1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/msi.h> 13 #include <linux/pci.h> 14 #include <linux/pci-acpi.h> 15 #include <linux/pci-ecam.h> 16 #include <linux/srcu.h> 17 #include <linux/rculist.h> 18 #include <linux/rcupdate.h> 19 20 #include <asm/irqdomain.h> 21 22 #define VMD_CFGBAR 0 23 #define VMD_MEMBAR1 2 24 #define VMD_MEMBAR2 4 25 26 #define PCI_REG_VMCAP 0x40 27 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 28 #define PCI_REG_VMCONFIG 0x44 29 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 30 #define VMCONFIG_MSI_REMAP 0x2 31 #define PCI_REG_VMLOCK 0x70 32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 33 34 #define MB2_SHADOW_OFFSET 0x2000 35 #define MB2_SHADOW_SIZE 16 36 37 enum vmd_features { 38 /* 39 * Device may contain registers which hint the physical location of the 40 * membars, in order to allow proper address translation during 41 * resource assignment to enable guest virtualization 42 */ 43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 44 45 /* 46 * Device may provide root port configuration information which limits 47 * bus numbering 48 */ 49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 50 51 /* 52 * Device contains physical location shadow registers in 53 * vendor-specific capability space 54 */ 55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 56 57 /* 58 * Device may use MSI-X vector 0 for software triggering and will not 59 * be used for MSI remapping 60 */ 61 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), 62 63 /* 64 * Device can bypass remapping MSI-X transactions into its MSI-X table, 65 * avoiding the requirement of a VMD MSI domain for child device 66 * interrupt handling. 67 */ 68 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), 69 }; 70 71 static DEFINE_IDA(vmd_instance_ida); 72 73 /* 74 * Lock for manipulating VMD IRQ lists. 75 */ 76 static DEFINE_RAW_SPINLOCK(list_lock); 77 78 /** 79 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 80 * @node: list item for parent traversal. 81 * @irq: back pointer to parent. 82 * @enabled: true if driver enabled IRQ 83 * @virq: the virtual IRQ value provided to the requesting driver. 84 * 85 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 86 * a VMD IRQ using this structure. 87 */ 88 struct vmd_irq { 89 struct list_head node; 90 struct vmd_irq_list *irq; 91 bool enabled; 92 unsigned int virq; 93 }; 94 95 /** 96 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 97 * @irq_list: the list of irq's the VMD one demuxes to. 98 * @srcu: SRCU struct for local synchronization. 99 * @count: number of child IRQs assigned to this vector; used to track 100 * sharing. 101 * @virq: The underlying VMD Linux interrupt number 102 */ 103 struct vmd_irq_list { 104 struct list_head irq_list; 105 struct srcu_struct srcu; 106 unsigned int count; 107 unsigned int virq; 108 }; 109 110 struct vmd_dev { 111 struct pci_dev *dev; 112 113 spinlock_t cfg_lock; 114 void __iomem *cfgbar; 115 116 int msix_count; 117 struct vmd_irq_list *irqs; 118 119 struct pci_sysdata sysdata; 120 struct resource resources[3]; 121 struct irq_domain *irq_domain; 122 struct pci_bus *bus; 123 u8 busn_start; 124 u8 first_vec; 125 char *name; 126 int instance; 127 }; 128 129 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 130 { 131 return container_of(bus->sysdata, struct vmd_dev, sysdata); 132 } 133 134 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 135 struct vmd_irq_list *irqs) 136 { 137 return irqs - vmd->irqs; 138 } 139 140 /* 141 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 142 * but the MSI entry for the hardware it's driving will be programmed with a 143 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 144 * domain into one of its own, and the VMD driver de-muxes these for the 145 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 146 * and irq_chip to set this up. 147 */ 148 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 149 { 150 struct vmd_irq *vmdirq = data->chip_data; 151 struct vmd_irq_list *irq = vmdirq->irq; 152 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 153 154 memset(msg, 0, sizeof(*msg)); 155 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 156 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 157 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); 158 } 159 160 /* 161 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 162 */ 163 static void vmd_irq_enable(struct irq_data *data) 164 { 165 struct vmd_irq *vmdirq = data->chip_data; 166 unsigned long flags; 167 168 raw_spin_lock_irqsave(&list_lock, flags); 169 WARN_ON(vmdirq->enabled); 170 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 171 vmdirq->enabled = true; 172 raw_spin_unlock_irqrestore(&list_lock, flags); 173 174 data->chip->irq_unmask(data); 175 } 176 177 static void vmd_irq_disable(struct irq_data *data) 178 { 179 struct vmd_irq *vmdirq = data->chip_data; 180 unsigned long flags; 181 182 data->chip->irq_mask(data); 183 184 raw_spin_lock_irqsave(&list_lock, flags); 185 if (vmdirq->enabled) { 186 list_del_rcu(&vmdirq->node); 187 vmdirq->enabled = false; 188 } 189 raw_spin_unlock_irqrestore(&list_lock, flags); 190 } 191 192 /* 193 * XXX: Stubbed until we develop acceptable way to not create conflicts with 194 * other devices sharing the same vector. 195 */ 196 static int vmd_irq_set_affinity(struct irq_data *data, 197 const struct cpumask *dest, bool force) 198 { 199 return -EINVAL; 200 } 201 202 static struct irq_chip vmd_msi_controller = { 203 .name = "VMD-MSI", 204 .irq_enable = vmd_irq_enable, 205 .irq_disable = vmd_irq_disable, 206 .irq_compose_msi_msg = vmd_compose_msi_msg, 207 .irq_set_affinity = vmd_irq_set_affinity, 208 }; 209 210 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 211 msi_alloc_info_t *arg) 212 { 213 return 0; 214 } 215 216 /* 217 * XXX: We can be even smarter selecting the best IRQ once we solve the 218 * affinity problem. 219 */ 220 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 221 { 222 unsigned long flags; 223 int i, best; 224 225 if (vmd->msix_count == 1 + vmd->first_vec) 226 return &vmd->irqs[vmd->first_vec]; 227 228 /* 229 * White list for fast-interrupt handlers. All others will share the 230 * "slow" interrupt vector. 231 */ 232 switch (msi_desc_to_pci_dev(desc)->class) { 233 case PCI_CLASS_STORAGE_EXPRESS: 234 break; 235 default: 236 return &vmd->irqs[vmd->first_vec]; 237 } 238 239 raw_spin_lock_irqsave(&list_lock, flags); 240 best = vmd->first_vec + 1; 241 for (i = best; i < vmd->msix_count; i++) 242 if (vmd->irqs[i].count < vmd->irqs[best].count) 243 best = i; 244 vmd->irqs[best].count++; 245 raw_spin_unlock_irqrestore(&list_lock, flags); 246 247 return &vmd->irqs[best]; 248 } 249 250 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 251 unsigned int virq, irq_hw_number_t hwirq, 252 msi_alloc_info_t *arg) 253 { 254 struct msi_desc *desc = arg->desc; 255 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 256 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 257 258 if (!vmdirq) 259 return -ENOMEM; 260 261 INIT_LIST_HEAD(&vmdirq->node); 262 vmdirq->irq = vmd_next_irq(vmd, desc); 263 vmdirq->virq = virq; 264 265 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq, 266 handle_untracked_irq, vmd, NULL); 267 return 0; 268 } 269 270 static void vmd_msi_free(struct irq_domain *domain, 271 struct msi_domain_info *info, unsigned int virq) 272 { 273 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 274 unsigned long flags; 275 276 synchronize_srcu(&vmdirq->irq->srcu); 277 278 /* XXX: Potential optimization to rebalance */ 279 raw_spin_lock_irqsave(&list_lock, flags); 280 vmdirq->irq->count--; 281 raw_spin_unlock_irqrestore(&list_lock, flags); 282 283 kfree(vmdirq); 284 } 285 286 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 287 int nvec, msi_alloc_info_t *arg) 288 { 289 struct pci_dev *pdev = to_pci_dev(dev); 290 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 291 292 if (nvec > vmd->msix_count) 293 return vmd->msix_count; 294 295 memset(arg, 0, sizeof(*arg)); 296 return 0; 297 } 298 299 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 300 { 301 arg->desc = desc; 302 } 303 304 static struct msi_domain_ops vmd_msi_domain_ops = { 305 .get_hwirq = vmd_get_hwirq, 306 .msi_init = vmd_msi_init, 307 .msi_free = vmd_msi_free, 308 .msi_prepare = vmd_msi_prepare, 309 .set_desc = vmd_set_desc, 310 }; 311 312 static struct msi_domain_info vmd_msi_domain_info = { 313 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 314 MSI_FLAG_PCI_MSIX, 315 .ops = &vmd_msi_domain_ops, 316 .chip = &vmd_msi_controller, 317 }; 318 319 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) 320 { 321 u16 reg; 322 323 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); 324 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : 325 (reg | VMCONFIG_MSI_REMAP); 326 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); 327 } 328 329 static int vmd_create_irq_domain(struct vmd_dev *vmd) 330 { 331 struct fwnode_handle *fn; 332 333 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 334 if (!fn) 335 return -ENODEV; 336 337 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); 338 if (!vmd->irq_domain) { 339 irq_domain_free_fwnode(fn); 340 return -ENODEV; 341 } 342 343 return 0; 344 } 345 346 static void vmd_remove_irq_domain(struct vmd_dev *vmd) 347 { 348 /* 349 * Some production BIOS won't enable remapping between soft reboots. 350 * Ensure remapping is restored before unloading the driver. 351 */ 352 if (!vmd->msix_count) 353 vmd_set_msi_remapping(vmd, true); 354 355 if (vmd->irq_domain) { 356 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 357 358 irq_domain_remove(vmd->irq_domain); 359 irq_domain_free_fwnode(fn); 360 } 361 } 362 363 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 364 unsigned int devfn, int reg, int len) 365 { 366 unsigned int busnr_ecam = bus->number - vmd->busn_start; 367 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); 368 369 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) 370 return NULL; 371 372 return vmd->cfgbar + offset; 373 } 374 375 /* 376 * CPU may deadlock if config space is not serialized on some versions of this 377 * hardware, so all config space access is done under a spinlock. 378 */ 379 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 380 int len, u32 *value) 381 { 382 struct vmd_dev *vmd = vmd_from_bus(bus); 383 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 384 unsigned long flags; 385 int ret = 0; 386 387 if (!addr) 388 return -EFAULT; 389 390 spin_lock_irqsave(&vmd->cfg_lock, flags); 391 switch (len) { 392 case 1: 393 *value = readb(addr); 394 break; 395 case 2: 396 *value = readw(addr); 397 break; 398 case 4: 399 *value = readl(addr); 400 break; 401 default: 402 ret = -EINVAL; 403 break; 404 } 405 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 406 return ret; 407 } 408 409 /* 410 * VMD h/w converts non-posted config writes to posted memory writes. The 411 * read-back in this function forces the completion so it returns only after 412 * the config space was written, as expected. 413 */ 414 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 415 int len, u32 value) 416 { 417 struct vmd_dev *vmd = vmd_from_bus(bus); 418 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 419 unsigned long flags; 420 int ret = 0; 421 422 if (!addr) 423 return -EFAULT; 424 425 spin_lock_irqsave(&vmd->cfg_lock, flags); 426 switch (len) { 427 case 1: 428 writeb(value, addr); 429 readb(addr); 430 break; 431 case 2: 432 writew(value, addr); 433 readw(addr); 434 break; 435 case 4: 436 writel(value, addr); 437 readl(addr); 438 break; 439 default: 440 ret = -EINVAL; 441 break; 442 } 443 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 444 return ret; 445 } 446 447 static struct pci_ops vmd_ops = { 448 .read = vmd_pci_read, 449 .write = vmd_pci_write, 450 }; 451 452 #ifdef CONFIG_ACPI 453 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) 454 { 455 struct pci_host_bridge *bridge; 456 u32 busnr, addr; 457 458 if (pci_dev->bus->ops != &vmd_ops) 459 return NULL; 460 461 bridge = pci_find_host_bridge(pci_dev->bus); 462 busnr = pci_dev->bus->number - bridge->bus->number; 463 /* 464 * The address computation below is only applicable to relative bus 465 * numbers below 32. 466 */ 467 if (busnr > 31) 468 return NULL; 469 470 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; 471 472 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", 473 addr); 474 475 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, 476 false); 477 } 478 479 static bool hook_installed; 480 481 static void vmd_acpi_begin(void) 482 { 483 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) 484 return; 485 486 hook_installed = true; 487 } 488 489 static void vmd_acpi_end(void) 490 { 491 if (!hook_installed) 492 return; 493 494 pci_acpi_clear_companion_lookup_hook(); 495 hook_installed = false; 496 } 497 #else 498 static inline void vmd_acpi_begin(void) { } 499 static inline void vmd_acpi_end(void) { } 500 #endif /* CONFIG_ACPI */ 501 502 static void vmd_domain_reset(struct vmd_dev *vmd) 503 { 504 u16 bus, max_buses = resource_size(&vmd->resources[0]); 505 u8 dev, functions, fn, hdr_type; 506 char __iomem *base; 507 508 for (bus = 0; bus < max_buses; bus++) { 509 for (dev = 0; dev < 32; dev++) { 510 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 511 PCI_DEVFN(dev, 0), 0); 512 513 hdr_type = readb(base + PCI_HEADER_TYPE) & 514 PCI_HEADER_TYPE_MASK; 515 516 functions = (hdr_type & 0x80) ? 8 : 1; 517 for (fn = 0; fn < functions; fn++) { 518 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 519 PCI_DEVFN(dev, fn), 0); 520 521 hdr_type = readb(base + PCI_HEADER_TYPE) & 522 PCI_HEADER_TYPE_MASK; 523 524 if (hdr_type != PCI_HEADER_TYPE_BRIDGE || 525 (readw(base + PCI_CLASS_DEVICE) != 526 PCI_CLASS_BRIDGE_PCI)) 527 continue; 528 529 memset_io(base + PCI_IO_BASE, 0, 530 PCI_ROM_ADDRESS1 - PCI_IO_BASE); 531 } 532 } 533 } 534 } 535 536 static void vmd_attach_resources(struct vmd_dev *vmd) 537 { 538 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 539 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 540 } 541 542 static void vmd_detach_resources(struct vmd_dev *vmd) 543 { 544 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 545 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 546 } 547 548 /* 549 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 550 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 551 * 16 bits are the PCI Segment Group (domain) number. Other bits are 552 * currently reserved. 553 */ 554 static int vmd_find_free_domain(void) 555 { 556 int domain = 0xffff; 557 struct pci_bus *bus = NULL; 558 559 while ((bus = pci_find_next_bus(bus)) != NULL) 560 domain = max_t(int, domain, pci_domain_nr(bus)); 561 return domain + 1; 562 } 563 564 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, 565 resource_size_t *offset1, 566 resource_size_t *offset2) 567 { 568 struct pci_dev *dev = vmd->dev; 569 u64 phys1, phys2; 570 571 if (native_hint) { 572 u32 vmlock; 573 int ret; 574 575 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); 576 if (ret || PCI_POSSIBLE_ERROR(vmlock)) 577 return -ENODEV; 578 579 if (MB2_SHADOW_EN(vmlock)) { 580 void __iomem *membar2; 581 582 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); 583 if (!membar2) 584 return -ENOMEM; 585 phys1 = readq(membar2 + MB2_SHADOW_OFFSET); 586 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); 587 pci_iounmap(dev, membar2); 588 } else 589 return 0; 590 } else { 591 /* Hypervisor-Emulated Vendor-Specific Capability */ 592 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); 593 u32 reg, regu; 594 595 pci_read_config_dword(dev, pos + 4, ®); 596 597 /* "SHDW" */ 598 if (pos && reg == 0x53484457) { 599 pci_read_config_dword(dev, pos + 8, ®); 600 pci_read_config_dword(dev, pos + 12, ®u); 601 phys1 = (u64) regu << 32 | reg; 602 603 pci_read_config_dword(dev, pos + 16, ®); 604 pci_read_config_dword(dev, pos + 20, ®u); 605 phys2 = (u64) regu << 32 | reg; 606 } else 607 return 0; 608 } 609 610 *offset1 = dev->resource[VMD_MEMBAR1].start - 611 (phys1 & PCI_BASE_ADDRESS_MEM_MASK); 612 *offset2 = dev->resource[VMD_MEMBAR2].start - 613 (phys2 & PCI_BASE_ADDRESS_MEM_MASK); 614 615 return 0; 616 } 617 618 static int vmd_get_bus_number_start(struct vmd_dev *vmd) 619 { 620 struct pci_dev *dev = vmd->dev; 621 u16 reg; 622 623 pci_read_config_word(dev, PCI_REG_VMCAP, ®); 624 if (BUS_RESTRICT_CAP(reg)) { 625 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); 626 627 switch (BUS_RESTRICT_CFG(reg)) { 628 case 0: 629 vmd->busn_start = 0; 630 break; 631 case 1: 632 vmd->busn_start = 128; 633 break; 634 case 2: 635 vmd->busn_start = 224; 636 break; 637 default: 638 pci_err(dev, "Unknown Bus Offset Setting (%d)\n", 639 BUS_RESTRICT_CFG(reg)); 640 return -ENODEV; 641 } 642 } 643 644 return 0; 645 } 646 647 static irqreturn_t vmd_irq(int irq, void *data) 648 { 649 struct vmd_irq_list *irqs = data; 650 struct vmd_irq *vmdirq; 651 int idx; 652 653 idx = srcu_read_lock(&irqs->srcu); 654 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 655 generic_handle_irq(vmdirq->virq); 656 srcu_read_unlock(&irqs->srcu, idx); 657 658 return IRQ_HANDLED; 659 } 660 661 static int vmd_alloc_irqs(struct vmd_dev *vmd) 662 { 663 struct pci_dev *dev = vmd->dev; 664 int i, err; 665 666 vmd->msix_count = pci_msix_vec_count(dev); 667 if (vmd->msix_count < 0) 668 return -ENODEV; 669 670 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, 671 vmd->msix_count, PCI_IRQ_MSIX); 672 if (vmd->msix_count < 0) 673 return vmd->msix_count; 674 675 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 676 GFP_KERNEL); 677 if (!vmd->irqs) 678 return -ENOMEM; 679 680 for (i = 0; i < vmd->msix_count; i++) { 681 err = init_srcu_struct(&vmd->irqs[i].srcu); 682 if (err) 683 return err; 684 685 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 686 vmd->irqs[i].virq = pci_irq_vector(dev, i); 687 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq, 688 vmd_irq, IRQF_NO_THREAD, 689 vmd->name, &vmd->irqs[i]); 690 if (err) 691 return err; 692 } 693 694 return 0; 695 } 696 697 /* 698 * Since VMD is an aperture to regular PCIe root ports, only allow it to 699 * control features that the OS is allowed to control on the physical PCI bus. 700 */ 701 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge, 702 struct pci_host_bridge *vmd_bridge) 703 { 704 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug; 705 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug; 706 vmd_bridge->native_aer = root_bridge->native_aer; 707 vmd_bridge->native_pme = root_bridge->native_pme; 708 vmd_bridge->native_ltr = root_bridge->native_ltr; 709 vmd_bridge->native_dpc = root_bridge->native_dpc; 710 } 711 712 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 713 { 714 struct pci_sysdata *sd = &vmd->sysdata; 715 struct resource *res; 716 u32 upper_bits; 717 unsigned long flags; 718 LIST_HEAD(resources); 719 resource_size_t offset[2] = {0}; 720 resource_size_t membar2_offset = 0x2000; 721 struct pci_bus *child; 722 struct pci_dev *dev; 723 int ret; 724 725 /* 726 * Shadow registers may exist in certain VMD device ids which allow 727 * guests to correctly assign host physical addresses to the root ports 728 * and child devices. These registers will either return the host value 729 * or 0, depending on an enable bit in the VMD device. 730 */ 731 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 732 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 733 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); 734 if (ret) 735 return ret; 736 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 737 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); 738 if (ret) 739 return ret; 740 } 741 742 /* 743 * Certain VMD devices may have a root port configuration option which 744 * limits the bus range to between 0-127, 128-255, or 224-255 745 */ 746 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 747 ret = vmd_get_bus_number_start(vmd); 748 if (ret) 749 return ret; 750 } 751 752 res = &vmd->dev->resource[VMD_CFGBAR]; 753 vmd->resources[0] = (struct resource) { 754 .name = "VMD CFGBAR", 755 .start = vmd->busn_start, 756 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 757 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 758 }; 759 760 /* 761 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 762 * put 32-bit resources in the window. 763 * 764 * There's no hardware reason why a 64-bit window *couldn't* 765 * contain a 32-bit resource, but pbus_size_mem() computes the 766 * bridge window size assuming a 64-bit window will contain no 767 * 32-bit resources. __pci_assign_resource() enforces that 768 * artificial restriction to make sure everything will fit. 769 * 770 * The only way we could use a 64-bit non-prefetchable MEMBAR is 771 * if its address is <4GB so that we can convert it to a 32-bit 772 * resource. To be visible to the host OS, all VMD endpoints must 773 * be initially configured by platform BIOS, which includes setting 774 * up these resources. We can assume the device is configured 775 * according to the platform needs. 776 */ 777 res = &vmd->dev->resource[VMD_MEMBAR1]; 778 upper_bits = upper_32_bits(res->end); 779 flags = res->flags & ~IORESOURCE_SIZEALIGN; 780 if (!upper_bits) 781 flags &= ~IORESOURCE_MEM_64; 782 vmd->resources[1] = (struct resource) { 783 .name = "VMD MEMBAR1", 784 .start = res->start, 785 .end = res->end, 786 .flags = flags, 787 .parent = res, 788 }; 789 790 res = &vmd->dev->resource[VMD_MEMBAR2]; 791 upper_bits = upper_32_bits(res->end); 792 flags = res->flags & ~IORESOURCE_SIZEALIGN; 793 if (!upper_bits) 794 flags &= ~IORESOURCE_MEM_64; 795 vmd->resources[2] = (struct resource) { 796 .name = "VMD MEMBAR2", 797 .start = res->start + membar2_offset, 798 .end = res->end, 799 .flags = flags, 800 .parent = res, 801 }; 802 803 sd->vmd_dev = vmd->dev; 804 sd->domain = vmd_find_free_domain(); 805 if (sd->domain < 0) 806 return sd->domain; 807 808 sd->node = pcibus_to_node(vmd->dev->bus); 809 810 /* 811 * Currently MSI remapping must be enabled in guest passthrough mode 812 * due to some missing interrupt remapping plumbing. This is probably 813 * acceptable because the guest is usually CPU-limited and MSI 814 * remapping doesn't become a performance bottleneck. 815 */ 816 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || 817 offset[0] || offset[1]) { 818 ret = vmd_alloc_irqs(vmd); 819 if (ret) 820 return ret; 821 822 vmd_set_msi_remapping(vmd, true); 823 824 ret = vmd_create_irq_domain(vmd); 825 if (ret) 826 return ret; 827 828 /* 829 * Override the IRQ domain bus token so the domain can be 830 * distinguished from a regular PCI/MSI domain. 831 */ 832 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); 833 } else { 834 vmd_set_msi_remapping(vmd, false); 835 } 836 837 pci_add_resource(&resources, &vmd->resources[0]); 838 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 839 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 840 841 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 842 &vmd_ops, sd, &resources); 843 if (!vmd->bus) { 844 pci_free_resource_list(&resources); 845 vmd_remove_irq_domain(vmd); 846 return -ENODEV; 847 } 848 849 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus), 850 to_pci_host_bridge(vmd->bus->bridge)); 851 852 vmd_attach_resources(vmd); 853 if (vmd->irq_domain) 854 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 855 else 856 dev_set_msi_domain(&vmd->bus->dev, 857 dev_get_msi_domain(&vmd->dev->dev)); 858 859 vmd_acpi_begin(); 860 861 pci_scan_child_bus(vmd->bus); 862 vmd_domain_reset(vmd); 863 864 /* When Intel VMD is enabled, the OS does not discover the Root Ports 865 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies 866 * a reset to the parent of the PCI device supplied as argument. This 867 * is why we pass a child device, so the reset can be triggered at 868 * the Intel bridge level and propagated to all the children in the 869 * hierarchy. 870 */ 871 list_for_each_entry(child, &vmd->bus->children, node) { 872 if (!list_empty(&child->devices)) { 873 dev = list_first_entry(&child->devices, 874 struct pci_dev, bus_list); 875 if (pci_reset_bus(dev)) 876 pci_warn(dev, "can't reset device: %d\n", ret); 877 878 break; 879 } 880 } 881 882 pci_assign_unassigned_bus_resources(vmd->bus); 883 884 /* 885 * VMD root buses are virtual and don't return true on pci_is_pcie() 886 * and will fail pcie_bus_configure_settings() early. It can instead be 887 * run on each of the real root ports. 888 */ 889 list_for_each_entry(child, &vmd->bus->children, node) 890 pcie_bus_configure_settings(child); 891 892 pci_bus_add_devices(vmd->bus); 893 894 vmd_acpi_end(); 895 896 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 897 "domain"), "Can't create symlink to domain\n"); 898 return 0; 899 } 900 901 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 902 { 903 unsigned long features = (unsigned long) id->driver_data; 904 struct vmd_dev *vmd; 905 int err; 906 907 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 908 return -ENOMEM; 909 910 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 911 if (!vmd) 912 return -ENOMEM; 913 914 vmd->dev = dev; 915 vmd->instance = ida_simple_get(&vmd_instance_ida, 0, 0, GFP_KERNEL); 916 if (vmd->instance < 0) 917 return vmd->instance; 918 919 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d", 920 vmd->instance); 921 if (!vmd->name) { 922 err = -ENOMEM; 923 goto out_release_instance; 924 } 925 926 err = pcim_enable_device(dev); 927 if (err < 0) 928 goto out_release_instance; 929 930 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 931 if (!vmd->cfgbar) { 932 err = -ENOMEM; 933 goto out_release_instance; 934 } 935 936 pci_set_master(dev); 937 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 938 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { 939 err = -ENODEV; 940 goto out_release_instance; 941 } 942 943 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) 944 vmd->first_vec = 1; 945 946 spin_lock_init(&vmd->cfg_lock); 947 pci_set_drvdata(dev, vmd); 948 err = vmd_enable_domain(vmd, features); 949 if (err) 950 goto out_release_instance; 951 952 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 953 vmd->sysdata.domain); 954 return 0; 955 956 out_release_instance: 957 ida_simple_remove(&vmd_instance_ida, vmd->instance); 958 return err; 959 } 960 961 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 962 { 963 int i; 964 965 for (i = 0; i < vmd->msix_count; i++) 966 cleanup_srcu_struct(&vmd->irqs[i].srcu); 967 } 968 969 static void vmd_remove(struct pci_dev *dev) 970 { 971 struct vmd_dev *vmd = pci_get_drvdata(dev); 972 973 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 974 pci_stop_root_bus(vmd->bus); 975 pci_remove_root_bus(vmd->bus); 976 vmd_cleanup_srcu(vmd); 977 vmd_detach_resources(vmd); 978 vmd_remove_irq_domain(vmd); 979 ida_simple_remove(&vmd_instance_ida, vmd->instance); 980 } 981 982 #ifdef CONFIG_PM_SLEEP 983 static int vmd_suspend(struct device *dev) 984 { 985 struct pci_dev *pdev = to_pci_dev(dev); 986 struct vmd_dev *vmd = pci_get_drvdata(pdev); 987 int i; 988 989 for (i = 0; i < vmd->msix_count; i++) 990 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]); 991 992 return 0; 993 } 994 995 static int vmd_resume(struct device *dev) 996 { 997 struct pci_dev *pdev = to_pci_dev(dev); 998 struct vmd_dev *vmd = pci_get_drvdata(pdev); 999 int err, i; 1000 1001 if (vmd->irq_domain) 1002 vmd_set_msi_remapping(vmd, true); 1003 else 1004 vmd_set_msi_remapping(vmd, false); 1005 1006 for (i = 0; i < vmd->msix_count; i++) { 1007 err = devm_request_irq(dev, vmd->irqs[i].virq, 1008 vmd_irq, IRQF_NO_THREAD, 1009 vmd->name, &vmd->irqs[i]); 1010 if (err) 1011 return err; 1012 } 1013 1014 return 0; 1015 } 1016 #endif 1017 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 1018 1019 static const struct pci_device_id vmd_ids[] = { 1020 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 1021 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 1022 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 1023 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 1024 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1025 VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, 1026 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f), 1027 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1028 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1029 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1030 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d), 1031 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1032 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1033 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1034 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xa77f), 1035 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1036 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1037 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1038 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x7d0b), 1039 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1040 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1041 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1042 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0xad0b), 1043 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1044 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1045 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1046 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 1047 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | 1048 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1049 VMD_FEAT_OFFSET_FIRST_VECTOR,}, 1050 {0,} 1051 }; 1052 MODULE_DEVICE_TABLE(pci, vmd_ids); 1053 1054 static struct pci_driver vmd_drv = { 1055 .name = "vmd", 1056 .id_table = vmd_ids, 1057 .probe = vmd_probe, 1058 .remove = vmd_remove, 1059 .driver = { 1060 .pm = &vmd_dev_pm_ops, 1061 }, 1062 }; 1063 module_pci_driver(vmd_drv); 1064 1065 MODULE_AUTHOR("Intel Corporation"); 1066 MODULE_LICENSE("GPL v2"); 1067 MODULE_VERSION("0.6"); 1068