1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Endpoint *Controller* (EPC) library
4  *
5  * Copyright (C) 2017 Texas Instruments
6  * Author: Kishon Vijay Abraham I <kishon@ti.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16 #include <linux/pci-ep-cfs.h>
17 
18 static struct class *pci_epc_class;
19 
20 static void devm_pci_epc_release(struct device *dev, void *res)
21 {
22 	struct pci_epc *epc = *(struct pci_epc **)res;
23 
24 	pci_epc_destroy(epc);
25 }
26 
27 static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
28 {
29 	struct pci_epc **epc = res;
30 
31 	return *epc == match_data;
32 }
33 
34 /**
35  * pci_epc_put() - release the PCI endpoint controller
36  * @epc: epc returned by pci_epc_get()
37  *
38  * release the refcount the caller obtained by invoking pci_epc_get()
39  */
40 void pci_epc_put(struct pci_epc *epc)
41 {
42 	if (!epc || IS_ERR(epc))
43 		return;
44 
45 	module_put(epc->ops->owner);
46 	put_device(&epc->dev);
47 }
48 EXPORT_SYMBOL_GPL(pci_epc_put);
49 
50 /**
51  * pci_epc_get() - get the PCI endpoint controller
52  * @epc_name: device name of the endpoint controller
53  *
54  * Invoke to get struct pci_epc * corresponding to the device name of the
55  * endpoint controller
56  */
57 struct pci_epc *pci_epc_get(const char *epc_name)
58 {
59 	int ret = -EINVAL;
60 	struct pci_epc *epc;
61 	struct device *dev;
62 	struct class_dev_iter iter;
63 
64 	class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
65 	while ((dev = class_dev_iter_next(&iter))) {
66 		if (strcmp(epc_name, dev_name(dev)))
67 			continue;
68 
69 		epc = to_pci_epc(dev);
70 		if (!try_module_get(epc->ops->owner)) {
71 			ret = -EINVAL;
72 			goto err;
73 		}
74 
75 		class_dev_iter_exit(&iter);
76 		get_device(&epc->dev);
77 		return epc;
78 	}
79 
80 err:
81 	class_dev_iter_exit(&iter);
82 	return ERR_PTR(ret);
83 }
84 EXPORT_SYMBOL_GPL(pci_epc_get);
85 
86 /**
87  * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
88  * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
89  *
90  * Invoke to get the first unreserved BAR that can be used by the endpoint
91  * function. For any incorrect value in reserved_bar return '0'.
92  */
93 enum pci_barno
94 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
95 {
96 	return pci_epc_get_next_free_bar(epc_features, BAR_0);
97 }
98 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
99 
100 /**
101  * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
102  * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
103  * @bar: the starting BAR number from where unreserved BAR should be searched
104  *
105  * Invoke to get the next unreserved BAR starting from @bar that can be used
106  * for endpoint function. For any incorrect value in reserved_bar return '0'.
107  */
108 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
109 					 *epc_features, enum pci_barno bar)
110 {
111 	unsigned long free_bar;
112 
113 	if (!epc_features)
114 		return BAR_0;
115 
116 	/* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
117 	if ((epc_features->bar_fixed_64bit << 1) & 1 << bar)
118 		bar++;
119 
120 	/* Find if the reserved BAR is also a 64-bit BAR */
121 	free_bar = epc_features->reserved_bar & epc_features->bar_fixed_64bit;
122 
123 	/* Set the adjacent bit if the reserved BAR is also a 64-bit BAR */
124 	free_bar <<= 1;
125 	free_bar |= epc_features->reserved_bar;
126 
127 	free_bar = find_next_zero_bit(&free_bar, 6, bar);
128 	if (free_bar > 5)
129 		return NO_BAR;
130 
131 	return free_bar;
132 }
133 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
134 
135 /**
136  * pci_epc_get_features() - get the features supported by EPC
137  * @epc: the features supported by *this* EPC device will be returned
138  * @func_no: the features supported by the EPC device specific to the
139  *	     endpoint function with func_no will be returned
140  *
141  * Invoke to get the features provided by the EPC which may be
142  * specific to an endpoint function. Returns pci_epc_features on success
143  * and NULL for any failures.
144  */
145 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
146 						    u8 func_no)
147 {
148 	const struct pci_epc_features *epc_features;
149 
150 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
151 		return NULL;
152 
153 	if (!epc->ops->get_features)
154 		return NULL;
155 
156 	mutex_lock(&epc->lock);
157 	epc_features = epc->ops->get_features(epc, func_no);
158 	mutex_unlock(&epc->lock);
159 
160 	return epc_features;
161 }
162 EXPORT_SYMBOL_GPL(pci_epc_get_features);
163 
164 /**
165  * pci_epc_stop() - stop the PCI link
166  * @epc: the link of the EPC device that has to be stopped
167  *
168  * Invoke to stop the PCI link
169  */
170 void pci_epc_stop(struct pci_epc *epc)
171 {
172 	if (IS_ERR(epc) || !epc->ops->stop)
173 		return;
174 
175 	mutex_lock(&epc->lock);
176 	epc->ops->stop(epc);
177 	mutex_unlock(&epc->lock);
178 }
179 EXPORT_SYMBOL_GPL(pci_epc_stop);
180 
181 /**
182  * pci_epc_start() - start the PCI link
183  * @epc: the link of *this* EPC device has to be started
184  *
185  * Invoke to start the PCI link
186  */
187 int pci_epc_start(struct pci_epc *epc)
188 {
189 	int ret;
190 
191 	if (IS_ERR(epc))
192 		return -EINVAL;
193 
194 	if (!epc->ops->start)
195 		return 0;
196 
197 	mutex_lock(&epc->lock);
198 	ret = epc->ops->start(epc);
199 	mutex_unlock(&epc->lock);
200 
201 	return ret;
202 }
203 EXPORT_SYMBOL_GPL(pci_epc_start);
204 
205 /**
206  * pci_epc_raise_irq() - interrupt the host system
207  * @epc: the EPC device which has to interrupt the host
208  * @func_no: the endpoint function number in the EPC device
209  * @type: specify the type of interrupt; legacy, MSI or MSI-X
210  * @interrupt_num: the MSI or MSI-X interrupt number
211  *
212  * Invoke to raise an legacy, MSI or MSI-X interrupt
213  */
214 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no,
215 		      enum pci_epc_irq_type type, u16 interrupt_num)
216 {
217 	int ret;
218 
219 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
220 		return -EINVAL;
221 
222 	if (!epc->ops->raise_irq)
223 		return 0;
224 
225 	mutex_lock(&epc->lock);
226 	ret = epc->ops->raise_irq(epc, func_no, type, interrupt_num);
227 	mutex_unlock(&epc->lock);
228 
229 	return ret;
230 }
231 EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
232 
233 /**
234  * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
235  * @epc: the EPC device to which MSI interrupts was requested
236  * @func_no: the endpoint function number in the EPC device
237  *
238  * Invoke to get the number of MSI interrupts allocated by the RC
239  */
240 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no)
241 {
242 	int interrupt;
243 
244 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
245 		return 0;
246 
247 	if (!epc->ops->get_msi)
248 		return 0;
249 
250 	mutex_lock(&epc->lock);
251 	interrupt = epc->ops->get_msi(epc, func_no);
252 	mutex_unlock(&epc->lock);
253 
254 	if (interrupt < 0)
255 		return 0;
256 
257 	interrupt = 1 << interrupt;
258 
259 	return interrupt;
260 }
261 EXPORT_SYMBOL_GPL(pci_epc_get_msi);
262 
263 /**
264  * pci_epc_set_msi() - set the number of MSI interrupt numbers required
265  * @epc: the EPC device on which MSI has to be configured
266  * @func_no: the endpoint function number in the EPC device
267  * @interrupts: number of MSI interrupts required by the EPF
268  *
269  * Invoke to set the required number of MSI interrupts.
270  */
271 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 interrupts)
272 {
273 	int ret;
274 	u8 encode_int;
275 
276 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
277 	    interrupts > 32)
278 		return -EINVAL;
279 
280 	if (!epc->ops->set_msi)
281 		return 0;
282 
283 	encode_int = order_base_2(interrupts);
284 
285 	mutex_lock(&epc->lock);
286 	ret = epc->ops->set_msi(epc, func_no, encode_int);
287 	mutex_unlock(&epc->lock);
288 
289 	return ret;
290 }
291 EXPORT_SYMBOL_GPL(pci_epc_set_msi);
292 
293 /**
294  * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
295  * @epc: the EPC device to which MSI-X interrupts was requested
296  * @func_no: the endpoint function number in the EPC device
297  *
298  * Invoke to get the number of MSI-X interrupts allocated by the RC
299  */
300 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no)
301 {
302 	int interrupt;
303 
304 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
305 		return 0;
306 
307 	if (!epc->ops->get_msix)
308 		return 0;
309 
310 	mutex_lock(&epc->lock);
311 	interrupt = epc->ops->get_msix(epc, func_no);
312 	mutex_unlock(&epc->lock);
313 
314 	if (interrupt < 0)
315 		return 0;
316 
317 	return interrupt + 1;
318 }
319 EXPORT_SYMBOL_GPL(pci_epc_get_msix);
320 
321 /**
322  * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
323  * @epc: the EPC device on which MSI-X has to be configured
324  * @func_no: the endpoint function number in the EPC device
325  * @interrupts: number of MSI-X interrupts required by the EPF
326  * @bir: BAR where the MSI-X table resides
327  * @offset: Offset pointing to the start of MSI-X table
328  *
329  * Invoke to set the required number of MSI-X interrupts.
330  */
331 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u16 interrupts,
332 		     enum pci_barno bir, u32 offset)
333 {
334 	int ret;
335 
336 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
337 	    interrupts < 1 || interrupts > 2048)
338 		return -EINVAL;
339 
340 	if (!epc->ops->set_msix)
341 		return 0;
342 
343 	mutex_lock(&epc->lock);
344 	ret = epc->ops->set_msix(epc, func_no, interrupts - 1, bir, offset);
345 	mutex_unlock(&epc->lock);
346 
347 	return ret;
348 }
349 EXPORT_SYMBOL_GPL(pci_epc_set_msix);
350 
351 /**
352  * pci_epc_unmap_addr() - unmap CPU address from PCI address
353  * @epc: the EPC device on which address is allocated
354  * @func_no: the endpoint function number in the EPC device
355  * @phys_addr: physical address of the local system
356  *
357  * Invoke to unmap the CPU address from PCI address.
358  */
359 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no,
360 			phys_addr_t phys_addr)
361 {
362 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
363 		return;
364 
365 	if (!epc->ops->unmap_addr)
366 		return;
367 
368 	mutex_lock(&epc->lock);
369 	epc->ops->unmap_addr(epc, func_no, phys_addr);
370 	mutex_unlock(&epc->lock);
371 }
372 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
373 
374 /**
375  * pci_epc_map_addr() - map CPU address to PCI address
376  * @epc: the EPC device on which address is allocated
377  * @func_no: the endpoint function number in the EPC device
378  * @phys_addr: physical address of the local system
379  * @pci_addr: PCI address to which the physical address should be mapped
380  * @size: the size of the allocation
381  *
382  * Invoke to map CPU address with PCI address.
383  */
384 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no,
385 		     phys_addr_t phys_addr, u64 pci_addr, size_t size)
386 {
387 	int ret;
388 
389 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
390 		return -EINVAL;
391 
392 	if (!epc->ops->map_addr)
393 		return 0;
394 
395 	mutex_lock(&epc->lock);
396 	ret = epc->ops->map_addr(epc, func_no, phys_addr, pci_addr, size);
397 	mutex_unlock(&epc->lock);
398 
399 	return ret;
400 }
401 EXPORT_SYMBOL_GPL(pci_epc_map_addr);
402 
403 /**
404  * pci_epc_clear_bar() - reset the BAR
405  * @epc: the EPC device for which the BAR has to be cleared
406  * @func_no: the endpoint function number in the EPC device
407  * @epf_bar: the struct epf_bar that contains the BAR information
408  *
409  * Invoke to reset the BAR of the endpoint device.
410  */
411 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no,
412 		       struct pci_epf_bar *epf_bar)
413 {
414 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
415 	    (epf_bar->barno == BAR_5 &&
416 	     epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
417 		return;
418 
419 	if (!epc->ops->clear_bar)
420 		return;
421 
422 	mutex_lock(&epc->lock);
423 	epc->ops->clear_bar(epc, func_no, epf_bar);
424 	mutex_unlock(&epc->lock);
425 }
426 EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
427 
428 /**
429  * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
430  * @epc: the EPC device on which BAR has to be configured
431  * @func_no: the endpoint function number in the EPC device
432  * @epf_bar: the struct epf_bar that contains the BAR information
433  *
434  * Invoke to configure the BAR of the endpoint device.
435  */
436 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no,
437 		    struct pci_epf_bar *epf_bar)
438 {
439 	int ret;
440 	int flags = epf_bar->flags;
441 
442 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
443 	    (epf_bar->barno == BAR_5 &&
444 	     flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
445 	    (flags & PCI_BASE_ADDRESS_SPACE_IO &&
446 	     flags & PCI_BASE_ADDRESS_IO_MASK) ||
447 	    (upper_32_bits(epf_bar->size) &&
448 	     !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
449 		return -EINVAL;
450 
451 	if (!epc->ops->set_bar)
452 		return 0;
453 
454 	mutex_lock(&epc->lock);
455 	ret = epc->ops->set_bar(epc, func_no, epf_bar);
456 	mutex_unlock(&epc->lock);
457 
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(pci_epc_set_bar);
461 
462 /**
463  * pci_epc_write_header() - write standard configuration header
464  * @epc: the EPC device to which the configuration header should be written
465  * @func_no: the endpoint function number in the EPC device
466  * @header: standard configuration header fields
467  *
468  * Invoke to write the configuration header to the endpoint controller. Every
469  * endpoint controller will have a dedicated location to which the standard
470  * configuration header would be written. The callback function should write
471  * the header fields to this dedicated location.
472  */
473 int pci_epc_write_header(struct pci_epc *epc, u8 func_no,
474 			 struct pci_epf_header *header)
475 {
476 	int ret;
477 
478 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
479 		return -EINVAL;
480 
481 	if (!epc->ops->write_header)
482 		return 0;
483 
484 	mutex_lock(&epc->lock);
485 	ret = epc->ops->write_header(epc, func_no, header);
486 	mutex_unlock(&epc->lock);
487 
488 	return ret;
489 }
490 EXPORT_SYMBOL_GPL(pci_epc_write_header);
491 
492 /**
493  * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
494  * @epc: the EPC device to which the endpoint function should be added
495  * @epf: the endpoint function to be added
496  *
497  * A PCI endpoint device can have one or more functions. In the case of PCIe,
498  * the specification allows up to 8 PCIe endpoint functions. Invoke
499  * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
500  */
501 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf)
502 {
503 	u32 func_no;
504 	int ret = 0;
505 
506 	if (epf->epc)
507 		return -EBUSY;
508 
509 	if (IS_ERR(epc))
510 		return -EINVAL;
511 
512 	mutex_lock(&epc->lock);
513 	func_no = find_first_zero_bit(&epc->function_num_map,
514 				      BITS_PER_LONG);
515 	if (func_no >= BITS_PER_LONG) {
516 		ret = -EINVAL;
517 		goto ret;
518 	}
519 
520 	if (func_no > epc->max_functions - 1) {
521 		dev_err(&epc->dev, "Exceeding max supported Function Number\n");
522 		ret = -EINVAL;
523 		goto ret;
524 	}
525 
526 	set_bit(func_no, &epc->function_num_map);
527 	epf->func_no = func_no;
528 	epf->epc = epc;
529 
530 	list_add_tail(&epf->list, &epc->pci_epf);
531 
532 ret:
533 	mutex_unlock(&epc->lock);
534 
535 	return ret;
536 }
537 EXPORT_SYMBOL_GPL(pci_epc_add_epf);
538 
539 /**
540  * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
541  * @epc: the EPC device from which the endpoint function should be removed
542  * @epf: the endpoint function to be removed
543  *
544  * Invoke to remove PCI endpoint function from the endpoint controller.
545  */
546 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf)
547 {
548 	if (!epc || IS_ERR(epc) || !epf)
549 		return;
550 
551 	mutex_lock(&epc->lock);
552 	clear_bit(epf->func_no, &epc->function_num_map);
553 	list_del(&epf->list);
554 	epf->epc = NULL;
555 	mutex_unlock(&epc->lock);
556 }
557 EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
558 
559 /**
560  * pci_epc_linkup() - Notify the EPF device that EPC device has established a
561  *		      connection with the Root Complex.
562  * @epc: the EPC device which has established link with the host
563  *
564  * Invoke to Notify the EPF device that the EPC device has established a
565  * connection with the Root Complex.
566  */
567 void pci_epc_linkup(struct pci_epc *epc)
568 {
569 	if (!epc || IS_ERR(epc))
570 		return;
571 
572 	atomic_notifier_call_chain(&epc->notifier, LINK_UP, NULL);
573 }
574 EXPORT_SYMBOL_GPL(pci_epc_linkup);
575 
576 /**
577  * pci_epc_init_notify() - Notify the EPF device that EPC device's core
578  *			   initialization is completed.
579  * @epc: the EPC device whose core initialization is completeds
580  *
581  * Invoke to Notify the EPF device that the EPC device's initialization
582  * is completed.
583  */
584 void pci_epc_init_notify(struct pci_epc *epc)
585 {
586 	if (!epc || IS_ERR(epc))
587 		return;
588 
589 	atomic_notifier_call_chain(&epc->notifier, CORE_INIT, NULL);
590 }
591 EXPORT_SYMBOL_GPL(pci_epc_init_notify);
592 
593 /**
594  * pci_epc_destroy() - destroy the EPC device
595  * @epc: the EPC device that has to be destroyed
596  *
597  * Invoke to destroy the PCI EPC device
598  */
599 void pci_epc_destroy(struct pci_epc *epc)
600 {
601 	pci_ep_cfs_remove_epc_group(epc->group);
602 	device_unregister(&epc->dev);
603 	kfree(epc);
604 }
605 EXPORT_SYMBOL_GPL(pci_epc_destroy);
606 
607 /**
608  * devm_pci_epc_destroy() - destroy the EPC device
609  * @dev: device that wants to destroy the EPC
610  * @epc: the EPC device that has to be destroyed
611  *
612  * Invoke to destroy the devres associated with this
613  * pci_epc and destroy the EPC device.
614  */
615 void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
616 {
617 	int r;
618 
619 	r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
620 			   epc);
621 	dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
622 }
623 EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
624 
625 /**
626  * __pci_epc_create() - create a new endpoint controller (EPC) device
627  * @dev: device that is creating the new EPC
628  * @ops: function pointers for performing EPC operations
629  * @owner: the owner of the module that creates the EPC device
630  *
631  * Invoke to create a new EPC device and add it to pci_epc class.
632  */
633 struct pci_epc *
634 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
635 		 struct module *owner)
636 {
637 	int ret;
638 	struct pci_epc *epc;
639 
640 	if (WARN_ON(!dev)) {
641 		ret = -EINVAL;
642 		goto err_ret;
643 	}
644 
645 	epc = kzalloc(sizeof(*epc), GFP_KERNEL);
646 	if (!epc) {
647 		ret = -ENOMEM;
648 		goto err_ret;
649 	}
650 
651 	mutex_init(&epc->lock);
652 	INIT_LIST_HEAD(&epc->pci_epf);
653 	ATOMIC_INIT_NOTIFIER_HEAD(&epc->notifier);
654 
655 	device_initialize(&epc->dev);
656 	epc->dev.class = pci_epc_class;
657 	epc->dev.parent = dev;
658 	epc->ops = ops;
659 
660 	ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
661 	if (ret)
662 		goto put_dev;
663 
664 	ret = device_add(&epc->dev);
665 	if (ret)
666 		goto put_dev;
667 
668 	epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
669 
670 	return epc;
671 
672 put_dev:
673 	put_device(&epc->dev);
674 	kfree(epc);
675 
676 err_ret:
677 	return ERR_PTR(ret);
678 }
679 EXPORT_SYMBOL_GPL(__pci_epc_create);
680 
681 /**
682  * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
683  * @dev: device that is creating the new EPC
684  * @ops: function pointers for performing EPC operations
685  * @owner: the owner of the module that creates the EPC device
686  *
687  * Invoke to create a new EPC device and add it to pci_epc class.
688  * While at that, it also associates the device with the pci_epc using devres.
689  * On driver detach, release function is invoked on the devres data,
690  * then, devres data is freed.
691  */
692 struct pci_epc *
693 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
694 		      struct module *owner)
695 {
696 	struct pci_epc **ptr, *epc;
697 
698 	ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
699 	if (!ptr)
700 		return ERR_PTR(-ENOMEM);
701 
702 	epc = __pci_epc_create(dev, ops, owner);
703 	if (!IS_ERR(epc)) {
704 		*ptr = epc;
705 		devres_add(dev, ptr);
706 	} else {
707 		devres_free(ptr);
708 	}
709 
710 	return epc;
711 }
712 EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
713 
714 static int __init pci_epc_init(void)
715 {
716 	pci_epc_class = class_create(THIS_MODULE, "pci_epc");
717 	if (IS_ERR(pci_epc_class)) {
718 		pr_err("failed to create pci epc class --> %ld\n",
719 		       PTR_ERR(pci_epc_class));
720 		return PTR_ERR(pci_epc_class);
721 	}
722 
723 	return 0;
724 }
725 module_init(pci_epc_init);
726 
727 static void __exit pci_epc_exit(void)
728 {
729 	class_destroy(pci_epc_class);
730 }
731 module_exit(pci_epc_exit);
732 
733 MODULE_DESCRIPTION("PCI EPC Library");
734 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
735 MODULE_LICENSE("GPL v2");
736