xref: /openbmc/linux/drivers/pci/endpoint/functions/pci-epf-mhi.c (revision 32bc7297d855608fcb13af62a95739a079b4f8e2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI EPF driver for MHI Endpoint devices
4  *
5  * Copyright (C) 2023 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/mhi_ep.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/pci-epc.h>
13 #include <linux/pci-epf.h>
14 
15 #define MHI_VERSION_1_0 0x01000000
16 
17 #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
18 
19 struct pci_epf_mhi_ep_info {
20 	const struct mhi_ep_cntrl_config *config;
21 	struct pci_epf_header *epf_header;
22 	enum pci_barno bar_num;
23 	u32 epf_flags;
24 	u32 msi_count;
25 	u32 mru;
26 };
27 
28 #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction)	\
29 	{							\
30 		.num = ch_num,					\
31 		.name = ch_name,				\
32 		.dir = direction,				\
33 	}
34 
35 #define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name)		\
36 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
37 
38 #define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name)		\
39 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
40 
41 static const struct mhi_ep_channel_config mhi_v1_channels[] = {
42 	MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
43 	MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
44 	MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
45 	MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
46 	MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
47 	MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
48 	MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
49 	MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
50 	MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
51 	MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
52 	MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
53 	MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
54 	MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
55 	MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
56 	MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
57 	MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
58 	MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
59 	MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
60 	MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
61 	MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
62 	MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
63 	MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
64 	MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
65 	MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
66 	MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
67 	MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
68 };
69 
70 static const struct mhi_ep_cntrl_config mhi_v1_config = {
71 	.max_channels = 128,
72 	.num_channels = ARRAY_SIZE(mhi_v1_channels),
73 	.ch_cfg = mhi_v1_channels,
74 	.mhi_version = MHI_VERSION_1_0,
75 };
76 
77 static struct pci_epf_header sdx55_header = {
78 	.vendorid = PCI_VENDOR_ID_QCOM,
79 	.deviceid = 0x0306,
80 	.baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
81 	.subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
82 	.interrupt_pin	= PCI_INTERRUPT_INTA,
83 };
84 
85 static const struct pci_epf_mhi_ep_info sdx55_info = {
86 	.config = &mhi_v1_config,
87 	.epf_header = &sdx55_header,
88 	.bar_num = BAR_0,
89 	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
90 	.msi_count = 32,
91 	.mru = 0x8000,
92 };
93 
94 struct pci_epf_mhi {
95 	const struct pci_epf_mhi_ep_info *info;
96 	struct mhi_ep_cntrl mhi_cntrl;
97 	struct pci_epf *epf;
98 	struct mutex lock;
99 	void __iomem *mmio;
100 	resource_size_t mmio_phys;
101 	u32 mmio_size;
102 	int irq;
103 };
104 
105 static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
106 				 phys_addr_t *paddr, void __iomem **vaddr,
107 				 size_t offset, size_t size)
108 {
109 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
110 	struct pci_epf *epf = epf_mhi->epf;
111 	struct pci_epc *epc = epf->epc;
112 	int ret;
113 
114 	*vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
115 	if (!*vaddr)
116 		return -ENOMEM;
117 
118 	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
119 			       pci_addr - offset, size + offset);
120 	if (ret) {
121 		pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
122 		return ret;
123 	}
124 
125 	*paddr = *paddr + offset;
126 	*vaddr = *vaddr + offset;
127 
128 	return 0;
129 }
130 
131 static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
132 				 phys_addr_t *paddr, void __iomem **vaddr,
133 				 size_t size)
134 {
135 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
136 	struct pci_epc *epc = epf_mhi->epf->epc;
137 	size_t offset = pci_addr & (epc->mem->window.page_size - 1);
138 
139 	return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
140 				      offset, size);
141 }
142 
143 static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
144 				     u64 pci_addr, phys_addr_t paddr,
145 				     void __iomem *vaddr, size_t offset,
146 				     size_t size)
147 {
148 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
149 	struct pci_epf *epf = epf_mhi->epf;
150 	struct pci_epc *epc = epf->epc;
151 
152 	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
153 	pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
154 			      size + offset);
155 }
156 
157 static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
158 				   phys_addr_t paddr, void __iomem *vaddr,
159 				   size_t size)
160 {
161 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
162 	struct pci_epf *epf = epf_mhi->epf;
163 	struct pci_epc *epc = epf->epc;
164 	size_t offset = pci_addr & (epc->mem->window.page_size - 1);
165 
166 	__pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
167 				 size);
168 }
169 
170 static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
171 {
172 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
173 	struct pci_epf *epf = epf_mhi->epf;
174 	struct pci_epc *epc = epf->epc;
175 
176 	/*
177 	 * MHI supplies 0 based MSI vectors but the API expects the vector
178 	 * number to start from 1, so we need to increment the vector by 1.
179 	 */
180 	pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_EPC_IRQ_MSI,
181 			  vector + 1);
182 }
183 
184 static int pci_epf_mhi_read_from_host(struct mhi_ep_cntrl *mhi_cntrl, u64 from,
185 				      void *to, size_t size)
186 {
187 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
188 	size_t offset = from % SZ_4K;
189 	void __iomem *tre_buf;
190 	phys_addr_t tre_phys;
191 	int ret;
192 
193 	mutex_lock(&epf_mhi->lock);
194 
195 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, from, &tre_phys, &tre_buf,
196 				      offset, size);
197 	if (ret) {
198 		mutex_unlock(&epf_mhi->lock);
199 		return ret;
200 	}
201 
202 	memcpy_fromio(to, tre_buf, size);
203 
204 	__pci_epf_mhi_unmap_free(mhi_cntrl, from, tre_phys, tre_buf, offset,
205 				 size);
206 
207 	mutex_unlock(&epf_mhi->lock);
208 
209 	return 0;
210 }
211 
212 static int pci_epf_mhi_write_to_host(struct mhi_ep_cntrl *mhi_cntrl,
213 				     void *from, u64 to, size_t size)
214 {
215 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
216 	size_t offset = to % SZ_4K;
217 	void __iomem *tre_buf;
218 	phys_addr_t tre_phys;
219 	int ret;
220 
221 	mutex_lock(&epf_mhi->lock);
222 
223 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, to, &tre_phys, &tre_buf,
224 				      offset, size);
225 	if (ret) {
226 		mutex_unlock(&epf_mhi->lock);
227 		return ret;
228 	}
229 
230 	memcpy_toio(tre_buf, from, size);
231 
232 	__pci_epf_mhi_unmap_free(mhi_cntrl, to, tre_phys, tre_buf, offset,
233 				 size);
234 
235 	mutex_unlock(&epf_mhi->lock);
236 
237 	return 0;
238 }
239 
240 static int pci_epf_mhi_core_init(struct pci_epf *epf)
241 {
242 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
243 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
244 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
245 	struct pci_epc *epc = epf->epc;
246 	struct device *dev = &epf->dev;
247 	int ret;
248 
249 	epf_bar->phys_addr = epf_mhi->mmio_phys;
250 	epf_bar->size = epf_mhi->mmio_size;
251 	epf_bar->barno = info->bar_num;
252 	epf_bar->flags = info->epf_flags;
253 	ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
254 	if (ret) {
255 		dev_err(dev, "Failed to set BAR: %d\n", ret);
256 		return ret;
257 	}
258 
259 	ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
260 			      order_base_2(info->msi_count));
261 	if (ret) {
262 		dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
263 		return ret;
264 	}
265 
266 	ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
267 				   epf->header);
268 	if (ret) {
269 		dev_err(dev, "Failed to set Configuration header: %d\n", ret);
270 		return ret;
271 	}
272 
273 	return 0;
274 }
275 
276 static int pci_epf_mhi_link_up(struct pci_epf *epf)
277 {
278 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
279 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
280 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
281 	struct pci_epc *epc = epf->epc;
282 	struct device *dev = &epf->dev;
283 	int ret;
284 
285 	mhi_cntrl->mmio = epf_mhi->mmio;
286 	mhi_cntrl->irq = epf_mhi->irq;
287 	mhi_cntrl->mru = info->mru;
288 
289 	/* Assign the struct dev of PCI EP as MHI controller device */
290 	mhi_cntrl->cntrl_dev = epc->dev.parent;
291 	mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
292 	mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
293 	mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
294 	mhi_cntrl->read_from_host = pci_epf_mhi_read_from_host;
295 	mhi_cntrl->write_to_host = pci_epf_mhi_write_to_host;
296 
297 	/* Register the MHI EP controller */
298 	ret = mhi_ep_register_controller(mhi_cntrl, info->config);
299 	if (ret) {
300 		dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
301 		return ret;
302 	}
303 
304 	return 0;
305 }
306 
307 static int pci_epf_mhi_link_down(struct pci_epf *epf)
308 {
309 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
310 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
311 
312 	if (mhi_cntrl->mhi_dev) {
313 		mhi_ep_power_down(mhi_cntrl);
314 		mhi_ep_unregister_controller(mhi_cntrl);
315 	}
316 
317 	return 0;
318 }
319 
320 static int pci_epf_mhi_bme(struct pci_epf *epf)
321 {
322 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
323 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
324 	struct device *dev = &epf->dev;
325 	int ret;
326 
327 	/*
328 	 * Power up the MHI EP stack if link is up and stack is in power down
329 	 * state.
330 	 */
331 	if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
332 		ret = mhi_ep_power_up(mhi_cntrl);
333 		if (ret) {
334 			dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
335 			mhi_ep_unregister_controller(mhi_cntrl);
336 		}
337 	}
338 
339 	return 0;
340 }
341 
342 static int pci_epf_mhi_bind(struct pci_epf *epf)
343 {
344 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
345 	struct pci_epc *epc = epf->epc;
346 	struct platform_device *pdev = to_platform_device(epc->dev.parent);
347 	struct resource *res;
348 	int ret;
349 
350 	/* Get MMIO base address from Endpoint controller */
351 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
352 	epf_mhi->mmio_phys = res->start;
353 	epf_mhi->mmio_size = resource_size(res);
354 
355 	epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
356 	if (!epf_mhi->mmio)
357 		return -ENOMEM;
358 
359 	ret = platform_get_irq_byname(pdev, "doorbell");
360 	if (ret < 0) {
361 		iounmap(epf_mhi->mmio);
362 		return ret;
363 	}
364 
365 	epf_mhi->irq = ret;
366 
367 	return 0;
368 }
369 
370 static void pci_epf_mhi_unbind(struct pci_epf *epf)
371 {
372 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
373 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
374 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
375 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
376 	struct pci_epc *epc = epf->epc;
377 
378 	/*
379 	 * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
380 	 * stack back to working state after successive bind is by getting BME
381 	 * from host.
382 	 */
383 	if (mhi_cntrl->mhi_dev) {
384 		mhi_ep_power_down(mhi_cntrl);
385 		mhi_ep_unregister_controller(mhi_cntrl);
386 	}
387 
388 	iounmap(epf_mhi->mmio);
389 	pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
390 }
391 
392 static struct pci_epc_event_ops pci_epf_mhi_event_ops = {
393 	.core_init = pci_epf_mhi_core_init,
394 	.link_up = pci_epf_mhi_link_up,
395 	.link_down = pci_epf_mhi_link_down,
396 	.bme = pci_epf_mhi_bme,
397 };
398 
399 static int pci_epf_mhi_probe(struct pci_epf *epf,
400 			     const struct pci_epf_device_id *id)
401 {
402 	struct pci_epf_mhi_ep_info *info =
403 			(struct pci_epf_mhi_ep_info *)id->driver_data;
404 	struct pci_epf_mhi *epf_mhi;
405 	struct device *dev = &epf->dev;
406 
407 	epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
408 	if (!epf_mhi)
409 		return -ENOMEM;
410 
411 	epf->header = info->epf_header;
412 	epf_mhi->info = info;
413 	epf_mhi->epf = epf;
414 
415 	epf->event_ops = &pci_epf_mhi_event_ops;
416 
417 	mutex_init(&epf_mhi->lock);
418 
419 	epf_set_drvdata(epf, epf_mhi);
420 
421 	return 0;
422 }
423 
424 static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
425 	{
426 		.name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info,
427 	},
428 	{},
429 };
430 
431 static struct pci_epf_ops pci_epf_mhi_ops = {
432 	.unbind	= pci_epf_mhi_unbind,
433 	.bind	= pci_epf_mhi_bind,
434 };
435 
436 static struct pci_epf_driver pci_epf_mhi_driver = {
437 	.driver.name	= "pci_epf_mhi",
438 	.probe		= pci_epf_mhi_probe,
439 	.id_table	= pci_epf_mhi_ids,
440 	.ops		= &pci_epf_mhi_ops,
441 	.owner		= THIS_MODULE,
442 };
443 
444 static int __init pci_epf_mhi_init(void)
445 {
446 	return pci_epf_register_driver(&pci_epf_mhi_driver);
447 }
448 module_init(pci_epf_mhi_init);
449 
450 static void __exit pci_epf_mhi_exit(void)
451 {
452 	pci_epf_unregister_driver(&pci_epf_mhi_driver);
453 }
454 module_exit(pci_epf_mhi_exit);
455 
456 MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
457 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
458 MODULE_LICENSE("GPL");
459