xref: /openbmc/linux/drivers/pci/endpoint/functions/pci-epf-test.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3  * Test driver to test endpoint functionality
4  *
5  * Copyright (C) 2017 Texas Instruments
6  * Author: Kishon Vijay Abraham I <kishon@ti.com>
7  */
8 
9 #include <linux/crc32.h>
10 #include <linux/delay.h>
11 #include <linux/dmaengine.h>
12 #include <linux/io.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/pci_ids.h>
16 #include <linux/random.h>
17 
18 #include <linux/pci-epc.h>
19 #include <linux/pci-epf.h>
20 #include <linux/pci_regs.h>
21 
22 #define IRQ_TYPE_LEGACY			0
23 #define IRQ_TYPE_MSI			1
24 #define IRQ_TYPE_MSIX			2
25 
26 #define COMMAND_RAISE_LEGACY_IRQ	BIT(0)
27 #define COMMAND_RAISE_MSI_IRQ		BIT(1)
28 #define COMMAND_RAISE_MSIX_IRQ		BIT(2)
29 #define COMMAND_READ			BIT(3)
30 #define COMMAND_WRITE			BIT(4)
31 #define COMMAND_COPY			BIT(5)
32 
33 #define STATUS_READ_SUCCESS		BIT(0)
34 #define STATUS_READ_FAIL		BIT(1)
35 #define STATUS_WRITE_SUCCESS		BIT(2)
36 #define STATUS_WRITE_FAIL		BIT(3)
37 #define STATUS_COPY_SUCCESS		BIT(4)
38 #define STATUS_COPY_FAIL		BIT(5)
39 #define STATUS_IRQ_RAISED		BIT(6)
40 #define STATUS_SRC_ADDR_INVALID		BIT(7)
41 #define STATUS_DST_ADDR_INVALID		BIT(8)
42 
43 #define FLAG_USE_DMA			BIT(0)
44 
45 #define TIMER_RESOLUTION		1
46 
47 static struct workqueue_struct *kpcitest_workqueue;
48 
49 struct pci_epf_test {
50 	void			*reg[PCI_STD_NUM_BARS];
51 	struct pci_epf		*epf;
52 	enum pci_barno		test_reg_bar;
53 	size_t			msix_table_offset;
54 	struct delayed_work	cmd_handler;
55 	struct dma_chan		*dma_chan;
56 	struct completion	transfer_complete;
57 	bool			dma_supported;
58 	const struct pci_epc_features *epc_features;
59 };
60 
61 struct pci_epf_test_reg {
62 	u32	magic;
63 	u32	command;
64 	u32	status;
65 	u64	src_addr;
66 	u64	dst_addr;
67 	u32	size;
68 	u32	checksum;
69 	u32	irq_type;
70 	u32	irq_number;
71 	u32	flags;
72 } __packed;
73 
74 static struct pci_epf_header test_header = {
75 	.vendorid	= PCI_ANY_ID,
76 	.deviceid	= PCI_ANY_ID,
77 	.baseclass_code = PCI_CLASS_OTHERS,
78 	.interrupt_pin	= PCI_INTERRUPT_INTA,
79 };
80 
81 static size_t bar_size[] = { 512, 512, 1024, 16384, 131072, 1048576 };
82 
83 static void pci_epf_test_dma_callback(void *param)
84 {
85 	struct pci_epf_test *epf_test = param;
86 
87 	complete(&epf_test->transfer_complete);
88 }
89 
90 /**
91  * pci_epf_test_data_transfer() - Function that uses dmaengine API to transfer
92  *				  data between PCIe EP and remote PCIe RC
93  * @epf_test: the EPF test device that performs the data transfer operation
94  * @dma_dst: The destination address of the data transfer. It can be a physical
95  *	     address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
96  * @dma_src: The source address of the data transfer. It can be a physical
97  *	     address given by pci_epc_mem_alloc_addr or DMA mapping APIs.
98  * @len: The size of the data transfer
99  *
100  * Function that uses dmaengine API to transfer data between PCIe EP and remote
101  * PCIe RC. The source and destination address can be a physical address given
102  * by pci_epc_mem_alloc_addr or the one obtained using DMA mapping APIs.
103  *
104  * The function returns '0' on success and negative value on failure.
105  */
106 static int pci_epf_test_data_transfer(struct pci_epf_test *epf_test,
107 				      dma_addr_t dma_dst, dma_addr_t dma_src,
108 				      size_t len)
109 {
110 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
111 	struct dma_chan *chan = epf_test->dma_chan;
112 	struct pci_epf *epf = epf_test->epf;
113 	struct dma_async_tx_descriptor *tx;
114 	struct device *dev = &epf->dev;
115 	dma_cookie_t cookie;
116 	int ret;
117 
118 	if (IS_ERR_OR_NULL(chan)) {
119 		dev_err(dev, "Invalid DMA memcpy channel\n");
120 		return -EINVAL;
121 	}
122 
123 	tx = dmaengine_prep_dma_memcpy(chan, dma_dst, dma_src, len, flags);
124 	if (!tx) {
125 		dev_err(dev, "Failed to prepare DMA memcpy\n");
126 		return -EIO;
127 	}
128 
129 	tx->callback = pci_epf_test_dma_callback;
130 	tx->callback_param = epf_test;
131 	cookie = tx->tx_submit(tx);
132 	reinit_completion(&epf_test->transfer_complete);
133 
134 	ret = dma_submit_error(cookie);
135 	if (ret) {
136 		dev_err(dev, "Failed to do DMA tx_submit %d\n", cookie);
137 		return -EIO;
138 	}
139 
140 	dma_async_issue_pending(chan);
141 	ret = wait_for_completion_interruptible(&epf_test->transfer_complete);
142 	if (ret < 0) {
143 		dmaengine_terminate_sync(chan);
144 		dev_err(dev, "DMA wait_for_completion_timeout\n");
145 		return -ETIMEDOUT;
146 	}
147 
148 	return 0;
149 }
150 
151 /**
152  * pci_epf_test_init_dma_chan() - Function to initialize EPF test DMA channel
153  * @epf_test: the EPF test device that performs data transfer operation
154  *
155  * Function to initialize EPF test DMA channel.
156  */
157 static int pci_epf_test_init_dma_chan(struct pci_epf_test *epf_test)
158 {
159 	struct pci_epf *epf = epf_test->epf;
160 	struct device *dev = &epf->dev;
161 	struct dma_chan *dma_chan;
162 	dma_cap_mask_t mask;
163 	int ret;
164 
165 	dma_cap_zero(mask);
166 	dma_cap_set(DMA_MEMCPY, mask);
167 
168 	dma_chan = dma_request_chan_by_mask(&mask);
169 	if (IS_ERR(dma_chan)) {
170 		ret = PTR_ERR(dma_chan);
171 		if (ret != -EPROBE_DEFER)
172 			dev_err(dev, "Failed to get DMA channel\n");
173 		return ret;
174 	}
175 	init_completion(&epf_test->transfer_complete);
176 
177 	epf_test->dma_chan = dma_chan;
178 
179 	return 0;
180 }
181 
182 /**
183  * pci_epf_test_clean_dma_chan() - Function to cleanup EPF test DMA channel
184  * @epf: the EPF test device that performs data transfer operation
185  *
186  * Helper to cleanup EPF test DMA channel.
187  */
188 static void pci_epf_test_clean_dma_chan(struct pci_epf_test *epf_test)
189 {
190 	dma_release_channel(epf_test->dma_chan);
191 	epf_test->dma_chan = NULL;
192 }
193 
194 static void pci_epf_test_print_rate(const char *ops, u64 size,
195 				    struct timespec64 *start,
196 				    struct timespec64 *end, bool dma)
197 {
198 	struct timespec64 ts;
199 	u64 rate, ns;
200 
201 	ts = timespec64_sub(*end, *start);
202 
203 	/* convert both size (stored in 'rate') and time in terms of 'ns' */
204 	ns = timespec64_to_ns(&ts);
205 	rate = size * NSEC_PER_SEC;
206 
207 	/* Divide both size (stored in 'rate') and ns by a common factor */
208 	while (ns > UINT_MAX) {
209 		rate >>= 1;
210 		ns >>= 1;
211 	}
212 
213 	if (!ns)
214 		return;
215 
216 	/* calculate the rate */
217 	do_div(rate, (uint32_t)ns);
218 
219 	pr_info("\n%s => Size: %llu bytes\t DMA: %s\t Time: %llu.%09u seconds\t"
220 		"Rate: %llu KB/s\n", ops, size, dma ? "YES" : "NO",
221 		(u64)ts.tv_sec, (u32)ts.tv_nsec, rate / 1024);
222 }
223 
224 static int pci_epf_test_copy(struct pci_epf_test *epf_test)
225 {
226 	int ret;
227 	bool use_dma;
228 	void __iomem *src_addr;
229 	void __iomem *dst_addr;
230 	phys_addr_t src_phys_addr;
231 	phys_addr_t dst_phys_addr;
232 	struct timespec64 start, end;
233 	struct pci_epf *epf = epf_test->epf;
234 	struct device *dev = &epf->dev;
235 	struct pci_epc *epc = epf->epc;
236 	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
237 	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
238 
239 	src_addr = pci_epc_mem_alloc_addr(epc, &src_phys_addr, reg->size);
240 	if (!src_addr) {
241 		dev_err(dev, "Failed to allocate source address\n");
242 		reg->status = STATUS_SRC_ADDR_INVALID;
243 		ret = -ENOMEM;
244 		goto err;
245 	}
246 
247 	ret = pci_epc_map_addr(epc, epf->func_no, src_phys_addr, reg->src_addr,
248 			       reg->size);
249 	if (ret) {
250 		dev_err(dev, "Failed to map source address\n");
251 		reg->status = STATUS_SRC_ADDR_INVALID;
252 		goto err_src_addr;
253 	}
254 
255 	dst_addr = pci_epc_mem_alloc_addr(epc, &dst_phys_addr, reg->size);
256 	if (!dst_addr) {
257 		dev_err(dev, "Failed to allocate destination address\n");
258 		reg->status = STATUS_DST_ADDR_INVALID;
259 		ret = -ENOMEM;
260 		goto err_src_map_addr;
261 	}
262 
263 	ret = pci_epc_map_addr(epc, epf->func_no, dst_phys_addr, reg->dst_addr,
264 			       reg->size);
265 	if (ret) {
266 		dev_err(dev, "Failed to map destination address\n");
267 		reg->status = STATUS_DST_ADDR_INVALID;
268 		goto err_dst_addr;
269 	}
270 
271 	ktime_get_ts64(&start);
272 	use_dma = !!(reg->flags & FLAG_USE_DMA);
273 	if (use_dma) {
274 		if (!epf_test->dma_supported) {
275 			dev_err(dev, "Cannot transfer data using DMA\n");
276 			ret = -EINVAL;
277 			goto err_map_addr;
278 		}
279 
280 		ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
281 						 src_phys_addr, reg->size);
282 		if (ret)
283 			dev_err(dev, "Data transfer failed\n");
284 	} else {
285 		memcpy(dst_addr, src_addr, reg->size);
286 	}
287 	ktime_get_ts64(&end);
288 	pci_epf_test_print_rate("COPY", reg->size, &start, &end, use_dma);
289 
290 err_map_addr:
291 	pci_epc_unmap_addr(epc, epf->func_no, dst_phys_addr);
292 
293 err_dst_addr:
294 	pci_epc_mem_free_addr(epc, dst_phys_addr, dst_addr, reg->size);
295 
296 err_src_map_addr:
297 	pci_epc_unmap_addr(epc, epf->func_no, src_phys_addr);
298 
299 err_src_addr:
300 	pci_epc_mem_free_addr(epc, src_phys_addr, src_addr, reg->size);
301 
302 err:
303 	return ret;
304 }
305 
306 static int pci_epf_test_read(struct pci_epf_test *epf_test)
307 {
308 	int ret;
309 	void __iomem *src_addr;
310 	void *buf;
311 	u32 crc32;
312 	bool use_dma;
313 	phys_addr_t phys_addr;
314 	phys_addr_t dst_phys_addr;
315 	struct timespec64 start, end;
316 	struct pci_epf *epf = epf_test->epf;
317 	struct device *dev = &epf->dev;
318 	struct pci_epc *epc = epf->epc;
319 	struct device *dma_dev = epf->epc->dev.parent;
320 	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
321 	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
322 
323 	src_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
324 	if (!src_addr) {
325 		dev_err(dev, "Failed to allocate address\n");
326 		reg->status = STATUS_SRC_ADDR_INVALID;
327 		ret = -ENOMEM;
328 		goto err;
329 	}
330 
331 	ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->src_addr,
332 			       reg->size);
333 	if (ret) {
334 		dev_err(dev, "Failed to map address\n");
335 		reg->status = STATUS_SRC_ADDR_INVALID;
336 		goto err_addr;
337 	}
338 
339 	buf = kzalloc(reg->size, GFP_KERNEL);
340 	if (!buf) {
341 		ret = -ENOMEM;
342 		goto err_map_addr;
343 	}
344 
345 	use_dma = !!(reg->flags & FLAG_USE_DMA);
346 	if (use_dma) {
347 		if (!epf_test->dma_supported) {
348 			dev_err(dev, "Cannot transfer data using DMA\n");
349 			ret = -EINVAL;
350 			goto err_dma_map;
351 		}
352 
353 		dst_phys_addr = dma_map_single(dma_dev, buf, reg->size,
354 					       DMA_FROM_DEVICE);
355 		if (dma_mapping_error(dma_dev, dst_phys_addr)) {
356 			dev_err(dev, "Failed to map destination buffer addr\n");
357 			ret = -ENOMEM;
358 			goto err_dma_map;
359 		}
360 
361 		ktime_get_ts64(&start);
362 		ret = pci_epf_test_data_transfer(epf_test, dst_phys_addr,
363 						 phys_addr, reg->size);
364 		if (ret)
365 			dev_err(dev, "Data transfer failed\n");
366 		ktime_get_ts64(&end);
367 
368 		dma_unmap_single(dma_dev, dst_phys_addr, reg->size,
369 				 DMA_FROM_DEVICE);
370 	} else {
371 		ktime_get_ts64(&start);
372 		memcpy_fromio(buf, src_addr, reg->size);
373 		ktime_get_ts64(&end);
374 	}
375 
376 	pci_epf_test_print_rate("READ", reg->size, &start, &end, use_dma);
377 
378 	crc32 = crc32_le(~0, buf, reg->size);
379 	if (crc32 != reg->checksum)
380 		ret = -EIO;
381 
382 err_dma_map:
383 	kfree(buf);
384 
385 err_map_addr:
386 	pci_epc_unmap_addr(epc, epf->func_no, phys_addr);
387 
388 err_addr:
389 	pci_epc_mem_free_addr(epc, phys_addr, src_addr, reg->size);
390 
391 err:
392 	return ret;
393 }
394 
395 static int pci_epf_test_write(struct pci_epf_test *epf_test)
396 {
397 	int ret;
398 	void __iomem *dst_addr;
399 	void *buf;
400 	bool use_dma;
401 	phys_addr_t phys_addr;
402 	phys_addr_t src_phys_addr;
403 	struct timespec64 start, end;
404 	struct pci_epf *epf = epf_test->epf;
405 	struct device *dev = &epf->dev;
406 	struct pci_epc *epc = epf->epc;
407 	struct device *dma_dev = epf->epc->dev.parent;
408 	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
409 	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
410 
411 	dst_addr = pci_epc_mem_alloc_addr(epc, &phys_addr, reg->size);
412 	if (!dst_addr) {
413 		dev_err(dev, "Failed to allocate address\n");
414 		reg->status = STATUS_DST_ADDR_INVALID;
415 		ret = -ENOMEM;
416 		goto err;
417 	}
418 
419 	ret = pci_epc_map_addr(epc, epf->func_no, phys_addr, reg->dst_addr,
420 			       reg->size);
421 	if (ret) {
422 		dev_err(dev, "Failed to map address\n");
423 		reg->status = STATUS_DST_ADDR_INVALID;
424 		goto err_addr;
425 	}
426 
427 	buf = kzalloc(reg->size, GFP_KERNEL);
428 	if (!buf) {
429 		ret = -ENOMEM;
430 		goto err_map_addr;
431 	}
432 
433 	get_random_bytes(buf, reg->size);
434 	reg->checksum = crc32_le(~0, buf, reg->size);
435 
436 	use_dma = !!(reg->flags & FLAG_USE_DMA);
437 	if (use_dma) {
438 		if (!epf_test->dma_supported) {
439 			dev_err(dev, "Cannot transfer data using DMA\n");
440 			ret = -EINVAL;
441 			goto err_map_addr;
442 		}
443 
444 		src_phys_addr = dma_map_single(dma_dev, buf, reg->size,
445 					       DMA_TO_DEVICE);
446 		if (dma_mapping_error(dma_dev, src_phys_addr)) {
447 			dev_err(dev, "Failed to map source buffer addr\n");
448 			ret = -ENOMEM;
449 			goto err_dma_map;
450 		}
451 
452 		ktime_get_ts64(&start);
453 		ret = pci_epf_test_data_transfer(epf_test, phys_addr,
454 						 src_phys_addr, reg->size);
455 		if (ret)
456 			dev_err(dev, "Data transfer failed\n");
457 		ktime_get_ts64(&end);
458 
459 		dma_unmap_single(dma_dev, src_phys_addr, reg->size,
460 				 DMA_TO_DEVICE);
461 	} else {
462 		ktime_get_ts64(&start);
463 		memcpy_toio(dst_addr, buf, reg->size);
464 		ktime_get_ts64(&end);
465 	}
466 
467 	pci_epf_test_print_rate("WRITE", reg->size, &start, &end, use_dma);
468 
469 	/*
470 	 * wait 1ms inorder for the write to complete. Without this delay L3
471 	 * error in observed in the host system.
472 	 */
473 	usleep_range(1000, 2000);
474 
475 err_dma_map:
476 	kfree(buf);
477 
478 err_map_addr:
479 	pci_epc_unmap_addr(epc, epf->func_no, phys_addr);
480 
481 err_addr:
482 	pci_epc_mem_free_addr(epc, phys_addr, dst_addr, reg->size);
483 
484 err:
485 	return ret;
486 }
487 
488 static void pci_epf_test_raise_irq(struct pci_epf_test *epf_test, u8 irq_type,
489 				   u16 irq)
490 {
491 	struct pci_epf *epf = epf_test->epf;
492 	struct device *dev = &epf->dev;
493 	struct pci_epc *epc = epf->epc;
494 	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
495 	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
496 
497 	reg->status |= STATUS_IRQ_RAISED;
498 
499 	switch (irq_type) {
500 	case IRQ_TYPE_LEGACY:
501 		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0);
502 		break;
503 	case IRQ_TYPE_MSI:
504 		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI, irq);
505 		break;
506 	case IRQ_TYPE_MSIX:
507 		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX, irq);
508 		break;
509 	default:
510 		dev_err(dev, "Failed to raise IRQ, unknown type\n");
511 		break;
512 	}
513 }
514 
515 static void pci_epf_test_cmd_handler(struct work_struct *work)
516 {
517 	int ret;
518 	int count;
519 	u32 command;
520 	struct pci_epf_test *epf_test = container_of(work, struct pci_epf_test,
521 						     cmd_handler.work);
522 	struct pci_epf *epf = epf_test->epf;
523 	struct device *dev = &epf->dev;
524 	struct pci_epc *epc = epf->epc;
525 	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
526 	struct pci_epf_test_reg *reg = epf_test->reg[test_reg_bar];
527 
528 	command = reg->command;
529 	if (!command)
530 		goto reset_handler;
531 
532 	reg->command = 0;
533 	reg->status = 0;
534 
535 	if (reg->irq_type > IRQ_TYPE_MSIX) {
536 		dev_err(dev, "Failed to detect IRQ type\n");
537 		goto reset_handler;
538 	}
539 
540 	if (command & COMMAND_RAISE_LEGACY_IRQ) {
541 		reg->status = STATUS_IRQ_RAISED;
542 		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_LEGACY, 0);
543 		goto reset_handler;
544 	}
545 
546 	if (command & COMMAND_WRITE) {
547 		ret = pci_epf_test_write(epf_test);
548 		if (ret)
549 			reg->status |= STATUS_WRITE_FAIL;
550 		else
551 			reg->status |= STATUS_WRITE_SUCCESS;
552 		pci_epf_test_raise_irq(epf_test, reg->irq_type,
553 				       reg->irq_number);
554 		goto reset_handler;
555 	}
556 
557 	if (command & COMMAND_READ) {
558 		ret = pci_epf_test_read(epf_test);
559 		if (!ret)
560 			reg->status |= STATUS_READ_SUCCESS;
561 		else
562 			reg->status |= STATUS_READ_FAIL;
563 		pci_epf_test_raise_irq(epf_test, reg->irq_type,
564 				       reg->irq_number);
565 		goto reset_handler;
566 	}
567 
568 	if (command & COMMAND_COPY) {
569 		ret = pci_epf_test_copy(epf_test);
570 		if (!ret)
571 			reg->status |= STATUS_COPY_SUCCESS;
572 		else
573 			reg->status |= STATUS_COPY_FAIL;
574 		pci_epf_test_raise_irq(epf_test, reg->irq_type,
575 				       reg->irq_number);
576 		goto reset_handler;
577 	}
578 
579 	if (command & COMMAND_RAISE_MSI_IRQ) {
580 		count = pci_epc_get_msi(epc, epf->func_no);
581 		if (reg->irq_number > count || count <= 0)
582 			goto reset_handler;
583 		reg->status = STATUS_IRQ_RAISED;
584 		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSI,
585 				  reg->irq_number);
586 		goto reset_handler;
587 	}
588 
589 	if (command & COMMAND_RAISE_MSIX_IRQ) {
590 		count = pci_epc_get_msix(epc, epf->func_no);
591 		if (reg->irq_number > count || count <= 0)
592 			goto reset_handler;
593 		reg->status = STATUS_IRQ_RAISED;
594 		pci_epc_raise_irq(epc, epf->func_no, PCI_EPC_IRQ_MSIX,
595 				  reg->irq_number);
596 		goto reset_handler;
597 	}
598 
599 reset_handler:
600 	queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
601 			   msecs_to_jiffies(1));
602 }
603 
604 static void pci_epf_test_unbind(struct pci_epf *epf)
605 {
606 	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
607 	struct pci_epc *epc = epf->epc;
608 	struct pci_epf_bar *epf_bar;
609 	int bar;
610 
611 	cancel_delayed_work(&epf_test->cmd_handler);
612 	pci_epf_test_clean_dma_chan(epf_test);
613 	pci_epc_stop(epc);
614 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar++) {
615 		epf_bar = &epf->bar[bar];
616 
617 		if (epf_test->reg[bar]) {
618 			pci_epc_clear_bar(epc, epf->func_no, epf_bar);
619 			pci_epf_free_space(epf, epf_test->reg[bar], bar);
620 		}
621 	}
622 }
623 
624 static int pci_epf_test_set_bar(struct pci_epf *epf)
625 {
626 	int bar, add;
627 	int ret;
628 	struct pci_epf_bar *epf_bar;
629 	struct pci_epc *epc = epf->epc;
630 	struct device *dev = &epf->dev;
631 	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
632 	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
633 	const struct pci_epc_features *epc_features;
634 
635 	epc_features = epf_test->epc_features;
636 
637 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
638 		epf_bar = &epf->bar[bar];
639 		/*
640 		 * pci_epc_set_bar() sets PCI_BASE_ADDRESS_MEM_TYPE_64
641 		 * if the specific implementation required a 64-bit BAR,
642 		 * even if we only requested a 32-bit BAR.
643 		 */
644 		add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
645 
646 		if (!!(epc_features->reserved_bar & (1 << bar)))
647 			continue;
648 
649 		ret = pci_epc_set_bar(epc, epf->func_no, epf_bar);
650 		if (ret) {
651 			pci_epf_free_space(epf, epf_test->reg[bar], bar);
652 			dev_err(dev, "Failed to set BAR%d\n", bar);
653 			if (bar == test_reg_bar)
654 				return ret;
655 		}
656 	}
657 
658 	return 0;
659 }
660 
661 static int pci_epf_test_core_init(struct pci_epf *epf)
662 {
663 	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
664 	struct pci_epf_header *header = epf->header;
665 	const struct pci_epc_features *epc_features;
666 	struct pci_epc *epc = epf->epc;
667 	struct device *dev = &epf->dev;
668 	bool msix_capable = false;
669 	bool msi_capable = true;
670 	int ret;
671 
672 	epc_features = pci_epc_get_features(epc, epf->func_no);
673 	if (epc_features) {
674 		msix_capable = epc_features->msix_capable;
675 		msi_capable = epc_features->msi_capable;
676 	}
677 
678 	ret = pci_epc_write_header(epc, epf->func_no, header);
679 	if (ret) {
680 		dev_err(dev, "Configuration header write failed\n");
681 		return ret;
682 	}
683 
684 	ret = pci_epf_test_set_bar(epf);
685 	if (ret)
686 		return ret;
687 
688 	if (msi_capable) {
689 		ret = pci_epc_set_msi(epc, epf->func_no, epf->msi_interrupts);
690 		if (ret) {
691 			dev_err(dev, "MSI configuration failed\n");
692 			return ret;
693 		}
694 	}
695 
696 	if (msix_capable) {
697 		ret = pci_epc_set_msix(epc, epf->func_no, epf->msix_interrupts,
698 				       epf_test->test_reg_bar,
699 				       epf_test->msix_table_offset);
700 		if (ret) {
701 			dev_err(dev, "MSI-X configuration failed\n");
702 			return ret;
703 		}
704 	}
705 
706 	return 0;
707 }
708 
709 static int pci_epf_test_notifier(struct notifier_block *nb, unsigned long val,
710 				 void *data)
711 {
712 	struct pci_epf *epf = container_of(nb, struct pci_epf, nb);
713 	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
714 	int ret;
715 
716 	switch (val) {
717 	case CORE_INIT:
718 		ret = pci_epf_test_core_init(epf);
719 		if (ret)
720 			return NOTIFY_BAD;
721 		break;
722 
723 	case LINK_UP:
724 		queue_delayed_work(kpcitest_workqueue, &epf_test->cmd_handler,
725 				   msecs_to_jiffies(1));
726 		break;
727 
728 	default:
729 		dev_err(&epf->dev, "Invalid EPF test notifier event\n");
730 		return NOTIFY_BAD;
731 	}
732 
733 	return NOTIFY_OK;
734 }
735 
736 static int pci_epf_test_alloc_space(struct pci_epf *epf)
737 {
738 	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
739 	struct device *dev = &epf->dev;
740 	struct pci_epf_bar *epf_bar;
741 	size_t msix_table_size = 0;
742 	size_t test_reg_bar_size;
743 	size_t pba_size = 0;
744 	bool msix_capable;
745 	void *base;
746 	int bar, add;
747 	enum pci_barno test_reg_bar = epf_test->test_reg_bar;
748 	const struct pci_epc_features *epc_features;
749 	size_t test_reg_size;
750 
751 	epc_features = epf_test->epc_features;
752 
753 	test_reg_bar_size = ALIGN(sizeof(struct pci_epf_test_reg), 128);
754 
755 	msix_capable = epc_features->msix_capable;
756 	if (msix_capable) {
757 		msix_table_size = PCI_MSIX_ENTRY_SIZE * epf->msix_interrupts;
758 		epf_test->msix_table_offset = test_reg_bar_size;
759 		/* Align to QWORD or 8 Bytes */
760 		pba_size = ALIGN(DIV_ROUND_UP(epf->msix_interrupts, 8), 8);
761 	}
762 	test_reg_size = test_reg_bar_size + msix_table_size + pba_size;
763 
764 	if (epc_features->bar_fixed_size[test_reg_bar]) {
765 		if (test_reg_size > bar_size[test_reg_bar])
766 			return -ENOMEM;
767 		test_reg_size = bar_size[test_reg_bar];
768 	}
769 
770 	base = pci_epf_alloc_space(epf, test_reg_size, test_reg_bar,
771 				   epc_features->align);
772 	if (!base) {
773 		dev_err(dev, "Failed to allocated register space\n");
774 		return -ENOMEM;
775 	}
776 	epf_test->reg[test_reg_bar] = base;
777 
778 	for (bar = 0; bar < PCI_STD_NUM_BARS; bar += add) {
779 		epf_bar = &epf->bar[bar];
780 		add = (epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ? 2 : 1;
781 
782 		if (bar == test_reg_bar)
783 			continue;
784 
785 		if (!!(epc_features->reserved_bar & (1 << bar)))
786 			continue;
787 
788 		base = pci_epf_alloc_space(epf, bar_size[bar], bar,
789 					   epc_features->align);
790 		if (!base)
791 			dev_err(dev, "Failed to allocate space for BAR%d\n",
792 				bar);
793 		epf_test->reg[bar] = base;
794 	}
795 
796 	return 0;
797 }
798 
799 static void pci_epf_configure_bar(struct pci_epf *epf,
800 				  const struct pci_epc_features *epc_features)
801 {
802 	struct pci_epf_bar *epf_bar;
803 	bool bar_fixed_64bit;
804 	int i;
805 
806 	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
807 		epf_bar = &epf->bar[i];
808 		bar_fixed_64bit = !!(epc_features->bar_fixed_64bit & (1 << i));
809 		if (bar_fixed_64bit)
810 			epf_bar->flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
811 		if (epc_features->bar_fixed_size[i])
812 			bar_size[i] = epc_features->bar_fixed_size[i];
813 	}
814 }
815 
816 static int pci_epf_test_bind(struct pci_epf *epf)
817 {
818 	int ret;
819 	struct pci_epf_test *epf_test = epf_get_drvdata(epf);
820 	const struct pci_epc_features *epc_features;
821 	enum pci_barno test_reg_bar = BAR_0;
822 	struct pci_epc *epc = epf->epc;
823 	bool linkup_notifier = false;
824 	bool core_init_notifier = false;
825 
826 	if (WARN_ON_ONCE(!epc))
827 		return -EINVAL;
828 
829 	epc_features = pci_epc_get_features(epc, epf->func_no);
830 	if (epc_features) {
831 		linkup_notifier = epc_features->linkup_notifier;
832 		core_init_notifier = epc_features->core_init_notifier;
833 		test_reg_bar = pci_epc_get_first_free_bar(epc_features);
834 		pci_epf_configure_bar(epf, epc_features);
835 	}
836 
837 	epf_test->test_reg_bar = test_reg_bar;
838 	epf_test->epc_features = epc_features;
839 
840 	ret = pci_epf_test_alloc_space(epf);
841 	if (ret)
842 		return ret;
843 
844 	if (!core_init_notifier) {
845 		ret = pci_epf_test_core_init(epf);
846 		if (ret)
847 			return ret;
848 	}
849 
850 	epf_test->dma_supported = true;
851 
852 	ret = pci_epf_test_init_dma_chan(epf_test);
853 	if (ret)
854 		epf_test->dma_supported = false;
855 
856 	if (linkup_notifier) {
857 		epf->nb.notifier_call = pci_epf_test_notifier;
858 		pci_epc_register_notifier(epc, &epf->nb);
859 	} else {
860 		queue_work(kpcitest_workqueue, &epf_test->cmd_handler.work);
861 	}
862 
863 	return 0;
864 }
865 
866 static const struct pci_epf_device_id pci_epf_test_ids[] = {
867 	{
868 		.name = "pci_epf_test",
869 	},
870 	{},
871 };
872 
873 static int pci_epf_test_probe(struct pci_epf *epf)
874 {
875 	struct pci_epf_test *epf_test;
876 	struct device *dev = &epf->dev;
877 
878 	epf_test = devm_kzalloc(dev, sizeof(*epf_test), GFP_KERNEL);
879 	if (!epf_test)
880 		return -ENOMEM;
881 
882 	epf->header = &test_header;
883 	epf_test->epf = epf;
884 
885 	INIT_DELAYED_WORK(&epf_test->cmd_handler, pci_epf_test_cmd_handler);
886 
887 	epf_set_drvdata(epf, epf_test);
888 	return 0;
889 }
890 
891 static struct pci_epf_ops ops = {
892 	.unbind	= pci_epf_test_unbind,
893 	.bind	= pci_epf_test_bind,
894 };
895 
896 static struct pci_epf_driver test_driver = {
897 	.driver.name	= "pci_epf_test",
898 	.probe		= pci_epf_test_probe,
899 	.id_table	= pci_epf_test_ids,
900 	.ops		= &ops,
901 	.owner		= THIS_MODULE,
902 };
903 
904 static int __init pci_epf_test_init(void)
905 {
906 	int ret;
907 
908 	kpcitest_workqueue = alloc_workqueue("kpcitest",
909 					     WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
910 	if (!kpcitest_workqueue) {
911 		pr_err("Failed to allocate the kpcitest work queue\n");
912 		return -ENOMEM;
913 	}
914 
915 	ret = pci_epf_register_driver(&test_driver);
916 	if (ret) {
917 		pr_err("Failed to register pci epf test driver --> %d\n", ret);
918 		return ret;
919 	}
920 
921 	return 0;
922 }
923 module_init(pci_epf_test_init);
924 
925 static void __exit pci_epf_test_exit(void)
926 {
927 	pci_epf_unregister_driver(&test_driver);
928 }
929 module_exit(pci_epf_test_exit);
930 
931 MODULE_DESCRIPTION("PCI EPF TEST DRIVER");
932 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
933 MODULE_LICENSE("GPL v2");
934