1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28 
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include <linux/interrupt.h>
36 #include <linux/delay.h>
37 #include <linux/wait.h>
38 #include <linux/smp_lock.h>
39 #include <linux/pci.h>
40 #include "cpqphp.h"
41 
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 			u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 			u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
47 
48 static struct semaphore event_semaphore;	/* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit;		/* guard ensure thread has exited before calling it quits */
50 static int event_finished;
51 static unsigned long pushbutton_pending;	/* = 0 */
52 
53 /* things needed for the long_delay function */
54 static struct semaphore		delay_sem;
55 static wait_queue_head_t	delay_wait;
56 
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay)
59 {
60 	DECLARE_WAITQUEUE(wait, current);
61 
62 	/* only allow 1 customer into the delay queue at once
63 	 * yes this makes some people wait even longer, but who really cares?
64 	 * this is for _huge_ delays to make the hardware happy as the
65 	 * signals bounce around
66 	 */
67 	down (&delay_sem);
68 
69 	init_waitqueue_head(&delay_wait);
70 
71 	add_wait_queue(&delay_wait, &wait);
72 	msleep_interruptible(jiffies_to_msecs(delay));
73 	remove_wait_queue(&delay_wait, &wait);
74 
75 	up(&delay_sem);
76 }
77 
78 
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8 handle_switch_change(u8 change, struct controller * ctrl)
82 {
83 	int hp_slot;
84 	u8 rc = 0;
85 	u16 temp_word;
86 	struct pci_func *func;
87 	struct event_info *taskInfo;
88 
89 	if (!change)
90 		return 0;
91 
92 	/* Switch Change */
93 	dbg("cpqsbd:  Switch interrupt received.\n");
94 
95 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
96 		if (change & (0x1L << hp_slot)) {
97 			/**********************************
98 			 * this one changed.
99 			 **********************************/
100 			func = cpqhp_slot_find(ctrl->bus,
101 				(hp_slot + ctrl->slot_device_offset), 0);
102 
103 			/* this is the structure that tells the worker thread
104 			 *what to do */
105 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
106 			ctrl->next_event = (ctrl->next_event + 1) % 10;
107 			taskInfo->hp_slot = hp_slot;
108 
109 			rc++;
110 
111 			temp_word = ctrl->ctrl_int_comp >> 16;
112 			func->presence_save = (temp_word >> hp_slot) & 0x01;
113 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
114 
115 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
116 				/**********************************
117 				 * Switch opened
118 				 **********************************/
119 
120 				func->switch_save = 0;
121 
122 				taskInfo->event_type = INT_SWITCH_OPEN;
123 			} else {
124 				/**********************************
125 				 * Switch closed
126 				 **********************************/
127 
128 				func->switch_save = 0x10;
129 
130 				taskInfo->event_type = INT_SWITCH_CLOSE;
131 			}
132 		}
133 	}
134 
135 	return rc;
136 }
137 
138 /**
139  * cpqhp_find_slot: find the struct slot of given device
140  * @ctrl: scan lots of this controller
141  * @device: the device id to find
142  */
143 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
144 {
145 	struct slot *slot = ctrl->slot;
146 
147 	while (slot && (slot->device != device)) {
148 		slot = slot->next;
149 	}
150 
151 	return slot;
152 }
153 
154 
155 static u8 handle_presence_change(u16 change, struct controller * ctrl)
156 {
157 	int hp_slot;
158 	u8 rc = 0;
159 	u8 temp_byte;
160 	u16 temp_word;
161 	struct pci_func *func;
162 	struct event_info *taskInfo;
163 	struct slot *p_slot;
164 
165 	if (!change)
166 		return 0;
167 
168 	/**********************************
169 	 * Presence Change
170 	 **********************************/
171 	dbg("cpqsbd:  Presence/Notify input change.\n");
172 	dbg("         Changed bits are 0x%4.4x\n", change );
173 
174 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
175 		if (change & (0x0101 << hp_slot)) {
176 			/**********************************
177 			 * this one changed.
178 			 **********************************/
179 			func = cpqhp_slot_find(ctrl->bus,
180 				(hp_slot + ctrl->slot_device_offset), 0);
181 
182 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
183 			ctrl->next_event = (ctrl->next_event + 1) % 10;
184 			taskInfo->hp_slot = hp_slot;
185 
186 			rc++;
187 
188 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
189 			if (!p_slot)
190 				return 0;
191 
192 			/* If the switch closed, must be a button
193 			 * If not in button mode, nevermind */
194 			if (func->switch_save && (ctrl->push_button == 1)) {
195 				temp_word = ctrl->ctrl_int_comp >> 16;
196 				temp_byte = (temp_word >> hp_slot) & 0x01;
197 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
198 
199 				if (temp_byte != func->presence_save) {
200 					/**************************************
201 					 * button Pressed (doesn't do anything)
202 					 **************************************/
203 					dbg("hp_slot %d button pressed\n", hp_slot);
204 					taskInfo->event_type = INT_BUTTON_PRESS;
205 				} else {
206 					/**********************************
207 					 * button Released - TAKE ACTION!!!!
208 					 **********************************/
209 					dbg("hp_slot %d button released\n", hp_slot);
210 					taskInfo->event_type = INT_BUTTON_RELEASE;
211 
212 					/* Cancel if we are still blinking */
213 					if ((p_slot->state == BLINKINGON_STATE)
214 					    || (p_slot->state == BLINKINGOFF_STATE)) {
215 						taskInfo->event_type = INT_BUTTON_CANCEL;
216 						dbg("hp_slot %d button cancel\n", hp_slot);
217 					} else if ((p_slot->state == POWERON_STATE)
218 						   || (p_slot->state == POWEROFF_STATE)) {
219 						/* info(msg_button_ignore, p_slot->number); */
220 						taskInfo->event_type = INT_BUTTON_IGNORE;
221 						dbg("hp_slot %d button ignore\n", hp_slot);
222 					}
223 				}
224 			} else {
225 				/* Switch is open, assume a presence change
226 				 * Save the presence state */
227 				temp_word = ctrl->ctrl_int_comp >> 16;
228 				func->presence_save = (temp_word >> hp_slot) & 0x01;
229 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
230 
231 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
232 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
233 					/* Present */
234 					taskInfo->event_type = INT_PRESENCE_ON;
235 				} else {
236 					/* Not Present */
237 					taskInfo->event_type = INT_PRESENCE_OFF;
238 				}
239 			}
240 		}
241 	}
242 
243 	return rc;
244 }
245 
246 
247 static u8 handle_power_fault(u8 change, struct controller * ctrl)
248 {
249 	int hp_slot;
250 	u8 rc = 0;
251 	struct pci_func *func;
252 	struct event_info *taskInfo;
253 
254 	if (!change)
255 		return 0;
256 
257 	/**********************************
258 	 * power fault
259 	 **********************************/
260 
261 	info("power fault interrupt\n");
262 
263 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
264 		if (change & (0x01 << hp_slot)) {
265 			/**********************************
266 			 * this one changed.
267 			 **********************************/
268 			func = cpqhp_slot_find(ctrl->bus,
269 				(hp_slot + ctrl->slot_device_offset), 0);
270 
271 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
272 			ctrl->next_event = (ctrl->next_event + 1) % 10;
273 			taskInfo->hp_slot = hp_slot;
274 
275 			rc++;
276 
277 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
278 				/**********************************
279 				 * power fault Cleared
280 				 **********************************/
281 				func->status = 0x00;
282 
283 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
284 			} else {
285 				/**********************************
286 				 * power fault
287 				 **********************************/
288 				taskInfo->event_type = INT_POWER_FAULT;
289 
290 				if (ctrl->rev < 4) {
291 					amber_LED_on (ctrl, hp_slot);
292 					green_LED_off (ctrl, hp_slot);
293 					set_SOGO (ctrl);
294 
295 					/* this is a fatal condition, we want
296 					 * to crash the machine to protect from
297 					 * data corruption. simulated_NMI
298 					 * shouldn't ever return */
299 					/* FIXME
300 					simulated_NMI(hp_slot, ctrl); */
301 
302 					/* The following code causes a software
303 					 * crash just in case simulated_NMI did
304 					 * return */
305 					/*FIXME
306 					panic(msg_power_fault); */
307 				} else {
308 					/* set power fault status for this board */
309 					func->status = 0xFF;
310 					info("power fault bit %x set\n", hp_slot);
311 				}
312 			}
313 		}
314 	}
315 
316 	return rc;
317 }
318 
319 
320 /**
321  * sort_by_size: sort nodes on the list by their length, smallest first.
322  * @head: list to sort
323  *
324  */
325 static int sort_by_size(struct pci_resource **head)
326 {
327 	struct pci_resource *current_res;
328 	struct pci_resource *next_res;
329 	int out_of_order = 1;
330 
331 	if (!(*head))
332 		return 1;
333 
334 	if (!((*head)->next))
335 		return 0;
336 
337 	while (out_of_order) {
338 		out_of_order = 0;
339 
340 		/* Special case for swapping list head */
341 		if (((*head)->next) &&
342 		    ((*head)->length > (*head)->next->length)) {
343 			out_of_order++;
344 			current_res = *head;
345 			*head = (*head)->next;
346 			current_res->next = (*head)->next;
347 			(*head)->next = current_res;
348 		}
349 
350 		current_res = *head;
351 
352 		while (current_res->next && current_res->next->next) {
353 			if (current_res->next->length > current_res->next->next->length) {
354 				out_of_order++;
355 				next_res = current_res->next;
356 				current_res->next = current_res->next->next;
357 				current_res = current_res->next;
358 				next_res->next = current_res->next;
359 				current_res->next = next_res;
360 			} else
361 				current_res = current_res->next;
362 		}
363 	}  /* End of out_of_order loop */
364 
365 	return 0;
366 }
367 
368 
369 /**
370  * sort_by_max_size: sort nodes on the list by their length, largest first.
371  * @head: list to sort
372  *
373  */
374 static int sort_by_max_size(struct pci_resource **head)
375 {
376 	struct pci_resource *current_res;
377 	struct pci_resource *next_res;
378 	int out_of_order = 1;
379 
380 	if (!(*head))
381 		return 1;
382 
383 	if (!((*head)->next))
384 		return 0;
385 
386 	while (out_of_order) {
387 		out_of_order = 0;
388 
389 		/* Special case for swapping list head */
390 		if (((*head)->next) &&
391 		    ((*head)->length < (*head)->next->length)) {
392 			out_of_order++;
393 			current_res = *head;
394 			*head = (*head)->next;
395 			current_res->next = (*head)->next;
396 			(*head)->next = current_res;
397 		}
398 
399 		current_res = *head;
400 
401 		while (current_res->next && current_res->next->next) {
402 			if (current_res->next->length < current_res->next->next->length) {
403 				out_of_order++;
404 				next_res = current_res->next;
405 				current_res->next = current_res->next->next;
406 				current_res = current_res->next;
407 				next_res->next = current_res->next;
408 				current_res->next = next_res;
409 			} else
410 				current_res = current_res->next;
411 		}
412 	}  /* End of out_of_order loop */
413 
414 	return 0;
415 }
416 
417 
418 /**
419  * do_pre_bridge_resource_split: find node of resources that are unused
420  *
421  */
422 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
423 				struct pci_resource **orig_head, u32 alignment)
424 {
425 	struct pci_resource *prevnode = NULL;
426 	struct pci_resource *node;
427 	struct pci_resource *split_node;
428 	u32 rc;
429 	u32 temp_dword;
430 	dbg("do_pre_bridge_resource_split\n");
431 
432 	if (!(*head) || !(*orig_head))
433 		return NULL;
434 
435 	rc = cpqhp_resource_sort_and_combine(head);
436 
437 	if (rc)
438 		return NULL;
439 
440 	if ((*head)->base != (*orig_head)->base)
441 		return NULL;
442 
443 	if ((*head)->length == (*orig_head)->length)
444 		return NULL;
445 
446 
447 	/* If we got here, there the bridge requires some of the resource, but
448 	 * we may be able to split some off of the front */
449 
450 	node = *head;
451 
452 	if (node->length & (alignment -1)) {
453 		/* this one isn't an aligned length, so we'll make a new entry
454 		 * and split it up. */
455 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
456 
457 		if (!split_node)
458 			return NULL;
459 
460 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
461 
462 		split_node->base = node->base;
463 		split_node->length = temp_dword;
464 
465 		node->length -= temp_dword;
466 		node->base += split_node->length;
467 
468 		/* Put it in the list */
469 		*head = split_node;
470 		split_node->next = node;
471 	}
472 
473 	if (node->length < alignment)
474 		return NULL;
475 
476 	/* Now unlink it */
477 	if (*head == node) {
478 		*head = node->next;
479 	} else {
480 		prevnode = *head;
481 		while (prevnode->next != node)
482 			prevnode = prevnode->next;
483 
484 		prevnode->next = node->next;
485 	}
486 	node->next = NULL;
487 
488 	return node;
489 }
490 
491 
492 /**
493  * do_bridge_resource_split: find one node of resources that aren't in use
494  *
495  */
496 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
497 {
498 	struct pci_resource *prevnode = NULL;
499 	struct pci_resource *node;
500 	u32 rc;
501 	u32 temp_dword;
502 
503 	rc = cpqhp_resource_sort_and_combine(head);
504 
505 	if (rc)
506 		return NULL;
507 
508 	node = *head;
509 
510 	while (node->next) {
511 		prevnode = node;
512 		node = node->next;
513 		kfree(prevnode);
514 	}
515 
516 	if (node->length < alignment)
517 		goto error;
518 
519 	if (node->base & (alignment - 1)) {
520 		/* Short circuit if adjusted size is too small */
521 		temp_dword = (node->base | (alignment-1)) + 1;
522 		if ((node->length - (temp_dword - node->base)) < alignment)
523 			goto error;
524 
525 		node->length -= (temp_dword - node->base);
526 		node->base = temp_dword;
527 	}
528 
529 	if (node->length & (alignment - 1))
530 		/* There's stuff in use after this node */
531 		goto error;
532 
533 	return node;
534 error:
535 	kfree(node);
536 	return NULL;
537 }
538 
539 
540 /**
541  * get_io_resource: find first node of given size not in ISA aliasing window.
542  * @head: list to search
543  * @size: size of node to find, must be a power of two.
544  *
545  * Description: this function sorts the resource list by size and then returns
546  * returns the first node of "size" length that is not in the ISA aliasing
547  * window.  If it finds a node larger than "size" it will split it up.
548  *
549  */
550 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
551 {
552 	struct pci_resource *prevnode;
553 	struct pci_resource *node;
554 	struct pci_resource *split_node;
555 	u32 temp_dword;
556 
557 	if (!(*head))
558 		return NULL;
559 
560 	if ( cpqhp_resource_sort_and_combine(head) )
561 		return NULL;
562 
563 	if ( sort_by_size(head) )
564 		return NULL;
565 
566 	for (node = *head; node; node = node->next) {
567 		if (node->length < size)
568 			continue;
569 
570 		if (node->base & (size - 1)) {
571 			/* this one isn't base aligned properly
572 			 * so we'll make a new entry and split it up */
573 			temp_dword = (node->base | (size-1)) + 1;
574 
575 			/* Short circuit if adjusted size is too small */
576 			if ((node->length - (temp_dword - node->base)) < size)
577 				continue;
578 
579 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
580 
581 			if (!split_node)
582 				return NULL;
583 
584 			split_node->base = node->base;
585 			split_node->length = temp_dword - node->base;
586 			node->base = temp_dword;
587 			node->length -= split_node->length;
588 
589 			/* Put it in the list */
590 			split_node->next = node->next;
591 			node->next = split_node;
592 		} /* End of non-aligned base */
593 
594 		/* Don't need to check if too small since we already did */
595 		if (node->length > size) {
596 			/* this one is longer than we need
597 			 * so we'll make a new entry and split it up */
598 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
599 
600 			if (!split_node)
601 				return NULL;
602 
603 			split_node->base = node->base + size;
604 			split_node->length = node->length - size;
605 			node->length = size;
606 
607 			/* Put it in the list */
608 			split_node->next = node->next;
609 			node->next = split_node;
610 		}  /* End of too big on top end */
611 
612 		/* For IO make sure it's not in the ISA aliasing space */
613 		if (node->base & 0x300L)
614 			continue;
615 
616 		/* If we got here, then it is the right size
617 		 * Now take it out of the list and break */
618 		if (*head == node) {
619 			*head = node->next;
620 		} else {
621 			prevnode = *head;
622 			while (prevnode->next != node)
623 				prevnode = prevnode->next;
624 
625 			prevnode->next = node->next;
626 		}
627 		node->next = NULL;
628 		break;
629 	}
630 
631 	return node;
632 }
633 
634 
635 /**
636  * get_max_resource: get largest node which has at least the given size.
637  * @head: the list to search the node in
638  * @size: the minimum size of the node to find
639  *
640  * Description: Gets the largest node that is at least "size" big from the
641  * list pointed to by head.  It aligns the node on top and bottom
642  * to "size" alignment before returning it.
643  */
644 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
645 {
646 	struct pci_resource *max;
647 	struct pci_resource *temp;
648 	struct pci_resource *split_node;
649 	u32 temp_dword;
650 
651 	if (cpqhp_resource_sort_and_combine(head))
652 		return NULL;
653 
654 	if (sort_by_max_size(head))
655 		return NULL;
656 
657 	for (max = *head; max; max = max->next) {
658 		/* If not big enough we could probably just bail,
659 		 * instead we'll continue to the next. */
660 		if (max->length < size)
661 			continue;
662 
663 		if (max->base & (size - 1)) {
664 			/* this one isn't base aligned properly
665 			 * so we'll make a new entry and split it up */
666 			temp_dword = (max->base | (size-1)) + 1;
667 
668 			/* Short circuit if adjusted size is too small */
669 			if ((max->length - (temp_dword - max->base)) < size)
670 				continue;
671 
672 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
673 
674 			if (!split_node)
675 				return NULL;
676 
677 			split_node->base = max->base;
678 			split_node->length = temp_dword - max->base;
679 			max->base = temp_dword;
680 			max->length -= split_node->length;
681 
682 			split_node->next = max->next;
683 			max->next = split_node;
684 		}
685 
686 		if ((max->base + max->length) & (size - 1)) {
687 			/* this one isn't end aligned properly at the top
688 			 * so we'll make a new entry and split it up */
689 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
690 
691 			if (!split_node)
692 				return NULL;
693 			temp_dword = ((max->base + max->length) & ~(size - 1));
694 			split_node->base = temp_dword;
695 			split_node->length = max->length + max->base
696 					     - split_node->base;
697 			max->length -= split_node->length;
698 
699 			split_node->next = max->next;
700 			max->next = split_node;
701 		}
702 
703 		/* Make sure it didn't shrink too much when we aligned it */
704 		if (max->length < size)
705 			continue;
706 
707 		/* Now take it out of the list */
708 		temp = *head;
709 		if (temp == max) {
710 			*head = max->next;
711 		} else {
712 			while (temp && temp->next != max) {
713 				temp = temp->next;
714 			}
715 
716 			temp->next = max->next;
717 		}
718 
719 		max->next = NULL;
720 		break;
721 	}
722 
723 	return max;
724 }
725 
726 
727 /**
728  * get_resource: find resource of given size and split up larger ones.
729  * @head: the list to search for resources
730  * @size: the size limit to use
731  *
732  * Description: This function sorts the resource list by size and then
733  * returns the first node of "size" length.  If it finds a node
734  * larger than "size" it will split it up.
735  *
736  * size must be a power of two.
737  */
738 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
739 {
740 	struct pci_resource *prevnode;
741 	struct pci_resource *node;
742 	struct pci_resource *split_node;
743 	u32 temp_dword;
744 
745 	if (cpqhp_resource_sort_and_combine(head))
746 		return NULL;
747 
748 	if (sort_by_size(head))
749 		return NULL;
750 
751 	for (node = *head; node; node = node->next) {
752 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 		    __FUNCTION__, size, node, node->base, node->length);
754 		if (node->length < size)
755 			continue;
756 
757 		if (node->base & (size - 1)) {
758 			dbg("%s: not aligned\n", __FUNCTION__);
759 			/* this one isn't base aligned properly
760 			 * so we'll make a new entry and split it up */
761 			temp_dword = (node->base | (size-1)) + 1;
762 
763 			/* Short circuit if adjusted size is too small */
764 			if ((node->length - (temp_dword - node->base)) < size)
765 				continue;
766 
767 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
768 
769 			if (!split_node)
770 				return NULL;
771 
772 			split_node->base = node->base;
773 			split_node->length = temp_dword - node->base;
774 			node->base = temp_dword;
775 			node->length -= split_node->length;
776 
777 			split_node->next = node->next;
778 			node->next = split_node;
779 		} /* End of non-aligned base */
780 
781 		/* Don't need to check if too small since we already did */
782 		if (node->length > size) {
783 			dbg("%s: too big\n", __FUNCTION__);
784 			/* this one is longer than we need
785 			 * so we'll make a new entry and split it up */
786 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
787 
788 			if (!split_node)
789 				return NULL;
790 
791 			split_node->base = node->base + size;
792 			split_node->length = node->length - size;
793 			node->length = size;
794 
795 			/* Put it in the list */
796 			split_node->next = node->next;
797 			node->next = split_node;
798 		}  /* End of too big on top end */
799 
800 		dbg("%s: got one!!!\n", __FUNCTION__);
801 		/* If we got here, then it is the right size
802 		 * Now take it out of the list */
803 		if (*head == node) {
804 			*head = node->next;
805 		} else {
806 			prevnode = *head;
807 			while (prevnode->next != node)
808 				prevnode = prevnode->next;
809 
810 			prevnode->next = node->next;
811 		}
812 		node->next = NULL;
813 		break;
814 	}
815 	return node;
816 }
817 
818 
819 /**
820  * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821  * @head: the list to sort and clean up
822  *
823  * Description: Sorts all of the nodes in the list in ascending order by
824  * their base addresses.  Also does garbage collection by
825  * combining adjacent nodes.
826  *
827  * returns 0 if success
828  */
829 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
830 {
831 	struct pci_resource *node1;
832 	struct pci_resource *node2;
833 	int out_of_order = 1;
834 
835 	dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
836 
837 	if (!(*head))
838 		return 1;
839 
840 	dbg("*head->next = %p\n",(*head)->next);
841 
842 	if (!(*head)->next)
843 		return 0;	/* only one item on the list, already sorted! */
844 
845 	dbg("*head->base = 0x%x\n",(*head)->base);
846 	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847 	while (out_of_order) {
848 		out_of_order = 0;
849 
850 		/* Special case for swapping list head */
851 		if (((*head)->next) &&
852 		    ((*head)->base > (*head)->next->base)) {
853 			node1 = *head;
854 			(*head) = (*head)->next;
855 			node1->next = (*head)->next;
856 			(*head)->next = node1;
857 			out_of_order++;
858 		}
859 
860 		node1 = (*head);
861 
862 		while (node1->next && node1->next->next) {
863 			if (node1->next->base > node1->next->next->base) {
864 				out_of_order++;
865 				node2 = node1->next;
866 				node1->next = node1->next->next;
867 				node1 = node1->next;
868 				node2->next = node1->next;
869 				node1->next = node2;
870 			} else
871 				node1 = node1->next;
872 		}
873 	}  /* End of out_of_order loop */
874 
875 	node1 = *head;
876 
877 	while (node1 && node1->next) {
878 		if ((node1->base + node1->length) == node1->next->base) {
879 			/* Combine */
880 			dbg("8..\n");
881 			node1->length += node1->next->length;
882 			node2 = node1->next;
883 			node1->next = node1->next->next;
884 			kfree(node2);
885 		} else
886 			node1 = node1->next;
887 	}
888 
889 	return 0;
890 }
891 
892 
893 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data, struct pt_regs *regs)
894 {
895 	struct controller *ctrl = data;
896 	u8 schedule_flag = 0;
897 	u8 reset;
898 	u16 misc;
899 	u32 Diff;
900 	u32 temp_dword;
901 
902 
903 	misc = readw(ctrl->hpc_reg + MISC);
904 	/***************************************
905 	 * Check to see if it was our interrupt
906 	 ***************************************/
907 	if (!(misc & 0x000C)) {
908 		return IRQ_NONE;
909 	}
910 
911 	if (misc & 0x0004) {
912 		/**********************************
913 		 * Serial Output interrupt Pending
914 		 **********************************/
915 
916 		/* Clear the interrupt */
917 		misc |= 0x0004;
918 		writew(misc, ctrl->hpc_reg + MISC);
919 
920 		/* Read to clear posted writes */
921 		misc = readw(ctrl->hpc_reg + MISC);
922 
923 		dbg ("%s - waking up\n", __FUNCTION__);
924 		wake_up_interruptible(&ctrl->queue);
925 	}
926 
927 	if (misc & 0x0008) {
928 		/* General-interrupt-input interrupt Pending */
929 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
930 
931 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
932 
933 		/* Clear the interrupt */
934 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
935 
936 		/* Read it back to clear any posted writes */
937 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
938 
939 		if (!Diff)
940 			/* Clear all interrupts */
941 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
942 
943 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
946 	}
947 
948 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949 	if (reset & 0x40) {
950 		/* Bus reset has completed */
951 		reset &= 0xCF;
952 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954 		wake_up_interruptible(&ctrl->queue);
955 	}
956 
957 	if (schedule_flag) {
958 		up(&event_semaphore);
959 		dbg("Signal event_semaphore\n");
960 	}
961 	return IRQ_HANDLED;
962 }
963 
964 
965 /**
966  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967  * @busnumber - bus where new node is to be located
968  *
969  * Returns pointer to the new node or NULL if unsuccessful
970  */
971 struct pci_func *cpqhp_slot_create(u8 busnumber)
972 {
973 	struct pci_func *new_slot;
974 	struct pci_func *next;
975 
976 	new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
977 
978 	if (new_slot == NULL) {
979 		/* I'm not dead yet!
980 		 * You will be. */
981 		return new_slot;
982 	}
983 
984 	memset(new_slot, 0, sizeof(struct pci_func));
985 
986 	new_slot->next = NULL;
987 	new_slot->configured = 1;
988 
989 	if (cpqhp_slot_list[busnumber] == NULL) {
990 		cpqhp_slot_list[busnumber] = new_slot;
991 	} else {
992 		next = cpqhp_slot_list[busnumber];
993 		while (next->next != NULL)
994 			next = next->next;
995 		next->next = new_slot;
996 	}
997 	return new_slot;
998 }
999 
1000 
1001 /**
1002  * slot_remove - Removes a node from the linked list of slots.
1003  * @old_slot: slot to remove
1004  *
1005  * Returns 0 if successful, !0 otherwise.
1006  */
1007 static int slot_remove(struct pci_func * old_slot)
1008 {
1009 	struct pci_func *next;
1010 
1011 	if (old_slot == NULL)
1012 		return 1;
1013 
1014 	next = cpqhp_slot_list[old_slot->bus];
1015 
1016 	if (next == NULL) {
1017 		return 1;
1018 	}
1019 
1020 	if (next == old_slot) {
1021 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1022 		cpqhp_destroy_board_resources(old_slot);
1023 		kfree(old_slot);
1024 		return 0;
1025 	}
1026 
1027 	while ((next->next != old_slot) && (next->next != NULL)) {
1028 		next = next->next;
1029 	}
1030 
1031 	if (next->next == old_slot) {
1032 		next->next = old_slot->next;
1033 		cpqhp_destroy_board_resources(old_slot);
1034 		kfree(old_slot);
1035 		return 0;
1036 	} else
1037 		return 2;
1038 }
1039 
1040 
1041 /**
1042  * bridge_slot_remove - Removes a node from the linked list of slots.
1043  * @bridge: bridge to remove
1044  *
1045  * Returns 0 if successful, !0 otherwise.
1046  */
1047 static int bridge_slot_remove(struct pci_func *bridge)
1048 {
1049 	u8 subordinateBus, secondaryBus;
1050 	u8 tempBus;
1051 	struct pci_func *next;
1052 
1053 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1054 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1055 
1056 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1057 		next = cpqhp_slot_list[tempBus];
1058 
1059 		while (!slot_remove(next)) {
1060 			next = cpqhp_slot_list[tempBus];
1061 		}
1062 	}
1063 
1064 	next = cpqhp_slot_list[bridge->bus];
1065 
1066 	if (next == NULL)
1067 		return 1;
1068 
1069 	if (next == bridge) {
1070 		cpqhp_slot_list[bridge->bus] = bridge->next;
1071 		goto out;
1072 	}
1073 
1074 	while ((next->next != bridge) && (next->next != NULL))
1075 		next = next->next;
1076 
1077 	if (next->next != bridge)
1078 		return 2;
1079 	next->next = bridge->next;
1080 out:
1081 	kfree(bridge);
1082 	return 0;
1083 }
1084 
1085 
1086 /**
1087  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1088  * @bus: bus to find
1089  * @device: device to find
1090  * @index: is 0 for first function found, 1 for the second...
1091  *
1092  * Returns pointer to the node if successful, %NULL otherwise.
1093  */
1094 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1095 {
1096 	int found = -1;
1097 	struct pci_func *func;
1098 
1099 	func = cpqhp_slot_list[bus];
1100 
1101 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1102 		return func;
1103 
1104 	if (func->device == device)
1105 		found++;
1106 
1107 	while (func->next != NULL) {
1108 		func = func->next;
1109 
1110 		if (func->device == device)
1111 			found++;
1112 
1113 		if (found == index)
1114 			return func;
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
1120 
1121 /* DJZ: I don't think is_bridge will work as is.
1122  * FIXME */
1123 static int is_bridge(struct pci_func * func)
1124 {
1125 	/* Check the header type */
1126 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1127 		return 1;
1128 	else
1129 		return 0;
1130 }
1131 
1132 
1133 /**
1134  * set_controller_speed - set the frequency and/or mode of a specific
1135  * controller segment.
1136  *
1137  * @ctrl: controller to change frequency/mode for.
1138  * @adapter_speed: the speed of the adapter we want to match.
1139  * @hp_slot: the slot number where the adapter is installed.
1140  *
1141  * Returns 0 if we successfully change frequency and/or mode to match the
1142  * adapter speed.
1143  *
1144  */
1145 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1146 {
1147 	struct slot *slot;
1148 	u8 reg;
1149 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1150 	u16 reg16;
1151 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1152 
1153 	if (ctrl->speed == adapter_speed)
1154 		return 0;
1155 
1156 	/* We don't allow freq/mode changes if we find another adapter running
1157 	 * in another slot on this controller */
1158 	for(slot = ctrl->slot; slot; slot = slot->next) {
1159 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1160 			continue;
1161 		if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1162 			continue;
1163 		if (slot->hotplug_slot->info->adapter_status == 0)
1164 			continue;
1165 		/* If another adapter is running on the same segment but at a
1166 		 * lower speed/mode, we allow the new adapter to function at
1167 		 * this rate if supported */
1168 		if (ctrl->speed < adapter_speed)
1169 			return 0;
1170 
1171 		return 1;
1172 	}
1173 
1174 	/* If the controller doesn't support freq/mode changes and the
1175 	 * controller is running at a higher mode, we bail */
1176 	if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1177 		return 1;
1178 
1179 	/* But we allow the adapter to run at a lower rate if possible */
1180 	if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1181 		return 0;
1182 
1183 	/* We try to set the max speed supported by both the adapter and
1184 	 * controller */
1185 	if (ctrl->speed_capability < adapter_speed) {
1186 		if (ctrl->speed == ctrl->speed_capability)
1187 			return 0;
1188 		adapter_speed = ctrl->speed_capability;
1189 	}
1190 
1191 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1192 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1193 
1194 	set_SOGO(ctrl);
1195 	wait_for_ctrl_irq(ctrl);
1196 
1197 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1198 		reg = 0xF5;
1199 	else
1200 		reg = 0xF4;
1201 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1202 
1203 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1204 	reg16 &= ~0x000F;
1205 	switch(adapter_speed) {
1206 		case(PCI_SPEED_133MHz_PCIX):
1207 			reg = 0x75;
1208 			reg16 |= 0xB;
1209 			break;
1210 		case(PCI_SPEED_100MHz_PCIX):
1211 			reg = 0x74;
1212 			reg16 |= 0xA;
1213 			break;
1214 		case(PCI_SPEED_66MHz_PCIX):
1215 			reg = 0x73;
1216 			reg16 |= 0x9;
1217 			break;
1218 		case(PCI_SPEED_66MHz):
1219 			reg = 0x73;
1220 			reg16 |= 0x1;
1221 			break;
1222 		default: /* 33MHz PCI 2.2 */
1223 			reg = 0x71;
1224 			break;
1225 
1226 	}
1227 	reg16 |= 0xB << 12;
1228 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1229 
1230 	mdelay(5);
1231 
1232 	/* Reenable interrupts */
1233 	writel(0, ctrl->hpc_reg + INT_MASK);
1234 
1235 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1236 
1237 	/* Restart state machine */
1238 	reg = ~0xF;
1239 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1240 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1241 
1242 	/* Only if mode change...*/
1243 	if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1244 		((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1245 			set_SOGO(ctrl);
1246 
1247 	wait_for_ctrl_irq(ctrl);
1248 	mdelay(1100);
1249 
1250 	/* Restore LED/Slot state */
1251 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1252 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1253 
1254 	set_SOGO(ctrl);
1255 	wait_for_ctrl_irq(ctrl);
1256 
1257 	ctrl->speed = adapter_speed;
1258 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1259 
1260 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1261 			slot->number);
1262 	return 0;
1263 }
1264 
1265 /* the following routines constitute the bulk of the
1266    hotplug controller logic
1267  */
1268 
1269 
1270 /**
1271  * board_replaced - Called after a board has been replaced in the system.
1272  *
1273  * This is only used if we don't have resources for hot add
1274  * Turns power on for the board
1275  * Checks to see if board is the same
1276  * If board is same, reconfigures it
1277  * If board isn't same, turns it back off.
1278  *
1279  */
1280 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1281 {
1282 	u8 hp_slot;
1283 	u8 temp_byte;
1284 	u8 adapter_speed;
1285 	u32 index;
1286 	u32 rc = 0;
1287 	u32 src = 8;
1288 
1289 	hp_slot = func->device - ctrl->slot_device_offset;
1290 
1291 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1292 		/**********************************
1293 		 * The switch is open.
1294 		 **********************************/
1295 		rc = INTERLOCK_OPEN;
1296 	} else if (is_slot_enabled (ctrl, hp_slot)) {
1297 		/**********************************
1298 		 * The board is already on
1299 		 **********************************/
1300 		rc = CARD_FUNCTIONING;
1301 	} else {
1302 		down(&ctrl->crit_sect);
1303 
1304 		/* turn on board without attaching to the bus */
1305 		enable_slot_power (ctrl, hp_slot);
1306 
1307 		set_SOGO(ctrl);
1308 
1309 		/* Wait for SOBS to be unset */
1310 		wait_for_ctrl_irq (ctrl);
1311 
1312 		/* Change bits in slot power register to force another shift out
1313 		 * NOTE: this is to work around the timer bug */
1314 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1315 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1316 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1317 
1318 		set_SOGO(ctrl);
1319 
1320 		/* Wait for SOBS to be unset */
1321 		wait_for_ctrl_irq (ctrl);
1322 
1323 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1324 		if (ctrl->speed != adapter_speed)
1325 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1326 				rc = WRONG_BUS_FREQUENCY;
1327 
1328 		/* turn off board without attaching to the bus */
1329 		disable_slot_power (ctrl, hp_slot);
1330 
1331 		set_SOGO(ctrl);
1332 
1333 		/* Wait for SOBS to be unset */
1334 		wait_for_ctrl_irq (ctrl);
1335 
1336 		up(&ctrl->crit_sect);
1337 
1338 		if (rc)
1339 			return rc;
1340 
1341 		down(&ctrl->crit_sect);
1342 
1343 		slot_enable (ctrl, hp_slot);
1344 		green_LED_blink (ctrl, hp_slot);
1345 
1346 		amber_LED_off (ctrl, hp_slot);
1347 
1348 		set_SOGO(ctrl);
1349 
1350 		/* Wait for SOBS to be unset */
1351 		wait_for_ctrl_irq (ctrl);
1352 
1353 		up(&ctrl->crit_sect);
1354 
1355 		/* Wait for ~1 second because of hot plug spec */
1356 		long_delay(1*HZ);
1357 
1358 		/* Check for a power fault */
1359 		if (func->status == 0xFF) {
1360 			/* power fault occurred, but it was benign */
1361 			rc = POWER_FAILURE;
1362 			func->status = 0;
1363 		} else
1364 			rc = cpqhp_valid_replace(ctrl, func);
1365 
1366 		if (!rc) {
1367 			/* It must be the same board */
1368 
1369 			rc = cpqhp_configure_board(ctrl, func);
1370 
1371 			if (rc || src) {
1372 				/* If configuration fails, turn it off
1373 				 * Get slot won't work for devices behind
1374 				 * bridges, but in this case it will always be
1375 				 * called for the "base" bus/dev/func of an
1376 				 * adapter. */
1377 
1378 				down(&ctrl->crit_sect);
1379 
1380 				amber_LED_on (ctrl, hp_slot);
1381 				green_LED_off (ctrl, hp_slot);
1382 				slot_disable (ctrl, hp_slot);
1383 
1384 				set_SOGO(ctrl);
1385 
1386 				/* Wait for SOBS to be unset */
1387 				wait_for_ctrl_irq (ctrl);
1388 
1389 				up(&ctrl->crit_sect);
1390 
1391 				if (rc)
1392 					return rc;
1393 				else
1394 					return 1;
1395 			}
1396 
1397 			func->status = 0;
1398 			func->switch_save = 0x10;
1399 
1400 			index = 1;
1401 			while (((func = cpqhp_slot_find(func->bus, func->device, index)) != NULL) && !rc) {
1402 				rc |= cpqhp_configure_board(ctrl, func);
1403 				index++;
1404 			}
1405 
1406 			if (rc) {
1407 				/* If configuration fails, turn it off
1408 				 * Get slot won't work for devices behind
1409 				 * bridges, but in this case it will always be
1410 				 * called for the "base" bus/dev/func of an
1411 				 * adapter. */
1412 
1413 				down(&ctrl->crit_sect);
1414 
1415 				amber_LED_on (ctrl, hp_slot);
1416 				green_LED_off (ctrl, hp_slot);
1417 				slot_disable (ctrl, hp_slot);
1418 
1419 				set_SOGO(ctrl);
1420 
1421 				/* Wait for SOBS to be unset */
1422 				wait_for_ctrl_irq (ctrl);
1423 
1424 				up(&ctrl->crit_sect);
1425 
1426 				return rc;
1427 			}
1428 			/* Done configuring so turn LED on full time */
1429 
1430 			down(&ctrl->crit_sect);
1431 
1432 			green_LED_on (ctrl, hp_slot);
1433 
1434 			set_SOGO(ctrl);
1435 
1436 			/* Wait for SOBS to be unset */
1437 			wait_for_ctrl_irq (ctrl);
1438 
1439 			up(&ctrl->crit_sect);
1440 			rc = 0;
1441 		} else {
1442 			/* Something is wrong
1443 
1444 			 * Get slot won't work for devices behind bridges, but
1445 			 * in this case it will always be called for the "base"
1446 			 * bus/dev/func of an adapter. */
1447 
1448 			down(&ctrl->crit_sect);
1449 
1450 			amber_LED_on (ctrl, hp_slot);
1451 			green_LED_off (ctrl, hp_slot);
1452 			slot_disable (ctrl, hp_slot);
1453 
1454 			set_SOGO(ctrl);
1455 
1456 			/* Wait for SOBS to be unset */
1457 			wait_for_ctrl_irq (ctrl);
1458 
1459 			up(&ctrl->crit_sect);
1460 		}
1461 
1462 	}
1463 	return rc;
1464 
1465 }
1466 
1467 
1468 /**
1469  * board_added - Called after a board has been added to the system.
1470  *
1471  * Turns power on for the board
1472  * Configures board
1473  *
1474  */
1475 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1476 {
1477 	u8 hp_slot;
1478 	u8 temp_byte;
1479 	u8 adapter_speed;
1480 	int index;
1481 	u32 temp_register = 0xFFFFFFFF;
1482 	u32 rc = 0;
1483 	struct pci_func *new_slot = NULL;
1484 	struct slot *p_slot;
1485 	struct resource_lists res_lists;
1486 
1487 	hp_slot = func->device - ctrl->slot_device_offset;
1488 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1489 	    __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1490 
1491 	down(&ctrl->crit_sect);
1492 
1493 	/* turn on board without attaching to the bus */
1494 	enable_slot_power(ctrl, hp_slot);
1495 
1496 	set_SOGO(ctrl);
1497 
1498 	/* Wait for SOBS to be unset */
1499 	wait_for_ctrl_irq (ctrl);
1500 
1501 	/* Change bits in slot power register to force another shift out
1502 	 * NOTE: this is to work around the timer bug */
1503 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1504 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1505 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1506 
1507 	set_SOGO(ctrl);
1508 
1509 	/* Wait for SOBS to be unset */
1510 	wait_for_ctrl_irq (ctrl);
1511 
1512 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1513 	if (ctrl->speed != adapter_speed)
1514 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1515 			rc = WRONG_BUS_FREQUENCY;
1516 
1517 	/* turn off board without attaching to the bus */
1518 	disable_slot_power (ctrl, hp_slot);
1519 
1520 	set_SOGO(ctrl);
1521 
1522 	/* Wait for SOBS to be unset */
1523 	wait_for_ctrl_irq(ctrl);
1524 
1525 	up(&ctrl->crit_sect);
1526 
1527 	if (rc)
1528 		return rc;
1529 
1530 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1531 
1532 	/* turn on board and blink green LED */
1533 
1534 	dbg("%s: before down\n", __FUNCTION__);
1535 	down(&ctrl->crit_sect);
1536 	dbg("%s: after down\n", __FUNCTION__);
1537 
1538 	dbg("%s: before slot_enable\n", __FUNCTION__);
1539 	slot_enable (ctrl, hp_slot);
1540 
1541 	dbg("%s: before green_LED_blink\n", __FUNCTION__);
1542 	green_LED_blink (ctrl, hp_slot);
1543 
1544 	dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1545 	amber_LED_off (ctrl, hp_slot);
1546 
1547 	dbg("%s: before set_SOGO\n", __FUNCTION__);
1548 	set_SOGO(ctrl);
1549 
1550 	/* Wait for SOBS to be unset */
1551 	dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1552 	wait_for_ctrl_irq (ctrl);
1553 	dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1554 
1555 	dbg("%s: before up\n", __FUNCTION__);
1556 	up(&ctrl->crit_sect);
1557 	dbg("%s: after up\n", __FUNCTION__);
1558 
1559 	/* Wait for ~1 second because of hot plug spec */
1560 	dbg("%s: before long_delay\n", __FUNCTION__);
1561 	long_delay(1*HZ);
1562 	dbg("%s: after long_delay\n", __FUNCTION__);
1563 
1564 	dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1565 	/* Check for a power fault */
1566 	if (func->status == 0xFF) {
1567 		/* power fault occurred, but it was benign */
1568 		temp_register = 0xFFFFFFFF;
1569 		dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1570 		rc = POWER_FAILURE;
1571 		func->status = 0;
1572 	} else {
1573 		/* Get vendor/device ID u32 */
1574 		ctrl->pci_bus->number = func->bus;
1575 		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1576 		dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1577 		dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1578 
1579 		if (rc != 0) {
1580 			/* Something's wrong here */
1581 			temp_register = 0xFFFFFFFF;
1582 			dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1583 		}
1584 		/* Preset return code.  It will be changed later if things go okay. */
1585 		rc = NO_ADAPTER_PRESENT;
1586 	}
1587 
1588 	/* All F's is an empty slot or an invalid board */
1589 	if (temp_register != 0xFFFFFFFF) {	  /* Check for a board in the slot */
1590 		res_lists.io_head = ctrl->io_head;
1591 		res_lists.mem_head = ctrl->mem_head;
1592 		res_lists.p_mem_head = ctrl->p_mem_head;
1593 		res_lists.bus_head = ctrl->bus_head;
1594 		res_lists.irqs = NULL;
1595 
1596 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1597 
1598 		dbg("%s: back from configure_new_device\n", __FUNCTION__);
1599 		ctrl->io_head = res_lists.io_head;
1600 		ctrl->mem_head = res_lists.mem_head;
1601 		ctrl->p_mem_head = res_lists.p_mem_head;
1602 		ctrl->bus_head = res_lists.bus_head;
1603 
1604 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1605 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1606 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1607 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1608 
1609 		if (rc) {
1610 			down(&ctrl->crit_sect);
1611 
1612 			amber_LED_on (ctrl, hp_slot);
1613 			green_LED_off (ctrl, hp_slot);
1614 			slot_disable (ctrl, hp_slot);
1615 
1616 			set_SOGO(ctrl);
1617 
1618 			/* Wait for SOBS to be unset */
1619 			wait_for_ctrl_irq (ctrl);
1620 
1621 			up(&ctrl->crit_sect);
1622 			return rc;
1623 		} else {
1624 			cpqhp_save_slot_config(ctrl, func);
1625 		}
1626 
1627 
1628 		func->status = 0;
1629 		func->switch_save = 0x10;
1630 		func->is_a_board = 0x01;
1631 
1632 		/* next, we will instantiate the linux pci_dev structures (with
1633 		 * appropriate driver notification, if already present) */
1634 		dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1635 		index = 0;
1636 		do {
1637 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1638 			if (new_slot && !new_slot->pci_dev) {
1639 				cpqhp_configure_device(ctrl, new_slot);
1640 			}
1641 		} while (new_slot);
1642 
1643 		down(&ctrl->crit_sect);
1644 
1645 		green_LED_on (ctrl, hp_slot);
1646 
1647 		set_SOGO(ctrl);
1648 
1649 		/* Wait for SOBS to be unset */
1650 		wait_for_ctrl_irq (ctrl);
1651 
1652 		up(&ctrl->crit_sect);
1653 	} else {
1654 		down(&ctrl->crit_sect);
1655 
1656 		amber_LED_on (ctrl, hp_slot);
1657 		green_LED_off (ctrl, hp_slot);
1658 		slot_disable (ctrl, hp_slot);
1659 
1660 		set_SOGO(ctrl);
1661 
1662 		/* Wait for SOBS to be unset */
1663 		wait_for_ctrl_irq (ctrl);
1664 
1665 		up(&ctrl->crit_sect);
1666 
1667 		return rc;
1668 	}
1669 	return 0;
1670 }
1671 
1672 
1673 /**
1674  * remove_board - Turns off slot and LED's
1675  *
1676  */
1677 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1678 {
1679 	int index;
1680 	u8 skip = 0;
1681 	u8 device;
1682 	u8 hp_slot;
1683 	u8 temp_byte;
1684 	u32 rc;
1685 	struct resource_lists res_lists;
1686 	struct pci_func *temp_func;
1687 
1688 	if (cpqhp_unconfigure_device(func))
1689 		return 1;
1690 
1691 	device = func->device;
1692 
1693 	hp_slot = func->device - ctrl->slot_device_offset;
1694 	dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1695 
1696 	/* When we get here, it is safe to change base address registers.
1697 	 * We will attempt to save the base address register lengths */
1698 	if (replace_flag || !ctrl->add_support)
1699 		rc = cpqhp_save_base_addr_length(ctrl, func);
1700 	else if (!func->bus_head && !func->mem_head &&
1701 		 !func->p_mem_head && !func->io_head) {
1702 		/* Here we check to see if we've saved any of the board's
1703 		 * resources already.  If so, we'll skip the attempt to
1704 		 * determine what's being used. */
1705 		index = 0;
1706 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1707 		while (temp_func) {
1708 			if (temp_func->bus_head || temp_func->mem_head
1709 			    || temp_func->p_mem_head || temp_func->io_head) {
1710 				skip = 1;
1711 				break;
1712 			}
1713 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1714 		}
1715 
1716 		if (!skip)
1717 			rc = cpqhp_save_used_resources(ctrl, func);
1718 	}
1719 	/* Change status to shutdown */
1720 	if (func->is_a_board)
1721 		func->status = 0x01;
1722 	func->configured = 0;
1723 
1724 	down(&ctrl->crit_sect);
1725 
1726 	green_LED_off (ctrl, hp_slot);
1727 	slot_disable (ctrl, hp_slot);
1728 
1729 	set_SOGO(ctrl);
1730 
1731 	/* turn off SERR for slot */
1732 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1733 	temp_byte &= ~(0x01 << hp_slot);
1734 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1735 
1736 	/* Wait for SOBS to be unset */
1737 	wait_for_ctrl_irq (ctrl);
1738 
1739 	up(&ctrl->crit_sect);
1740 
1741 	if (!replace_flag && ctrl->add_support) {
1742 		while (func) {
1743 			res_lists.io_head = ctrl->io_head;
1744 			res_lists.mem_head = ctrl->mem_head;
1745 			res_lists.p_mem_head = ctrl->p_mem_head;
1746 			res_lists.bus_head = ctrl->bus_head;
1747 
1748 			cpqhp_return_board_resources(func, &res_lists);
1749 
1750 			ctrl->io_head = res_lists.io_head;
1751 			ctrl->mem_head = res_lists.mem_head;
1752 			ctrl->p_mem_head = res_lists.p_mem_head;
1753 			ctrl->bus_head = res_lists.bus_head;
1754 
1755 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1756 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1757 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1758 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1759 
1760 			if (is_bridge(func)) {
1761 				bridge_slot_remove(func);
1762 			} else
1763 				slot_remove(func);
1764 
1765 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1766 		}
1767 
1768 		/* Setup slot structure with entry for empty slot */
1769 		func = cpqhp_slot_create(ctrl->bus);
1770 
1771 		if (func == NULL)
1772 			return 1;
1773 
1774 		func->bus = ctrl->bus;
1775 		func->device = device;
1776 		func->function = 0;
1777 		func->configured = 0;
1778 		func->switch_save = 0x10;
1779 		func->is_a_board = 0;
1780 		func->p_task_event = NULL;
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static void pushbutton_helper_thread(unsigned long data)
1787 {
1788 	pushbutton_pending = data;
1789 	up(&event_semaphore);
1790 }
1791 
1792 
1793 /* this is the main worker thread */
1794 static int event_thread(void* data)
1795 {
1796 	struct controller *ctrl;
1797 	lock_kernel();
1798 	daemonize("phpd_event");
1799 
1800 	unlock_kernel();
1801 
1802 	while (1) {
1803 		dbg("!!!!event_thread sleeping\n");
1804 		down_interruptible (&event_semaphore);
1805 		dbg("event_thread woken finished = %d\n", event_finished);
1806 		if (event_finished) break;
1807 		/* Do stuff here */
1808 		if (pushbutton_pending)
1809 			cpqhp_pushbutton_thread(pushbutton_pending);
1810 		else
1811 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1812 				interrupt_event_handler(ctrl);
1813 	}
1814 	dbg("event_thread signals exit\n");
1815 	up(&event_exit);
1816 	return 0;
1817 }
1818 
1819 
1820 int cpqhp_event_start_thread(void)
1821 {
1822 	int pid;
1823 
1824 	/* initialize our semaphores */
1825 	init_MUTEX(&delay_sem);
1826 	init_MUTEX_LOCKED(&event_semaphore);
1827 	init_MUTEX_LOCKED(&event_exit);
1828 	event_finished=0;
1829 
1830 	pid = kernel_thread(event_thread, NULL, 0);
1831 	if (pid < 0) {
1832 		err ("Can't start up our event thread\n");
1833 		return -1;
1834 	}
1835 	dbg("Our event thread pid = %d\n", pid);
1836 	return 0;
1837 }
1838 
1839 
1840 void cpqhp_event_stop_thread(void)
1841 {
1842 	event_finished = 1;
1843 	dbg("event_thread finish command given\n");
1844 	up(&event_semaphore);
1845 	dbg("wait for event_thread to exit\n");
1846 	down(&event_exit);
1847 }
1848 
1849 
1850 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1851 {
1852 	struct hotplug_slot_info *info;
1853 	int result;
1854 
1855 	info = kmalloc(sizeof(*info), GFP_KERNEL);
1856 	if (!info)
1857 		return -ENOMEM;
1858 
1859 	info->power_status = get_slot_enabled(ctrl, slot);
1860 	info->attention_status = cpq_get_attention_status(ctrl, slot);
1861 	info->latch_status = cpq_get_latch_status(ctrl, slot);
1862 	info->adapter_status = get_presence_status(ctrl, slot);
1863 	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1864 	kfree (info);
1865 	return result;
1866 }
1867 
1868 static void interrupt_event_handler(struct controller *ctrl)
1869 {
1870 	int loop = 0;
1871 	int change = 1;
1872 	struct pci_func *func;
1873 	u8 hp_slot;
1874 	struct slot *p_slot;
1875 
1876 	while (change) {
1877 		change = 0;
1878 
1879 		for (loop = 0; loop < 10; loop++) {
1880 			/* dbg("loop %d\n", loop); */
1881 			if (ctrl->event_queue[loop].event_type != 0) {
1882 				hp_slot = ctrl->event_queue[loop].hp_slot;
1883 
1884 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1885 				if (!func)
1886 					return;
1887 
1888 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1889 				if (!p_slot)
1890 					return;
1891 
1892 				dbg("hp_slot %d, func %p, p_slot %p\n",
1893 				    hp_slot, func, p_slot);
1894 
1895 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1896 					dbg("button pressed\n");
1897 				} else if (ctrl->event_queue[loop].event_type ==
1898 					   INT_BUTTON_CANCEL) {
1899 					dbg("button cancel\n");
1900 					del_timer(&p_slot->task_event);
1901 
1902 					down(&ctrl->crit_sect);
1903 
1904 					if (p_slot->state == BLINKINGOFF_STATE) {
1905 						/* slot is on */
1906 						dbg("turn on green LED\n");
1907 						green_LED_on (ctrl, hp_slot);
1908 					} else if (p_slot->state == BLINKINGON_STATE) {
1909 						/* slot is off */
1910 						dbg("turn off green LED\n");
1911 						green_LED_off (ctrl, hp_slot);
1912 					}
1913 
1914 					info(msg_button_cancel, p_slot->number);
1915 
1916 					p_slot->state = STATIC_STATE;
1917 
1918 					amber_LED_off (ctrl, hp_slot);
1919 
1920 					set_SOGO(ctrl);
1921 
1922 					/* Wait for SOBS to be unset */
1923 					wait_for_ctrl_irq (ctrl);
1924 
1925 					up(&ctrl->crit_sect);
1926 				}
1927 				/*** button Released (No action on press...) */
1928 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1929 					dbg("button release\n");
1930 
1931 					if (is_slot_enabled (ctrl, hp_slot)) {
1932 						dbg("slot is on\n");
1933 						p_slot->state = BLINKINGOFF_STATE;
1934 						info(msg_button_off, p_slot->number);
1935 					} else {
1936 						dbg("slot is off\n");
1937 						p_slot->state = BLINKINGON_STATE;
1938 						info(msg_button_on, p_slot->number);
1939 					}
1940 					down(&ctrl->crit_sect);
1941 
1942 					dbg("blink green LED and turn off amber\n");
1943 
1944 					amber_LED_off (ctrl, hp_slot);
1945 					green_LED_blink (ctrl, hp_slot);
1946 
1947 					set_SOGO(ctrl);
1948 
1949 					/* Wait for SOBS to be unset */
1950 					wait_for_ctrl_irq (ctrl);
1951 
1952 					up(&ctrl->crit_sect);
1953 					init_timer(&p_slot->task_event);
1954 					p_slot->hp_slot = hp_slot;
1955 					p_slot->ctrl = ctrl;
1956 /*					p_slot->physical_slot = physical_slot; */
1957 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1958 					p_slot->task_event.function = pushbutton_helper_thread;
1959 					p_slot->task_event.data = (u32) p_slot;
1960 
1961 					dbg("add_timer p_slot = %p\n", p_slot);
1962 					add_timer(&p_slot->task_event);
1963 				}
1964 				/***********POWER FAULT */
1965 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1966 					dbg("power fault\n");
1967 				} else {
1968 					/* refresh notification */
1969 					if (p_slot)
1970 						update_slot_info(ctrl, p_slot);
1971 				}
1972 
1973 				ctrl->event_queue[loop].event_type = 0;
1974 
1975 				change = 1;
1976 			}
1977 		}		/* End of FOR loop */
1978 	}
1979 
1980 	return;
1981 }
1982 
1983 
1984 /**
1985  * cpqhp_pushbutton_thread
1986  *
1987  * Scheduled procedure to handle blocking stuff for the pushbuttons
1988  * Handles all pending events and exits.
1989  *
1990  */
1991 void cpqhp_pushbutton_thread(unsigned long slot)
1992 {
1993 	u8 hp_slot;
1994 	u8 device;
1995 	struct pci_func *func;
1996 	struct slot *p_slot = (struct slot *) slot;
1997 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1998 
1999 	pushbutton_pending = 0;
2000 	hp_slot = p_slot->hp_slot;
2001 
2002 	device = p_slot->device;
2003 
2004 	if (is_slot_enabled(ctrl, hp_slot)) {
2005 		p_slot->state = POWEROFF_STATE;
2006 		/* power Down board */
2007 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
2008 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
2009 		if (!func) {
2010 			dbg("Error! func NULL in %s\n", __FUNCTION__);
2011 			return ;
2012 		}
2013 
2014 		if (func != NULL && ctrl != NULL) {
2015 			if (cpqhp_process_SS(ctrl, func) != 0) {
2016 				amber_LED_on (ctrl, hp_slot);
2017 				green_LED_on (ctrl, hp_slot);
2018 
2019 				set_SOGO(ctrl);
2020 
2021 				/* Wait for SOBS to be unset */
2022 				wait_for_ctrl_irq (ctrl);
2023 			}
2024 		}
2025 
2026 		p_slot->state = STATIC_STATE;
2027 	} else {
2028 		p_slot->state = POWERON_STATE;
2029 		/* slot is off */
2030 
2031 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
2032 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
2033 		if (!func) {
2034 			dbg("Error! func NULL in %s\n", __FUNCTION__);
2035 			return ;
2036 		}
2037 
2038 		if (func != NULL && ctrl != NULL) {
2039 			if (cpqhp_process_SI(ctrl, func) != 0) {
2040 				amber_LED_on(ctrl, hp_slot);
2041 				green_LED_off(ctrl, hp_slot);
2042 
2043 				set_SOGO(ctrl);
2044 
2045 				/* Wait for SOBS to be unset */
2046 				wait_for_ctrl_irq (ctrl);
2047 			}
2048 		}
2049 
2050 		p_slot->state = STATIC_STATE;
2051 	}
2052 
2053 	return;
2054 }
2055 
2056 
2057 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2058 {
2059 	u8 device, hp_slot;
2060 	u16 temp_word;
2061 	u32 tempdword;
2062 	int rc;
2063 	struct slot* p_slot;
2064 	int physical_slot = 0;
2065 
2066 	tempdword = 0;
2067 
2068 	device = func->device;
2069 	hp_slot = device - ctrl->slot_device_offset;
2070 	p_slot = cpqhp_find_slot(ctrl, device);
2071 	if (p_slot)
2072 		physical_slot = p_slot->number;
2073 
2074 	/* Check to see if the interlock is closed */
2075 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2076 
2077 	if (tempdword & (0x01 << hp_slot)) {
2078 		return 1;
2079 	}
2080 
2081 	if (func->is_a_board) {
2082 		rc = board_replaced(func, ctrl);
2083 	} else {
2084 		/* add board */
2085 		slot_remove(func);
2086 
2087 		func = cpqhp_slot_create(ctrl->bus);
2088 		if (func == NULL)
2089 			return 1;
2090 
2091 		func->bus = ctrl->bus;
2092 		func->device = device;
2093 		func->function = 0;
2094 		func->configured = 0;
2095 		func->is_a_board = 1;
2096 
2097 		/* We have to save the presence info for these slots */
2098 		temp_word = ctrl->ctrl_int_comp >> 16;
2099 		func->presence_save = (temp_word >> hp_slot) & 0x01;
2100 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2101 
2102 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2103 			func->switch_save = 0;
2104 		} else {
2105 			func->switch_save = 0x10;
2106 		}
2107 
2108 		rc = board_added(func, ctrl);
2109 		if (rc) {
2110 			if (is_bridge(func)) {
2111 				bridge_slot_remove(func);
2112 			} else
2113 				slot_remove(func);
2114 
2115 			/* Setup slot structure with entry for empty slot */
2116 			func = cpqhp_slot_create(ctrl->bus);
2117 
2118 			if (func == NULL)
2119 				return 1;
2120 
2121 			func->bus = ctrl->bus;
2122 			func->device = device;
2123 			func->function = 0;
2124 			func->configured = 0;
2125 			func->is_a_board = 0;
2126 
2127 			/* We have to save the presence info for these slots */
2128 			temp_word = ctrl->ctrl_int_comp >> 16;
2129 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2130 			func->presence_save |=
2131 			(temp_word >> (hp_slot + 7)) & 0x02;
2132 
2133 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2134 				func->switch_save = 0;
2135 			} else {
2136 				func->switch_save = 0x10;
2137 			}
2138 		}
2139 	}
2140 
2141 	if (rc) {
2142 		dbg("%s: rc = %d\n", __FUNCTION__, rc);
2143 	}
2144 
2145 	if (p_slot)
2146 		update_slot_info(ctrl, p_slot);
2147 
2148 	return rc;
2149 }
2150 
2151 
2152 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2153 {
2154 	u8 device, class_code, header_type, BCR;
2155 	u8 index = 0;
2156 	u8 replace_flag;
2157 	u32 rc = 0;
2158 	unsigned int devfn;
2159 	struct slot* p_slot;
2160 	struct pci_bus *pci_bus = ctrl->pci_bus;
2161 	int physical_slot=0;
2162 
2163 	device = func->device;
2164 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2165 	p_slot = cpqhp_find_slot(ctrl, device);
2166 	if (p_slot) {
2167 		physical_slot = p_slot->number;
2168 	}
2169 
2170 	/* Make sure there are no video controllers here */
2171 	while (func && !rc) {
2172 		pci_bus->number = func->bus;
2173 		devfn = PCI_DEVFN(func->device, func->function);
2174 
2175 		/* Check the Class Code */
2176 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2177 		if (rc)
2178 			return rc;
2179 
2180 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2181 			/* Display/Video adapter (not supported) */
2182 			rc = REMOVE_NOT_SUPPORTED;
2183 		} else {
2184 			/* See if it's a bridge */
2185 			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2186 			if (rc)
2187 				return rc;
2188 
2189 			/* If it's a bridge, check the VGA Enable bit */
2190 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2191 				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2192 				if (rc)
2193 					return rc;
2194 
2195 				/* If the VGA Enable bit is set, remove isn't
2196 				 * supported */
2197 				if (BCR & PCI_BRIDGE_CTL_VGA) {
2198 					rc = REMOVE_NOT_SUPPORTED;
2199 				}
2200 			}
2201 		}
2202 
2203 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2204 	}
2205 
2206 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2207 	if ((func != NULL) && !rc) {
2208 		/* FIXME: Replace flag should be passed into process_SS */
2209 		replace_flag = !(ctrl->add_support);
2210 		rc = remove_board(func, replace_flag, ctrl);
2211 	} else if (!rc) {
2212 		rc = 1;
2213 	}
2214 
2215 	if (p_slot)
2216 		update_slot_info(ctrl, p_slot);
2217 
2218 	return rc;
2219 }
2220 
2221 /**
2222  * switch_leds: switch the leds, go from one site to the other.
2223  * @ctrl: controller to use
2224  * @num_of_slots: number of slots to use
2225  * @direction: 1 to start from the left side, 0 to start right.
2226  */
2227 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2228 			u32 *work_LED, const int direction)
2229 {
2230 	int loop;
2231 
2232 	for (loop = 0; loop < num_of_slots; loop++) {
2233 		if (direction)
2234 			*work_LED = *work_LED >> 1;
2235 		else
2236 			*work_LED = *work_LED << 1;
2237 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2238 
2239 		set_SOGO(ctrl);
2240 
2241 		/* Wait for SOGO interrupt */
2242 		wait_for_ctrl_irq(ctrl);
2243 
2244 		/* Get ready for next iteration */
2245 		long_delay((2*HZ)/10);
2246 	}
2247 }
2248 
2249 /**
2250  * hardware_test - runs hardware tests
2251  *
2252  * For hot plug ctrl folks to play with.
2253  * test_num is the number written to the "test" file in sysfs
2254  *
2255  */
2256 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2257 {
2258 	u32 save_LED;
2259 	u32 work_LED;
2260 	int loop;
2261 	int num_of_slots;
2262 
2263 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2264 
2265 	switch (test_num) {
2266 		case 1:
2267 			/* Do stuff here! */
2268 
2269 			/* Do that funky LED thing */
2270 			/* so we can restore them later */
2271 			save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2272 			work_LED = 0x01010101;
2273 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2274 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2275 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2276 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2277 
2278 			work_LED = 0x01010000;
2279 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2280 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2281 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2282 			work_LED = 0x00000101;
2283 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2284 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2285 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2286 
2287 			work_LED = 0x01010000;
2288 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2289 			for (loop = 0; loop < num_of_slots; loop++) {
2290 				set_SOGO(ctrl);
2291 
2292 				/* Wait for SOGO interrupt */
2293 				wait_for_ctrl_irq (ctrl);
2294 
2295 				/* Get ready for next iteration */
2296 				long_delay((3*HZ)/10);
2297 				work_LED = work_LED >> 16;
2298 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2299 
2300 				set_SOGO(ctrl);
2301 
2302 				/* Wait for SOGO interrupt */
2303 				wait_for_ctrl_irq (ctrl);
2304 
2305 				/* Get ready for next iteration */
2306 				long_delay((3*HZ)/10);
2307 				work_LED = work_LED << 16;
2308 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2309 				work_LED = work_LED << 1;
2310 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2311 			}
2312 
2313 			/* put it back the way it was */
2314 			writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2315 
2316 			set_SOGO(ctrl);
2317 
2318 			/* Wait for SOBS to be unset */
2319 			wait_for_ctrl_irq (ctrl);
2320 			break;
2321 		case 2:
2322 			/* Do other stuff here! */
2323 			break;
2324 		case 3:
2325 			/* and more... */
2326 			break;
2327 	}
2328 	return 0;
2329 }
2330 
2331 
2332 /**
2333  * configure_new_device - Configures the PCI header information of one board.
2334  *
2335  * @ctrl: pointer to controller structure
2336  * @func: pointer to function structure
2337  * @behind_bridge: 1 if this is a recursive call, 0 if not
2338  * @resources: pointer to set of resource lists
2339  *
2340  * Returns 0 if success
2341  *
2342  */
2343 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2344 				 u8 behind_bridge, struct resource_lists * resources)
2345 {
2346 	u8 temp_byte, function, max_functions, stop_it;
2347 	int rc;
2348 	u32 ID;
2349 	struct pci_func *new_slot;
2350 	int index;
2351 
2352 	new_slot = func;
2353 
2354 	dbg("%s\n", __FUNCTION__);
2355 	/* Check for Multi-function device */
2356 	ctrl->pci_bus->number = func->bus;
2357 	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2358 	if (rc) {
2359 		dbg("%s: rc = %d\n", __FUNCTION__, rc);
2360 		return rc;
2361 	}
2362 
2363 	if (temp_byte & 0x80)	/* Multi-function device */
2364 		max_functions = 8;
2365 	else
2366 		max_functions = 1;
2367 
2368 	function = 0;
2369 
2370 	do {
2371 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2372 
2373 		if (rc) {
2374 			dbg("configure_new_function failed %d\n",rc);
2375 			index = 0;
2376 
2377 			while (new_slot) {
2378 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2379 
2380 				if (new_slot)
2381 					cpqhp_return_board_resources(new_slot, resources);
2382 			}
2383 
2384 			return rc;
2385 		}
2386 
2387 		function++;
2388 
2389 		stop_it = 0;
2390 
2391 		/* The following loop skips to the next present function
2392 		 * and creates a board structure */
2393 
2394 		while ((function < max_functions) && (!stop_it)) {
2395 			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2396 
2397 			if (ID == 0xFFFFFFFF) {	  /* There's nothing there. */
2398 				function++;
2399 			} else {  /* There's something there */
2400 				/* Setup slot structure. */
2401 				new_slot = cpqhp_slot_create(func->bus);
2402 
2403 				if (new_slot == NULL)
2404 					return 1;
2405 
2406 				new_slot->bus = func->bus;
2407 				new_slot->device = func->device;
2408 				new_slot->function = function;
2409 				new_slot->is_a_board = 1;
2410 				new_slot->status = 0;
2411 
2412 				stop_it++;
2413 			}
2414 		}
2415 
2416 	} while (function < max_functions);
2417 	dbg("returning from configure_new_device\n");
2418 
2419 	return 0;
2420 }
2421 
2422 
2423 /*
2424   Configuration logic that involves the hotplug data structures and
2425   their bookkeeping
2426  */
2427 
2428 
2429 /**
2430  * configure_new_function - Configures the PCI header information of one device
2431  *
2432  * @ctrl: pointer to controller structure
2433  * @func: pointer to function structure
2434  * @behind_bridge: 1 if this is a recursive call, 0 if not
2435  * @resources: pointer to set of resource lists
2436  *
2437  * Calls itself recursively for bridged devices.
2438  * Returns 0 if success
2439  *
2440  */
2441 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2442 				   u8 behind_bridge,
2443 				   struct resource_lists *resources)
2444 {
2445 	int cloop;
2446 	u8 IRQ = 0;
2447 	u8 temp_byte;
2448 	u8 device;
2449 	u8 class_code;
2450 	u16 command;
2451 	u16 temp_word;
2452 	u32 temp_dword;
2453 	u32 rc;
2454 	u32 temp_register;
2455 	u32 base;
2456 	u32 ID;
2457 	unsigned int devfn;
2458 	struct pci_resource *mem_node;
2459 	struct pci_resource *p_mem_node;
2460 	struct pci_resource *io_node;
2461 	struct pci_resource *bus_node;
2462 	struct pci_resource *hold_mem_node;
2463 	struct pci_resource *hold_p_mem_node;
2464 	struct pci_resource *hold_IO_node;
2465 	struct pci_resource *hold_bus_node;
2466 	struct irq_mapping irqs;
2467 	struct pci_func *new_slot;
2468 	struct pci_bus *pci_bus;
2469 	struct resource_lists temp_resources;
2470 
2471 	pci_bus = ctrl->pci_bus;
2472 	pci_bus->number = func->bus;
2473 	devfn = PCI_DEVFN(func->device, func->function);
2474 
2475 	/* Check for Bridge */
2476 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2477 	if (rc)
2478 		return rc;
2479 
2480 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2481 		/* set Primary bus */
2482 		dbg("set Primary bus = %d\n", func->bus);
2483 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2484 		if (rc)
2485 			return rc;
2486 
2487 		/* find range of busses to use */
2488 		dbg("find ranges of buses to use\n");
2489 		bus_node = get_max_resource(&(resources->bus_head), 1);
2490 
2491 		/* If we don't have any busses to allocate, we can't continue */
2492 		if (!bus_node)
2493 			return -ENOMEM;
2494 
2495 		/* set Secondary bus */
2496 		temp_byte = bus_node->base;
2497 		dbg("set Secondary bus = %d\n", bus_node->base);
2498 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2499 		if (rc)
2500 			return rc;
2501 
2502 		/* set subordinate bus */
2503 		temp_byte = bus_node->base + bus_node->length - 1;
2504 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2505 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2506 		if (rc)
2507 			return rc;
2508 
2509 		/* set subordinate Latency Timer and base Latency Timer */
2510 		temp_byte = 0x40;
2511 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2512 		if (rc)
2513 			return rc;
2514 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2515 		if (rc)
2516 			return rc;
2517 
2518 		/* set Cache Line size */
2519 		temp_byte = 0x08;
2520 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2521 		if (rc)
2522 			return rc;
2523 
2524 		/* Setup the IO, memory, and prefetchable windows */
2525 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2526 		if (!io_node)
2527 			return -ENOMEM;
2528 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2529 		if (!mem_node)
2530 			return -ENOMEM;
2531 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2532 		if (!p_mem_node)
2533 			return -ENOMEM;
2534 		dbg("Setup the IO, memory, and prefetchable windows\n");
2535 		dbg("io_node\n");
2536 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2537 					io_node->length, io_node->next);
2538 		dbg("mem_node\n");
2539 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2540 					mem_node->length, mem_node->next);
2541 		dbg("p_mem_node\n");
2542 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2543 					p_mem_node->length, p_mem_node->next);
2544 
2545 		/* set up the IRQ info */
2546 		if (!resources->irqs) {
2547 			irqs.barber_pole = 0;
2548 			irqs.interrupt[0] = 0;
2549 			irqs.interrupt[1] = 0;
2550 			irqs.interrupt[2] = 0;
2551 			irqs.interrupt[3] = 0;
2552 			irqs.valid_INT = 0;
2553 		} else {
2554 			irqs.barber_pole = resources->irqs->barber_pole;
2555 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2556 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2557 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2558 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2559 			irqs.valid_INT = resources->irqs->valid_INT;
2560 		}
2561 
2562 		/* set up resource lists that are now aligned on top and bottom
2563 		 * for anything behind the bridge. */
2564 		temp_resources.bus_head = bus_node;
2565 		temp_resources.io_head = io_node;
2566 		temp_resources.mem_head = mem_node;
2567 		temp_resources.p_mem_head = p_mem_node;
2568 		temp_resources.irqs = &irqs;
2569 
2570 		/* Make copies of the nodes we are going to pass down so that
2571 		 * if there is a problem,we can just use these to free resources */
2572 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2573 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2574 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2575 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2576 
2577 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2578 			kfree(hold_bus_node);
2579 			kfree(hold_IO_node);
2580 			kfree(hold_mem_node);
2581 			kfree(hold_p_mem_node);
2582 
2583 			return 1;
2584 		}
2585 
2586 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2587 
2588 		bus_node->base += 1;
2589 		bus_node->length -= 1;
2590 		bus_node->next = NULL;
2591 
2592 		/* If we have IO resources copy them and fill in the bridge's
2593 		 * IO range registers */
2594 		if (io_node) {
2595 			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2596 			io_node->next = NULL;
2597 
2598 			/* set IO base and Limit registers */
2599 			temp_byte = io_node->base >> 8;
2600 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2601 
2602 			temp_byte = (io_node->base + io_node->length - 1) >> 8;
2603 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2604 		} else {
2605 			kfree(hold_IO_node);
2606 			hold_IO_node = NULL;
2607 		}
2608 
2609 		/* If we have memory resources copy them and fill in the
2610 		 * bridge's memory range registers.  Otherwise, fill in the
2611 		 * range registers with values that disable them. */
2612 		if (mem_node) {
2613 			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2614 			mem_node->next = NULL;
2615 
2616 			/* set Mem base and Limit registers */
2617 			temp_word = mem_node->base >> 16;
2618 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2619 
2620 			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2621 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2622 		} else {
2623 			temp_word = 0xFFFF;
2624 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2625 
2626 			temp_word = 0x0000;
2627 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2628 
2629 			kfree(hold_mem_node);
2630 			hold_mem_node = NULL;
2631 		}
2632 
2633 		/* If we have prefetchable memory resources copy them and
2634 		 * fill in the bridge's memory range registers.  Otherwise,
2635 		 * fill in the range registers with values that disable them. */
2636 		if (p_mem_node) {
2637 			memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2638 			p_mem_node->next = NULL;
2639 
2640 			/* set Pre Mem base and Limit registers */
2641 			temp_word = p_mem_node->base >> 16;
2642 			rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2643 
2644 			temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2645 			rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2646 		} else {
2647 			temp_word = 0xFFFF;
2648 			rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2649 
2650 			temp_word = 0x0000;
2651 			rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2652 
2653 			kfree(hold_p_mem_node);
2654 			hold_p_mem_node = NULL;
2655 		}
2656 
2657 		/* Adjust this to compensate for extra adjustment in first loop */
2658 		irqs.barber_pole--;
2659 
2660 		rc = 0;
2661 
2662 		/* Here we actually find the devices and configure them */
2663 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2664 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2665 
2666 			ID = 0xFFFFFFFF;
2667 			pci_bus->number = hold_bus_node->base;
2668 			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2669 			pci_bus->number = func->bus;
2670 
2671 			if (ID != 0xFFFFFFFF) {	  /*  device present */
2672 				/* Setup slot structure. */
2673 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2674 
2675 				if (new_slot == NULL) {
2676 					rc = -ENOMEM;
2677 					continue;
2678 				}
2679 
2680 				new_slot->bus = hold_bus_node->base;
2681 				new_slot->device = device;
2682 				new_slot->function = 0;
2683 				new_slot->is_a_board = 1;
2684 				new_slot->status = 0;
2685 
2686 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2687 				dbg("configure_new_device rc=0x%x\n",rc);
2688 			}	/* End of IF (device in slot?) */
2689 		}		/* End of FOR loop */
2690 
2691 		if (rc)
2692 			goto free_and_out;
2693 		/* save the interrupt routing information */
2694 		if (resources->irqs) {
2695 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2696 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2697 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2698 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2699 			resources->irqs->valid_INT = irqs.valid_INT;
2700 		} else if (!behind_bridge) {
2701 			/* We need to hook up the interrupts here */
2702 			for (cloop = 0; cloop < 4; cloop++) {
2703 				if (irqs.valid_INT & (0x01 << cloop)) {
2704 					rc = cpqhp_set_irq(func->bus, func->device,
2705 							   0x0A + cloop, irqs.interrupt[cloop]);
2706 					if (rc)
2707 						goto free_and_out;
2708 				}
2709 			}	/* end of for loop */
2710 		}
2711 		/* Return unused bus resources
2712 		 * First use the temporary node to store information for
2713 		 * the board */
2714 		if (hold_bus_node && bus_node && temp_resources.bus_head) {
2715 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2716 
2717 			hold_bus_node->next = func->bus_head;
2718 			func->bus_head = hold_bus_node;
2719 
2720 			temp_byte = temp_resources.bus_head->base - 1;
2721 
2722 			/* set subordinate bus */
2723 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2724 
2725 			if (temp_resources.bus_head->length == 0) {
2726 				kfree(temp_resources.bus_head);
2727 				temp_resources.bus_head = NULL;
2728 			} else {
2729 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2730 			}
2731 		}
2732 
2733 		/* If we have IO space available and there is some left,
2734 		 * return the unused portion */
2735 		if (hold_IO_node && temp_resources.io_head) {
2736 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2737 							       &hold_IO_node, 0x1000);
2738 
2739 			/* Check if we were able to split something off */
2740 			if (io_node) {
2741 				hold_IO_node->base = io_node->base + io_node->length;
2742 
2743 				temp_byte = (hold_IO_node->base) >> 8;
2744 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2745 
2746 				return_resource(&(resources->io_head), io_node);
2747 			}
2748 
2749 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2750 
2751 			/* Check if we were able to split something off */
2752 			if (io_node) {
2753 				/* First use the temporary node to store
2754 				 * information for the board */
2755 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2756 
2757 				/* If we used any, add it to the board's list */
2758 				if (hold_IO_node->length) {
2759 					hold_IO_node->next = func->io_head;
2760 					func->io_head = hold_IO_node;
2761 
2762 					temp_byte = (io_node->base - 1) >> 8;
2763 					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2764 
2765 					return_resource(&(resources->io_head), io_node);
2766 				} else {
2767 					/* it doesn't need any IO */
2768 					temp_word = 0x0000;
2769 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2770 
2771 					return_resource(&(resources->io_head), io_node);
2772 					kfree(hold_IO_node);
2773 				}
2774 			} else {
2775 				/* it used most of the range */
2776 				hold_IO_node->next = func->io_head;
2777 				func->io_head = hold_IO_node;
2778 			}
2779 		} else if (hold_IO_node) {
2780 			/* it used the whole range */
2781 			hold_IO_node->next = func->io_head;
2782 			func->io_head = hold_IO_node;
2783 		}
2784 		/* If we have memory space available and there is some left,
2785 		 * return the unused portion */
2786 		if (hold_mem_node && temp_resources.mem_head) {
2787 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2788 								&hold_mem_node, 0x100000);
2789 
2790 			/* Check if we were able to split something off */
2791 			if (mem_node) {
2792 				hold_mem_node->base = mem_node->base + mem_node->length;
2793 
2794 				temp_word = (hold_mem_node->base) >> 16;
2795 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2796 
2797 				return_resource(&(resources->mem_head), mem_node);
2798 			}
2799 
2800 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2801 
2802 			/* Check if we were able to split something off */
2803 			if (mem_node) {
2804 				/* First use the temporary node to store
2805 				 * information for the board */
2806 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2807 
2808 				if (hold_mem_node->length) {
2809 					hold_mem_node->next = func->mem_head;
2810 					func->mem_head = hold_mem_node;
2811 
2812 					/* configure end address */
2813 					temp_word = (mem_node->base - 1) >> 16;
2814 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2815 
2816 					/* Return unused resources to the pool */
2817 					return_resource(&(resources->mem_head), mem_node);
2818 				} else {
2819 					/* it doesn't need any Mem */
2820 					temp_word = 0x0000;
2821 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2822 
2823 					return_resource(&(resources->mem_head), mem_node);
2824 					kfree(hold_mem_node);
2825 				}
2826 			} else {
2827 				/* it used most of the range */
2828 				hold_mem_node->next = func->mem_head;
2829 				func->mem_head = hold_mem_node;
2830 			}
2831 		} else if (hold_mem_node) {
2832 			/* it used the whole range */
2833 			hold_mem_node->next = func->mem_head;
2834 			func->mem_head = hold_mem_node;
2835 		}
2836 		/* If we have prefetchable memory space available and there
2837 		 * is some left at the end, return the unused portion */
2838 		if (hold_p_mem_node && temp_resources.p_mem_head) {
2839 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2840 								  &hold_p_mem_node, 0x100000);
2841 
2842 			/* Check if we were able to split something off */
2843 			if (p_mem_node) {
2844 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2845 
2846 				temp_word = (hold_p_mem_node->base) >> 16;
2847 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2848 
2849 				return_resource(&(resources->p_mem_head), p_mem_node);
2850 			}
2851 
2852 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2853 
2854 			/* Check if we were able to split something off */
2855 			if (p_mem_node) {
2856 				/* First use the temporary node to store
2857 				 * information for the board */
2858 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2859 
2860 				/* If we used any, add it to the board's list */
2861 				if (hold_p_mem_node->length) {
2862 					hold_p_mem_node->next = func->p_mem_head;
2863 					func->p_mem_head = hold_p_mem_node;
2864 
2865 					temp_word = (p_mem_node->base - 1) >> 16;
2866 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2867 
2868 					return_resource(&(resources->p_mem_head), p_mem_node);
2869 				} else {
2870 					/* it doesn't need any PMem */
2871 					temp_word = 0x0000;
2872 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2873 
2874 					return_resource(&(resources->p_mem_head), p_mem_node);
2875 					kfree(hold_p_mem_node);
2876 				}
2877 			} else {
2878 				/* it used the most of the range */
2879 				hold_p_mem_node->next = func->p_mem_head;
2880 				func->p_mem_head = hold_p_mem_node;
2881 			}
2882 		} else if (hold_p_mem_node) {
2883 			/* it used the whole range */
2884 			hold_p_mem_node->next = func->p_mem_head;
2885 			func->p_mem_head = hold_p_mem_node;
2886 		}
2887 		/* We should be configuring an IRQ and the bridge's base address
2888 		 * registers if it needs them.  Although we have never seen such
2889 		 * a device */
2890 
2891 		/* enable card */
2892 		command = 0x0157;	/* = PCI_COMMAND_IO |
2893 					 *   PCI_COMMAND_MEMORY |
2894 					 *   PCI_COMMAND_MASTER |
2895 					 *   PCI_COMMAND_INVALIDATE |
2896 					 *   PCI_COMMAND_PARITY |
2897 					 *   PCI_COMMAND_SERR */
2898 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2899 
2900 		/* set Bridge Control Register */
2901 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2902 					 *   PCI_BRIDGE_CTL_SERR |
2903 					 *   PCI_BRIDGE_CTL_NO_ISA */
2904 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2905 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2906 		/* Standard device */
2907 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2908 
2909 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2910 			/* Display (video) adapter (not supported) */
2911 			return DEVICE_TYPE_NOT_SUPPORTED;
2912 		}
2913 		/* Figure out IO and memory needs */
2914 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2915 			temp_register = 0xFFFFFFFF;
2916 
2917 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2918 			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2919 
2920 			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2921 			dbg("CND: base = 0x%x\n", temp_register);
2922 
2923 			if (temp_register) {	  /* If this register is implemented */
2924 				if ((temp_register & 0x03L) == 0x01) {
2925 					/* Map IO */
2926 
2927 					/* set base = amount of IO space */
2928 					base = temp_register & 0xFFFFFFFC;
2929 					base = ~base + 1;
2930 
2931 					dbg("CND:      length = 0x%x\n", base);
2932 					io_node = get_io_resource(&(resources->io_head), base);
2933 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2934 					    io_node->base, io_node->length, io_node->next);
2935 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2936 
2937 					/* allocate the resource to the board */
2938 					if (io_node) {
2939 						base = io_node->base;
2940 
2941 						io_node->next = func->io_head;
2942 						func->io_head = io_node;
2943 					} else
2944 						return -ENOMEM;
2945 				} else if ((temp_register & 0x0BL) == 0x08) {
2946 					/* Map prefetchable memory */
2947 					base = temp_register & 0xFFFFFFF0;
2948 					base = ~base + 1;
2949 
2950 					dbg("CND:      length = 0x%x\n", base);
2951 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2952 
2953 					/* allocate the resource to the board */
2954 					if (p_mem_node) {
2955 						base = p_mem_node->base;
2956 
2957 						p_mem_node->next = func->p_mem_head;
2958 						func->p_mem_head = p_mem_node;
2959 					} else
2960 						return -ENOMEM;
2961 				} else if ((temp_register & 0x0BL) == 0x00) {
2962 					/* Map memory */
2963 					base = temp_register & 0xFFFFFFF0;
2964 					base = ~base + 1;
2965 
2966 					dbg("CND:      length = 0x%x\n", base);
2967 					mem_node = get_resource(&(resources->mem_head), base);
2968 
2969 					/* allocate the resource to the board */
2970 					if (mem_node) {
2971 						base = mem_node->base;
2972 
2973 						mem_node->next = func->mem_head;
2974 						func->mem_head = mem_node;
2975 					} else
2976 						return -ENOMEM;
2977 				} else if ((temp_register & 0x0BL) == 0x04) {
2978 					/* Map memory */
2979 					base = temp_register & 0xFFFFFFF0;
2980 					base = ~base + 1;
2981 
2982 					dbg("CND:      length = 0x%x\n", base);
2983 					mem_node = get_resource(&(resources->mem_head), base);
2984 
2985 					/* allocate the resource to the board */
2986 					if (mem_node) {
2987 						base = mem_node->base;
2988 
2989 						mem_node->next = func->mem_head;
2990 						func->mem_head = mem_node;
2991 					} else
2992 						return -ENOMEM;
2993 				} else if ((temp_register & 0x0BL) == 0x06) {
2994 					/* Those bits are reserved, we can't handle this */
2995 					return 1;
2996 				} else {
2997 					/* Requesting space below 1M */
2998 					return NOT_ENOUGH_RESOURCES;
2999 				}
3000 
3001 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
3002 
3003 				/* Check for 64-bit base */
3004 				if ((temp_register & 0x07L) == 0x04) {
3005 					cloop += 4;
3006 
3007 					/* Upper 32 bits of address always zero
3008 					 * on today's systems */
3009 					/* FIXME this is probably not true on
3010 					 * Alpha and ia64??? */
3011 					base = 0;
3012 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
3013 				}
3014 			}
3015 		}		/* End of base register loop */
3016 		if (cpqhp_legacy_mode) {
3017 			/* Figure out which interrupt pin this function uses */
3018 			rc = pci_bus_read_config_byte (pci_bus, devfn,
3019 				PCI_INTERRUPT_PIN, &temp_byte);
3020 
3021 			/* If this function needs an interrupt and we are behind
3022 			 * a bridge and the pin is tied to something that's
3023 			 * alread mapped, set this one the same */
3024 			if (temp_byte && resources->irqs &&
3025 			    (resources->irqs->valid_INT &
3026 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
3027 				/* We have to share with something already set up */
3028 				IRQ = resources->irqs->interrupt[(temp_byte +
3029 					resources->irqs->barber_pole - 1) & 0x03];
3030 			} else {
3031 				/* Program IRQ based on card type */
3032 				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
3033 
3034 				if (class_code == PCI_BASE_CLASS_STORAGE) {
3035 					IRQ = cpqhp_disk_irq;
3036 				} else {
3037 					IRQ = cpqhp_nic_irq;
3038 				}
3039 			}
3040 
3041 			/* IRQ Line */
3042 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
3043 		}
3044 
3045 		if (!behind_bridge) {
3046 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
3047 			if (rc)
3048 				return 1;
3049 		} else {
3050 			/* TBD - this code may also belong in the other clause
3051 			 * of this If statement */
3052 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
3053 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
3054 		}
3055 
3056 		/* Latency Timer */
3057 		temp_byte = 0x40;
3058 		rc = pci_bus_write_config_byte(pci_bus, devfn,
3059 					PCI_LATENCY_TIMER, temp_byte);
3060 
3061 		/* Cache Line size */
3062 		temp_byte = 0x08;
3063 		rc = pci_bus_write_config_byte(pci_bus, devfn,
3064 					PCI_CACHE_LINE_SIZE, temp_byte);
3065 
3066 		/* disable ROM base Address */
3067 		temp_dword = 0x00L;
3068 		rc = pci_bus_write_config_word(pci_bus, devfn,
3069 					PCI_ROM_ADDRESS, temp_dword);
3070 
3071 		/* enable card */
3072 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
3073 					 *   PCI_COMMAND_MEMORY |
3074 					 *   PCI_COMMAND_MASTER |
3075 					 *   PCI_COMMAND_INVALIDATE |
3076 					 *   PCI_COMMAND_PARITY |
3077 					 *   PCI_COMMAND_SERR */
3078 		rc = pci_bus_write_config_word (pci_bus, devfn,
3079 					PCI_COMMAND, temp_word);
3080 	} else {		/* End of Not-A-Bridge else */
3081 		/* It's some strange type of PCI adapter (Cardbus?) */
3082 		return DEVICE_TYPE_NOT_SUPPORTED;
3083 	}
3084 
3085 	func->configured = 1;
3086 
3087 	return 0;
3088 free_and_out:
3089 	cpqhp_destroy_resource_list (&temp_resources);
3090 
3091 	return_resource(&(resources-> bus_head), hold_bus_node);
3092 	return_resource(&(resources-> io_head), hold_IO_node);
3093 	return_resource(&(resources-> mem_head), hold_mem_node);
3094 	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3095 	return rc;
3096 }
3097