1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Endpoint *Function* (EPF) library 4 * 5 * Copyright (C) 2017 Texas Instruments 6 * Author: Kishon Vijay Abraham I <kishon@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 14 #include <linux/pci-epc.h> 15 #include <linux/pci-epf.h> 16 #include <linux/pci-ep-cfs.h> 17 18 static DEFINE_MUTEX(pci_epf_mutex); 19 20 static struct bus_type pci_epf_bus_type; 21 static const struct device_type pci_epf_type; 22 23 /** 24 * pci_epf_unbind() - Notify the function driver that the binding between the 25 * EPF device and EPC device has been lost 26 * @epf: the EPF device which has lost the binding with the EPC device 27 * 28 * Invoke to notify the function driver that the binding between the EPF device 29 * and EPC device has been lost. 30 */ 31 void pci_epf_unbind(struct pci_epf *epf) 32 { 33 struct pci_epf *epf_vf; 34 35 if (!epf->driver) { 36 dev_WARN(&epf->dev, "epf device not bound to driver\n"); 37 return; 38 } 39 40 mutex_lock(&epf->lock); 41 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 42 if (epf_vf->is_bound) 43 epf_vf->driver->ops->unbind(epf_vf); 44 } 45 if (epf->is_bound) 46 epf->driver->ops->unbind(epf); 47 mutex_unlock(&epf->lock); 48 module_put(epf->driver->owner); 49 } 50 EXPORT_SYMBOL_GPL(pci_epf_unbind); 51 52 /** 53 * pci_epf_bind() - Notify the function driver that the EPF device has been 54 * bound to a EPC device 55 * @epf: the EPF device which has been bound to the EPC device 56 * 57 * Invoke to notify the function driver that it has been bound to a EPC device 58 */ 59 int pci_epf_bind(struct pci_epf *epf) 60 { 61 struct device *dev = &epf->dev; 62 struct pci_epf *epf_vf; 63 u8 func_no, vfunc_no; 64 struct pci_epc *epc; 65 int ret; 66 67 if (!epf->driver) { 68 dev_WARN(dev, "epf device not bound to driver\n"); 69 return -EINVAL; 70 } 71 72 if (!try_module_get(epf->driver->owner)) 73 return -EAGAIN; 74 75 mutex_lock(&epf->lock); 76 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 77 vfunc_no = epf_vf->vfunc_no; 78 79 if (vfunc_no < 1) { 80 dev_err(dev, "Invalid virtual function number\n"); 81 ret = -EINVAL; 82 goto ret; 83 } 84 85 epc = epf->epc; 86 func_no = epf->func_no; 87 if (!IS_ERR_OR_NULL(epc)) { 88 if (!epc->max_vfs) { 89 dev_err(dev, "No support for virt function\n"); 90 ret = -EINVAL; 91 goto ret; 92 } 93 94 if (vfunc_no > epc->max_vfs[func_no]) { 95 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 96 func_no); 97 ret = -EINVAL; 98 goto ret; 99 } 100 } 101 102 epc = epf->sec_epc; 103 func_no = epf->sec_epc_func_no; 104 if (!IS_ERR_OR_NULL(epc)) { 105 if (!epc->max_vfs) { 106 dev_err(dev, "No support for virt function\n"); 107 ret = -EINVAL; 108 goto ret; 109 } 110 111 if (vfunc_no > epc->max_vfs[func_no]) { 112 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 113 func_no); 114 ret = -EINVAL; 115 goto ret; 116 } 117 } 118 119 epf_vf->func_no = epf->func_no; 120 epf_vf->sec_epc_func_no = epf->sec_epc_func_no; 121 epf_vf->epc = epf->epc; 122 epf_vf->sec_epc = epf->sec_epc; 123 ret = epf_vf->driver->ops->bind(epf_vf); 124 if (ret) 125 goto ret; 126 epf_vf->is_bound = true; 127 } 128 129 ret = epf->driver->ops->bind(epf); 130 if (ret) 131 goto ret; 132 epf->is_bound = true; 133 134 mutex_unlock(&epf->lock); 135 return 0; 136 137 ret: 138 mutex_unlock(&epf->lock); 139 pci_epf_unbind(epf); 140 141 return ret; 142 } 143 EXPORT_SYMBOL_GPL(pci_epf_bind); 144 145 /** 146 * pci_epf_add_vepf() - associate virtual EP function to physical EP function 147 * @epf_pf: the physical EP function to which the virtual EP function should be 148 * associated 149 * @epf_vf: the virtual EP function to be added 150 * 151 * A physical endpoint function can be associated with multiple virtual 152 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint 153 * function to a physical PCI endpoint function. 154 */ 155 int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 156 { 157 u32 vfunc_no; 158 159 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 160 return -EINVAL; 161 162 if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf) 163 return -EBUSY; 164 165 if (epf_pf->sec_epc || epf_vf->sec_epc) 166 return -EBUSY; 167 168 mutex_lock(&epf_pf->lock); 169 vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map, 170 BITS_PER_LONG); 171 if (vfunc_no >= BITS_PER_LONG) { 172 mutex_unlock(&epf_pf->lock); 173 return -EINVAL; 174 } 175 176 set_bit(vfunc_no, &epf_pf->vfunction_num_map); 177 epf_vf->vfunc_no = vfunc_no; 178 179 epf_vf->epf_pf = epf_pf; 180 epf_vf->is_vf = true; 181 182 list_add_tail(&epf_vf->list, &epf_pf->pci_vepf); 183 mutex_unlock(&epf_pf->lock); 184 185 return 0; 186 } 187 EXPORT_SYMBOL_GPL(pci_epf_add_vepf); 188 189 /** 190 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function 191 * @epf_pf: the physical EP function from which the virtual EP function should 192 * be removed 193 * @epf_vf: the virtual EP function to be removed 194 * 195 * Invoke to remove a virtual endpoint function from the physical endpoint 196 * function. 197 */ 198 void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 199 { 200 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 201 return; 202 203 mutex_lock(&epf_pf->lock); 204 clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map); 205 list_del(&epf_vf->list); 206 mutex_unlock(&epf_pf->lock); 207 } 208 EXPORT_SYMBOL_GPL(pci_epf_remove_vepf); 209 210 /** 211 * pci_epf_free_space() - free the allocated PCI EPF register space 212 * @epf: the EPF device from whom to free the memory 213 * @addr: the virtual address of the PCI EPF register space 214 * @bar: the BAR number corresponding to the register space 215 * @type: Identifies if the allocated space is for primary EPC or secondary EPC 216 * 217 * Invoke to free the allocated PCI EPF register space. 218 */ 219 void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, 220 enum pci_epc_interface_type type) 221 { 222 struct device *dev; 223 struct pci_epf_bar *epf_bar; 224 struct pci_epc *epc; 225 226 if (!addr) 227 return; 228 229 if (type == PRIMARY_INTERFACE) { 230 epc = epf->epc; 231 epf_bar = epf->bar; 232 } else { 233 epc = epf->sec_epc; 234 epf_bar = epf->sec_epc_bar; 235 } 236 237 dev = epc->dev.parent; 238 dma_free_coherent(dev, epf_bar[bar].size, addr, 239 epf_bar[bar].phys_addr); 240 241 epf_bar[bar].phys_addr = 0; 242 epf_bar[bar].addr = NULL; 243 epf_bar[bar].size = 0; 244 epf_bar[bar].barno = 0; 245 epf_bar[bar].flags = 0; 246 } 247 EXPORT_SYMBOL_GPL(pci_epf_free_space); 248 249 /** 250 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space 251 * @epf: the EPF device to whom allocate the memory 252 * @size: the size of the memory that has to be allocated 253 * @bar: the BAR number corresponding to the allocated register space 254 * @align: alignment size for the allocation region 255 * @type: Identifies if the allocation is for primary EPC or secondary EPC 256 * 257 * Invoke to allocate memory for the PCI EPF register space. 258 */ 259 void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, 260 size_t align, enum pci_epc_interface_type type) 261 { 262 struct pci_epf_bar *epf_bar; 263 dma_addr_t phys_addr; 264 struct pci_epc *epc; 265 struct device *dev; 266 void *space; 267 268 if (size < 128) 269 size = 128; 270 271 if (align) 272 size = ALIGN(size, align); 273 else 274 size = roundup_pow_of_two(size); 275 276 if (type == PRIMARY_INTERFACE) { 277 epc = epf->epc; 278 epf_bar = epf->bar; 279 } else { 280 epc = epf->sec_epc; 281 epf_bar = epf->sec_epc_bar; 282 } 283 284 dev = epc->dev.parent; 285 space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); 286 if (!space) { 287 dev_err(dev, "failed to allocate mem space\n"); 288 return NULL; 289 } 290 291 epf_bar[bar].phys_addr = phys_addr; 292 epf_bar[bar].addr = space; 293 epf_bar[bar].size = size; 294 epf_bar[bar].barno = bar; 295 epf_bar[bar].flags |= upper_32_bits(size) ? 296 PCI_BASE_ADDRESS_MEM_TYPE_64 : 297 PCI_BASE_ADDRESS_MEM_TYPE_32; 298 299 return space; 300 } 301 EXPORT_SYMBOL_GPL(pci_epf_alloc_space); 302 303 static void pci_epf_remove_cfs(struct pci_epf_driver *driver) 304 { 305 struct config_group *group, *tmp; 306 307 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 308 return; 309 310 mutex_lock(&pci_epf_mutex); 311 list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) 312 pci_ep_cfs_remove_epf_group(group); 313 list_del(&driver->epf_group); 314 mutex_unlock(&pci_epf_mutex); 315 } 316 317 /** 318 * pci_epf_unregister_driver() - unregister the PCI EPF driver 319 * @driver: the PCI EPF driver that has to be unregistered 320 * 321 * Invoke to unregister the PCI EPF driver. 322 */ 323 void pci_epf_unregister_driver(struct pci_epf_driver *driver) 324 { 325 pci_epf_remove_cfs(driver); 326 driver_unregister(&driver->driver); 327 } 328 EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); 329 330 static int pci_epf_add_cfs(struct pci_epf_driver *driver) 331 { 332 struct config_group *group; 333 const struct pci_epf_device_id *id; 334 335 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 336 return 0; 337 338 INIT_LIST_HEAD(&driver->epf_group); 339 340 id = driver->id_table; 341 while (id->name[0]) { 342 group = pci_ep_cfs_add_epf_group(id->name); 343 if (IS_ERR(group)) { 344 pci_epf_remove_cfs(driver); 345 return PTR_ERR(group); 346 } 347 348 mutex_lock(&pci_epf_mutex); 349 list_add_tail(&group->group_entry, &driver->epf_group); 350 mutex_unlock(&pci_epf_mutex); 351 id++; 352 } 353 354 return 0; 355 } 356 357 /** 358 * __pci_epf_register_driver() - register a new PCI EPF driver 359 * @driver: structure representing PCI EPF driver 360 * @owner: the owner of the module that registers the PCI EPF driver 361 * 362 * Invoke to register a new PCI EPF driver. 363 */ 364 int __pci_epf_register_driver(struct pci_epf_driver *driver, 365 struct module *owner) 366 { 367 int ret; 368 369 if (!driver->ops) 370 return -EINVAL; 371 372 if (!driver->ops->bind || !driver->ops->unbind) 373 return -EINVAL; 374 375 driver->driver.bus = &pci_epf_bus_type; 376 driver->driver.owner = owner; 377 378 ret = driver_register(&driver->driver); 379 if (ret) 380 return ret; 381 382 pci_epf_add_cfs(driver); 383 384 return 0; 385 } 386 EXPORT_SYMBOL_GPL(__pci_epf_register_driver); 387 388 /** 389 * pci_epf_destroy() - destroy the created PCI EPF device 390 * @epf: the PCI EPF device that has to be destroyed. 391 * 392 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). 393 */ 394 void pci_epf_destroy(struct pci_epf *epf) 395 { 396 device_unregister(&epf->dev); 397 } 398 EXPORT_SYMBOL_GPL(pci_epf_destroy); 399 400 /** 401 * pci_epf_create() - create a new PCI EPF device 402 * @name: the name of the PCI EPF device. This name will be used to bind the 403 * EPF device to a EPF driver 404 * 405 * Invoke to create a new PCI EPF device by providing the name of the function 406 * device. 407 */ 408 struct pci_epf *pci_epf_create(const char *name) 409 { 410 int ret; 411 struct pci_epf *epf; 412 struct device *dev; 413 int len; 414 415 epf = kzalloc(sizeof(*epf), GFP_KERNEL); 416 if (!epf) 417 return ERR_PTR(-ENOMEM); 418 419 len = strchrnul(name, '.') - name; 420 epf->name = kstrndup(name, len, GFP_KERNEL); 421 if (!epf->name) { 422 kfree(epf); 423 return ERR_PTR(-ENOMEM); 424 } 425 426 /* VFs are numbered starting with 1. So set BIT(0) by default */ 427 epf->vfunction_num_map = 1; 428 INIT_LIST_HEAD(&epf->pci_vepf); 429 430 dev = &epf->dev; 431 device_initialize(dev); 432 dev->bus = &pci_epf_bus_type; 433 dev->type = &pci_epf_type; 434 mutex_init(&epf->lock); 435 436 ret = dev_set_name(dev, "%s", name); 437 if (ret) { 438 put_device(dev); 439 return ERR_PTR(ret); 440 } 441 442 ret = device_add(dev); 443 if (ret) { 444 put_device(dev); 445 return ERR_PTR(ret); 446 } 447 448 return epf; 449 } 450 EXPORT_SYMBOL_GPL(pci_epf_create); 451 452 static void pci_epf_dev_release(struct device *dev) 453 { 454 struct pci_epf *epf = to_pci_epf(dev); 455 456 kfree(epf->name); 457 kfree(epf); 458 } 459 460 static const struct device_type pci_epf_type = { 461 .release = pci_epf_dev_release, 462 }; 463 464 static const struct pci_epf_device_id * 465 pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) 466 { 467 while (id->name[0]) { 468 if (strcmp(epf->name, id->name) == 0) 469 return id; 470 id++; 471 } 472 473 return NULL; 474 } 475 476 static int pci_epf_device_match(struct device *dev, struct device_driver *drv) 477 { 478 struct pci_epf *epf = to_pci_epf(dev); 479 struct pci_epf_driver *driver = to_pci_epf_driver(drv); 480 481 if (driver->id_table) 482 return !!pci_epf_match_id(driver->id_table, epf); 483 484 return !strcmp(epf->name, drv->name); 485 } 486 487 static int pci_epf_device_probe(struct device *dev) 488 { 489 struct pci_epf *epf = to_pci_epf(dev); 490 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 491 492 if (!driver->probe) 493 return -ENODEV; 494 495 epf->driver = driver; 496 497 return driver->probe(epf, pci_epf_match_id(driver->id_table, epf)); 498 } 499 500 static void pci_epf_device_remove(struct device *dev) 501 { 502 struct pci_epf *epf = to_pci_epf(dev); 503 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 504 505 if (driver->remove) 506 driver->remove(epf); 507 epf->driver = NULL; 508 } 509 510 static struct bus_type pci_epf_bus_type = { 511 .name = "pci-epf", 512 .match = pci_epf_device_match, 513 .probe = pci_epf_device_probe, 514 .remove = pci_epf_device_remove, 515 }; 516 517 static int __init pci_epf_init(void) 518 { 519 int ret; 520 521 ret = bus_register(&pci_epf_bus_type); 522 if (ret) { 523 pr_err("failed to register pci epf bus --> %d\n", ret); 524 return ret; 525 } 526 527 return 0; 528 } 529 module_init(pci_epf_init); 530 531 static void __exit pci_epf_exit(void) 532 { 533 bus_unregister(&pci_epf_bus_type); 534 } 535 module_exit(pci_epf_exit); 536 537 MODULE_DESCRIPTION("PCI EPF Library"); 538 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); 539