xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17 
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22 
23 #define VMD_CFGBAR	0
24 #define VMD_MEMBAR1	2
25 #define VMD_MEMBAR2	4
26 
27 #define PCI_REG_VMCAP		0x40
28 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
29 #define PCI_REG_VMCONFIG	0x44
30 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK		0x70
32 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
33 
34 #define MB2_SHADOW_OFFSET	0x2000
35 #define MB2_SHADOW_SIZE		16
36 
37 enum vmd_features {
38 	/*
39 	 * Device may contain registers which hint the physical location of the
40 	 * membars, in order to allow proper address translation during
41 	 * resource assignment to enable guest virtualization
42 	 */
43 	VMD_FEAT_HAS_MEMBAR_SHADOW	= (1 << 0),
44 
45 	/*
46 	 * Device may provide root port configuration information which limits
47 	 * bus numbering
48 	 */
49 	VMD_FEAT_HAS_BUS_RESTRICTIONS	= (1 << 1),
50 };
51 
52 /*
53  * Lock for manipulating VMD IRQ lists.
54  */
55 static DEFINE_RAW_SPINLOCK(list_lock);
56 
57 /**
58  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
59  * @node:	list item for parent traversal.
60  * @irq:	back pointer to parent.
61  * @enabled:	true if driver enabled IRQ
62  * @virq:	the virtual IRQ value provided to the requesting driver.
63  *
64  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
65  * a VMD IRQ using this structure.
66  */
67 struct vmd_irq {
68 	struct list_head	node;
69 	struct vmd_irq_list	*irq;
70 	bool			enabled;
71 	unsigned int		virq;
72 };
73 
74 /**
75  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
76  * @irq_list:	the list of irq's the VMD one demuxes to.
77  * @srcu:	SRCU struct for local synchronization.
78  * @count:	number of child IRQs assigned to this vector; used to track
79  *		sharing.
80  */
81 struct vmd_irq_list {
82 	struct list_head	irq_list;
83 	struct srcu_struct	srcu;
84 	unsigned int		count;
85 };
86 
87 struct vmd_dev {
88 	struct pci_dev		*dev;
89 
90 	spinlock_t		cfg_lock;
91 	char __iomem		*cfgbar;
92 
93 	int msix_count;
94 	struct vmd_irq_list	*irqs;
95 
96 	struct pci_sysdata	sysdata;
97 	struct resource		resources[3];
98 	struct irq_domain	*irq_domain;
99 	struct pci_bus		*bus;
100 	u8			busn_start;
101 
102 	struct dma_map_ops	dma_ops;
103 	struct dma_domain	dma_domain;
104 };
105 
106 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
107 {
108 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
109 }
110 
111 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
112 					   struct vmd_irq_list *irqs)
113 {
114 	return irqs - vmd->irqs;
115 }
116 
117 /*
118  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
119  * but the MSI entry for the hardware it's driving will be programmed with a
120  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
121  * domain into one of its own, and the VMD driver de-muxes these for the
122  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
123  * and irq_chip to set this up.
124  */
125 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
126 {
127 	struct vmd_irq *vmdirq = data->chip_data;
128 	struct vmd_irq_list *irq = vmdirq->irq;
129 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
130 
131 	msg->address_hi = MSI_ADDR_BASE_HI;
132 	msg->address_lo = MSI_ADDR_BASE_LO |
133 			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
134 	msg->data = 0;
135 }
136 
137 /*
138  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
139  */
140 static void vmd_irq_enable(struct irq_data *data)
141 {
142 	struct vmd_irq *vmdirq = data->chip_data;
143 	unsigned long flags;
144 
145 	raw_spin_lock_irqsave(&list_lock, flags);
146 	WARN_ON(vmdirq->enabled);
147 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
148 	vmdirq->enabled = true;
149 	raw_spin_unlock_irqrestore(&list_lock, flags);
150 
151 	data->chip->irq_unmask(data);
152 }
153 
154 static void vmd_irq_disable(struct irq_data *data)
155 {
156 	struct vmd_irq *vmdirq = data->chip_data;
157 	unsigned long flags;
158 
159 	data->chip->irq_mask(data);
160 
161 	raw_spin_lock_irqsave(&list_lock, flags);
162 	if (vmdirq->enabled) {
163 		list_del_rcu(&vmdirq->node);
164 		vmdirq->enabled = false;
165 	}
166 	raw_spin_unlock_irqrestore(&list_lock, flags);
167 }
168 
169 /*
170  * XXX: Stubbed until we develop acceptable way to not create conflicts with
171  * other devices sharing the same vector.
172  */
173 static int vmd_irq_set_affinity(struct irq_data *data,
174 				const struct cpumask *dest, bool force)
175 {
176 	return -EINVAL;
177 }
178 
179 static struct irq_chip vmd_msi_controller = {
180 	.name			= "VMD-MSI",
181 	.irq_enable		= vmd_irq_enable,
182 	.irq_disable		= vmd_irq_disable,
183 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
184 	.irq_set_affinity	= vmd_irq_set_affinity,
185 };
186 
187 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
188 				     msi_alloc_info_t *arg)
189 {
190 	return 0;
191 }
192 
193 /*
194  * XXX: We can be even smarter selecting the best IRQ once we solve the
195  * affinity problem.
196  */
197 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
198 {
199 	int i, best = 1;
200 	unsigned long flags;
201 
202 	if (vmd->msix_count == 1)
203 		return &vmd->irqs[0];
204 
205 	/*
206 	 * White list for fast-interrupt handlers. All others will share the
207 	 * "slow" interrupt vector.
208 	 */
209 	switch (msi_desc_to_pci_dev(desc)->class) {
210 	case PCI_CLASS_STORAGE_EXPRESS:
211 		break;
212 	default:
213 		return &vmd->irqs[0];
214 	}
215 
216 	raw_spin_lock_irqsave(&list_lock, flags);
217 	for (i = 1; i < vmd->msix_count; i++)
218 		if (vmd->irqs[i].count < vmd->irqs[best].count)
219 			best = i;
220 	vmd->irqs[best].count++;
221 	raw_spin_unlock_irqrestore(&list_lock, flags);
222 
223 	return &vmd->irqs[best];
224 }
225 
226 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
227 			unsigned int virq, irq_hw_number_t hwirq,
228 			msi_alloc_info_t *arg)
229 {
230 	struct msi_desc *desc = arg->desc;
231 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
232 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
233 	unsigned int index, vector;
234 
235 	if (!vmdirq)
236 		return -ENOMEM;
237 
238 	INIT_LIST_HEAD(&vmdirq->node);
239 	vmdirq->irq = vmd_next_irq(vmd, desc);
240 	vmdirq->virq = virq;
241 	index = index_from_irqs(vmd, vmdirq->irq);
242 	vector = pci_irq_vector(vmd->dev, index);
243 
244 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
245 			    handle_untracked_irq, vmd, NULL);
246 	return 0;
247 }
248 
249 static void vmd_msi_free(struct irq_domain *domain,
250 			struct msi_domain_info *info, unsigned int virq)
251 {
252 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
253 	unsigned long flags;
254 
255 	synchronize_srcu(&vmdirq->irq->srcu);
256 
257 	/* XXX: Potential optimization to rebalance */
258 	raw_spin_lock_irqsave(&list_lock, flags);
259 	vmdirq->irq->count--;
260 	raw_spin_unlock_irqrestore(&list_lock, flags);
261 
262 	kfree(vmdirq);
263 }
264 
265 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
266 			   int nvec, msi_alloc_info_t *arg)
267 {
268 	struct pci_dev *pdev = to_pci_dev(dev);
269 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
270 
271 	if (nvec > vmd->msix_count)
272 		return vmd->msix_count;
273 
274 	memset(arg, 0, sizeof(*arg));
275 	return 0;
276 }
277 
278 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
279 {
280 	arg->desc = desc;
281 }
282 
283 static struct msi_domain_ops vmd_msi_domain_ops = {
284 	.get_hwirq	= vmd_get_hwirq,
285 	.msi_init	= vmd_msi_init,
286 	.msi_free	= vmd_msi_free,
287 	.msi_prepare	= vmd_msi_prepare,
288 	.set_desc	= vmd_set_desc,
289 };
290 
291 static struct msi_domain_info vmd_msi_domain_info = {
292 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
293 			  MSI_FLAG_PCI_MSIX,
294 	.ops		= &vmd_msi_domain_ops,
295 	.chip		= &vmd_msi_controller,
296 };
297 
298 /*
299  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
300  * VMD domain need to be mapped for the VMD, not the device requiring
301  * the mapping.
302  */
303 static struct device *to_vmd_dev(struct device *dev)
304 {
305 	struct pci_dev *pdev = to_pci_dev(dev);
306 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
307 
308 	return &vmd->dev->dev;
309 }
310 
311 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
312 		       gfp_t flag, unsigned long attrs)
313 {
314 	return dma_alloc_attrs(to_vmd_dev(dev), size, addr, flag, attrs);
315 }
316 
317 static void vmd_free(struct device *dev, size_t size, void *vaddr,
318 		     dma_addr_t addr, unsigned long attrs)
319 {
320 	return dma_free_attrs(to_vmd_dev(dev), size, vaddr, addr, attrs);
321 }
322 
323 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
324 		    void *cpu_addr, dma_addr_t addr, size_t size,
325 		    unsigned long attrs)
326 {
327 	return dma_mmap_attrs(to_vmd_dev(dev), vma, cpu_addr, addr, size,
328 			attrs);
329 }
330 
331 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
332 			   void *cpu_addr, dma_addr_t addr, size_t size,
333 			   unsigned long attrs)
334 {
335 	return dma_get_sgtable_attrs(to_vmd_dev(dev), sgt, cpu_addr, addr, size,
336 			attrs);
337 }
338 
339 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
340 			       unsigned long offset, size_t size,
341 			       enum dma_data_direction dir,
342 			       unsigned long attrs)
343 {
344 	return dma_map_page_attrs(to_vmd_dev(dev), page, offset, size, dir,
345 			attrs);
346 }
347 
348 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
349 			   enum dma_data_direction dir, unsigned long attrs)
350 {
351 	dma_unmap_page_attrs(to_vmd_dev(dev), addr, size, dir, attrs);
352 }
353 
354 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
355 		      enum dma_data_direction dir, unsigned long attrs)
356 {
357 	return dma_map_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
358 }
359 
360 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
361 			 enum dma_data_direction dir, unsigned long attrs)
362 {
363 	dma_unmap_sg_attrs(to_vmd_dev(dev), sg, nents, dir, attrs);
364 }
365 
366 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
367 				    size_t size, enum dma_data_direction dir)
368 {
369 	dma_sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
370 }
371 
372 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
373 				       size_t size, enum dma_data_direction dir)
374 {
375 	dma_sync_single_for_device(to_vmd_dev(dev), addr, size, dir);
376 }
377 
378 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
379 				int nents, enum dma_data_direction dir)
380 {
381 	dma_sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
382 }
383 
384 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
385 				   int nents, enum dma_data_direction dir)
386 {
387 	dma_sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
388 }
389 
390 static int vmd_dma_supported(struct device *dev, u64 mask)
391 {
392 	return dma_supported(to_vmd_dev(dev), mask);
393 }
394 
395 static u64 vmd_get_required_mask(struct device *dev)
396 {
397 	return dma_get_required_mask(to_vmd_dev(dev));
398 }
399 
400 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
401 {
402 	struct dma_domain *domain = &vmd->dma_domain;
403 
404 	if (get_dma_ops(&vmd->dev->dev))
405 		del_dma_domain(domain);
406 }
407 
408 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)	\
409 	do {					\
410 		if (source->fn)			\
411 			dest->fn = vmd_##fn;	\
412 	} while (0)
413 
414 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
415 {
416 	const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
417 	struct dma_map_ops *dest = &vmd->dma_ops;
418 	struct dma_domain *domain = &vmd->dma_domain;
419 
420 	domain->domain_nr = vmd->sysdata.domain;
421 	domain->dma_ops = dest;
422 
423 	if (!source)
424 		return;
425 	ASSIGN_VMD_DMA_OPS(source, dest, alloc);
426 	ASSIGN_VMD_DMA_OPS(source, dest, free);
427 	ASSIGN_VMD_DMA_OPS(source, dest, mmap);
428 	ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
429 	ASSIGN_VMD_DMA_OPS(source, dest, map_page);
430 	ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
431 	ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
432 	ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
433 	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
434 	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
435 	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
436 	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
437 	ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
438 	ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
439 	add_dma_domain(domain);
440 }
441 #undef ASSIGN_VMD_DMA_OPS
442 
443 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
444 				  unsigned int devfn, int reg, int len)
445 {
446 	char __iomem *addr = vmd->cfgbar +
447 			     ((bus->number - vmd->busn_start) << 20) +
448 			     (devfn << 12) + reg;
449 
450 	if ((addr - vmd->cfgbar) + len >=
451 	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
452 		return NULL;
453 
454 	return addr;
455 }
456 
457 /*
458  * CPU may deadlock if config space is not serialized on some versions of this
459  * hardware, so all config space access is done under a spinlock.
460  */
461 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
462 			int len, u32 *value)
463 {
464 	struct vmd_dev *vmd = vmd_from_bus(bus);
465 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
466 	unsigned long flags;
467 	int ret = 0;
468 
469 	if (!addr)
470 		return -EFAULT;
471 
472 	spin_lock_irqsave(&vmd->cfg_lock, flags);
473 	switch (len) {
474 	case 1:
475 		*value = readb(addr);
476 		break;
477 	case 2:
478 		*value = readw(addr);
479 		break;
480 	case 4:
481 		*value = readl(addr);
482 		break;
483 	default:
484 		ret = -EINVAL;
485 		break;
486 	}
487 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
488 	return ret;
489 }
490 
491 /*
492  * VMD h/w converts non-posted config writes to posted memory writes. The
493  * read-back in this function forces the completion so it returns only after
494  * the config space was written, as expected.
495  */
496 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
497 			 int len, u32 value)
498 {
499 	struct vmd_dev *vmd = vmd_from_bus(bus);
500 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
501 	unsigned long flags;
502 	int ret = 0;
503 
504 	if (!addr)
505 		return -EFAULT;
506 
507 	spin_lock_irqsave(&vmd->cfg_lock, flags);
508 	switch (len) {
509 	case 1:
510 		writeb(value, addr);
511 		readb(addr);
512 		break;
513 	case 2:
514 		writew(value, addr);
515 		readw(addr);
516 		break;
517 	case 4:
518 		writel(value, addr);
519 		readl(addr);
520 		break;
521 	default:
522 		ret = -EINVAL;
523 		break;
524 	}
525 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
526 	return ret;
527 }
528 
529 static struct pci_ops vmd_ops = {
530 	.read		= vmd_pci_read,
531 	.write		= vmd_pci_write,
532 };
533 
534 static void vmd_attach_resources(struct vmd_dev *vmd)
535 {
536 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
537 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
538 }
539 
540 static void vmd_detach_resources(struct vmd_dev *vmd)
541 {
542 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
543 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
544 }
545 
546 /*
547  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
548  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
549  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
550  * currently reserved.
551  */
552 static int vmd_find_free_domain(void)
553 {
554 	int domain = 0xffff;
555 	struct pci_bus *bus = NULL;
556 
557 	while ((bus = pci_find_next_bus(bus)) != NULL)
558 		domain = max_t(int, domain, pci_domain_nr(bus));
559 	return domain + 1;
560 }
561 
562 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
563 {
564 	struct pci_sysdata *sd = &vmd->sysdata;
565 	struct fwnode_handle *fn;
566 	struct resource *res;
567 	u32 upper_bits;
568 	unsigned long flags;
569 	LIST_HEAD(resources);
570 	resource_size_t offset[2] = {0};
571 	resource_size_t membar2_offset = 0x2000;
572 	struct pci_bus *child;
573 
574 	/*
575 	 * Shadow registers may exist in certain VMD device ids which allow
576 	 * guests to correctly assign host physical addresses to the root ports
577 	 * and child devices. These registers will either return the host value
578 	 * or 0, depending on an enable bit in the VMD device.
579 	 */
580 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
581 		u32 vmlock;
582 		int ret;
583 
584 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
585 		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
586 		if (ret || vmlock == ~0)
587 			return -ENODEV;
588 
589 		if (MB2_SHADOW_EN(vmlock)) {
590 			void __iomem *membar2;
591 
592 			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
593 			if (!membar2)
594 				return -ENOMEM;
595 			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
596 					readq(membar2 + MB2_SHADOW_OFFSET);
597 			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
598 					readq(membar2 + MB2_SHADOW_OFFSET + 8);
599 			pci_iounmap(vmd->dev, membar2);
600 		}
601 	}
602 
603 	/*
604 	 * Certain VMD devices may have a root port configuration option which
605 	 * limits the bus range to between 0-127 or 128-255
606 	 */
607 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
608 		u32 vmcap, vmconfig;
609 
610 		pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
611 		pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
612 		if (BUS_RESTRICT_CAP(vmcap) &&
613 		    (BUS_RESTRICT_CFG(vmconfig) == 0x1))
614 			vmd->busn_start = 128;
615 	}
616 
617 	res = &vmd->dev->resource[VMD_CFGBAR];
618 	vmd->resources[0] = (struct resource) {
619 		.name  = "VMD CFGBAR",
620 		.start = vmd->busn_start,
621 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
622 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
623 	};
624 
625 	/*
626 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
627 	 * put 32-bit resources in the window.
628 	 *
629 	 * There's no hardware reason why a 64-bit window *couldn't*
630 	 * contain a 32-bit resource, but pbus_size_mem() computes the
631 	 * bridge window size assuming a 64-bit window will contain no
632 	 * 32-bit resources.  __pci_assign_resource() enforces that
633 	 * artificial restriction to make sure everything will fit.
634 	 *
635 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
636 	 * if its address is <4GB so that we can convert it to a 32-bit
637 	 * resource.  To be visible to the host OS, all VMD endpoints must
638 	 * be initially configured by platform BIOS, which includes setting
639 	 * up these resources.  We can assume the device is configured
640 	 * according to the platform needs.
641 	 */
642 	res = &vmd->dev->resource[VMD_MEMBAR1];
643 	upper_bits = upper_32_bits(res->end);
644 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
645 	if (!upper_bits)
646 		flags &= ~IORESOURCE_MEM_64;
647 	vmd->resources[1] = (struct resource) {
648 		.name  = "VMD MEMBAR1",
649 		.start = res->start,
650 		.end   = res->end,
651 		.flags = flags,
652 		.parent = res,
653 	};
654 
655 	res = &vmd->dev->resource[VMD_MEMBAR2];
656 	upper_bits = upper_32_bits(res->end);
657 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
658 	if (!upper_bits)
659 		flags &= ~IORESOURCE_MEM_64;
660 	vmd->resources[2] = (struct resource) {
661 		.name  = "VMD MEMBAR2",
662 		.start = res->start + membar2_offset,
663 		.end   = res->end,
664 		.flags = flags,
665 		.parent = res,
666 	};
667 
668 	sd->vmd_domain = true;
669 	sd->domain = vmd_find_free_domain();
670 	if (sd->domain < 0)
671 		return sd->domain;
672 
673 	sd->node = pcibus_to_node(vmd->dev->bus);
674 
675 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
676 	if (!fn)
677 		return -ENODEV;
678 
679 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
680 						    x86_vector_domain);
681 	irq_domain_free_fwnode(fn);
682 	if (!vmd->irq_domain)
683 		return -ENODEV;
684 
685 	pci_add_resource(&resources, &vmd->resources[0]);
686 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
687 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
688 
689 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
690 				       &vmd_ops, sd, &resources);
691 	if (!vmd->bus) {
692 		pci_free_resource_list(&resources);
693 		irq_domain_remove(vmd->irq_domain);
694 		return -ENODEV;
695 	}
696 
697 	vmd_attach_resources(vmd);
698 	vmd_setup_dma_ops(vmd);
699 	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
700 
701 	pci_scan_child_bus(vmd->bus);
702 	pci_assign_unassigned_bus_resources(vmd->bus);
703 
704 	/*
705 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
706 	 * and will fail pcie_bus_configure_settings() early. It can instead be
707 	 * run on each of the real root ports.
708 	 */
709 	list_for_each_entry(child, &vmd->bus->children, node)
710 		pcie_bus_configure_settings(child);
711 
712 	pci_bus_add_devices(vmd->bus);
713 
714 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
715 			       "domain"), "Can't create symlink to domain\n");
716 	return 0;
717 }
718 
719 static irqreturn_t vmd_irq(int irq, void *data)
720 {
721 	struct vmd_irq_list *irqs = data;
722 	struct vmd_irq *vmdirq;
723 	int idx;
724 
725 	idx = srcu_read_lock(&irqs->srcu);
726 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
727 		generic_handle_irq(vmdirq->virq);
728 	srcu_read_unlock(&irqs->srcu, idx);
729 
730 	return IRQ_HANDLED;
731 }
732 
733 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
734 {
735 	struct vmd_dev *vmd;
736 	int i, err;
737 
738 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
739 		return -ENOMEM;
740 
741 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
742 	if (!vmd)
743 		return -ENOMEM;
744 
745 	vmd->dev = dev;
746 	err = pcim_enable_device(dev);
747 	if (err < 0)
748 		return err;
749 
750 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
751 	if (!vmd->cfgbar)
752 		return -ENOMEM;
753 
754 	pci_set_master(dev);
755 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
756 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
757 		return -ENODEV;
758 
759 	vmd->msix_count = pci_msix_vec_count(dev);
760 	if (vmd->msix_count < 0)
761 		return -ENODEV;
762 
763 	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
764 					PCI_IRQ_MSIX);
765 	if (vmd->msix_count < 0)
766 		return vmd->msix_count;
767 
768 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
769 				 GFP_KERNEL);
770 	if (!vmd->irqs)
771 		return -ENOMEM;
772 
773 	for (i = 0; i < vmd->msix_count; i++) {
774 		err = init_srcu_struct(&vmd->irqs[i].srcu);
775 		if (err)
776 			return err;
777 
778 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
779 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
780 				       vmd_irq, IRQF_NO_THREAD,
781 				       "vmd", &vmd->irqs[i]);
782 		if (err)
783 			return err;
784 	}
785 
786 	spin_lock_init(&vmd->cfg_lock);
787 	pci_set_drvdata(dev, vmd);
788 	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
789 	if (err)
790 		return err;
791 
792 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
793 		 vmd->sysdata.domain);
794 	return 0;
795 }
796 
797 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
798 {
799 	int i;
800 
801 	for (i = 0; i < vmd->msix_count; i++)
802 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
803 }
804 
805 static void vmd_remove(struct pci_dev *dev)
806 {
807 	struct vmd_dev *vmd = pci_get_drvdata(dev);
808 
809 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
810 	pci_stop_root_bus(vmd->bus);
811 	pci_remove_root_bus(vmd->bus);
812 	vmd_cleanup_srcu(vmd);
813 	vmd_teardown_dma_ops(vmd);
814 	vmd_detach_resources(vmd);
815 	irq_domain_remove(vmd->irq_domain);
816 }
817 
818 #ifdef CONFIG_PM_SLEEP
819 static int vmd_suspend(struct device *dev)
820 {
821 	struct pci_dev *pdev = to_pci_dev(dev);
822 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
823 	int i;
824 
825 	for (i = 0; i < vmd->msix_count; i++)
826                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
827 
828 	pci_save_state(pdev);
829 	return 0;
830 }
831 
832 static int vmd_resume(struct device *dev)
833 {
834 	struct pci_dev *pdev = to_pci_dev(dev);
835 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
836 	int err, i;
837 
838 	for (i = 0; i < vmd->msix_count; i++) {
839 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
840 				       vmd_irq, IRQF_NO_THREAD,
841 				       "vmd", &vmd->irqs[i]);
842 		if (err)
843 			return err;
844 	}
845 
846 	pci_restore_state(pdev);
847 	return 0;
848 }
849 #endif
850 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
851 
852 static const struct pci_device_id vmd_ids[] = {
853 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
854 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
855 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
856 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
857 	{0,}
858 };
859 MODULE_DEVICE_TABLE(pci, vmd_ids);
860 
861 static struct pci_driver vmd_drv = {
862 	.name		= "vmd",
863 	.id_table	= vmd_ids,
864 	.probe		= vmd_probe,
865 	.remove		= vmd_remove,
866 	.driver		= {
867 		.pm	= &vmd_dev_pm_ops,
868 	},
869 };
870 module_pci_driver(vmd_drv);
871 
872 MODULE_AUTHOR("Intel Corporation");
873 MODULE_LICENSE("GPL v2");
874 MODULE_VERSION("0.6");
875