1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Endpoint *Function* (EPF) library 4 * 5 * Copyright (C) 2017 Texas Instruments 6 * Author: Kishon Vijay Abraham I <kishon@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 14 #include <linux/pci-epc.h> 15 #include <linux/pci-epf.h> 16 #include <linux/pci-ep-cfs.h> 17 18 static DEFINE_MUTEX(pci_epf_mutex); 19 20 static struct bus_type pci_epf_bus_type; 21 static const struct device_type pci_epf_type; 22 23 /** 24 * pci_epf_type_add_cfs() - Help function drivers to expose function specific 25 * attributes in configfs 26 * @epf: the EPF device that has to be configured using configfs 27 * @group: the parent configfs group (corresponding to entries in 28 * pci_epf_device_id) 29 * 30 * Invoke to expose function specific attributes in configfs. If the function 31 * driver does not have anything to expose (attributes configured by user), 32 * return NULL. 33 */ 34 struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf, 35 struct config_group *group) 36 { 37 struct config_group *epf_type_group; 38 39 if (!epf->driver) { 40 dev_err(&epf->dev, "epf device not bound to driver\n"); 41 return NULL; 42 } 43 44 if (!epf->driver->ops->add_cfs) 45 return NULL; 46 47 mutex_lock(&epf->lock); 48 epf_type_group = epf->driver->ops->add_cfs(epf, group); 49 mutex_unlock(&epf->lock); 50 51 return epf_type_group; 52 } 53 EXPORT_SYMBOL_GPL(pci_epf_type_add_cfs); 54 55 /** 56 * pci_epf_unbind() - Notify the function driver that the binding between the 57 * EPF device and EPC device has been lost 58 * @epf: the EPF device which has lost the binding with the EPC device 59 * 60 * Invoke to notify the function driver that the binding between the EPF device 61 * and EPC device has been lost. 62 */ 63 void pci_epf_unbind(struct pci_epf *epf) 64 { 65 struct pci_epf *epf_vf; 66 67 if (!epf->driver) { 68 dev_WARN(&epf->dev, "epf device not bound to driver\n"); 69 return; 70 } 71 72 mutex_lock(&epf->lock); 73 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 74 if (epf_vf->is_bound) 75 epf_vf->driver->ops->unbind(epf_vf); 76 } 77 if (epf->is_bound) 78 epf->driver->ops->unbind(epf); 79 mutex_unlock(&epf->lock); 80 module_put(epf->driver->owner); 81 } 82 EXPORT_SYMBOL_GPL(pci_epf_unbind); 83 84 /** 85 * pci_epf_bind() - Notify the function driver that the EPF device has been 86 * bound to a EPC device 87 * @epf: the EPF device which has been bound to the EPC device 88 * 89 * Invoke to notify the function driver that it has been bound to a EPC device 90 */ 91 int pci_epf_bind(struct pci_epf *epf) 92 { 93 struct device *dev = &epf->dev; 94 struct pci_epf *epf_vf; 95 u8 func_no, vfunc_no; 96 struct pci_epc *epc; 97 int ret; 98 99 if (!epf->driver) { 100 dev_WARN(dev, "epf device not bound to driver\n"); 101 return -EINVAL; 102 } 103 104 if (!try_module_get(epf->driver->owner)) 105 return -EAGAIN; 106 107 mutex_lock(&epf->lock); 108 list_for_each_entry(epf_vf, &epf->pci_vepf, list) { 109 vfunc_no = epf_vf->vfunc_no; 110 111 if (vfunc_no < 1) { 112 dev_err(dev, "Invalid virtual function number\n"); 113 ret = -EINVAL; 114 goto ret; 115 } 116 117 epc = epf->epc; 118 func_no = epf->func_no; 119 if (!IS_ERR_OR_NULL(epc)) { 120 if (!epc->max_vfs) { 121 dev_err(dev, "No support for virt function\n"); 122 ret = -EINVAL; 123 goto ret; 124 } 125 126 if (vfunc_no > epc->max_vfs[func_no]) { 127 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 128 func_no); 129 ret = -EINVAL; 130 goto ret; 131 } 132 } 133 134 epc = epf->sec_epc; 135 func_no = epf->sec_epc_func_no; 136 if (!IS_ERR_OR_NULL(epc)) { 137 if (!epc->max_vfs) { 138 dev_err(dev, "No support for virt function\n"); 139 ret = -EINVAL; 140 goto ret; 141 } 142 143 if (vfunc_no > epc->max_vfs[func_no]) { 144 dev_err(dev, "PF%d: Exceeds max vfunc number\n", 145 func_no); 146 ret = -EINVAL; 147 goto ret; 148 } 149 } 150 151 epf_vf->func_no = epf->func_no; 152 epf_vf->sec_epc_func_no = epf->sec_epc_func_no; 153 epf_vf->epc = epf->epc; 154 epf_vf->sec_epc = epf->sec_epc; 155 ret = epf_vf->driver->ops->bind(epf_vf); 156 if (ret) 157 goto ret; 158 epf_vf->is_bound = true; 159 } 160 161 ret = epf->driver->ops->bind(epf); 162 if (ret) 163 goto ret; 164 epf->is_bound = true; 165 166 mutex_unlock(&epf->lock); 167 return 0; 168 169 ret: 170 mutex_unlock(&epf->lock); 171 pci_epf_unbind(epf); 172 173 return ret; 174 } 175 EXPORT_SYMBOL_GPL(pci_epf_bind); 176 177 /** 178 * pci_epf_add_vepf() - associate virtual EP function to physical EP function 179 * @epf_pf: the physical EP function to which the virtual EP function should be 180 * associated 181 * @epf_vf: the virtual EP function to be added 182 * 183 * A physical endpoint function can be associated with multiple virtual 184 * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint 185 * function to a physical PCI endpoint function. 186 */ 187 int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 188 { 189 u32 vfunc_no; 190 191 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 192 return -EINVAL; 193 194 if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf) 195 return -EBUSY; 196 197 if (epf_pf->sec_epc || epf_vf->sec_epc) 198 return -EBUSY; 199 200 mutex_lock(&epf_pf->lock); 201 vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map, 202 BITS_PER_LONG); 203 if (vfunc_no >= BITS_PER_LONG) { 204 mutex_unlock(&epf_pf->lock); 205 return -EINVAL; 206 } 207 208 set_bit(vfunc_no, &epf_pf->vfunction_num_map); 209 epf_vf->vfunc_no = vfunc_no; 210 211 epf_vf->epf_pf = epf_pf; 212 epf_vf->is_vf = true; 213 214 list_add_tail(&epf_vf->list, &epf_pf->pci_vepf); 215 mutex_unlock(&epf_pf->lock); 216 217 return 0; 218 } 219 EXPORT_SYMBOL_GPL(pci_epf_add_vepf); 220 221 /** 222 * pci_epf_remove_vepf() - remove virtual EP function from physical EP function 223 * @epf_pf: the physical EP function from which the virtual EP function should 224 * be removed 225 * @epf_vf: the virtual EP function to be removed 226 * 227 * Invoke to remove a virtual endpoint function from the physical endpoint 228 * function. 229 */ 230 void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf) 231 { 232 if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf)) 233 return; 234 235 mutex_lock(&epf_pf->lock); 236 clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map); 237 list_del(&epf_vf->list); 238 mutex_unlock(&epf_pf->lock); 239 } 240 EXPORT_SYMBOL_GPL(pci_epf_remove_vepf); 241 242 /** 243 * pci_epf_free_space() - free the allocated PCI EPF register space 244 * @epf: the EPF device from whom to free the memory 245 * @addr: the virtual address of the PCI EPF register space 246 * @bar: the BAR number corresponding to the register space 247 * @type: Identifies if the allocated space is for primary EPC or secondary EPC 248 * 249 * Invoke to free the allocated PCI EPF register space. 250 */ 251 void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, 252 enum pci_epc_interface_type type) 253 { 254 struct device *dev; 255 struct pci_epf_bar *epf_bar; 256 struct pci_epc *epc; 257 258 if (!addr) 259 return; 260 261 if (type == PRIMARY_INTERFACE) { 262 epc = epf->epc; 263 epf_bar = epf->bar; 264 } else { 265 epc = epf->sec_epc; 266 epf_bar = epf->sec_epc_bar; 267 } 268 269 dev = epc->dev.parent; 270 dma_free_coherent(dev, epf_bar[bar].size, addr, 271 epf_bar[bar].phys_addr); 272 273 epf_bar[bar].phys_addr = 0; 274 epf_bar[bar].addr = NULL; 275 epf_bar[bar].size = 0; 276 epf_bar[bar].barno = 0; 277 epf_bar[bar].flags = 0; 278 } 279 EXPORT_SYMBOL_GPL(pci_epf_free_space); 280 281 /** 282 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space 283 * @epf: the EPF device to whom allocate the memory 284 * @size: the size of the memory that has to be allocated 285 * @bar: the BAR number corresponding to the allocated register space 286 * @align: alignment size for the allocation region 287 * @type: Identifies if the allocation is for primary EPC or secondary EPC 288 * 289 * Invoke to allocate memory for the PCI EPF register space. 290 */ 291 void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, 292 size_t align, enum pci_epc_interface_type type) 293 { 294 struct pci_epf_bar *epf_bar; 295 dma_addr_t phys_addr; 296 struct pci_epc *epc; 297 struct device *dev; 298 void *space; 299 300 if (size < 128) 301 size = 128; 302 303 if (align) 304 size = ALIGN(size, align); 305 else 306 size = roundup_pow_of_two(size); 307 308 if (type == PRIMARY_INTERFACE) { 309 epc = epf->epc; 310 epf_bar = epf->bar; 311 } else { 312 epc = epf->sec_epc; 313 epf_bar = epf->sec_epc_bar; 314 } 315 316 dev = epc->dev.parent; 317 space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); 318 if (!space) { 319 dev_err(dev, "failed to allocate mem space\n"); 320 return NULL; 321 } 322 323 epf_bar[bar].phys_addr = phys_addr; 324 epf_bar[bar].addr = space; 325 epf_bar[bar].size = size; 326 epf_bar[bar].barno = bar; 327 epf_bar[bar].flags |= upper_32_bits(size) ? 328 PCI_BASE_ADDRESS_MEM_TYPE_64 : 329 PCI_BASE_ADDRESS_MEM_TYPE_32; 330 331 return space; 332 } 333 EXPORT_SYMBOL_GPL(pci_epf_alloc_space); 334 335 static void pci_epf_remove_cfs(struct pci_epf_driver *driver) 336 { 337 struct config_group *group, *tmp; 338 339 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 340 return; 341 342 mutex_lock(&pci_epf_mutex); 343 list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) 344 pci_ep_cfs_remove_epf_group(group); 345 list_del(&driver->epf_group); 346 mutex_unlock(&pci_epf_mutex); 347 } 348 349 /** 350 * pci_epf_unregister_driver() - unregister the PCI EPF driver 351 * @driver: the PCI EPF driver that has to be unregistered 352 * 353 * Invoke to unregister the PCI EPF driver. 354 */ 355 void pci_epf_unregister_driver(struct pci_epf_driver *driver) 356 { 357 pci_epf_remove_cfs(driver); 358 driver_unregister(&driver->driver); 359 } 360 EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); 361 362 static int pci_epf_add_cfs(struct pci_epf_driver *driver) 363 { 364 struct config_group *group; 365 const struct pci_epf_device_id *id; 366 367 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 368 return 0; 369 370 INIT_LIST_HEAD(&driver->epf_group); 371 372 id = driver->id_table; 373 while (id->name[0]) { 374 group = pci_ep_cfs_add_epf_group(id->name); 375 if (IS_ERR(group)) { 376 pci_epf_remove_cfs(driver); 377 return PTR_ERR(group); 378 } 379 380 mutex_lock(&pci_epf_mutex); 381 list_add_tail(&group->group_entry, &driver->epf_group); 382 mutex_unlock(&pci_epf_mutex); 383 id++; 384 } 385 386 return 0; 387 } 388 389 /** 390 * __pci_epf_register_driver() - register a new PCI EPF driver 391 * @driver: structure representing PCI EPF driver 392 * @owner: the owner of the module that registers the PCI EPF driver 393 * 394 * Invoke to register a new PCI EPF driver. 395 */ 396 int __pci_epf_register_driver(struct pci_epf_driver *driver, 397 struct module *owner) 398 { 399 int ret; 400 401 if (!driver->ops) 402 return -EINVAL; 403 404 if (!driver->ops->bind || !driver->ops->unbind) 405 return -EINVAL; 406 407 driver->driver.bus = &pci_epf_bus_type; 408 driver->driver.owner = owner; 409 410 ret = driver_register(&driver->driver); 411 if (ret) 412 return ret; 413 414 pci_epf_add_cfs(driver); 415 416 return 0; 417 } 418 EXPORT_SYMBOL_GPL(__pci_epf_register_driver); 419 420 /** 421 * pci_epf_destroy() - destroy the created PCI EPF device 422 * @epf: the PCI EPF device that has to be destroyed. 423 * 424 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). 425 */ 426 void pci_epf_destroy(struct pci_epf *epf) 427 { 428 device_unregister(&epf->dev); 429 } 430 EXPORT_SYMBOL_GPL(pci_epf_destroy); 431 432 /** 433 * pci_epf_create() - create a new PCI EPF device 434 * @name: the name of the PCI EPF device. This name will be used to bind the 435 * EPF device to a EPF driver 436 * 437 * Invoke to create a new PCI EPF device by providing the name of the function 438 * device. 439 */ 440 struct pci_epf *pci_epf_create(const char *name) 441 { 442 int ret; 443 struct pci_epf *epf; 444 struct device *dev; 445 int len; 446 447 epf = kzalloc(sizeof(*epf), GFP_KERNEL); 448 if (!epf) 449 return ERR_PTR(-ENOMEM); 450 451 len = strchrnul(name, '.') - name; 452 epf->name = kstrndup(name, len, GFP_KERNEL); 453 if (!epf->name) { 454 kfree(epf); 455 return ERR_PTR(-ENOMEM); 456 } 457 458 /* VFs are numbered starting with 1. So set BIT(0) by default */ 459 epf->vfunction_num_map = 1; 460 INIT_LIST_HEAD(&epf->pci_vepf); 461 462 dev = &epf->dev; 463 device_initialize(dev); 464 dev->bus = &pci_epf_bus_type; 465 dev->type = &pci_epf_type; 466 mutex_init(&epf->lock); 467 468 ret = dev_set_name(dev, "%s", name); 469 if (ret) { 470 put_device(dev); 471 return ERR_PTR(ret); 472 } 473 474 ret = device_add(dev); 475 if (ret) { 476 put_device(dev); 477 return ERR_PTR(ret); 478 } 479 480 return epf; 481 } 482 EXPORT_SYMBOL_GPL(pci_epf_create); 483 484 static void pci_epf_dev_release(struct device *dev) 485 { 486 struct pci_epf *epf = to_pci_epf(dev); 487 488 kfree(epf->name); 489 kfree(epf); 490 } 491 492 static const struct device_type pci_epf_type = { 493 .release = pci_epf_dev_release, 494 }; 495 496 static int 497 pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) 498 { 499 while (id->name[0]) { 500 if (strcmp(epf->name, id->name) == 0) 501 return true; 502 id++; 503 } 504 505 return false; 506 } 507 508 static int pci_epf_device_match(struct device *dev, struct device_driver *drv) 509 { 510 struct pci_epf *epf = to_pci_epf(dev); 511 struct pci_epf_driver *driver = to_pci_epf_driver(drv); 512 513 if (driver->id_table) 514 return pci_epf_match_id(driver->id_table, epf); 515 516 return !strcmp(epf->name, drv->name); 517 } 518 519 static int pci_epf_device_probe(struct device *dev) 520 { 521 struct pci_epf *epf = to_pci_epf(dev); 522 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 523 524 if (!driver->probe) 525 return -ENODEV; 526 527 epf->driver = driver; 528 529 return driver->probe(epf); 530 } 531 532 static void pci_epf_device_remove(struct device *dev) 533 { 534 struct pci_epf *epf = to_pci_epf(dev); 535 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 536 537 if (driver->remove) 538 driver->remove(epf); 539 epf->driver = NULL; 540 } 541 542 static struct bus_type pci_epf_bus_type = { 543 .name = "pci-epf", 544 .match = pci_epf_device_match, 545 .probe = pci_epf_device_probe, 546 .remove = pci_epf_device_remove, 547 }; 548 549 static int __init pci_epf_init(void) 550 { 551 int ret; 552 553 ret = bus_register(&pci_epf_bus_type); 554 if (ret) { 555 pr_err("failed to register pci epf bus --> %d\n", ret); 556 return ret; 557 } 558 559 return 0; 560 } 561 module_init(pci_epf_init); 562 563 static void __exit pci_epf_exit(void) 564 { 565 bus_unregister(&pci_epf_bus_type); 566 } 567 module_exit(pci_epf_exit); 568 569 MODULE_DESCRIPTION("PCI EPF Library"); 570 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); 571