xref: /openbmc/linux/drivers/pci/controller/vmd.c (revision f5ad1c74)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17 
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 
22 #define VMD_CFGBAR	0
23 #define VMD_MEMBAR1	2
24 #define VMD_MEMBAR2	4
25 
26 #define PCI_REG_VMCAP		0x40
27 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
28 #define PCI_REG_VMCONFIG	0x44
29 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
30 #define PCI_REG_VMLOCK		0x70
31 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
32 
33 #define MB2_SHADOW_OFFSET	0x2000
34 #define MB2_SHADOW_SIZE		16
35 
36 enum vmd_features {
37 	/*
38 	 * Device may contain registers which hint the physical location of the
39 	 * membars, in order to allow proper address translation during
40 	 * resource assignment to enable guest virtualization
41 	 */
42 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
43 
44 	/*
45 	 * Device may provide root port configuration information which limits
46 	 * bus numbering
47 	 */
48 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
49 
50 	/*
51 	 * Device contains physical location shadow registers in
52 	 * vendor-specific capability space
53 	 */
54 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
55 };
56 
57 /*
58  * Lock for manipulating VMD IRQ lists.
59  */
60 static DEFINE_RAW_SPINLOCK(list_lock);
61 
62 /**
63  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
64  * @node:	list item for parent traversal.
65  * @irq:	back pointer to parent.
66  * @enabled:	true if driver enabled IRQ
67  * @virq:	the virtual IRQ value provided to the requesting driver.
68  *
69  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
70  * a VMD IRQ using this structure.
71  */
72 struct vmd_irq {
73 	struct list_head	node;
74 	struct vmd_irq_list	*irq;
75 	bool			enabled;
76 	unsigned int		virq;
77 };
78 
79 /**
80  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
81  * @irq_list:	the list of irq's the VMD one demuxes to.
82  * @srcu:	SRCU struct for local synchronization.
83  * @count:	number of child IRQs assigned to this vector; used to track
84  *		sharing.
85  */
86 struct vmd_irq_list {
87 	struct list_head	irq_list;
88 	struct srcu_struct	srcu;
89 	unsigned int		count;
90 };
91 
92 struct vmd_dev {
93 	struct pci_dev		*dev;
94 
95 	spinlock_t		cfg_lock;
96 	char __iomem		*cfgbar;
97 
98 	int msix_count;
99 	struct vmd_irq_list	*irqs;
100 
101 	struct pci_sysdata	sysdata;
102 	struct resource		resources[3];
103 	struct irq_domain	*irq_domain;
104 	struct pci_bus		*bus;
105 	u8			busn_start;
106 };
107 
108 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
109 {
110 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
111 }
112 
113 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
114 					   struct vmd_irq_list *irqs)
115 {
116 	return irqs - vmd->irqs;
117 }
118 
119 /*
120  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
121  * but the MSI entry for the hardware it's driving will be programmed with a
122  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
123  * domain into one of its own, and the VMD driver de-muxes these for the
124  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
125  * and irq_chip to set this up.
126  */
127 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
128 {
129 	struct vmd_irq *vmdirq = data->chip_data;
130 	struct vmd_irq_list *irq = vmdirq->irq;
131 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
132 
133 	memset(msg, 0, sizeof(*msg));
134 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
135 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
136 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
137 }
138 
139 /*
140  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
141  */
142 static void vmd_irq_enable(struct irq_data *data)
143 {
144 	struct vmd_irq *vmdirq = data->chip_data;
145 	unsigned long flags;
146 
147 	raw_spin_lock_irqsave(&list_lock, flags);
148 	WARN_ON(vmdirq->enabled);
149 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
150 	vmdirq->enabled = true;
151 	raw_spin_unlock_irqrestore(&list_lock, flags);
152 
153 	data->chip->irq_unmask(data);
154 }
155 
156 static void vmd_irq_disable(struct irq_data *data)
157 {
158 	struct vmd_irq *vmdirq = data->chip_data;
159 	unsigned long flags;
160 
161 	data->chip->irq_mask(data);
162 
163 	raw_spin_lock_irqsave(&list_lock, flags);
164 	if (vmdirq->enabled) {
165 		list_del_rcu(&vmdirq->node);
166 		vmdirq->enabled = false;
167 	}
168 	raw_spin_unlock_irqrestore(&list_lock, flags);
169 }
170 
171 /*
172  * XXX: Stubbed until we develop acceptable way to not create conflicts with
173  * other devices sharing the same vector.
174  */
175 static int vmd_irq_set_affinity(struct irq_data *data,
176 				const struct cpumask *dest, bool force)
177 {
178 	return -EINVAL;
179 }
180 
181 static struct irq_chip vmd_msi_controller = {
182 	.name			= "VMD-MSI",
183 	.irq_enable		= vmd_irq_enable,
184 	.irq_disable		= vmd_irq_disable,
185 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
186 	.irq_set_affinity	= vmd_irq_set_affinity,
187 };
188 
189 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
190 				     msi_alloc_info_t *arg)
191 {
192 	return 0;
193 }
194 
195 /*
196  * XXX: We can be even smarter selecting the best IRQ once we solve the
197  * affinity problem.
198  */
199 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
200 {
201 	int i, best = 1;
202 	unsigned long flags;
203 
204 	if (vmd->msix_count == 1)
205 		return &vmd->irqs[0];
206 
207 	/*
208 	 * White list for fast-interrupt handlers. All others will share the
209 	 * "slow" interrupt vector.
210 	 */
211 	switch (msi_desc_to_pci_dev(desc)->class) {
212 	case PCI_CLASS_STORAGE_EXPRESS:
213 		break;
214 	default:
215 		return &vmd->irqs[0];
216 	}
217 
218 	raw_spin_lock_irqsave(&list_lock, flags);
219 	for (i = 1; i < vmd->msix_count; i++)
220 		if (vmd->irqs[i].count < vmd->irqs[best].count)
221 			best = i;
222 	vmd->irqs[best].count++;
223 	raw_spin_unlock_irqrestore(&list_lock, flags);
224 
225 	return &vmd->irqs[best];
226 }
227 
228 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
229 			unsigned int virq, irq_hw_number_t hwirq,
230 			msi_alloc_info_t *arg)
231 {
232 	struct msi_desc *desc = arg->desc;
233 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
234 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
235 	unsigned int index, vector;
236 
237 	if (!vmdirq)
238 		return -ENOMEM;
239 
240 	INIT_LIST_HEAD(&vmdirq->node);
241 	vmdirq->irq = vmd_next_irq(vmd, desc);
242 	vmdirq->virq = virq;
243 	index = index_from_irqs(vmd, vmdirq->irq);
244 	vector = pci_irq_vector(vmd->dev, index);
245 
246 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
247 			    handle_untracked_irq, vmd, NULL);
248 	return 0;
249 }
250 
251 static void vmd_msi_free(struct irq_domain *domain,
252 			struct msi_domain_info *info, unsigned int virq)
253 {
254 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
255 	unsigned long flags;
256 
257 	synchronize_srcu(&vmdirq->irq->srcu);
258 
259 	/* XXX: Potential optimization to rebalance */
260 	raw_spin_lock_irqsave(&list_lock, flags);
261 	vmdirq->irq->count--;
262 	raw_spin_unlock_irqrestore(&list_lock, flags);
263 
264 	kfree(vmdirq);
265 }
266 
267 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
268 			   int nvec, msi_alloc_info_t *arg)
269 {
270 	struct pci_dev *pdev = to_pci_dev(dev);
271 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
272 
273 	if (nvec > vmd->msix_count)
274 		return vmd->msix_count;
275 
276 	memset(arg, 0, sizeof(*arg));
277 	return 0;
278 }
279 
280 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
281 {
282 	arg->desc = desc;
283 }
284 
285 static struct msi_domain_ops vmd_msi_domain_ops = {
286 	.get_hwirq	= vmd_get_hwirq,
287 	.msi_init	= vmd_msi_init,
288 	.msi_free	= vmd_msi_free,
289 	.msi_prepare	= vmd_msi_prepare,
290 	.set_desc	= vmd_set_desc,
291 };
292 
293 static struct msi_domain_info vmd_msi_domain_info = {
294 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
295 			  MSI_FLAG_PCI_MSIX,
296 	.ops		= &vmd_msi_domain_ops,
297 	.chip		= &vmd_msi_controller,
298 };
299 
300 static int vmd_create_irq_domain(struct vmd_dev *vmd)
301 {
302 	struct fwnode_handle *fn;
303 
304 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
305 	if (!fn)
306 		return -ENODEV;
307 
308 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
309 	if (!vmd->irq_domain) {
310 		irq_domain_free_fwnode(fn);
311 		return -ENODEV;
312 	}
313 
314 	return 0;
315 }
316 
317 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
318 {
319 	if (vmd->irq_domain) {
320 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
321 
322 		irq_domain_remove(vmd->irq_domain);
323 		irq_domain_free_fwnode(fn);
324 	}
325 }
326 
327 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
328 				  unsigned int devfn, int reg, int len)
329 {
330 	char __iomem *addr = vmd->cfgbar +
331 			     ((bus->number - vmd->busn_start) << 20) +
332 			     (devfn << 12) + reg;
333 
334 	if ((addr - vmd->cfgbar) + len >=
335 	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
336 		return NULL;
337 
338 	return addr;
339 }
340 
341 /*
342  * CPU may deadlock if config space is not serialized on some versions of this
343  * hardware, so all config space access is done under a spinlock.
344  */
345 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
346 			int len, u32 *value)
347 {
348 	struct vmd_dev *vmd = vmd_from_bus(bus);
349 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
350 	unsigned long flags;
351 	int ret = 0;
352 
353 	if (!addr)
354 		return -EFAULT;
355 
356 	spin_lock_irqsave(&vmd->cfg_lock, flags);
357 	switch (len) {
358 	case 1:
359 		*value = readb(addr);
360 		break;
361 	case 2:
362 		*value = readw(addr);
363 		break;
364 	case 4:
365 		*value = readl(addr);
366 		break;
367 	default:
368 		ret = -EINVAL;
369 		break;
370 	}
371 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
372 	return ret;
373 }
374 
375 /*
376  * VMD h/w converts non-posted config writes to posted memory writes. The
377  * read-back in this function forces the completion so it returns only after
378  * the config space was written, as expected.
379  */
380 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
381 			 int len, u32 value)
382 {
383 	struct vmd_dev *vmd = vmd_from_bus(bus);
384 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
385 	unsigned long flags;
386 	int ret = 0;
387 
388 	if (!addr)
389 		return -EFAULT;
390 
391 	spin_lock_irqsave(&vmd->cfg_lock, flags);
392 	switch (len) {
393 	case 1:
394 		writeb(value, addr);
395 		readb(addr);
396 		break;
397 	case 2:
398 		writew(value, addr);
399 		readw(addr);
400 		break;
401 	case 4:
402 		writel(value, addr);
403 		readl(addr);
404 		break;
405 	default:
406 		ret = -EINVAL;
407 		break;
408 	}
409 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
410 	return ret;
411 }
412 
413 static struct pci_ops vmd_ops = {
414 	.read		= vmd_pci_read,
415 	.write		= vmd_pci_write,
416 };
417 
418 static void vmd_attach_resources(struct vmd_dev *vmd)
419 {
420 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
421 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
422 }
423 
424 static void vmd_detach_resources(struct vmd_dev *vmd)
425 {
426 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
427 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
428 }
429 
430 /*
431  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
432  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
433  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
434  * currently reserved.
435  */
436 static int vmd_find_free_domain(void)
437 {
438 	int domain = 0xffff;
439 	struct pci_bus *bus = NULL;
440 
441 	while ((bus = pci_find_next_bus(bus)) != NULL)
442 		domain = max_t(int, domain, pci_domain_nr(bus));
443 	return domain + 1;
444 }
445 
446 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
447 				resource_size_t *offset1,
448 				resource_size_t *offset2)
449 {
450 	struct pci_dev *dev = vmd->dev;
451 	u64 phys1, phys2;
452 
453 	if (native_hint) {
454 		u32 vmlock;
455 		int ret;
456 
457 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
458 		if (ret || vmlock == ~0)
459 			return -ENODEV;
460 
461 		if (MB2_SHADOW_EN(vmlock)) {
462 			void __iomem *membar2;
463 
464 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
465 			if (!membar2)
466 				return -ENOMEM;
467 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
468 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
469 			pci_iounmap(dev, membar2);
470 		} else
471 			return 0;
472 	} else {
473 		/* Hypervisor-Emulated Vendor-Specific Capability */
474 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
475 		u32 reg, regu;
476 
477 		pci_read_config_dword(dev, pos + 4, &reg);
478 
479 		/* "SHDW" */
480 		if (pos && reg == 0x53484457) {
481 			pci_read_config_dword(dev, pos + 8, &reg);
482 			pci_read_config_dword(dev, pos + 12, &regu);
483 			phys1 = (u64) regu << 32 | reg;
484 
485 			pci_read_config_dword(dev, pos + 16, &reg);
486 			pci_read_config_dword(dev, pos + 20, &regu);
487 			phys2 = (u64) regu << 32 | reg;
488 		} else
489 			return 0;
490 	}
491 
492 	*offset1 = dev->resource[VMD_MEMBAR1].start -
493 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
494 	*offset2 = dev->resource[VMD_MEMBAR2].start -
495 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
496 
497 	return 0;
498 }
499 
500 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
501 {
502 	struct pci_dev *dev = vmd->dev;
503 	u16 reg;
504 
505 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
506 	if (BUS_RESTRICT_CAP(reg)) {
507 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
508 
509 		switch (BUS_RESTRICT_CFG(reg)) {
510 		case 0:
511 			vmd->busn_start = 0;
512 			break;
513 		case 1:
514 			vmd->busn_start = 128;
515 			break;
516 		case 2:
517 			vmd->busn_start = 224;
518 			break;
519 		default:
520 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
521 				BUS_RESTRICT_CFG(reg));
522 			return -ENODEV;
523 		}
524 	}
525 
526 	return 0;
527 }
528 
529 static irqreturn_t vmd_irq(int irq, void *data)
530 {
531 	struct vmd_irq_list *irqs = data;
532 	struct vmd_irq *vmdirq;
533 	int idx;
534 
535 	idx = srcu_read_lock(&irqs->srcu);
536 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
537 		generic_handle_irq(vmdirq->virq);
538 	srcu_read_unlock(&irqs->srcu, idx);
539 
540 	return IRQ_HANDLED;
541 }
542 
543 static int vmd_alloc_irqs(struct vmd_dev *vmd)
544 {
545 	struct pci_dev *dev = vmd->dev;
546 	int i, err;
547 
548 	vmd->msix_count = pci_msix_vec_count(dev);
549 	if (vmd->msix_count < 0)
550 		return -ENODEV;
551 
552 	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
553 						PCI_IRQ_MSIX);
554 	if (vmd->msix_count < 0)
555 		return vmd->msix_count;
556 
557 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
558 				 GFP_KERNEL);
559 	if (!vmd->irqs)
560 		return -ENOMEM;
561 
562 	for (i = 0; i < vmd->msix_count; i++) {
563 		err = init_srcu_struct(&vmd->irqs[i].srcu);
564 		if (err)
565 			return err;
566 
567 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
568 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
569 				       vmd_irq, IRQF_NO_THREAD,
570 				       "vmd", &vmd->irqs[i]);
571 		if (err)
572 			return err;
573 	}
574 
575 	return 0;
576 }
577 
578 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
579 {
580 	struct pci_sysdata *sd = &vmd->sysdata;
581 	struct resource *res;
582 	u32 upper_bits;
583 	unsigned long flags;
584 	LIST_HEAD(resources);
585 	resource_size_t offset[2] = {0};
586 	resource_size_t membar2_offset = 0x2000;
587 	struct pci_bus *child;
588 	int ret;
589 
590 	/*
591 	 * Shadow registers may exist in certain VMD device ids which allow
592 	 * guests to correctly assign host physical addresses to the root ports
593 	 * and child devices. These registers will either return the host value
594 	 * or 0, depending on an enable bit in the VMD device.
595 	 */
596 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
597 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
598 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
599 		if (ret)
600 			return ret;
601 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
602 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
603 		if (ret)
604 			return ret;
605 	}
606 
607 	/*
608 	 * Certain VMD devices may have a root port configuration option which
609 	 * limits the bus range to between 0-127, 128-255, or 224-255
610 	 */
611 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
612 		ret = vmd_get_bus_number_start(vmd);
613 		if (ret)
614 			return ret;
615 	}
616 
617 	res = &vmd->dev->resource[VMD_CFGBAR];
618 	vmd->resources[0] = (struct resource) {
619 		.name  = "VMD CFGBAR",
620 		.start = vmd->busn_start,
621 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
622 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
623 	};
624 
625 	/*
626 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
627 	 * put 32-bit resources in the window.
628 	 *
629 	 * There's no hardware reason why a 64-bit window *couldn't*
630 	 * contain a 32-bit resource, but pbus_size_mem() computes the
631 	 * bridge window size assuming a 64-bit window will contain no
632 	 * 32-bit resources.  __pci_assign_resource() enforces that
633 	 * artificial restriction to make sure everything will fit.
634 	 *
635 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
636 	 * if its address is <4GB so that we can convert it to a 32-bit
637 	 * resource.  To be visible to the host OS, all VMD endpoints must
638 	 * be initially configured by platform BIOS, which includes setting
639 	 * up these resources.  We can assume the device is configured
640 	 * according to the platform needs.
641 	 */
642 	res = &vmd->dev->resource[VMD_MEMBAR1];
643 	upper_bits = upper_32_bits(res->end);
644 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
645 	if (!upper_bits)
646 		flags &= ~IORESOURCE_MEM_64;
647 	vmd->resources[1] = (struct resource) {
648 		.name  = "VMD MEMBAR1",
649 		.start = res->start,
650 		.end   = res->end,
651 		.flags = flags,
652 		.parent = res,
653 	};
654 
655 	res = &vmd->dev->resource[VMD_MEMBAR2];
656 	upper_bits = upper_32_bits(res->end);
657 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
658 	if (!upper_bits)
659 		flags &= ~IORESOURCE_MEM_64;
660 	vmd->resources[2] = (struct resource) {
661 		.name  = "VMD MEMBAR2",
662 		.start = res->start + membar2_offset,
663 		.end   = res->end,
664 		.flags = flags,
665 		.parent = res,
666 	};
667 
668 	sd->vmd_dev = vmd->dev;
669 	sd->domain = vmd_find_free_domain();
670 	if (sd->domain < 0)
671 		return sd->domain;
672 
673 	sd->node = pcibus_to_node(vmd->dev->bus);
674 
675 	ret = vmd_create_irq_domain(vmd);
676 	if (ret)
677 		return ret;
678 
679 	/*
680 	 * Override the irq domain bus token so the domain can be distinguished
681 	 * from a regular PCI/MSI domain.
682 	 */
683 	irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
684 
685 	pci_add_resource(&resources, &vmd->resources[0]);
686 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
687 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
688 
689 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
690 				       &vmd_ops, sd, &resources);
691 	if (!vmd->bus) {
692 		pci_free_resource_list(&resources);
693 		vmd_remove_irq_domain(vmd);
694 		return -ENODEV;
695 	}
696 
697 	vmd_attach_resources(vmd);
698 	if (vmd->irq_domain)
699 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
700 
701 	pci_scan_child_bus(vmd->bus);
702 	pci_assign_unassigned_bus_resources(vmd->bus);
703 
704 	/*
705 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
706 	 * and will fail pcie_bus_configure_settings() early. It can instead be
707 	 * run on each of the real root ports.
708 	 */
709 	list_for_each_entry(child, &vmd->bus->children, node)
710 		pcie_bus_configure_settings(child);
711 
712 	pci_bus_add_devices(vmd->bus);
713 
714 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
715 			       "domain"), "Can't create symlink to domain\n");
716 	return 0;
717 }
718 
719 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
720 {
721 	struct vmd_dev *vmd;
722 	int err;
723 
724 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
725 		return -ENOMEM;
726 
727 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
728 	if (!vmd)
729 		return -ENOMEM;
730 
731 	vmd->dev = dev;
732 	err = pcim_enable_device(dev);
733 	if (err < 0)
734 		return err;
735 
736 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
737 	if (!vmd->cfgbar)
738 		return -ENOMEM;
739 
740 	pci_set_master(dev);
741 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
742 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
743 		return -ENODEV;
744 
745 	err = vmd_alloc_irqs(vmd);
746 	if (err)
747 		return err;
748 
749 	spin_lock_init(&vmd->cfg_lock);
750 	pci_set_drvdata(dev, vmd);
751 	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
752 	if (err)
753 		return err;
754 
755 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
756 		 vmd->sysdata.domain);
757 	return 0;
758 }
759 
760 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
761 {
762 	int i;
763 
764 	for (i = 0; i < vmd->msix_count; i++)
765 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
766 }
767 
768 static void vmd_remove(struct pci_dev *dev)
769 {
770 	struct vmd_dev *vmd = pci_get_drvdata(dev);
771 
772 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
773 	pci_stop_root_bus(vmd->bus);
774 	pci_remove_root_bus(vmd->bus);
775 	vmd_cleanup_srcu(vmd);
776 	vmd_detach_resources(vmd);
777 	vmd_remove_irq_domain(vmd);
778 }
779 
780 #ifdef CONFIG_PM_SLEEP
781 static int vmd_suspend(struct device *dev)
782 {
783 	struct pci_dev *pdev = to_pci_dev(dev);
784 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
785 	int i;
786 
787 	for (i = 0; i < vmd->msix_count; i++)
788 		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
789 
790 	return 0;
791 }
792 
793 static int vmd_resume(struct device *dev)
794 {
795 	struct pci_dev *pdev = to_pci_dev(dev);
796 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
797 	int err, i;
798 
799 	for (i = 0; i < vmd->msix_count; i++) {
800 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
801 				       vmd_irq, IRQF_NO_THREAD,
802 				       "vmd", &vmd->irqs[i]);
803 		if (err)
804 			return err;
805 	}
806 
807 	return 0;
808 }
809 #endif
810 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
811 
812 static const struct pci_device_id vmd_ids[] = {
813 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
814 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
815 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
816 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
817 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
818 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
819 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
820 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
821 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
822 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
823 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
824 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
825 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
826 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
827 	{0,}
828 };
829 MODULE_DEVICE_TABLE(pci, vmd_ids);
830 
831 static struct pci_driver vmd_drv = {
832 	.name		= "vmd",
833 	.id_table	= vmd_ids,
834 	.probe		= vmd_probe,
835 	.remove		= vmd_remove,
836 	.driver		= {
837 		.pm	= &vmd_dev_pm_ops,
838 	},
839 };
840 module_pci_driver(vmd_drv);
841 
842 MODULE_AUTHOR("Intel Corporation");
843 MODULE_LICENSE("GPL v2");
844 MODULE_VERSION("0.6");
845