1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Endpoint *Controller* (EPC) library 4 * 5 * Copyright (C) 2017 Texas Instruments 6 * Author: Kishon Vijay Abraham I <kishon@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/slab.h> 11 #include <linux/module.h> 12 #include <linux/of_device.h> 13 14 #include <linux/pci-epc.h> 15 #include <linux/pci-epf.h> 16 #include <linux/pci-ep-cfs.h> 17 18 static struct class *pci_epc_class; 19 20 static void devm_pci_epc_release(struct device *dev, void *res) 21 { 22 struct pci_epc *epc = *(struct pci_epc **)res; 23 24 pci_epc_destroy(epc); 25 } 26 27 static int devm_pci_epc_match(struct device *dev, void *res, void *match_data) 28 { 29 struct pci_epc **epc = res; 30 31 return *epc == match_data; 32 } 33 34 /** 35 * pci_epc_put() - release the PCI endpoint controller 36 * @epc: epc returned by pci_epc_get() 37 * 38 * release the refcount the caller obtained by invoking pci_epc_get() 39 */ 40 void pci_epc_put(struct pci_epc *epc) 41 { 42 if (!epc || IS_ERR(epc)) 43 return; 44 45 module_put(epc->ops->owner); 46 put_device(&epc->dev); 47 } 48 EXPORT_SYMBOL_GPL(pci_epc_put); 49 50 /** 51 * pci_epc_get() - get the PCI endpoint controller 52 * @epc_name: device name of the endpoint controller 53 * 54 * Invoke to get struct pci_epc * corresponding to the device name of the 55 * endpoint controller 56 */ 57 struct pci_epc *pci_epc_get(const char *epc_name) 58 { 59 int ret = -EINVAL; 60 struct pci_epc *epc; 61 struct device *dev; 62 struct class_dev_iter iter; 63 64 class_dev_iter_init(&iter, pci_epc_class, NULL, NULL); 65 while ((dev = class_dev_iter_next(&iter))) { 66 if (strcmp(epc_name, dev_name(dev))) 67 continue; 68 69 epc = to_pci_epc(dev); 70 if (!try_module_get(epc->ops->owner)) { 71 ret = -EINVAL; 72 goto err; 73 } 74 75 class_dev_iter_exit(&iter); 76 get_device(&epc->dev); 77 return epc; 78 } 79 80 err: 81 class_dev_iter_exit(&iter); 82 return ERR_PTR(ret); 83 } 84 EXPORT_SYMBOL_GPL(pci_epc_get); 85 86 /** 87 * pci_epc_get_first_free_bar() - helper to get first unreserved BAR 88 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap 89 * 90 * Invoke to get the first unreserved BAR that can be used by the endpoint 91 * function. For any incorrect value in reserved_bar return '0'. 92 */ 93 enum pci_barno 94 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features) 95 { 96 return pci_epc_get_next_free_bar(epc_features, BAR_0); 97 } 98 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar); 99 100 /** 101 * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar 102 * @epc_features: pci_epc_features structure that holds the reserved bar bitmap 103 * @bar: the starting BAR number from where unreserved BAR should be searched 104 * 105 * Invoke to get the next unreserved BAR starting from @bar that can be used 106 * for endpoint function. For any incorrect value in reserved_bar return '0'. 107 */ 108 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features 109 *epc_features, enum pci_barno bar) 110 { 111 unsigned long free_bar; 112 113 if (!epc_features) 114 return BAR_0; 115 116 /* If 'bar - 1' is a 64-bit BAR, move to the next BAR */ 117 if ((epc_features->bar_fixed_64bit << 1) & 1 << bar) 118 bar++; 119 120 /* Find if the reserved BAR is also a 64-bit BAR */ 121 free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit; 122 123 /* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */ 124 free_bar <<= 1; 125 free_bar |= epc_features->reserved_bar; 126 127 free_bar = find_next_zero_bit(&free_bar, 6, bar); 128 if (free_bar > 5) 129 return NO_BAR; 130 131 return free_bar; 132 } 133 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar); 134 135 /** 136 * pci_epc_get_features() - get the features supported by EPC 137 * @epc: the features supported by *this* EPC device will be returned 138 * @func_no: the features supported by the EPC device specific to the 139 * endpoint function with func_no will be returned 140 * 141 * Invoke to get the features provided by the EPC which may be 142 * specific to an endpoint function. Returns pci_epc_features on success 143 * and NULL for any failures. 144 */ 145 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc, 146 u8 func_no) 147 { 148 const struct pci_epc_features *epc_features; 149 150 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 151 return NULL; 152 153 if (!epc->ops->get_features) 154 return NULL; 155 156 mutex_lock(&epc->lock); 157 epc_features = epc->ops->get_features(epc, func_no); 158 mutex_unlock(&epc->lock); 159 160 return epc_features; 161 } 162 EXPORT_SYMBOL_GPL(pci_epc_get_features); 163 164 /** 165 * pci_epc_stop() - stop the PCI link 166 * @epc: the link of the EPC device that has to be stopped 167 * 168 * Invoke to stop the PCI link 169 */ 170 void pci_epc_stop(struct pci_epc *epc) 171 { 172 if (IS_ERR(epc) || !epc->ops->stop) 173 return; 174 175 mutex_lock(&epc->lock); 176 epc->ops->stop(epc); 177 mutex_unlock(&epc->lock); 178 } 179 EXPORT_SYMBOL_GPL(pci_epc_stop); 180 181 /** 182 * pci_epc_start() - start the PCI link 183 * @epc: the link of *this* EPC device has to be started 184 * 185 * Invoke to start the PCI link 186 */ 187 int pci_epc_start(struct pci_epc *epc) 188 { 189 int ret; 190 191 if (IS_ERR(epc)) 192 return -EINVAL; 193 194 if (!epc->ops->start) 195 return 0; 196 197 mutex_lock(&epc->lock); 198 ret = epc->ops->start(epc); 199 mutex_unlock(&epc->lock); 200 201 return ret; 202 } 203 EXPORT_SYMBOL_GPL(pci_epc_start); 204 205 /** 206 * pci_epc_raise_irq() - interrupt the host system 207 * @epc: the EPC device which has to interrupt the host 208 * @func_no: the endpoint function number in the EPC device 209 * @type: specify the type of interrupt; legacy, MSI or MSI-X 210 * @interrupt_num: the MSI or MSI-X interrupt number 211 * 212 * Invoke to raise an legacy, MSI or MSI-X interrupt 213 */ 214 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, 215 enum pci_epc_irq_type type, u16 interrupt_num) 216 { 217 int ret; 218 219 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 220 return -EINVAL; 221 222 if (!epc->ops->raise_irq) 223 return 0; 224 225 mutex_lock(&epc->lock); 226 ret = epc->ops->raise_irq(epc, func_no, type, interrupt_num); 227 mutex_unlock(&epc->lock); 228 229 return ret; 230 } 231 EXPORT_SYMBOL_GPL(pci_epc_raise_irq); 232 233 /** 234 * pci_epc_map_msi_irq() - Map physical address to MSI address and return 235 * MSI data 236 * @epc: the EPC device which has the MSI capability 237 * @func_no: the physical endpoint function number in the EPC device 238 * @phys_addr: the physical address of the outbound region 239 * @interrupt_num: the MSI interrupt number 240 * @entry_size: Size of Outbound address region for each interrupt 241 * @msi_data: the data that should be written in order to raise MSI interrupt 242 * with interrupt number as 'interrupt num' 243 * @msi_addr_offset: Offset of MSI address from the aligned outbound address 244 * to which the MSI address is mapped 245 * 246 * Invoke to map physical address to MSI address and return MSI data. The 247 * physical address should be an address in the outbound region. This is 248 * required to implement doorbell functionality of NTB wherein EPC on either 249 * side of the interface (primary and secondary) can directly write to the 250 * physical address (in outbound region) of the other interface to ring 251 * doorbell. 252 */ 253 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, phys_addr_t phys_addr, 254 u8 interrupt_num, u32 entry_size, u32 *msi_data, 255 u32 *msi_addr_offset) 256 { 257 int ret; 258 259 if (IS_ERR_OR_NULL(epc)) 260 return -EINVAL; 261 262 if (!epc->ops->map_msi_irq) 263 return -EINVAL; 264 265 mutex_lock(&epc->lock); 266 ret = epc->ops->map_msi_irq(epc, func_no, phys_addr, interrupt_num, 267 entry_size, msi_data, msi_addr_offset); 268 mutex_unlock(&epc->lock); 269 270 return ret; 271 } 272 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq); 273 274 /** 275 * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated 276 * @epc: the EPC device to which MSI interrupts was requested 277 * @func_no: the endpoint function number in the EPC device 278 * 279 * Invoke to get the number of MSI interrupts allocated by the RC 280 */ 281 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no) 282 { 283 int interrupt; 284 285 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 286 return 0; 287 288 if (!epc->ops->get_msi) 289 return 0; 290 291 mutex_lock(&epc->lock); 292 interrupt = epc->ops->get_msi(epc, func_no); 293 mutex_unlock(&epc->lock); 294 295 if (interrupt < 0) 296 return 0; 297 298 interrupt = 1 << interrupt; 299 300 return interrupt; 301 } 302 EXPORT_SYMBOL_GPL(pci_epc_get_msi); 303 304 /** 305 * pci_epc_set_msi() - set the number of MSI interrupt numbers required 306 * @epc: the EPC device on which MSI has to be configured 307 * @func_no: the endpoint function number in the EPC device 308 * @interrupts: number of MSI interrupts required by the EPF 309 * 310 * Invoke to set the required number of MSI interrupts. 311 */ 312 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 interrupts) 313 { 314 int ret; 315 u8 encode_int; 316 317 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || 318 interrupts > 32) 319 return -EINVAL; 320 321 if (!epc->ops->set_msi) 322 return 0; 323 324 encode_int = order_base_2(interrupts); 325 326 mutex_lock(&epc->lock); 327 ret = epc->ops->set_msi(epc, func_no, encode_int); 328 mutex_unlock(&epc->lock); 329 330 return ret; 331 } 332 EXPORT_SYMBOL_GPL(pci_epc_set_msi); 333 334 /** 335 * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated 336 * @epc: the EPC device to which MSI-X interrupts was requested 337 * @func_no: the endpoint function number in the EPC device 338 * 339 * Invoke to get the number of MSI-X interrupts allocated by the RC 340 */ 341 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no) 342 { 343 int interrupt; 344 345 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 346 return 0; 347 348 if (!epc->ops->get_msix) 349 return 0; 350 351 mutex_lock(&epc->lock); 352 interrupt = epc->ops->get_msix(epc, func_no); 353 mutex_unlock(&epc->lock); 354 355 if (interrupt < 0) 356 return 0; 357 358 return interrupt + 1; 359 } 360 EXPORT_SYMBOL_GPL(pci_epc_get_msix); 361 362 /** 363 * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required 364 * @epc: the EPC device on which MSI-X has to be configured 365 * @func_no: the endpoint function number in the EPC device 366 * @interrupts: number of MSI-X interrupts required by the EPF 367 * @bir: BAR where the MSI-X table resides 368 * @offset: Offset pointing to the start of MSI-X table 369 * 370 * Invoke to set the required number of MSI-X interrupts. 371 */ 372 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u16 interrupts, 373 enum pci_barno bir, u32 offset) 374 { 375 int ret; 376 377 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || 378 interrupts < 1 || interrupts > 2048) 379 return -EINVAL; 380 381 if (!epc->ops->set_msix) 382 return 0; 383 384 mutex_lock(&epc->lock); 385 ret = epc->ops->set_msix(epc, func_no, interrupts - 1, bir, offset); 386 mutex_unlock(&epc->lock); 387 388 return ret; 389 } 390 EXPORT_SYMBOL_GPL(pci_epc_set_msix); 391 392 /** 393 * pci_epc_unmap_addr() - unmap CPU address from PCI address 394 * @epc: the EPC device on which address is allocated 395 * @func_no: the endpoint function number in the EPC device 396 * @phys_addr: physical address of the local system 397 * 398 * Invoke to unmap the CPU address from PCI address. 399 */ 400 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, 401 phys_addr_t phys_addr) 402 { 403 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 404 return; 405 406 if (!epc->ops->unmap_addr) 407 return; 408 409 mutex_lock(&epc->lock); 410 epc->ops->unmap_addr(epc, func_no, phys_addr); 411 mutex_unlock(&epc->lock); 412 } 413 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr); 414 415 /** 416 * pci_epc_map_addr() - map CPU address to PCI address 417 * @epc: the EPC device on which address is allocated 418 * @func_no: the endpoint function number in the EPC device 419 * @phys_addr: physical address of the local system 420 * @pci_addr: PCI address to which the physical address should be mapped 421 * @size: the size of the allocation 422 * 423 * Invoke to map CPU address with PCI address. 424 */ 425 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, 426 phys_addr_t phys_addr, u64 pci_addr, size_t size) 427 { 428 int ret; 429 430 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 431 return -EINVAL; 432 433 if (!epc->ops->map_addr) 434 return 0; 435 436 mutex_lock(&epc->lock); 437 ret = epc->ops->map_addr(epc, func_no, phys_addr, pci_addr, size); 438 mutex_unlock(&epc->lock); 439 440 return ret; 441 } 442 EXPORT_SYMBOL_GPL(pci_epc_map_addr); 443 444 /** 445 * pci_epc_clear_bar() - reset the BAR 446 * @epc: the EPC device for which the BAR has to be cleared 447 * @func_no: the endpoint function number in the EPC device 448 * @epf_bar: the struct epf_bar that contains the BAR information 449 * 450 * Invoke to reset the BAR of the endpoint device. 451 */ 452 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, 453 struct pci_epf_bar *epf_bar) 454 { 455 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || 456 (epf_bar->barno == BAR_5 && 457 epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64)) 458 return; 459 460 if (!epc->ops->clear_bar) 461 return; 462 463 mutex_lock(&epc->lock); 464 epc->ops->clear_bar(epc, func_no, epf_bar); 465 mutex_unlock(&epc->lock); 466 } 467 EXPORT_SYMBOL_GPL(pci_epc_clear_bar); 468 469 /** 470 * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space 471 * @epc: the EPC device on which BAR has to be configured 472 * @func_no: the endpoint function number in the EPC device 473 * @epf_bar: the struct epf_bar that contains the BAR information 474 * 475 * Invoke to configure the BAR of the endpoint device. 476 */ 477 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, 478 struct pci_epf_bar *epf_bar) 479 { 480 int ret; 481 int flags = epf_bar->flags; 482 483 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions || 484 (epf_bar->barno == BAR_5 && 485 flags & PCI_BASE_ADDRESS_MEM_TYPE_64) || 486 (flags & PCI_BASE_ADDRESS_SPACE_IO && 487 flags & PCI_BASE_ADDRESS_IO_MASK) || 488 (upper_32_bits(epf_bar->size) && 489 !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64))) 490 return -EINVAL; 491 492 if (!epc->ops->set_bar) 493 return 0; 494 495 mutex_lock(&epc->lock); 496 ret = epc->ops->set_bar(epc, func_no, epf_bar); 497 mutex_unlock(&epc->lock); 498 499 return ret; 500 } 501 EXPORT_SYMBOL_GPL(pci_epc_set_bar); 502 503 /** 504 * pci_epc_write_header() - write standard configuration header 505 * @epc: the EPC device to which the configuration header should be written 506 * @func_no: the endpoint function number in the EPC device 507 * @header: standard configuration header fields 508 * 509 * Invoke to write the configuration header to the endpoint controller. Every 510 * endpoint controller will have a dedicated location to which the standard 511 * configuration header would be written. The callback function should write 512 * the header fields to this dedicated location. 513 */ 514 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, 515 struct pci_epf_header *header) 516 { 517 int ret; 518 519 if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions) 520 return -EINVAL; 521 522 if (!epc->ops->write_header) 523 return 0; 524 525 mutex_lock(&epc->lock); 526 ret = epc->ops->write_header(epc, func_no, header); 527 mutex_unlock(&epc->lock); 528 529 return ret; 530 } 531 EXPORT_SYMBOL_GPL(pci_epc_write_header); 532 533 /** 534 * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller 535 * @epc: the EPC device to which the endpoint function should be added 536 * @epf: the endpoint function to be added 537 * @type: Identifies if the EPC is connected to the primary or secondary 538 * interface of EPF 539 * 540 * A PCI endpoint device can have one or more functions. In the case of PCIe, 541 * the specification allows up to 8 PCIe endpoint functions. Invoke 542 * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller. 543 */ 544 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf, 545 enum pci_epc_interface_type type) 546 { 547 struct list_head *list; 548 u32 func_no; 549 int ret = 0; 550 551 if (IS_ERR_OR_NULL(epc)) 552 return -EINVAL; 553 554 if (type == PRIMARY_INTERFACE && epf->epc) 555 return -EBUSY; 556 557 if (type == SECONDARY_INTERFACE && epf->sec_epc) 558 return -EBUSY; 559 560 mutex_lock(&epc->lock); 561 func_no = find_first_zero_bit(&epc->function_num_map, 562 BITS_PER_LONG); 563 if (func_no >= BITS_PER_LONG) { 564 ret = -EINVAL; 565 goto ret; 566 } 567 568 if (func_no > epc->max_functions - 1) { 569 dev_err(&epc->dev, "Exceeding max supported Function Number\n"); 570 ret = -EINVAL; 571 goto ret; 572 } 573 574 set_bit(func_no, &epc->function_num_map); 575 if (type == PRIMARY_INTERFACE) { 576 epf->func_no = func_no; 577 epf->epc = epc; 578 list = &epf->list; 579 } else { 580 epf->sec_epc_func_no = func_no; 581 epf->sec_epc = epc; 582 list = &epf->sec_epc_list; 583 } 584 585 list_add_tail(list, &epc->pci_epf); 586 ret: 587 mutex_unlock(&epc->lock); 588 589 return ret; 590 } 591 EXPORT_SYMBOL_GPL(pci_epc_add_epf); 592 593 /** 594 * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller 595 * @epc: the EPC device from which the endpoint function should be removed 596 * @epf: the endpoint function to be removed 597 * @type: identifies if the EPC is connected to the primary or secondary 598 * interface of EPF 599 * 600 * Invoke to remove PCI endpoint function from the endpoint controller. 601 */ 602 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf, 603 enum pci_epc_interface_type type) 604 { 605 struct list_head *list; 606 u32 func_no = 0; 607 608 if (!epc || IS_ERR(epc) || !epf) 609 return; 610 611 if (type == PRIMARY_INTERFACE) { 612 func_no = epf->func_no; 613 list = &epf->list; 614 } else { 615 func_no = epf->sec_epc_func_no; 616 list = &epf->sec_epc_list; 617 } 618 619 mutex_lock(&epc->lock); 620 clear_bit(func_no, &epc->function_num_map); 621 list_del(list); 622 epf->epc = NULL; 623 mutex_unlock(&epc->lock); 624 } 625 EXPORT_SYMBOL_GPL(pci_epc_remove_epf); 626 627 /** 628 * pci_epc_linkup() - Notify the EPF device that EPC device has established a 629 * connection with the Root Complex. 630 * @epc: the EPC device which has established link with the host 631 * 632 * Invoke to Notify the EPF device that the EPC device has established a 633 * connection with the Root Complex. 634 */ 635 void pci_epc_linkup(struct pci_epc *epc) 636 { 637 if (!epc || IS_ERR(epc)) 638 return; 639 640 atomic_notifier_call_chain(&epc->notifier, LINK_UP, NULL); 641 } 642 EXPORT_SYMBOL_GPL(pci_epc_linkup); 643 644 /** 645 * pci_epc_init_notify() - Notify the EPF device that EPC device's core 646 * initialization is completed. 647 * @epc: the EPC device whose core initialization is completeds 648 * 649 * Invoke to Notify the EPF device that the EPC device's initialization 650 * is completed. 651 */ 652 void pci_epc_init_notify(struct pci_epc *epc) 653 { 654 if (!epc || IS_ERR(epc)) 655 return; 656 657 atomic_notifier_call_chain(&epc->notifier, CORE_INIT, NULL); 658 } 659 EXPORT_SYMBOL_GPL(pci_epc_init_notify); 660 661 /** 662 * pci_epc_destroy() - destroy the EPC device 663 * @epc: the EPC device that has to be destroyed 664 * 665 * Invoke to destroy the PCI EPC device 666 */ 667 void pci_epc_destroy(struct pci_epc *epc) 668 { 669 pci_ep_cfs_remove_epc_group(epc->group); 670 device_unregister(&epc->dev); 671 kfree(epc); 672 } 673 EXPORT_SYMBOL_GPL(pci_epc_destroy); 674 675 /** 676 * devm_pci_epc_destroy() - destroy the EPC device 677 * @dev: device that wants to destroy the EPC 678 * @epc: the EPC device that has to be destroyed 679 * 680 * Invoke to destroy the devres associated with this 681 * pci_epc and destroy the EPC device. 682 */ 683 void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc) 684 { 685 int r; 686 687 r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match, 688 epc); 689 dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n"); 690 } 691 EXPORT_SYMBOL_GPL(devm_pci_epc_destroy); 692 693 /** 694 * __pci_epc_create() - create a new endpoint controller (EPC) device 695 * @dev: device that is creating the new EPC 696 * @ops: function pointers for performing EPC operations 697 * @owner: the owner of the module that creates the EPC device 698 * 699 * Invoke to create a new EPC device and add it to pci_epc class. 700 */ 701 struct pci_epc * 702 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, 703 struct module *owner) 704 { 705 int ret; 706 struct pci_epc *epc; 707 708 if (WARN_ON(!dev)) { 709 ret = -EINVAL; 710 goto err_ret; 711 } 712 713 epc = kzalloc(sizeof(*epc), GFP_KERNEL); 714 if (!epc) { 715 ret = -ENOMEM; 716 goto err_ret; 717 } 718 719 mutex_init(&epc->lock); 720 INIT_LIST_HEAD(&epc->pci_epf); 721 ATOMIC_INIT_NOTIFIER_HEAD(&epc->notifier); 722 723 device_initialize(&epc->dev); 724 epc->dev.class = pci_epc_class; 725 epc->dev.parent = dev; 726 epc->ops = ops; 727 728 ret = dev_set_name(&epc->dev, "%s", dev_name(dev)); 729 if (ret) 730 goto put_dev; 731 732 ret = device_add(&epc->dev); 733 if (ret) 734 goto put_dev; 735 736 epc->group = pci_ep_cfs_add_epc_group(dev_name(dev)); 737 738 return epc; 739 740 put_dev: 741 put_device(&epc->dev); 742 kfree(epc); 743 744 err_ret: 745 return ERR_PTR(ret); 746 } 747 EXPORT_SYMBOL_GPL(__pci_epc_create); 748 749 /** 750 * __devm_pci_epc_create() - create a new endpoint controller (EPC) device 751 * @dev: device that is creating the new EPC 752 * @ops: function pointers for performing EPC operations 753 * @owner: the owner of the module that creates the EPC device 754 * 755 * Invoke to create a new EPC device and add it to pci_epc class. 756 * While at that, it also associates the device with the pci_epc using devres. 757 * On driver detach, release function is invoked on the devres data, 758 * then, devres data is freed. 759 */ 760 struct pci_epc * 761 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops, 762 struct module *owner) 763 { 764 struct pci_epc **ptr, *epc; 765 766 ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL); 767 if (!ptr) 768 return ERR_PTR(-ENOMEM); 769 770 epc = __pci_epc_create(dev, ops, owner); 771 if (!IS_ERR(epc)) { 772 *ptr = epc; 773 devres_add(dev, ptr); 774 } else { 775 devres_free(ptr); 776 } 777 778 return epc; 779 } 780 EXPORT_SYMBOL_GPL(__devm_pci_epc_create); 781 782 static int __init pci_epc_init(void) 783 { 784 pci_epc_class = class_create(THIS_MODULE, "pci_epc"); 785 if (IS_ERR(pci_epc_class)) { 786 pr_err("failed to create pci epc class --> %ld\n", 787 PTR_ERR(pci_epc_class)); 788 return PTR_ERR(pci_epc_class); 789 } 790 791 return 0; 792 } 793 module_init(pci_epc_init); 794 795 static void __exit pci_epc_exit(void) 796 { 797 class_destroy(pci_epc_class); 798 } 799 module_exit(pci_epc_exit); 800 801 MODULE_DESCRIPTION("PCI EPC Library"); 802 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); 803 MODULE_LICENSE("GPL v2"); 804