(&ctrl->crit_sect);
1468 	dbg("%s: after down\n", __func__);
1469 
1470 	dbg("%s: before slot_enable\n", __func__);
1471 	slot_enable(ctrl, hp_slot);
1472 
1473 	dbg("%s: before green_LED_blink\n", __func__);
1474 	green_LED_blink(ctrl, hp_slot);
1475 
1476 	dbg("%s: before amber_LED_blink\n", __func__);
1477 	amber_LED_off(ctrl, hp_slot);
1478 
1479 	dbg("%s: before set_SOGO\n", __func__);
1480 	set_SOGO(ctrl);
1481 
1482 	/* Wait for SOBS to be unset */
1483 	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1484 	wait_for_ctrl_irq(ctrl);
1485 	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1486 
1487 	dbg("%s: before up\n", __func__);
1488 	mutex_unlock(&ctrl->crit_sect);
1489 	dbg("%s: after up\n", __func__);
1490 
1491 	/* Wait for ~1 second because of hot plug spec */
1492 	dbg("%s: before long_delay\n", __func__);
1493 	long_delay(1*HZ);
1494 	dbg("%s: after long_delay\n", __func__);
1495 
1496 	dbg("%s: func status = %x\n", __func__, func->status);
1497 	/* Check for a power fault */
1498 	if (func->status == 0xFF) {
1499 		/* power fault occurred, but it was benign */
1500 		temp_register = 0xFFFFFFFF;
1501 		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1502 		rc = POWER_FAILURE;
1503 		func->status = 0;
1504 	} else {
1505 		/* Get vendor/device ID u32 */
1506 		ctrl->pci_bus->number = func->bus;
1507 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1508 		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1509 		dbg("%s: temp_register is %x\n", __func__, temp_register);
1510 
1511 		if (rc != 0) {
1512 			/* Something's wrong here */
1513 			temp_register = 0xFFFFFFFF;
1514 			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1515 		}
1516 		/* Preset return code.  It will be changed later if things go okay. */
1517 		rc = NO_ADAPTER_PRESENT;
1518 	}
1519 
1520 	/* All F's is an empty slot or an invalid board */
1521 	if (temp_register != 0xFFFFFFFF) {
1522 		res_lists.io_head = ctrl->io_head;
1523 		res_lists.mem_head = ctrl->mem_head;
1524 		res_lists.p_mem_head = ctrl->p_mem_head;
1525 		res_lists.bus_head = ctrl->bus_head;
1526 		res_lists.irqs = NULL;
1527 
1528 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1529 
1530 		dbg("%s: back from configure_new_device\n", __func__);
1531 		ctrl->io_head = res_lists.io_head;
1532 		ctrl->mem_head = res_lists.mem_head;
1533 		ctrl->p_mem_head = res_lists.p_mem_head;
1534 		ctrl->bus_head = res_lists.bus_head;
1535 
1536 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1537 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1538 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1539 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1540 
1541 		if (rc) {
1542 			mutex_lock(&ctrl->crit_sect);
1543 
1544 			amber_LED_on(ctrl, hp_slot);
1545 			green_LED_off(ctrl, hp_slot);
1546 			slot_disable(ctrl, hp_slot);
1547 
1548 			set_SOGO(ctrl);
1549 
1550 			/* Wait for SOBS to be unset */
1551 			wait_for_ctrl_irq(ctrl);
1552 
1553 			mutex_unlock(&ctrl->crit_sect);
1554 			return rc;
1555 		} else {
1556 			cpqhp_save_slot_config(ctrl, func);
1557 		}
1558 
1559 
1560 		func->status = 0;
1561 		func->switch_save = 0x10;
1562 		func->is_a_board = 0x01;
1563 
1564 		/* next, we will instantiate the linux pci_dev structures (with
1565 		 * appropriate driver notification, if already present) */
1566 		dbg("%s: configure linux pci_dev structure\n", __func__);
1567 		index = 0;
1568 		do {
1569 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1570 			if (new_slot && !new_slot->pci_dev)
1571 				cpqhp_configure_device(ctrl, new_slot);
1572 		} while (new_slot);
1573 
1574 		mutex_lock(&ctrl->crit_sect);
1575 
1576 		green_LED_on(ctrl, hp_slot);
1577 
1578 		set_SOGO(ctrl);
1579 
1580 		/* Wait for SOBS to be unset */
1581 		wait_for_ctrl_irq(ctrl);
1582 
1583 		mutex_unlock(&ctrl->crit_sect);
1584 	} else {
1585 		mutex_lock(&ctrl->crit_sect);
1586 
1587 		amber_LED_on(ctrl, hp_slot);
1588 		green_LED_off(ctrl, hp_slot);
1589 		slot_disable(ctrl, hp_slot);
1590 
1591 		set_SOGO(ctrl);
1592 
1593 		/* Wait for SOBS to be unset */
1594 		wait_for_ctrl_irq(ctrl);
1595 
1596 		mutex_unlock(&ctrl->crit_sect);
1597 
1598 		return rc;
1599 	}
1600 	return 0;
1601 }
1602 
1603 
1604 /**
1605  * remove_board - Turns off slot and LEDs
1606  * @func: PCI device/function info
1607  * @replace_flag: whether replacing or adding a new device
1608  * @ctrl: target controller
1609  */
1610 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1611 {
1612 	int index;
1613 	u8 skip = 0;
1614 	u8 device;
1615 	u8 hp_slot;
1616 	u8 temp_byte;
1617 	u32 rc;
1618 	struct resource_lists res_lists;
1619 	struct pci_func *temp_func;
1620 
1621 	if (cpqhp_unconfigure_device(func))
1622 		return 1;
1623 
1624 	device = func->device;
1625 
1626 	hp_slot = func->device - ctrl->slot_device_offset;
1627 	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1628 
1629 	/* When we get here, it is safe to change base address registers.
1630 	 * We will attempt to save the base address register lengths */
1631 	if (replace_flag || !ctrl->add_support)
1632 		rc = cpqhp_save_base_addr_length(ctrl, func);
1633 	else if (!func->bus_head && !func->mem_head &&
1634 		 !func->p_mem_head && !func->io_head) {
1635 		/* Here we check to see if we've saved any of the board's
1636 		 * resources already.  If so, we'll skip the attempt to
1637 		 * determine what's being used. */
1638 		index = 0;
1639 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1640 		while (temp_func) {
1641 			if (temp_func->bus_head || temp_func->mem_head
1642 			    || temp_func->p_mem_head || temp_func->io_head) {
1643 				skip = 1;
1644 				break;
1645 			}
1646 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1647 		}
1648 
1649 		if (!skip)
1650 			rc = cpqhp_save_used_resources(ctrl, func);
1651 	}
1652 	/* Change status to shutdown */
1653 	if (func->is_a_board)
1654 		func->status = 0x01;
1655 	func->configured = 0;
1656 
1657 	mutex_lock(&ctrl->crit_sect);
1658 
1659 	green_LED_off(ctrl, hp_slot);
1660 	slot_disable(ctrl, hp_slot);
1661 
1662 	set_SOGO(ctrl);
1663 
1664 	/* turn off SERR for slot */
1665 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1666 	temp_byte &= ~(0x01 << hp_slot);
1667 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1668 
1669 	/* Wait for SOBS to be unset */
1670 	wait_for_ctrl_irq(ctrl);
1671 
1672 	mutex_unlock(&ctrl->crit_sect);
1673 
1674 	if (!replace_flag && ctrl->add_support) {
1675 		while (func) {
1676 			res_lists.io_head = ctrl->io_head;
1677 			res_lists.mem_head = ctrl->mem_head;
1678 			res_lists.p_mem_head = ctrl->p_mem_head;
1679 			res_lists.bus_head = ctrl->bus_head;
1680 
1681 			cpqhp_return_board_resources(func, &res_lists);
1682 
1683 			ctrl->io_head = res_lists.io_head;
1684 			ctrl->mem_head = res_lists.mem_head;
1685 			ctrl->p_mem_head = res_lists.p_mem_head;
1686 			ctrl->bus_head = res_lists.bus_head;
1687 
1688 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1689 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1690 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1691 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1692 
1693 			if (is_bridge(func)) {
1694 				bridge_slot_remove(func);
1695 			} else
1696 				slot_remove(func);
1697 
1698 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1699 		}
1700 
1701 		/* Setup slot structure with entry for empty slot */
1702 		func = cpqhp_slot_create(ctrl->bus);
1703 
1704 		if (func == NULL)
1705 			return 1;
1706 
1707 		func->bus = ctrl->bus;
1708 		func->device = device;
1709 		func->function = 0;
1710 		func->configured = 0;
1711 		func->switch_save = 0x10;
1712 		func->is_a_board = 0;
1713 		func->p_task_event = NULL;
1714 	}
1715 
1716 	return 0;
1717 }
1718 
1719 static void pushbutton_helper_thread(struct timer_list *t)
1720 {
1721 	pushbutton_pending = t;
1722 
1723 	wake_up_process(cpqhp_event_thread);
1724 }
1725 
1726 
1727 /* this is the main worker thread */
1728 static int event_thread(void *data)
1729 {
1730 	struct controller *ctrl;
1731 
1732 	while (1) {
1733 		dbg("!!!!event_thread sleeping\n");
1734 		set_current_state(TASK_INTERRUPTIBLE);
1735 		schedule();
1736 
1737 		if (kthread_should_stop())
1738 			break;
1739 		/* Do stuff here */
1740 		if (pushbutton_pending)
1741 			cpqhp_pushbutton_thread(pushbutton_pending);
1742 		else
1743 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1744 				interrupt_event_handler(ctrl);
1745 	}
1746 	dbg("event_thread signals exit\n");
1747 	return 0;
1748 }
1749 
1750 int cpqhp_event_start_thread(void)
1751 {
1752 	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1753 	if (IS_ERR(cpqhp_event_thread)) {
1754 		err("Can't start up our event thread\n");
1755 		return PTR_ERR(cpqhp_event_thread);
1756 	}
1757 
1758 	return 0;
1759 }
1760 
1761 
1762 void cpqhp_event_stop_thread(void)
1763 {
1764 	kthread_stop(cpqhp_event_thread);
1765 }
1766 
1767 
1768 static void interrupt_event_handler(struct controller *ctrl)
1769 {
1770 	int loop = 0;
1771 	int change = 1;
1772 	struct pci_func *func;
1773 	u8 hp_slot;
1774 	struct slot *p_slot;
1775 
1776 	while (change) {
1777 		change = 0;
1778 
1779 		for (loop = 0; loop < 10; loop++) {
1780 			/* dbg("loop %d\n", loop); */
1781 			if (ctrl->event_queue[loop].event_type != 0) {
1782 				hp_slot = ctrl->event_queue[loop].hp_slot;
1783 
1784 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1785 				if (!func)
1786 					return;
1787 
1788 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1789 				if (!p_slot)
1790 					return;
1791 
1792 				dbg("hp_slot %d, func %p, p_slot %p\n",
1793 				    hp_slot, func, p_slot);
1794 
1795 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1796 					dbg("button pressed\n");
1797 				} else if (ctrl->event_queue[loop].event_type ==
1798 					   INT_BUTTON_CANCEL) {
1799 					dbg("button cancel\n");
1800 					del_timer(&p_slot->task_event);
1801 
1802 					mutex_lock(&ctrl->crit_sect);
1803 
1804 					if (p_slot->state == BLINKINGOFF_STATE) {
1805 						/* slot is on */
1806 						dbg("turn on green LED\n");
1807 						green_LED_on(ctrl, hp_slot);
1808 					} else if (p_slot->state == BLINKINGON_STATE) {
1809 						/* slot is off */
1810 						dbg("turn off green LED\n");
1811 						green_LED_off(ctrl, hp_slot);
1812 					}
1813 
1814 					info(msg_button_cancel, p_slot->number);
1815 
1816 					p_slot->state = STATIC_STATE;
1817 
1818 					amber_LED_off(ctrl, hp_slot);
1819 
1820 					set_SOGO(ctrl);
1821 
1822 					/* Wait for SOBS to be unset */
1823 					wait_for_ctrl_irq(ctrl);
1824 
1825 					mutex_unlock(&ctrl->crit_sect);
1826 				}
1827 				/*** button Released (No action on press...) */
1828 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1829 					dbg("button release\n");
1830 
1831 					if (is_slot_enabled(ctrl, hp_slot)) {
1832 						dbg("slot is on\n");
1833 						p_slot->state = BLINKINGOFF_STATE;
1834 						info(msg_button_off, p_slot->number);
1835 					} else {
1836 						dbg("slot is off\n");
1837 						p_slot->state = BLINKINGON_STATE;
1838 						info(msg_button_on, p_slot->number);
1839 					}
1840 					mutex_lock(&ctrl->crit_sect);
1841 
1842 					dbg("blink green LED and turn off amber\n");
1843 
1844 					amber_LED_off(ctrl, hp_slot);
1845 					green_LED_blink(ctrl, hp_slot);
1846 
1847 					set_SOGO(ctrl);
1848 
1849 					/* Wait for SOBS to be unset */
1850 					wait_for_ctrl_irq(ctrl);
1851 
1852 					mutex_unlock(&ctrl->crit_sect);
1853 					timer_setup(&p_slot->task_event,
1854 						    pushbutton_helper_thread,
1855 						    0);
1856 					p_slot->hp_slot = hp_slot;
1857 					p_slot->ctrl = ctrl;
1858 /*					p_slot->physical_slot = physical_slot; */
1859 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1860 
1861 					dbg("add_timer p_slot = %p\n", p_slot);
1862 					add_timer(&p_slot->task_event);
1863 				}
1864 				/***********POWER FAULT */
1865 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1866 					dbg("power fault\n");
1867 				}
1868 
1869 				ctrl->event_queue[loop].event_type = 0;
1870 
1871 				change = 1;
1872 			}
1873 		}		/* End of FOR loop */
1874 	}
1875 }
1876 
1877 
1878 /**
1879  * cpqhp_pushbutton_thread - handle pushbutton events
1880  * @t: pointer to struct timer_list which holds all timer-related callbacks
1881  *
1882  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1883  * Handles all pending events and exits.
1884  */
1885 void cpqhp_pushbutton_thread(struct timer_list *t)
1886 {
1887 	u8 hp_slot;
1888 	u8 device;
1889 	struct pci_func *func;
1890 	struct slot *p_slot = from_timer(p_slot, t, task_event);
1891 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1892 
1893 	pushbutton_pending = NULL;
1894 	hp_slot = p_slot->hp_slot;
1895 
1896 	device = p_slot->device;
1897 
1898 	if (is_slot_enabled(ctrl, hp_slot)) {
1899 		p_slot->state = POWEROFF_STATE;
1900 		/* power Down board */
1901 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1902 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1903 		if (!func) {
1904 			dbg("Error! func NULL in %s\n", __func__);
1905 			return;
1906 		}
1907 
1908 		if (cpqhp_process_SS(ctrl, func) != 0) {
1909 			amber_LED_on(ctrl, hp_slot);
1910 			green_LED_on(ctrl, hp_slot);
1911 
1912 			set_SOGO(ctrl);
1913 
1914 			/* Wait for SOBS to be unset */
1915 			wait_for_ctrl_irq(ctrl);
1916 		}
1917 
1918 		p_slot->state = STATIC_STATE;
1919 	} else {
1920 		p_slot->state = POWERON_STATE;
1921 		/* slot is off */
1922 
1923 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1924 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1925 		if (!func) {
1926 			dbg("Error! func NULL in %s\n", __func__);
1927 			return;
1928 		}
1929 
1930 		if (ctrl != NULL) {
1931 			if (cpqhp_process_SI(ctrl, func) != 0) {
1932 				amber_LED_on(ctrl, hp_slot);
1933 				green_LED_off(ctrl, hp_slot);
1934 
1935 				set_SOGO(ctrl);
1936 
1937 				/* Wait for SOBS to be unset */
1938 				wait_for_ctrl_irq(ctrl);
1939 			}
1940 		}
1941 
1942 		p_slot->state = STATIC_STATE;
1943 	}
1944 }
1945 
1946 
1947 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1948 {
1949 	u8 device, hp_slot;
1950 	u16 temp_word;
1951 	u32 tempdword;
1952 	int rc;
1953 	struct slot *p_slot;
1954 	int physical_slot = 0;
1955 
1956 	tempdword = 0;
1957 
1958 	device = func->device;
1959 	hp_slot = device - ctrl->slot_device_offset;
1960 	p_slot = cpqhp_find_slot(ctrl, device);
1961 	if (p_slot)
1962 		physical_slot = p_slot->number;
1963 
1964 	/* Check to see if the interlock is closed */
1965 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1966 
1967 	if (tempdword & (0x01 << hp_slot))
1968 		return 1;
1969 
1970 	if (func->is_a_board) {
1971 		rc = board_replaced(func, ctrl);
1972 	} else {
1973 		/* add board */
1974 		slot_remove(func);
1975 
1976 		func = cpqhp_slot_create(ctrl->bus);
1977 		if (func == NULL)
1978 			return 1;
1979 
1980 		func->bus = ctrl->bus;
1981 		func->device = device;
1982 		func->function = 0;
1983 		func->configured = 0;
1984 		func->is_a_board = 1;
1985 
1986 		/* We have to save the presence info for these slots */
1987 		temp_word = ctrl->ctrl_int_comp >> 16;
1988 		func->presence_save = (temp_word >> hp_slot) & 0x01;
1989 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1990 
1991 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1992 			func->switch_save = 0;
1993 		} else {
1994 			func->switch_save = 0x10;
1995 		}
1996 
1997 		rc = board_added(func, ctrl);
1998 		if (rc) {
1999 			if (is_bridge(func)) {
2000 				bridge_slot_remove(func);
2001 			} else
2002 				slot_remove(func);
2003 
2004 			/* Setup slot structure with entry for empty slot */
2005 			func = cpqhp_slot_create(ctrl->bus);
2006 
2007 			if (func == NULL)
2008 				return 1;
2009 
2010 			func->bus = ctrl->bus;
2011 			func->device = device;
2012 			func->function = 0;
2013 			func->configured = 0;
2014 			func->is_a_board = 0;
2015 
2016 			/* We have to save the presence info for these slots */
2017 			temp_word = ctrl->ctrl_int_comp >> 16;
2018 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2019 			func->presence_save |=
2020 			(temp_word >> (hp_slot + 7)) & 0x02;
2021 
2022 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2023 				func->switch_save = 0;
2024 			} else {
2025 				func->switch_save = 0x10;
2026 			}
2027 		}
2028 	}
2029 
2030 	if (rc)
2031 		dbg("%s: rc = %d\n", __func__, rc);
2032 
2033 	return rc;
2034 }
2035 
2036 
2037 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2038 {
2039 	u8 device, class_code, header_type, BCR;
2040 	u8 index = 0;
2041 	u8 replace_flag;
2042 	u32 rc = 0;
2043 	unsigned int devfn;
2044 	struct slot *p_slot;
2045 	struct pci_bus *pci_bus = ctrl->pci_bus;
2046 	int physical_slot = 0;
2047 
2048 	device = func->device;
2049 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2050 	p_slot = cpqhp_find_slot(ctrl, device);
2051 	if (p_slot)
2052 		physical_slot = p_slot->number;
2053 
2054 	/* Make sure there are no video controllers here */
2055 	while (func && !rc) {
2056 		pci_bus->number = func->bus;
2057 		devfn = PCI_DEVFN(func->device, func->function);
2058 
2059 		/* Check the Class Code */
2060 		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2061 		if (rc)
2062 			return rc;
2063 
2064 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2065 			/* Display/Video adapter (not supported) */
2066 			rc = REMOVE_NOT_SUPPORTED;
2067 		} else {
2068 			/* See if it's a bridge */
2069 			rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2070 			if (rc)
2071 				return rc;
2072 
2073 			/* If it's a bridge, check the VGA Enable bit */
2074 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2075 				rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2076 				if (rc)
2077 					return rc;
2078 
2079 				/* If the VGA Enable bit is set, remove isn't
2080 				 * supported */
2081 				if (BCR & PCI_BRIDGE_CTL_VGA)
2082 					rc = REMOVE_NOT_SUPPORTED;
2083 			}
2084 		}
2085 
2086 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2087 	}
2088 
2089 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2090 	if ((func != NULL) && !rc) {
2091 		/* FIXME: Replace flag should be passed into process_SS */
2092 		replace_flag = !(ctrl->add_support);
2093 		rc = remove_board(func, replace_flag, ctrl);
2094 	} else if (!rc) {
2095 		rc = 1;
2096 	}
2097 
2098 	return rc;
2099 }
2100 
2101 /**
2102  * switch_leds - switch the leds, go from one site to the other.
2103  * @ctrl: controller to use
2104  * @num_of_slots: number of slots to use
2105  * @work_LED: LED control value
2106  * @direction: 1 to start from the left side, 0 to start right.
2107  */
2108 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2109 			u32 *work_LED, const int direction)
2110 {
2111 	int loop;
2112 
2113 	for (loop = 0; loop < num_of_slots; loop++) {
2114 		if (direction)
2115 			*work_LED = *work_LED >> 1;
2116 		else
2117 			*work_LED = *work_LED << 1;
2118 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2119 
2120 		set_SOGO(ctrl);
2121 
2122 		/* Wait for SOGO interrupt */
2123 		wait_for_ctrl_irq(ctrl);
2124 
2125 		/* Get ready for next iteration */
2126 		long_delay((2*HZ)/10);
2127 	}
2128 }
2129 
2130 /**
2131  * cpqhp_hardware_test - runs hardware tests
2132  * @ctrl: target controller
2133  * @test_num: the number written to the "test" file in sysfs.
2134  *
2135  * For hot plug ctrl folks to play with.
2136  */
2137 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2138 {
2139 	u32 save_LED;
2140 	u32 work_LED;
2141 	int loop;
2142 	int num_of_slots;
2143 
2144 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2145 
2146 	switch (test_num) {
2147 	case 1:
2148 		/* Do stuff here! */
2149 
2150 		/* Do that funky LED thing */
2151 		/* so we can restore them later */
2152 		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2153 		work_LED = 0x01010101;
2154 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2155 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2156 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2157 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2158 
2159 		work_LED = 0x01010000;
2160 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2161 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2162 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2163 		work_LED = 0x00000101;
2164 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2165 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2166 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2167 
2168 		work_LED = 0x01010000;
2169 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2170 		for (loop = 0; loop < num_of_slots; loop++) {
2171 			set_SOGO(ctrl);
2172 
2173 			/* Wait for SOGO interrupt */
2174 			wait_for_ctrl_irq(ctrl);
2175 
2176 			/* Get ready for next iteration */
2177 			long_delay((3*HZ)/10);
2178 			work_LED = work_LED >> 16;
2179 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180 
2181 			set_SOGO(ctrl);
2182 
2183 			/* Wait for SOGO interrupt */
2184 			wait_for_ctrl_irq(ctrl);
2185 
2186 			/* Get ready for next iteration */
2187 			long_delay((3*HZ)/10);
2188 			work_LED = work_LED << 16;
2189 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2190 			work_LED = work_LED << 1;
2191 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2192 		}
2193 
2194 		/* put it back the way it was */
2195 		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2196 
2197 		set_SOGO(ctrl);
2198 
2199 		/* Wait for SOBS to be unset */
2200 		wait_for_ctrl_irq(ctrl);
2201 		break;
2202 	case 2:
2203 		/* Do other stuff here! */
2204 		break;
2205 	case 3:
2206 		/* and more... */
2207 		break;
2208 	}
2209 	return 0;
2210 }
2211 
2212 
2213 /**
2214  * configure_new_device - Configures the PCI header information of one board.
2215  * @ctrl: pointer to controller structure
2216  * @func: pointer to function structure
2217  * @behind_bridge: 1 if this is a recursive call, 0 if not
2218  * @resources: pointer to set of resource lists
2219  *
2220  * Returns 0 if success.
2221  */
2222 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2223 				 u8 behind_bridge, struct resource_lists  *resources)
2224 {
2225 	u8 temp_byte, function, max_functions, stop_it;
2226 	int rc;
2227 	u32 ID;
2228 	struct pci_func *new_slot;
2229 	int index;
2230 
2231 	new_slot = func;
2232 
2233 	dbg("%s\n", __func__);
2234 	/* Check for Multi-function device */
2235 	ctrl->pci_bus->number = func->bus;
2236 	rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2237 	if (rc) {
2238 		dbg("%s: rc = %d\n", __func__, rc);
2239 		return rc;
2240 	}
2241 
2242 	if (temp_byte & 0x80)	/* Multi-function device */
2243 		max_functions = 8;
2244 	else
2245 		max_functions = 1;
2246 
2247 	function = 0;
2248 
2249 	do {
2250 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2251 
2252 		if (rc) {
2253 			dbg("configure_new_function failed %d\n", rc);
2254 			index = 0;
2255 
2256 			while (new_slot) {
2257 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2258 
2259 				if (new_slot)
2260 					cpqhp_return_board_resources(new_slot, resources);
2261 			}
2262 
2263 			return rc;
2264 		}
2265 
2266 		function++;
2267 
2268 		stop_it = 0;
2269 
2270 		/* The following loop skips to the next present function
2271 		 * and creates a board structure */
2272 
2273 		while ((function < max_functions) && (!stop_it)) {
2274 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2275 
2276 			if (ID == 0xFFFFFFFF) {
2277 				function++;
2278 			} else {
2279 				/* Setup slot structure. */
2280 				new_slot = cpqhp_slot_create(func->bus);
2281 
2282 				if (new_slot == NULL)
2283 					return 1;
2284 
2285 				new_slot->bus = func->bus;
2286 				new_slot->device = func->device;
2287 				new_slot->function = function;
2288 				new_slot->is_a_board = 1;
2289 				new_slot->status = 0;
2290 
2291 				stop_it++;
2292 			}
2293 		}
2294 
2295 	} while (function < max_functions);
2296 	dbg("returning from configure_new_device\n");
2297 
2298 	return 0;
2299 }
2300 
2301 
2302 /*
2303  * Configuration logic that involves the hotplug data structures and
2304  * their bookkeeping
2305  */
2306 
2307 
2308 /**
2309  * configure_new_function - Configures the PCI header information of one device
2310  * @ctrl: pointer to controller structure
2311  * @func: pointer to function structure
2312  * @behind_bridge: 1 if this is a recursive call, 0 if not
2313  * @resources: pointer to set of resource lists
2314  *
2315  * Calls itself recursively for bridged devices.
2316  * Returns 0 if success.
2317  */
2318 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2319 				   u8 behind_bridge,
2320 				   struct resource_lists *resources)
2321 {
2322 	int cloop;
2323 	u8 IRQ = 0;
2324 	u8 temp_byte;
2325 	u8 device;
2326 	u8 class_code;
2327 	u16 command;
2328 	u16 temp_word;
2329 	u32 temp_dword;
2330 	u32 rc;
2331 	u32 temp_register;
2332 	u32 base;
2333 	u32 ID;
2334 	unsigned int devfn;
2335 	struct pci_resource *mem_node;
2336 	struct pci_resource *p_mem_node;
2337 	struct pci_resource *io_node;
2338 	struct pci_resource *bus_node;
2339 	struct pci_resource *hold_mem_node;
2340 	struct pci_resource *hold_p_mem_node;
2341 	struct pci_resource *hold_IO_node;
2342 	struct pci_resource *hold_bus_node;
2343 	struct irq_mapping irqs;
2344 	struct pci_func *new_slot;
2345 	struct pci_bus *pci_bus;
2346 	struct resource_lists temp_resources;
2347 
2348 	pci_bus = ctrl->pci_bus;
2349 	pci_bus->number = func->bus;
2350 	devfn = PCI_DEVFN(func->device, func->function);
2351 
2352 	/* Check for Bridge */
2353 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2354 	if (rc)
2355 		return rc;
2356 
2357 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2358 		/* set Primary bus */
2359 		dbg("set Primary bus = %d\n", func->bus);
2360 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2361 		if (rc)
2362 			return rc;
2363 
2364 		/* find range of buses to use */
2365 		dbg("find ranges of buses to use\n");
2366 		bus_node = get_max_resource(&(resources->bus_head), 1);
2367 
2368 		/* If we don't have any buses to allocate, we can't continue */
2369 		if (!bus_node)
2370 			return -ENOMEM;
2371 
2372 		/* set Secondary bus */
2373 		temp_byte = bus_node->base;
2374 		dbg("set Secondary bus = %d\n", bus_node->base);
2375 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2376 		if (rc)
2377 			return rc;
2378 
2379 		/* set subordinate bus */
2380 		temp_byte = bus_node->base + bus_node->length - 1;
2381 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2382 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2383 		if (rc)
2384 			return rc;
2385 
2386 		/* set subordinate Latency Timer and base Latency Timer */
2387 		temp_byte = 0x40;
2388 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2389 		if (rc)
2390 			return rc;
2391 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2392 		if (rc)
2393 			return rc;
2394 
2395 		/* set Cache Line size */
2396 		temp_byte = 0x08;
2397 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2398 		if (rc)
2399 			return rc;
2400 
2401 		/* Setup the IO, memory, and prefetchable windows */
2402 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2403 		if (!io_node)
2404 			return -ENOMEM;
2405 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2406 		if (!mem_node)
2407 			return -ENOMEM;
2408 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2409 		if (!p_mem_node)
2410 			return -ENOMEM;
2411 		dbg("Setup the IO, memory, and prefetchable windows\n");
2412 		dbg("io_node\n");
2413 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2414 					io_node->length, io_node->next);
2415 		dbg("mem_node\n");
2416 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2417 					mem_node->length, mem_node->next);
2418 		dbg("p_mem_node\n");
2419 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2420 					p_mem_node->length, p_mem_node->next);
2421 
2422 		/* set up the IRQ info */
2423 		if (!resources->irqs) {
2424 			irqs.barber_pole = 0;
2425 			irqs.interrupt[0] = 0;
2426 			irqs.interrupt[1] = 0;
2427 			irqs.interrupt[2] = 0;
2428 			irqs.interrupt[3] = 0;
2429 			irqs.valid_INT = 0;
2430 		} else {
2431 			irqs.barber_pole = resources->irqs->barber_pole;
2432 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2433 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2434 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2435 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2436 			irqs.valid_INT = resources->irqs->valid_INT;
2437 		}
2438 
2439 		/* set up resource lists that are now aligned on top and bottom
2440 		 * for anything behind the bridge. */
2441 		temp_resources.bus_head = bus_node;
2442 		temp_resources.io_head = io_node;
2443 		temp_resources.mem_head = mem_node;
2444 		temp_resources.p_mem_head = p_mem_node;
2445 		temp_resources.irqs = &irqs;
2446 
2447 		/* Make copies of the nodes we are going to pass down so that
2448 		 * if there is a problem,we can just use these to free resources
2449 		 */
2450 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2451 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2452 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2453 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2454 
2455 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2456 			kfree(hold_bus_node);
2457 			kfree(hold_IO_node);
2458 			kfree(hold_mem_node);
2459 			kfree(hold_p_mem_node);
2460 
2461 			return 1;
2462 		}
2463 
2464 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2465 
2466 		bus_node->base += 1;
2467 		bus_node->length -= 1;
2468 		bus_node->next = NULL;
2469 
2470 		/* If we have IO resources copy them and fill in the bridge's
2471 		 * IO range registers */
2472 		memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2473 		io_node->next = NULL;
2474 
2475 		/* set IO base and Limit registers */
2476 		temp_byte = io_node->base >> 8;
2477 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2478 
2479 		temp_byte = (io_node->base + io_node->length - 1) >> 8;
2480 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2481 
2482 		/* Copy the memory resources and fill in the bridge's memory
2483 		 * range registers.
2484 		 */
2485 		memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2486 		mem_node->next = NULL;
2487 
2488 		/* set Mem base and Limit registers */
2489 		temp_word = mem_node->base >> 16;
2490 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2491 
2492 		temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2493 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2494 
2495 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2496 		p_mem_node->next = NULL;
2497 
2498 		/* set Pre Mem base and Limit registers */
2499 		temp_word = p_mem_node->base >> 16;
2500 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2501 
2502 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2503 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2504 
2505 		/* Adjust this to compensate for extra adjustment in first loop
2506 		 */
2507 		irqs.barber_pole--;
2508 
2509 		rc = 0;
2510 
2511 		/* Here we actually find the devices and configure them */
2512 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2513 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2514 
2515 			ID = 0xFFFFFFFF;
2516 			pci_bus->number = hold_bus_node->base;
2517 			pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2518 			pci_bus->number = func->bus;
2519 
2520 			if (ID != 0xFFFFFFFF) {	  /*  device present */
2521 				/* Setup slot structure. */
2522 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2523 
2524 				if (new_slot == NULL) {
2525 					rc = -ENOMEM;
2526 					continue;
2527 				}
2528 
2529 				new_slot->bus = hold_bus_node->base;
2530 				new_slot->device = device;
2531 				new_slot->function = 0;
2532 				new_slot->is_a_board = 1;
2533 				new_slot->status = 0;
2534 
2535 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2536 				dbg("configure_new_device rc=0x%x\n", rc);
2537 			}	/* End of IF (device in slot?) */
2538 		}		/* End of FOR loop */
2539 
2540 		if (rc)
2541 			goto free_and_out;
2542 		/* save the interrupt routing information */
2543 		if (resources->irqs) {
2544 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2545 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2546 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2547 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2548 			resources->irqs->valid_INT = irqs.valid_INT;
2549 		} else if (!behind_bridge) {
2550 			/* We need to hook up the interrupts here */
2551 			for (cloop = 0; cloop < 4; cloop++) {
2552 				if (irqs.valid_INT & (0x01 << cloop)) {
2553 					rc = cpqhp_set_irq(func->bus, func->device,
2554 							   cloop + 1, irqs.interrupt[cloop]);
2555 					if (rc)
2556 						goto free_and_out;
2557 				}
2558 			}	/* end of for loop */
2559 		}
2560 		/* Return unused bus resources
2561 		 * First use the temporary node to store information for
2562 		 * the board */
2563 		if (bus_node && temp_resources.bus_head) {
2564 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2565 
2566 			hold_bus_node->next = func->bus_head;
2567 			func->bus_head = hold_bus_node;
2568 
2569 			temp_byte = temp_resources.bus_head->base - 1;
2570 
2571 			/* set subordinate bus */
2572 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2573 
2574 			if (temp_resources.bus_head->length == 0) {
2575 				kfree(temp_resources.bus_head);
2576 				temp_resources.bus_head = NULL;
2577 			} else {
2578 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2579 			}
2580 		}
2581 
2582 		/* If we have IO space available and there is some left,
2583 		 * return the unused portion */
2584 		if (hold_IO_node && temp_resources.io_head) {
2585 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2586 							       &hold_IO_node, 0x1000);
2587 
2588 			/* Check if we were able to split something off */
2589 			if (io_node) {
2590 				hold_IO_node->base = io_node->base + io_node->length;
2591 
2592 				temp_byte = (hold_IO_node->base) >> 8;
2593 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2594 
2595 				return_resource(&(resources->io_head), io_node);
2596 			}
2597 
2598 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2599 
2600 			/* Check if we were able to split something off */
2601 			if (io_node) {
2602 				/* First use the temporary node to store
2603 				 * information for the board */
2604 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2605 
2606 				/* If we used any, add it to the board's list */
2607 				if (hold_IO_node->length) {
2608 					hold_IO_node->next = func->io_head;
2609 					func->io_head = hold_IO_node;
2610 
2611 					temp_byte = (io_node->base - 1) >> 8;
2612 					rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2613 
2614 					return_resource(&(resources->io_head), io_node);
2615 				} else {
2616 					/* it doesn't need any IO */
2617 					temp_word = 0x0000;
2618 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2619 
2620 					return_resource(&(resources->io_head), io_node);
2621 					kfree(hold_IO_node);
2622 				}
2623 			} else {
2624 				/* it used most of the range */
2625 				hold_IO_node->next = func->io_head;
2626 				func->io_head = hold_IO_node;
2627 			}
2628 		} else if (hold_IO_node) {
2629 			/* it used the whole range */
2630 			hold_IO_node->next = func->io_head;
2631 			func->io_head = hold_IO_node;
2632 		}
2633 		/* If we have memory space available and there is some left,
2634 		 * return the unused portion */
2635 		if (hold_mem_node && temp_resources.mem_head) {
2636 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2637 								&hold_mem_node, 0x100000);
2638 
2639 			/* Check if we were able to split something off */
2640 			if (mem_node) {
2641 				hold_mem_node->base = mem_node->base + mem_node->length;
2642 
2643 				temp_word = (hold_mem_node->base) >> 16;
2644 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2645 
2646 				return_resource(&(resources->mem_head), mem_node);
2647 			}
2648 
2649 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2650 
2651 			/* Check if we were able to split something off */
2652 			if (mem_node) {
2653 				/* First use the temporary node to store
2654 				 * information for the board */
2655 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2656 
2657 				if (hold_mem_node->length) {
2658 					hold_mem_node->next = func->mem_head;
2659 					func->mem_head = hold_mem_node;
2660 
2661 					/* configure end address */
2662 					temp_word = (mem_node->base - 1) >> 16;
2663 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2664 
2665 					/* Return unused resources to the pool */
2666 					return_resource(&(resources->mem_head), mem_node);
2667 				} else {
2668 					/* it doesn't need any Mem */
2669 					temp_word = 0x0000;
2670 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2671 
2672 					return_resource(&(resources->mem_head), mem_node);
2673 					kfree(hold_mem_node);
2674 				}
2675 			} else {
2676 				/* it used most of the range */
2677 				hold_mem_node->next = func->mem_head;
2678 				func->mem_head = hold_mem_node;
2679 			}
2680 		} else if (hold_mem_node) {
2681 			/* it used the whole range */
2682 			hold_mem_node->next = func->mem_head;
2683 			func->mem_head = hold_mem_node;
2684 		}
2685 		/* If we have prefetchable memory space available and there
2686 		 * is some left at the end, return the unused portion */
2687 		if (temp_resources.p_mem_head) {
2688 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2689 								  &hold_p_mem_node, 0x100000);
2690 
2691 			/* Check if we were able to split something off */
2692 			if (p_mem_node) {
2693 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2694 
2695 				temp_word = (hold_p_mem_node->base) >> 16;
2696 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2697 
2698 				return_resource(&(resources->p_mem_head), p_mem_node);
2699 			}
2700 
2701 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2702 
2703 			/* Check if we were able to split something off */
2704 			if (p_mem_node) {
2705 				/* First use the temporary node to store
2706 				 * information for the board */
2707 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2708 
2709 				/* If we used any, add it to the board's list */
2710 				if (hold_p_mem_node->length) {
2711 					hold_p_mem_node->next = func->p_mem_head;
2712 					func->p_mem_head = hold_p_mem_node;
2713 
2714 					temp_word = (p_mem_node->base - 1) >> 16;
2715 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2716 
2717 					return_resource(&(resources->p_mem_head), p_mem_node);
2718 				} else {
2719 					/* it doesn't need any PMem */
2720 					temp_word = 0x0000;
2721 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2722 
2723 					return_resource(&(resources->p_mem_head), p_mem_node);
2724 					kfree(hold_p_mem_node);
2725 				}
2726 			} else {
2727 				/* it used the most of the range */
2728 				hold_p_mem_node->next = func->p_mem_head;
2729 				func->p_mem_head = hold_p_mem_node;
2730 			}
2731 		} else if (hold_p_mem_node) {
2732 			/* it used the whole range */
2733 			hold_p_mem_node->next = func->p_mem_head;
2734 			func->p_mem_head = hold_p_mem_node;
2735 		}
2736 		/* We should be configuring an IRQ and the bridge's base address
2737 		 * registers if it needs them.  Although we have never seen such
2738 		 * a device */
2739 
2740 		/* enable card */
2741 		command = 0x0157;	/* = PCI_COMMAND_IO |
2742 					 *   PCI_COMMAND_MEMORY |
2743 					 *   PCI_COMMAND_MASTER |
2744 					 *   PCI_COMMAND_INVALIDATE |
2745 					 *   PCI_COMMAND_PARITY |
2746 					 *   PCI_COMMAND_SERR */
2747 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2748 
2749 		/* set Bridge Control Register */
2750 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2751 					 *   PCI_BRIDGE_CTL_SERR |
2752 					 *   PCI_BRIDGE_CTL_NO_ISA */
2753 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2754 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2755 		/* Standard device */
2756 		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2757 
2758 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2759 			/* Display (video) adapter (not supported) */
2760 			return DEVICE_TYPE_NOT_SUPPORTED;
2761 		}
2762 		/* Figure out IO and memory needs */
2763 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2764 			temp_register = 0xFFFFFFFF;
2765 
2766 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2767 			rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2768 
2769 			rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2770 			dbg("CND: base = 0x%x\n", temp_register);
2771 
2772 			if (temp_register) {	  /* If this register is implemented */
2773 				if ((temp_register & 0x03L) == 0x01) {
2774 					/* Map IO */
2775 
2776 					/* set base = amount of IO space */
2777 					base = temp_register & 0xFFFFFFFC;
2778 					base = ~base + 1;
2779 
2780 					dbg("CND:      length = 0x%x\n", base);
2781 					io_node = get_io_resource(&(resources->io_head), base);
2782 					if (!io_node)
2783 						return -ENOMEM;
2784 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2785 					    io_node->base, io_node->length, io_node->next);
2786 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2787 
2788 					/* allocate the resource to the board */
2789 					base = io_node->base;
2790 					io_node->next = func->io_head;
2791 					func->io_head = io_node;
2792 				} else if ((temp_register & 0x0BL) == 0x08) {
2793 					/* Map prefetchable memory */
2794 					base = temp_register & 0xFFFFFFF0;
2795 					base = ~base + 1;
2796 
2797 					dbg("CND:      length = 0x%x\n", base);
2798 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2799 
2800 					/* allocate the resource to the board */
2801 					if (p_mem_node) {
2802 						base = p_mem_node->base;
2803 
2804 						p_mem_node->next = func->p_mem_head;
2805 						func->p_mem_head = p_mem_node;
2806 					} else
2807 						return -ENOMEM;
2808 				} else if ((temp_register & 0x0BL) == 0x00) {
2809 					/* Map memory */
2810 					base = temp_register & 0xFFFFFFF0;
2811 					base = ~base + 1;
2812 
2813 					dbg("CND:      length = 0x%x\n", base);
2814 					mem_node = get_resource(&(resources->mem_head), base);
2815 
2816 					/* allocate the resource to the board */
2817 					if (mem_node) {
2818 						base = mem_node->base;
2819 
2820 						mem_node->next = func->mem_head;
2821 						func->mem_head = mem_node;
2822 					} else
2823 						return -ENOMEM;
2824 				} else {
2825 					/* Reserved bits or requesting space below 1M */
2826 					return NOT_ENOUGH_RESOURCES;
2827 				}
2828 
2829 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2830 
2831 				/* Check for 64-bit base */
2832 				if ((temp_register & 0x07L) == 0x04) {
2833 					cloop += 4;
2834 
2835 					/* Upper 32 bits of address always zero
2836 					 * on today's systems */
2837 					/* FIXME this is probably not true on
2838 					 * Alpha and ia64??? */
2839 					base = 0;
2840 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2841 				}
2842 			}
2843 		}		/* End of base register loop */
2844 		if (cpqhp_legacy_mode) {
2845 			/* Figure out which interrupt pin this function uses */
2846 			rc = pci_bus_read_config_byte(pci_bus, devfn,
2847 				PCI_INTERRUPT_PIN, &temp_byte);
2848 
2849 			/* If this function needs an interrupt and we are behind
2850 			 * a bridge and the pin is tied to something that's
2851 			 * already mapped, set this one the same */
2852 			if (temp_byte && resources->irqs &&
2853 			    (resources->irqs->valid_INT &
2854 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2855 				/* We have to share with something already set up */
2856 				IRQ = resources->irqs->interrupt[(temp_byte +
2857 					resources->irqs->barber_pole - 1) & 0x03];
2858 			} else {
2859 				/* Program IRQ based on card type */
2860 				rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2861 
2862 				if (class_code == PCI_BASE_CLASS_STORAGE)
2863 					IRQ = cpqhp_disk_irq;
2864 				else
2865 					IRQ = cpqhp_nic_irq;
2866 			}
2867 
2868 			/* IRQ Line */
2869 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2870 		}
2871 
2872 		if (!behind_bridge) {
2873 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2874 			if (rc)
2875 				return 1;
2876 		} else {
2877 			/* TBD - this code may also belong in the other clause
2878 			 * of this If statement */
2879 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2880 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2881 		}
2882 
2883 		/* Latency Timer */
2884 		temp_byte = 0x40;
2885 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2886 					PCI_LATENCY_TIMER, temp_byte);
2887 
2888 		/* Cache Line size */
2889 		temp_byte = 0x08;
2890 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2891 					PCI_CACHE_LINE_SIZE, temp_byte);
2892 
2893 		/* disable ROM base Address */
2894 		temp_dword = 0x00L;
2895 		rc = pci_bus_write_config_word(pci_bus, devfn,
2896 					PCI_ROM_ADDRESS, temp_dword);
2897 
2898 		/* enable card */
2899 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2900 					 *   PCI_COMMAND_MEMORY |
2901 					 *   PCI_COMMAND_MASTER |
2902 					 *   PCI_COMMAND_INVALIDATE |
2903 					 *   PCI_COMMAND_PARITY |
2904 					 *   PCI_COMMAND_SERR */
2905 		rc = pci_bus_write_config_word(pci_bus, devfn,
2906 					PCI_COMMAND, temp_word);
2907 	} else {		/* End of Not-A-Bridge else */
2908 		/* It's some strange type of PCI adapter (Cardbus?) */
2909 		return DEVICE_TYPE_NOT_SUPPORTED;
2910 	}
2911 
2912 	func->configured = 1;
2913 
2914 	return 0;
2915 free_and_out:
2916 	cpqhp_destroy_resource_list(&temp_resources);
2917 
2918 	return_resource(&(resources->bus_head), hold_bus_node);
2919 	return_resource(&(resources->io_head), hold_IO_node);
2920 	return_resource(&(resources->mem_head), hold_mem_node);
2921 	return_resource(&(resources->p_mem_head), hold_p_mem_node);
2922 	return rc;
2923 }
2924